
z/OS

XL C/C++
Run-Time Library Reference

SA22-7821-09

���

z/OS

XL C/C++
Run-Time Library Reference

SA22-7821-09

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

2539.

Tenth Edition, September 2007

This is a major revision of SA22-7821-08.

This edition applies to Version 1 Release 9 of z/OS (5694-A01), and to subsequent releases and modifications until

otherwise indicated in new editions.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 MHVRCFS, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xxix

Tables . xxxi

About this document . xxxiii

How to read syntax diagrams xxxiii

z/OS XL C/C++ and related documents xxxv

Softcopy documents . xl

Softcopy examples . xl

z/OS XL C/C++ on the World Wide Web xli

Summary of changes . xliii

Chapter 1. About IBM z/OS XL C/C++ 1

Changes for z/OS V1R9 . 1

The XL C/C++ compilers . 3

Class libraries . 5

Utilities . 5

dbx . 6

Language Environment element 6

About prelinking, linking, and binding 9

z/OS UNIX System Services . 11

z/OS XL C/C++ applications with z/OS UNIX System Services C functions . . . 13

Input and output . 13

The System Programming C facility 15

Interaction with other IBM products 16

Additional features of z/OS XL C/C++ 18

Chapter 2. Header Files . 21

Feature Test Macros . 21

aio.h . 34

arpa/inet.h . 34

arpa/nameser.h . 34

assert.h . 34

cassert . 34

_Ccsid.h . 35

cctype . 35

ceeedcct.h . 35

cerrno . 35

cfloat . 35

cics.h . 35

ciso646 . 35

climits . 36

clocale . 36

cmath . 36

collate.h . 36

complex.h . 36

cpio.h . 37

csetjmp . 37

csignal . 37

csp.h . 37

cstdarg . 38

cstddef . 38

© Copyright IBM Corp. 1996, 2007 iii

cstdio . 38

cstdlib . 38

cstring . 38

ctest.h . 38

ctime . 39

ctype.h . 39

cwchar . 39

cwctype . 39

decimal.h . 39

dirent.h . 40

dlfcn.h . 40

dll.h . 40

dynit.h . 41

env.h . 41

errno.h . 41

exception . 44

fcntl.h . 45

features.h . 45

fenv.h . 45

float.h . 46

fmtmsg.h . 48

fnmatch.h . 48

fpxcp.h . 48

__ftp.h . 48

ftw.h . 48

glob.h . 48

grp.h . 48

iconv.h . 49

_Ieee754.h . 49

ims.h . 49

inttypes.h . 49

iso646.h . 52

langinfo.h . 53

lc_core.h . 54

lc_sys.h . 54

__le_api.h . 55

leawi.h . 55

libgen.h . 55

limits.h . 55

localdef.h . 56

locale.h . 57

math.h . 60

memory.h . 64

monetary.h . 64

msgcat.h . 64

mtf.h . 64

_Nascii.h . 64

ndbm.h . 64

netdb.h . 64

net/if.h . 65

net/rtrouteh.h . 65

netinet/icmp6.h . 65

netinet/in.h . 68

netinet/ip6.h . 69

netinet/tcp.h . 70

new . 70

iv z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

new.h . 71

nlist.h . 71

nl_types.h . 72

poll.h . 72

pthread.h . 72

pwd.h . 75

re_comp.h . 75

regex.h . 76

regexp.h . 76

resolv.h . 76

rexec.h . 76

sched.h . 76

search.h . 77

setjmp.h . 77

signal.h . 77

spawn.h . 78

spc.h . 78

stdarg.h . 79

stdbool.h . 79

stddef.h . 79

stdefs.h . 80

stdint.h . 80

stdio.h . 82

stdlib.h . 85

string.h . 86

strings.h . 86

stropts.h . 86

syslog.h . 87

sys/acl.h . 87

sys/__cpl.h . 87

sys/file.h . 87

sys/__getipc.h . 87

sys/ioctl.h . 87

sys/ipc.h . 87

sys/layout.h . 87

sys/mman.h . 87

sys/__messag.h . 88

sys/mntent.h . 88

sys/modes.h . 88

sys/msg.h . 88

sys/ps.h . 88

sys/resource.h . 88

sys/select.h . 88

sys/sem.h . 88

sys/server.h . 89

sys/shm.h . 89

sys/socket.h . 89

sys/stat.h . 89

sys/statfs.h . 89

sys/statvfs.h . 89

sys/time.h . 89

sys/timeb.h . 89

sys/times.h . 89

sys/ttydev.h . 89

sys/types.h . 90

sys/uio.h . 91

Contents v

||

sys/un.h . 91

sys/__ussos.h . 91

sys/utsname.h . 91

sys/wait.h . 91

sys/__wlm.h . 91

tar.h . 91

terminat.h . 92

termios.h . 92

tgmath.h . 92

time.h . 93

typeinfo . 94

typeinfo.h . 96

ucontext.h . 96

uheap.h . 96

ulimit.h . 96

unexpect.h . 96

unistd.h . 96

utime.h . 97

utmpx.h . 98

varargs.h . 98

variant.h . 98

wchar.h . 98

wcstr.h . 100

wctype.h . 100

wordexp.h . 100

xti.h . 100

Chapter 3. Part 3. Library Functions 103

Names . 103

Unsupported functions and external variables in AMODE 64 104

Standards . 104

Using C Include Files from C++ 107

Built-in Functions . 107

IEEE Binary Floating-Point . 108

IEEE Decimal Floating-Point 109

External Variables . 110

The __restrict__ macro . 115

abort() — Stop a Program . 116

abs(), absf(), absl() — Calculate Integer Absolute Value 118

accept() — Accept a New Connection on a Socket 120

accept_and_recv() — Accept Connection and Receive First Message 123

access() — Determine Whether a File Can be Accessed 127

acl_create_entry() — Add a New Extended ACL Entry to the ACL 130

acl_delete_entry() — Delete an Extended ACL Entry from the ACL 131

acl_delete_fd() — Delete an ACL by File Descriptor 132

acl_delete_file() — Delete an ACL by Filename 133

acl_first_entry() — Return to Beginning of ACL Working Storage 135

acl_free() — Release Memory Allocated to an ACL Data Object 136

acl_from_text() — Create an ACL from Text 137

acl_get_entry() — Get an ACL Entry 140

acl_get_fd() — Get ACL by File Descriptor 142

acl_get_file() — Get ACL by Filename 144

acl_init() — Initialize ACL Working Storage 146

acl_set_fd() — Set an ACL by File Descriptor 147

acl_set_file() — Set an ACL by Filename 150

acl_sort() — Sort the Extended ACL Entries 153

vi z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

||
||

acl_to_text() — Convert an ACL to Text 154

acl_update_entry() — Update the Extended ACL Entry 156

acl_valid() — Validate an ACL 157

acos(), acosf(), acosl() — Calculate Arccosine 159

acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine 161

advance() — Pattern Match Given a Compiled Regular Expression 163

__ae_correstbl_query() — Return Coded Character Set ID Type

(ASCII/EBCDIC) . 165

aio_cancel() — Cancel an Asynchronous I/O Request 167

aio_error() — Retrieve Error Status for an Asynchronous I/O Operation . . . 169

aio_read() — Asynchronous Read from a Socket 170

aio_return() — Retrieve Status for an Asynchronous I/O Operation 174

aio_suspend() — Wait for an Asynchronous I/O Request 175

aio_write() — Asynchronous Write to a Socket 177

alarm() — Set an Alarm . 180

alloca() — Allocate Storage from the Stack 183

asctime() — Convert Time to Character String 184

asctime_r() — Convert Date and Time to a Character String 186

asin(), asinf(), asinl() — Calculate Arcsine 187

asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine 189

assert() — Verify Condition . 190

atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent . . . 192

atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent 194

atexit() — Register Program Termination Function 196

__atoe() — ISO8859-1 to EBCDIC String Conversion 199

__atoe_l() — ISO8859-1 to EBCDIC Conversion Operation 200

atof() — Convert Character String to Double 201

atoi() — Convert Character String to Integer 202

atol() — Convert Character String to Long 203

atoll() — Convert Character String to Signed Long Long 204

__a2e_l() — Convert Characters from ASCII to EBCDIC 205

__a2e_s() — Convert String from ASCII to EBCDIC 206

a64l() — Convert Base 64 String Representation to Long Integer 207

basename() — Return the Last Component of a Pathname 208

bcmp() — Compare Bytes in Memory 209

bcopy() — Copy Bytes in Memory 210

bind() — Bind a Name to a Socket 211

brk() — Change Space Allocation 216

bsd_signal() — BSD Version of signal() 218

bsearch() — Search Arrays . 220

btowc() — Convert Single-Byte Character to Wide-Character 222

bzero() — Zero Out Bytes in Memory 223

__cabend() — Terminate the process with an abend 224

cabs(), cabsf(), cabsl() — Calculate the Complex Absolute Value 225

cacos(), cacosf(), cacosl() — Calculate the Complex Arc Cosine 227

cacosh(), cacoshf(), cacoshl() — Calculate the Complex Arc Hyperbolic Cosine 229

calloc() — Reserve and Initialize Storage 230

carg(), cargf(), cargl() — Calculate the Argument 232

casin(), casinf(), casinl() — Calculate the Complex Arc Sine 233

casinh(), casinhf(), casinhl() — Calculate the Complex Arc Hyperbolic Sine 234

catan(), catanf(), catanl() — Calculate the Complex Arc Tangent 235

catanh(), catanhf(), catanhl() — Calculate the Complex Arc Hyperbolic Tangent 236

catclose() — Close a Message Catalog Descriptor 237

catgets() — Read a Program Message 238

catopen() — Open a Message Catalog 240

cbrt(), cbrtf(), cbrtl() — Calculate the Cube Root 242

Contents vii

cclass() — Return Characters in a Character Class 243

ccos(), ccosf(), ccosl() — Calculate the Complex Cosine 245

ccosh(), ccoshf(), ccoshl() — Calculate the Complex Hyperbolic Cosine . . . 246

__CcsidType() — Return Coded Character Set ID Type (ASCII/EBCDIC) 247

cds() — Compare Double and Swap 248

cdump() — Request a Main Storage Dump 249

ceil(), ceilf(), ceill() — Round Up to Integral Value 251

ceild32(), ceild64(), ceild128() — Round Up to Integral Value 253

__certificate() — Register/Deregister/Authenticate a Digital Certificate 255

cexp(), cexpf(), cexpl() — Calculate the Complex Exponential 257

cfgetispeed() — Determine the Input Baud Rate 258

cfgetospeed() — Determine the Output Baud Rate 261

cfsetispeed() — Set the Input Baud Rate in the Termios 263

cfsetospeed() — Set the Output Baud Rate in the Termios 265

__chattr() — Change the Attributes of a File or Directory 267

chaudit() — Change Audit Flags for a File by Path 271

chdir() — Change the Working Directory 273

__check_resource_auth_np() — Determine Access to MVS Resources 275

CheckSchEnv() — Check WLM Scheduling Environment 278

chmod() — Change the Mode of a File or Directory 280

chown() — Change the Owner or Group of a File or Directory 283

chpriority() — Change the Scheduling Priority of a Process 286

chroot() — Change Root Directory 288

cimag(), cimagf(), cimagl() — Calculate the Complex Imaginary Part 290

clearenv() — Clear Environment Variables 291

clearerr() — Reset Error and End of File (EOF) 294

clock() — Determine Processor Time 296

clog(), clogf(), clogl() — Calculate the Complex Natural Logarithm 298

close() — Close a File . 299

closedir() — Close a Directory 302

closelog() — Close the Control Log 304

clrmemf() — Clear Memory Files 305

__cnvblk() — Convert Block 307

collequiv() — Return a List of Equivalent Collating Elements 308

collorder() — Return List of Collating Elements 310

collrange() — Calculate the Range List of Collating Elements 312

colltostr() — Return a String for a Collating Element 314

compile() — Compile Regular Expression 316

confstr() — Get Configurable Variables 320

conj(), conjf(), conjl() — Calculate the Complex Conjugate 323

connect() — Connect a Socket 325

ConnectExportImport() — WLM Connect for Export or Import Use 330

ConnectServer() — Connect to WLM as a Server Manager 332

ConnectWorkMgr() — Connect to WLM as a Work Manager 334

__console() — Console Communication Services 336

__console2() — Enhanced Console Communication Services 339

ContinueWorkUnit() — Continue WLM Work Unit 343

__convert_id_np() — Convert Between DCE UUID and Userid 345

copysign(), copysignf(), copysignl() — Copy the Sign from one floating-point

number to another . 347

copysignd32(), copysignd64(), copysignd128() — Copy the Sign from one

floating-point number to another 348

cos(), cosf(), cosl() — Calculate Cosine 350

cosd32(), cosd64(), cosd128() — Calculate Cosine 352

cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine 354

__cospid32(), __cospid64(), __cospid128() — Calculate Cosine of pi *x . . . 356

viii z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

|
||

||

||

__cotan(), __cotanf(), __cotanl() — Calculate Cotangent 358

__cpl() — CPL Interface Service 359

cpow(), cpowf(), cpowl() — Calculate the Complex Power 361

cproj(), cprojf(), cprojl() — Calculate the Projection 363

creal(), crealf(), creall() — Calculate the Complex Real Part 365

creat() — Create a New File or Rewrite an Existing One 366

CreateWorkUnit() — Create WLM Work Unit 369

crypt() — String Encoding Function 371

cs() — Compare and Swap . 372

csid() — Character Set ID for Multibyte Character 373

csin(), csinf(), csinl() — Calculate the Complex Sine 375

csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine 376

__CSNameType() — Return Codeset Name Type (ASCII/EBCDIC) 377

csnap() — Request a Condensed Dump 378

__csplist — Retrieve CSP Parameters 379

csqrt(), csqrtf(), csqrtl() — Calculate the Complex Square Root 380

ctan(), ctanf(), ctanl()— Calculate the Complex Tangent 381

ctanh(), ctanhf(), ctanhl() — Calculate the Complex Hyperbolic Tangent . . . 382

ctdli() — Call to DL/I . 383

ctermid() — Generate Pathname for Controlling Terminal 385

ctest() — Start Debug Tool . 387

ctime() — Convert Time to Character String 389

ctime_r() — Convert Time Value to Date and Time Character String 392

ctrace() — Request a Traceback 393

cuserid() — Return Character Login of the User 395

dbm_clearerr() — Clear Database Error Indicator 397

dbm_close() — Close a Database 398

dbm_delete() — Delete Database Record 399

dbm_error() — Check Database Error Indicator 401

dbm_fetch() — Get Database Content 402

dbm_firstkey() — Get First Key in Database 403

dbm_nextkey() — Get Next Key in Database 405

dbm_open() — Open a Database 407

dbm_store() — Store Database Record 409

decabs() — Decimal Absolute Value 411

decchk() — Check for Valid Decimal Types 412

decfix() — Fix Up a Nonpreferred Sign Variable 414

DeleteWorkUnit() — Delete a WLM Work Unit 415

difftime() — Compute Time Difference 417

dirname() — Report the Parent Directory of a Pathname 419

__discarddata() — Release Pages Backing Virtual Storage 420

DisconnectServer() — Disconnect from WLM Server 421

div() — Calculate Quotient and Remainder 423

dlclose() — Close a dlopen() object 424

dlerror() — Get diagnostic information 426

dlopen() — Gain access to a Dynamic Link Library (DLL) 427

dlsym() — Obtain the address of a symbol from a dlopen() object 430

dllfree() — Free the Supplied DLL 432

dllload() — Load the DLL and Connect it to the Application 435

dllqueryfn() — Obtain a Pointer to a DLL Function 438

dllqueryvar() — Obtain a Pointer to a DLL Variable 440

dn_comp() — Resolver Domain Name Compression 442

dn_expand() — Resolver Domain Name Expansion 444

dn_find() — Resolver Domain Name Find 445

dn_skipname() — Resolver Domain Name Skipping 446

drand48() — Pseudo-Random Number Generator 447

Contents ix

dup() — Duplicate an Open File Descriptor 449

dup2() — Duplicate an Open File Descriptor to Another 451

dynalloc() — Allocate a Data Set 453

dynfree() — Deallocate a Data Set 460

dyninit() — Initialize __dyn_t Structure 462

ecvt() — Convert Double to String 464

encrypt() — Encoding Function 466

endgrent() — Group Database Entry Functions 468

endhostent() — Close the Host Information Data Set 470

endnetent() — Close Network Information Data Sets 471

endprotoent() — Work with a Protocol Entry 472

endpwent() — User Database Functions 473

endservent() — Close Network Services Information Data Sets 474

endutxent() — Close the utmpx Database 475

erand48() — Pseudo-Random Number Generator 476

erf(), erfc(), erff(), erfl(), erfcf(), erfcl() — Calculate Error and Complementary

Error Functions . 478

__err2ad() — Return Address of Reason Code of Last Failure 481

__errno2() — Return Reason Code Information 482

__etoa() — EBCDIC to ISO8859-1 String Conversion 484

__etoa_l() — EBCDIC to ISO8859-1 Conversion Operation 485

exec Functions . 486

exit() — End Program . 494

_exit() — End a Process and Bypass the Cleanup 496

_Exit() — Terminate a Process 498

exp(), expf(), expl() — Calculate Exponential Function 498

expd32(), expd64(), expd128() — Calculate Exponential Function 500

expm1(), expm1f(), expm1l() — Exponential Minus One 502

ExportWorkUnit() — WLM Export Service 503

exp2(), exp2f(), exp2l() — Calculate the base-2 exponential 505

extlink_np() — Create an External Symbolic Link 506

ExtractWorkUnit() — Extract Enclave Service 508

__e2a_l() — Convert Characters from EBCDIC to ASCII 509

__e2a_s() — Convert String from EBCDIC to ASCII 510

fabs(), fabsf(), fabsl() — Calculate Floating-Point Absolute Value 511

fabsd32(), fabsd64(), fabsd128() — Calculate Floating-Point Absolute Value 512

fattach() — Attach a STREAMS-based File Descriptor to a File in the File

System Name Space . 514

__fchattr() — Change the Attributes of a File or Directory by File Descriptor 516

fchaudit() — Change Audit Flags for a File by Descriptor 518

fchdir() — Change Working Directory 520

fchmod() — Change the Mode of a File or Directory by Descriptor 521

fchown() — Change the Owner or Group by File Descriptor 523

fclose() — Close File . 525

fcntl() — Control Open File Descriptors 527

fcvt() — Convert Double to String 538

fdelrec() — Delete a VSAM Record 539

fdetach() — Detach a Name from a STREAMS-based File Descriptor 541

fdim(), fdimf(), fdiml() — Calculate the Positive Difference 543

fdimd32(), fdimd64(), fdimd128() — Calculate the Positive Difference 544

fdopen() — Associate a Stream with an Open File Descriptor 545

feclearexcept() — Clear the Floating-Point Exceptions 547

fe_dec_getround() — Get the Current Rounding Mode 548

fe_dec_setround() — Set the Current Rounding Mode 550

fegetenv() — Store the Current Floating-Point Environment 552

fegetexceptflag() — Store the States of Floating-Point Status Flags 553

x z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

||

||

||
||

fegetround() — Get the Current Rounding Mode 554

feholdexcept() — Save the Current Floating-Point Environment 555

feof() — Test End Of File (EOF) Indicator 556

feraiseexcept() — Raise the Supported Floating-Point Exceptions 558

ferror() — Test for Read/Write Errors 559

fesetenv() — Set the Floating-Point Environment 561

fesetexceptflag() — Set the Floating-Point Status Flags 563

fesetround() — Set the Current Rounding Mode 564

fetch() — Get a Load Module 565

fetchep() — Share Writable Static 578

fetestexcept() — Test the Floating-Point Status Flags 581

feupdateenv() — Save the Currently Raised Floating-Point Exceptions 582

fflush() — Write Buffer to File 584

ffs() — Find First Set Bit in an Integer 586

fgetc() — Read a Character . 587

fgetpos() — Get File Position 589

fgets() — Read a String from a Stream 591

fgetwc() — Get Next Wide Character 593

fgetws() — Get a Wide-Character String 595

fileno() — Get the File Descriptor from an Open Stream 598

finite() — Determine the Infinity Classification of a Floating-Point Number 600

fldata() — Retrieve File Information 601

flocate() — Locate a VSAM Record 605

flockfile()— stdio Locking . 608

floor(), floorf(), floorl() — Round Down to Integral Value 609

floord32(), floord64(), floord128() — Round Down to Integral Value 611

fma(), fmaf(), fmal() — Multiply then Add 613

fmax(), fmaxf(), fmaxl() — Calculate the Maximum Numeric Value 614

fmaxd32(), fmaxd64(), fmaxd128() — Calculate the Maximum Numeric Value 615

fmin(), fminf(), fminl() — Calculate the Minimum Numeric Value 617

fmind32(), fmind64(), fmind128() — Calculate the Minimum Numeric Value 618

fmod(), fmodf(), fmodl() — Calculate Floating-Point Remainder 619

fmtmsg() — Display a Message in the Specified Format 621

fnmatch() — Match Filename or Pathname 624

fopen() — Open a File . 626

fork() — Create a New Process 632

fortrc() — Return FORTRAN Return Code 637

fpathconf() — Determine Configurable Pathname Variables 638

fpclassify() — Classifies an argument value 641

fp_clr_flag() — Reset Floating-Point Exception Status Flag 642

fp_raise_xcp() — Raise a Floating-Point Exception 643

fp_read_flag() — Return the Current Floating-Point Exception Status 645

fp_read_rnd() — Determine Rounding Mode 647

fprintf(), printf(), sprintf() — Format and Write Data 648

fp_swap_rnd() — Swap Rounding Mode 660

fputc() — Write a Character . 662

fputs() — Write a String . 664

fputwc() — Output a Wide-Character 666

fputws() — Output a Wide-Character String 668

fread() — Read Items . 670

free() — Free a Block of Storage 672

freeaddrinfo() — free addrinfo storage 674

freopen() — Redirect an Open File 675

frexp(), frexpf(), frexpl() — Extract Mantissa and Exponent of the Floating-Point

Value . 678

Contents xi

||

||

||

||

||

||

frexpd32(), frexpd64(), frexpd128() — Extract Mantissa and Exponent of the

Decimal Floating-Point Value 680

fscanf(), scanf(), sscanf() — Read and Format Data 682

fseek() — Change File Position 693

fseeko() — Change File Position 697

fsetpos() — Set File Position 701

fstat() — Get Status Information about a File 704

fstatvfs() — Get File System Information 707

fsync() — Write Changes to Direct-Access Storage 709

ftell() — Get Current File Position 711

ftello() — Get Current File Position 714

ftime() — Set the Date and Time 717

ftok() — Generate an Interprocess Communication (IPC) key 718

ftruncate() — Truncate a File 719

ftrylockfile() — stdio Locking 721

ftw() — Traverse a File Tree 722

funlockfile() — stdio Unlocking 724

fupdate() — Update a VSAM Record 725

fwide() — Set Stream Orientation 727

fwprintf(), swprintf(), wprintf() — Format and Write Wide Characters 729

fwrite() — Write Items . 731

fwscanf(),swscanf(),wscanf() — Convert Formatted Wide-character Input 733

gai_strerror() — address and name information error description 735

gamma() — Calculate Gamma Function 736

gcvt() — Convert Double to String 737

getaddrinfo() — get address information 738

getc(), getchar() — Read a Character 742

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked — Stdio

With Explicit Client Locking 744

getclientid() — Get the Identifier for the Calling Application 746

__getclientid() — Get the PID Identifier for the Calling Application 748

getcontext() — Get User Context 750

__get_cpuid() — Retrieves the system CPUID 753

getcwd() — Get Pathname of the Working Directory 754

getdate() — Convert User Format Date and Time 756

getdtablesize() — Get the File Descriptor Table Size 759

getegid() — Get the Effective Group ID 760

getenv() — Get Value of Environment Variables 761

__getenv() — Get an Environment Variable 763

geteuid() — Get the Effective User ID 765

getgid() — Get the Real Group ID 767

getgrent() — Get Group Database Entry 768

getgrgid() — Access the Group Database by ID 769

getgrgid_r() — Get Group Database Entry for a Group ID 771

getgrnam() — Access the Group Database by Name 772

getgrnam_r() — Search Group Database for a Name 774

getgroups() — Get a List of Supplementary Group IDs 775

getgroupsbyname() — Get Supplementary Group IDs by User Name 777

gethostbyaddr() — Get a Host Entry by Address 779

gethostbyname() — Get a Host Entry by Name 782

gethostent() — Get the Next Host Entry 785

gethostid() — Get the Unique Identifier of the Current Host 787

gethostname() — Get the Name of the Host Processor 788

getibmopt() — Get IBM TCP/IP Image 789

getibmsockopt() — Get the Options Associated with a Bulk Mode Socket 790

__getipc() — Query Interprocess Communications 793

xii z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
||

getipv4sourcefilter — Get source filter 795

getitimer() — Get Value of an Interval Timer 797

getlogin() — Get the User Login Name 799

getlogin_r() — Get Login Name 801

__getlogin1() — Get the User Login Name 802

getmccoll() — Get Next Collating Element from String 804

getmsg(), getpmsg() — Receive Next Message from a STREAMS File 805

getnameinfo() — get name information 808

getnetbyaddr() — Get a Network Entry by Address 811

getnetbyname() — Get a Network Entry by Name 813

getnetent() — Get the Next Network Entry 815

getopt() — Command Option Parsing 817

getpagesize() — Get the Current Page Size 819

getpass() — Read a String of Characters Without Echo 820

getpeername() — Get the Name of the Peer Connected to a Socket 821

getpgid() — Get Process Group ID 823

getpgrp() — Get the Process Group ID 824

getpid() — Get the Process ID 826

getpmsg() — Receive Next Message from a STREAMS File 828

getppid() — Get the Parent Process ID 829

getpriority() — Get Process Scheduling Priority 831

getprotobyname() — Get a Protocol Entry by Name 833

getprotobynumber() — Get a Protocol Entry by Number 835

getprotoent() — Get the Next Protocol Entry 837

getpwent() — Get User Database Entry 839

getpwnam() — Access the User Database by User Name 840

getpwnam_r() — Search User Database for a Name 842

getpwuid() — Access the User Database by User ID 843

getpwuid_r() — Search User Database for a User ID 845

getrlimit() — Get Current/Maximum Resource Consumption. 846

getrusage() — Get Information About Resource Utilization 849

gets() — Read a String . 850

getservbyname() — Get a Server Entry by Name 852

getservbyport() — Get a Service Entry by Port 854

getservent() — Get the Next Service Entry 856

getsid() — Get Process Group ID of Session Leader 858

getsockname() — Get the Name of a Socket 859

getsockopt() — Get the Options Associated with a Socket 861

getsourcefilter — Get source filter 868

getstablesize() — Get the Socket Table Size 870

getsubopt() — Parse Suboption Arguments 871

getsyntx() — Return LC_SYNTAX Characters 873

__get_system_settings() — Retrieves System Parameters 875

gettimeofday() — Get Date and Time 876

getuid() — Get the Real User ID 878

__getuserid() — Retrieve the active MVS user ID 880

getutxent() — Read Next Entry in utmpx Database 881

getutxid() — Search by ID utmpx Database 883

getutxline() — Search by Line utmpx Database 885

getw() — Get a Machine Word from a Stream 887

getwc() — Get a Wide Character 888

getwchar() — Get a Wide Character 890

getwd() — Get the Current Working Directory 892

getwmccoll() — Get Next Collating Element from Wide String 893

givesocket() — Make the Specified Socket Available 894

glob() — Generate Pathnames Matching a Pattern 898

Contents xiii

||

||

globfree() — Free Storage Allocated by glob() 901

gmtime() — Convert Time to Broken-Down UTC Time 902

gmtime_r() — Convert a Time Value to Broken-Down UTC Time 904

grantpt() — Grant Access to the Slave Pseudoterminal Device 906

hcreate() — Create Hash Search Tables 907

hdestroy() — Destroy Hash Search Tables 908

__heaprpt() — Obtain Dynamic Heap Storage Report 909

hsearch() — Search Hash Tables 911

htonl() — Translate Address Host to Network Long 912

htons() — Translate an Unsigned Short Integer into Network Byte Order . . . 914

hypot(), hypotf(), hypotl() — Calculate the square root of the squares of two

arguments . 916

ibmsflush() — Flush the Application-side Datagram Queue 918

iconv() — Code Conversion . 920

iconv_close() — Deallocate Code Conversion Descriptor 924

iconv_open() — Allocate Code Conversion Descriptor 925

if_freenameindex() — free the memory allocated by if_nameindex() 929

if_indextoname() — map a network interface index to its corresponding name 930

if_nameindex() — return all network interface names and indexes 931

if_nametoindex() — map a network interface name to its corresponding index 932

ilogb(), ilogbf(), ilogbl() — Integer Unbiased Exponent 933

ilogbd32(), ilogbd64(), ilogbd128() — Integer Unbiased Exponent 935

imaxabs() — Absolute value for intmax_t 937

imaxdiv() — quotient and remainder for intmax_t 938

ImportWorkUnit() — WLM Import Service 939

index() — Search for Character 941

inet6_opt_append() — Add an Option with Length ″len″ and Alignment ″align″ 942

inet6_opt_find() — Search for an Option Specified by the Caller 944

inet6_opt_finish() — Return the Updated Total Length of Extension Header 946

inet6_opt_get_val() — Extract Data Items in the Data Portion of the Option 947

inet6_opt_init() — Return the Number of Bytes for Empty Extension Header 949

inet6_opt_next() — Parse Received Option Headers Returning the Next Option 950

inet6_opt_set_val() — Insert Data Items into the Data Portion of the Option 952

inet6_rth_add() — Add an IPv6 Address to End of the Routing Header 954

inet6_rth_getaddr() — Return Pointer to the IPv6 Address Specified 955

inet6_rth_init() — Initialize an IPv6 Routing Header Buffer 956

inet6_rth_reverse() — Reverse the Order of the Addresses 957

inet6_rth_segments() — Return Number of Segments Contained in Header 958

inet6_rth_space() — Return Number of Bytes for a Routing Header 959

inet_addr() — Translate an Internet Address into Network Byte Order 960

inet_lnaof() — Translate a Local Network Address into Host Byte Order . . . 962

inet_makeaddr() — Create an Internet Host Address 963

inet_netof() — Get the Network Number from the Internet Host Address . . . 965

inet_network() — Get the Network Number from the Decimal Host Address 966

inet_ntoa() — Get the Decimal Internet Host Address 968

inet_ntop() — Convert Internet Address Format from Binary to Text 970

inet_pton() — Convert Internet Address Format from Text to Binary 972

initgroups() — Initialize the Supplementary Group ID List for the Process 974

initstate() — Initialize Generator for random() 975

insque() — Insert an Element into a Doubly-linked List 976

ioctl() — Control Device . 977

__ipdbcs() — Retrieve the List of Requested DBCS Tables to Load 997

__ipDomainName() — Retrieve the Resolver Supplied Domain Name 998

__ipdspx() — Retrieve the Data Set Prefix Specified 999

__iphost() — Retrieve the Resolver Supplied Hostname 1000

__ipmsgc() — Determine the Case to Use for FTP Messages 1001

xiv z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

__ipnode() — Retrieve the Resolver Supplied Node Name 1002

__iptcpn() — Retrieve the Resolver Supplied Jobname or Userid 1003

isalnum() to isxdigit() — Test Integer Value 1004

isascii() — Test for 7-bit US-ASCII Character 1007

isastream() — Test a File Descriptor 1012

isatty() — Test if Descriptor Represents a Terminal 1013

__isBFP() — Determine Application Floating-Point Format 1015

isblank() — Test for Blank Character Classification 1016

iscics() — Verify Whether CICS is Running 1018

iscntrl() — Test for Control Classification 1020

isdigit() — Test for decimal-digit classification 1020

isfinite() — Determines if its argument has a finite value 1021

isgraph() — Test for Graphic Classification 1022

isgreater() — Determines if X is greater than Y 1023

isgreaterequal() — Determines if X is greater than or equal to Y 1024

isinf() — Determines if X is) infinity 1025

isless() — Determines if X is less than Y 1026

islessequal() — Determines if X is less than or equal to Y 1027

islessgreater() — Determines if X is less or greater than Y 1028

islower() — Test for Lowercase 1029

ismccollel() — Identify a Multicharacter Collating Element 1030

isnan() — Test for NaN . 1032

isnormal() — Determines if X is normal 1034

__isPosixOn() — Test for Posix Run-time Option 1035

isprint() — Test for Printable Character Classification 1036

ispunct() — Test for Punctuation Classification 1036

isspace() — Test for Space Character Classification 1036

isunordered() — Determine if either X or Y is unordered 1037

isupper() — Test for Uppercase Letter Classification 1038

iswalnum() to iswxdigit() — Test Wide Integer Value 1039

iswblank() — Test for Blank Character Classification 1042

iswcntrl() — Test for Control Classification 1044

iswctype() — Test for Character Property 1045

iswdigit() — Test for Hexadecimal-Digit Classification 1047

iswgraph() — Test for Graphic Classification 1047

iswlower() — Test for Lowercase 1047

iswprint() — Test for Printable Character Classification 1047

iswpunct() — Test for Punctuation Classification 1047

iswspace() — Test for Space Character Classification 1047

iswupper() — Test for Uppercase Letter Classification 1047

iswxdigit() — Test for Hexadecimal-Digit Classification 1047

isxdigit() — Test for Hexadecimal-Digit Classification 1047

itoa() — Convert int into a string 1048

JoinWorkUnit() — Join a WLM Work Unit 1049

jrand48() — Pseudo-Random Number Generator 1051

j0(), j1(), jn() — Bessel Functions of the First Kind 1053

kill() — Send a Signal to a Process 1055

killpg() — Send a Signal to a Process Group 1058

labs() — Calculate Long Absolute Value 1060

__lchattr() — Change the Attributes of a File or Directory when they point to a

symbolic or external link. 1061

lchown() — Change Owner and Group of a File 1063

lcong48() — Pseudo-Random Number Initializer 1065

ldexp(), ldexpf(), ldexpl() — Multiply by a Power of Two 1067

ldexpd32(), ldexpd64(), ldexpd128() — Multiply by a Power of Ten 1069

ldiv() — Compute Quotient and Remainder of Integral Division 1071

Contents xv

||

LeaveWorkUnit() — Leave a WLM Work Unit 1073

__le_cib_get() — Get Condition Information Block 1075

__le_condition_token_build() — Build a Language Environment Condition

Token . 1076

__le_msg_add_insert() — Add Insert to a Language Environment Message 1079

__le_msg_get() — Get a Language Environment Message 1081

__le_msg_get_and_write() — Get and output a Language Environment

Message . 1083

__le_msg_write() — Output a Language Environment Message to stderr 1085

__le_debug_set_resume_mch() — Move the resume cursor to a predefined

location represented by a machine state 1087

__le_traceback() – call chain traceback service 1088

lfind() — Linear Search Routine 1095

lgamma(), lgammaf(), lgammal() — Log Gamma Function 1096

__librel() — Query Release Level 1098

link() — Create a Link to a File 1101

listen() — Prepare the Server for Incoming Client Requests 1104

llabs() — Calculate Absolute Value of Long Long Integer 1106

lldiv() — Compute Quotient and Remainder of Integral Division for Long Long

Type . 1107

llround(), llroundf(), llroundl() — Round to the Nearest Integer 1109

llroundd32(), llroundd64(), llroundd128() — Round to the Nearest Integer 1111

lltoa() — Convert long long into a string 1114

localdtconv() — Date/Time Formatting Convention Inquiry 1115

localeconv() — Query Numeric Conventions 1117

localtime() — Convert Time and Correct for Local Time 1119

localtime_r() — Convert Time Value to Broken-Down Local Time 1122

lockf() — Record Locking on Files 1123

log(), logf(), logl() — Calculate Natural Logarithm 1126

logb(), logbf(), logbl() — Unbiased Exponent 1128

logbd32(), logbd64(), logbd128() — Unbiased Exponent 1130

logd32(), logd64(), logd128() — Calculate Natural Logarithm 1132

__login() — Create a New Security Environment for Process 1134

log1p(), log1pf(), log1pl() — Natural Log of x + 1 1136

log10(), log10f(), log10l() — Calculate Base 10 Logarithm 1138

log10d32(), log10d64(), log10d128() — Calculate Base 10 Logarithm 1140

log2(), log2f(), log2l() — Calculate the Base-2 Logarithm 1142

longjmp() — Restore Stack Environment 1143

_longjmp() — Nonlocal Goto 1147

lrand48() — Pseudo-Random Number Generator 1150

lrint(), lrintf(), lrintl() and llrint(), llrintf(), llrintl() — Round the Argument to the

Nearest Integer . 1152

lrintd32(), lrintd64(), lrintd128() and llrintd32(), llrintd64(), llrintd128() — Round

the Argument to the Nearest Integer 1154

lround(), lroundf(), lroundl() — Round a Decimal Floating-point Number to its

Nearest Integer . 1157

lroundd32(), lroundd64(), lroundd128() — Round a Floating-point Number to

its Nearest Integer . 1158

lsearch() — Linear Search and Update 1160

lseek() — Change the Offset of a File 1161

lstat() — Get Status of File or Symbolic Link 1163

l64a() — Convert Long to Base 64 String Representation 1167

ltoa() — Convert long into a string 1168

makecontext() — Modify User Context 1169

malloc() — Reserve Storage Block 1172

__malloc24() — Allocate 24–bit storage 1174

xvi z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

||

||
||

||

|
||

|
||

__malloc31() — Allocate 31–bit storage 1175

__map_init() — Designate a Storage Area for Mapping Blocks 1176

__map_service() — Set Memory Mapping Service 1178

maxcoll() — Return Maximum Collating Element 1181

maxdesc() — Get Socket Numbers to Extend Beyond the Default Range 1182

mblen() — Calculate Length of Multibyte Character 1184

mbrlen() — Calculate Length of Multibyte Character 1187

mbrtowc() — Convert a Multibyte Character to a Wide Character 1190

mbsinit() — Test State Object for Initial State 1193

mbsrtowcs() — Convert a Multibyte String to a Wide-Character String 1195

mbstowcs() — Convert Multibyte Characters to Wide Characters 1197

mbtowc() — Convert Multibyte Character to Wide Character 1199

m_create_layout() — Create and Initialize a Layout Object (Bidi data) 1201

m_destroy_layout() — Destroy a Layout Object (Bidi data) 1203

memccpy() — Copy Bytes in Memory 1204

memchr() — Search Buffer 1205

memcmp() — Compare Bytes 1207

memcpy() — Copy Buffer . 1209

memmove() — Move Buffer 1211

memset() — Set Buffer to Value 1213

m_getvalues_layout() — Query Layout Values of a Layout Object (Bidi data) 1215

mkdir() — Make a Directory 1217

mkfifo() — Make a FIFO Special File 1220

mknod() — Make a Directory or File 1223

mkstemp() — Make a Unique Filename 1226

mktemp() — Make a Unique Filename 1227

mktime() — Convert Local Time 1228

__mlockall() — Lock the Address Space of a Process 1231

mmap() — Map Pages of Memory 1232

modf(), modff(), modfl() — Extract Fractional and Integral Parts of

Floating-Point Value . 1237

modfd32(), modfd64(), modfd128() — Extract Fractional and Integral Parts of

Decimal Floating-Point Value 1239

mount() — Make a File System Available 1241

__mount() — Make a File System Available 1244

mprotect() — Set Protection of Memory Mapping 1249

mrand48() — Pseudo-Random Number Generator 1251

m_setvalues_layout() — Set Layout Values of a Layout Object (Bidi data) 1253

msgctl() — Message Control Operations 1255

msgget() — Get Message Queue 1257

msgrcv() — Message Receive Operation 1260

__msgrcv_timed() — Message Receive Operation With Timeout 1262

msgsnd() — Message Send Operations 1265

msgxrcv() — Extended Message Receive Operation 1267

msync() — Synchronize Memory with Physical Storage 1269

m_transform_layout() — Layout Transformation for Character Strings (Bidi

data) . 1271

munmap() — Unmap Pages of Memory 1275

__must_stay_clean() — Enable or Query Clean 1277

m_wtransform_layout() — Layout Transformation for Wide-Character Strings

(Bidi data) . 1279

nan(), nanf(), nanl() — Return Quiet NaN 1283

nand32(), nand64(), nand128() — Return Quiet NaN 1285

nearbyint(), nearbyintf(), nearbyintl() — Round the Argument to the Nearest

Integer . 1287

Contents xvii

|
||

||

nearbyintd32(), nearbyintd64(), nearbyintd128() — Round the Argument to the

Nearest Integer . 1289

nextafter(), nextafterf(), nextafterl() — Next Representable Double Float 1292

nextafterd32(), nextafterd64(), nextafterd128() — Next Representable Decimal

Floating-Point Value . 1294

nexttoward(), nexttowardf(), nexttowardl() — Calculate the Next

Representable Value . 1296

nexttowardd32(), nexttowardd64(), nexttowardd128() — Calculate the Next

Representable Value . 1299

nftw() — Traverse a File Tree 1301

nice() — Change Priority of a Process 1304

nlist() — Get Entries from a Name List 1305

nl_langinfo() — Retrieve Locale Information 1306

nrand48() — Pseudo-Random Number Generator 1307

ntohl() — Translate a Long Integer into Host Byte Order 1309

ntohs() — Translate an Unsigned Short Integer into Host Byte Order 1311

open() — Open a File . 1313

opendir() — Open a Directory 1319

__opendir2() — Open a Directory 1322

openlog() — Open the System Control Log 1324

__open_stat() — Open a File and Get File Status Information 1326

__osenv() — Capture the WLM and Pthread Security Attributes 1329

__osname() — Get True Operating System Name 1333

__passwd() — Verify/Change User Password 1335

pathconf() — Determine Configurable Pathname Variables 1337

pause() — Suspend a Process Pending a Signal 1340

pclose() — Close a Pipe Stream to or from a Process 1342

perror() — Print Error Message 1344

__pid_affinity() — Add or Delete Process Affinity 1346

pipe() — Create an Unnamed Pipe 1348

__poe() — Port Of Entry information used in determining various levels of

permission checking. . 1351

poll() — Monitor Activity on File Descriptors and Message Queues 1353

popen() — Initiate a Pipe Stream to or from a Process 1358

posix_openpt – open a pseudo-terminal device 1360

pow(), powf(), powl() — Raise to Power 1362

powd32(), powd64(), powd128() — Raise to Power 1364

__pow_i() — Raise to a Power (R**I) 1366

__pow_ii() — Raise to a Power (I**I) 1367

pread() — Read From a File or Socket Without File Pointer Change 1368

printf() — Format and Write Data 1370

pselect() - Monitor Activity on Files/Sockets and Message Queues 1371

pthread_atfork() - Register fork handlers 1372

pthread_attr_destroy() — Destroy the Thread Attributes Object 1377

pthread_attr_getdetachstate() — Get the Detach State Attribute 1379

pthread_attr_getguardsize - Get guardsize attribute 1382

pthread_attr_getschedparam - Get scheduling parameter attributes 1384

pthread_attr_getstack - Get stack attribute 1386

pthread_attr_getstackaddr - Get stackaddr attribute 1388

pthread_attr_getstacksize() — Get the Thread Attribute Stacksize Object 1390

pthread_attr_getsynctype_np() — Get Thread Sync Type 1392

pthread_attr_getweight_np() — Get Weight of Thread Attribute Object 1393

pthread_attr_init() — Initialize a Thread Attribute Object 1395

pthread_attr_setdetachstate() — Set the Detach State Attribute Object 1397

pthread_attr_setguardsize - Set guardsize attribute 1399

pthread_attr_setschedparam - Set scheduling parameter attributes 1401

xviii z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
||

|
||

|
||

||

||

||
||

||
||
||
||

||
||

pthread_attr_setstack - Set stack attribute 1403

pthread_attr_setstackaddr - Set stackaddr attribute 1406

pthread_attr_setstacksize() — Set the Stacksize Attribute Object 1409

pthread_attr_setsynctype_np() — Set Thread Sync Type 1411

pthread_attr_setweight_np() — Set Weight of Thread Attribute Object 1412

pthread_cancel() — Cancel a Thread 1414

pthread_cleanup_pop() — Remove a Cleanup Handler 1417

pthread_cleanup_push() — Establish a Cleanup Handler 1419

pthread_cond_broadcast() — Broadcast a Condition 1421

pthread_cond_destroy() — Destroy the Condition Variable Object 1423

pthread_cond_init() — Initialize a Condition Variable 1425

pthread_cond_signal() — Signal a Condition 1428

pthread_cond_timedwait() — Wait on a Condition Variable 1430

pthread_cond_wait() — Wait on a Condition Variable 1433

pthread_condattr_destroy() — Destroy Condition Variable Attribute Object 1436

pthread_condattr_getkind_np() — Get Kind Attribute from a Condition Variable

Attribute Object . 1438

pthread_condattr_getpshared() — Get the process-shared condition variable

attribute . 1440

pthread_condattr_init() — Initialize a Condition Attribute Object 1442

pthread_condattr_setkind_np() — Set Kind Attribute from a Condition Variable

Attribute Object . 1444

pthread_condattr_setpshared() — Set the process-shared condition variable

attribute . 1446

pthread_create() — Create a Thread 1448

pthread_detach() — Detach a Thread 1451

pthread_equal() — Compare Thread IDs 1453

pthread_exit() — Exit a Thread 1455

pthread_getconcurrency() — Get the Level of Concurrency 1457

pthread_getspecific() — Get the Thread-Specific Value for a Key 1458

pthread_getspecific_d8_np() — Get the Thread-Specific Value for a Key 1463

pthread_join() — Wait for a Thread to End 1466

pthread_join_d4_np() — Wait for a Thread to End 1468

pthread_key_create() — Create Thread-Specific Data Key 1470

pthread_key_delete() — Delete Thread-Specific Data Key 1473

pthread_kill() — Send a Signal to a Thread 1474

pthread_mutex_destroy() — Delete a Mutex Object 1477

pthread_mutex_init() — Initialize a Mutex Object 1479

pthread_mutex_lock() — Wait for a Lock on a Mutex Object 1482

pthread_mutex_trylock() — Attempt to Lock a Mutex Object 1485

pthread_mutex_unlock() — Unlock a Mutex Object 1487

pthread_mutexattr_destroy() — Destroy a Mutex Attribute Object 1489

pthread_mutexattr_getkind_np() — Get Kind from a Mutex Attribute Object 1491

pthread_mutexattr_getpshared() — Get the Process-Shared Mutex Attribute 1494

pthread_mutexattr_gettype() — Get Type of Mutex Attribute Object 1496

pthread_mutexattr_init() — Initialize a Mutex Attribute Object 1498

pthread_mutexattr_setkind_np() — Set Kind for a Mutex Attribute Object 1500

pthread_mutexattr_setpshared() — Set the Process-Shared Mutex Attribute 1503

pthread_mutexattr_settype() — Set Type of Mutex Attribute Object 1505

pthread_once() — Invoke a Function Once 1507

pthread_quiesce_and_get_np() — Freeze/Unfreeze Threads 1510

pthread_rwlock_destroy() — Destroy a Read/Write Lock Object 1520

pthread_rwlock_init() — Initialize a Read/Write Lock Object 1522

pthread_rwlock_rdlock() — Wait for a Lock on a Read/Write Lock Object 1524

pthread_rwlock_tryrdlock() — Attempt to Lock a Read/Write Lock Object for

Reading . 1526

Contents xix

||
||

pthread_rwlock_trywrlock() — Attempt to Lock a Read/Write Lock Object for

Writing . 1528

pthread_rwlock_unlock() — Unlock a Read/Write Lock Object 1529

pthread_rwlock_wrlock() — Wait for a Lock on a Read/Write Lock Object for

Writing . 1531

pthread_rwlockattr_destroy() — Destroy a Read/Write Lock Attribute Object 1533

pthread_rwlockattr_getpshared() — Get the Processed-Shared Read/Write

Lock Attribute . 1534

pthread_rwlockattr_init() — Initialize a Read/Write Lock Attribute Object 1536

pthread_rwlockattr_setpshared() — Set the Process-Shared Read/Write Lock

Attribute . 1537

pthread_security_np() — Create or Delete Thread-level Security 1539

pthread_self() — Get the Caller 1542

pthread_setcancelstate() — Set Thread’s Cancelability State Format 1544

pthread_setcanceltype() — Set Thread’s Cancelability Type Format 1545

pthread_setconcurrency() — Set the Level of Concurrency 1546

pthread_setintr() — Set Thread’s Cancelability State 1547

pthread_setintrtype() — Set Thread’s Cancelability Type 1550

pthread_set_limit_np() — Set Task and Thread Limits 1553

pthread_setspecific() — Set the Thread-Specific Value for a Key 1554

pthread_sigmask() — Examine or Change a Thread’s Blocked Signals Format 1557

pthread_tag_np() — Set and Query Thread Tag Data 1560

pthread_testcancel() — Establish a Cancelation Point 1561

pthread_testintr() — Establish a Cancelability Point 1562

pthread_yield() — Release the Processor to Other Threads 1564

ptsname() — Get Name of the Slave Pseudoterminal Device 1566

putc(), putchar() — Write a Character 1566

putenv() — Change or Add an Environment Variable 1569

putmsg(), putpmsg() — Send a Message on a STREAM 1571

puts() — Write a String . 1574

pututxline() — Write Entry to utmpx Database 1576

putw() — Put a Machine Word on a Stream 1578

putwc() — Output a Wide Character 1579

putwchar() — Output a Wide Character to Standard Output 1581

pwrite() — Write Data on a File or Socket Without File Pointer Change 1583

qsort() — Sort Array . 1585

quantized32(), quantized64(), quantized128() — Set the Exponent of X to the

Exponent of Y . 1587

QueryMetrics() — Query WLM System Information 1589

QuerySchEnv() — Query WLM Scheduling Environment 1591

QueryWorkUnitClassification() — WLM Query Enclave Classification Service 1593

raise() — Raise Signal . 1595

rand() — Generate Random Number 1598

rand_r() — Pseudo-Random Number Generator 1600

random() — A Better Random-Number Generator 1601

read() — Read From a File or Socket 1602

readdir() — Read an Entry from a Directory 1608

__readdir2() — Read Directory Entry and Get File Information 1611

readdir_r() — Read an Entry from a Directory 1613

readlink() — Read the Value of a Symbolic Link 1615

readv() — Read Data on a File or Socket and Store in a Set of Buffers 1617

realloc() — Change Reserved Storage Block Size 1620

realpath() — Resolve Pathname 1623

re_comp() — Compile Regular Expression 1625

recv() — Receive Data on a Socket 1628

recvfrom() — Receive Messages on a Socket 1631

xx z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
||

recvmsg() — Receive Messages on a Socket and Store in an Array of

Message Headers . 1635

re_exec() — Match Regular Expression 1640

regcmp() — Compile Regular Expression 1642

regcomp() — Compile Regular Expression 1646

regerror() — Return Error Message 1649

regex() — Execute Compiled Regular Expression 1651

regexec() — Execute Compiled Regular Expression 1653

regfree() — Free Memory for Regular Expression 1656

release() — Delete a Load Module 1657

remainder(), remainderf(), remainderl() — Computes the remainder x REM y 1659

remove() — Delete File . 1661

remque() — Remove an Element from a Doubly-linked List 1663

remquo(), remquof(), remquol() — Computes the remainder. 1664

rename() — Rename File . 1666

res_init() — Domain Name Resolver Initialization 1669

res_mkquery() — Make Resolver Query for Domain Name Servers (DNS) 1672

res_query() — Resolver Query for Domain Name Servers (DNS) 1673

res_querydomain() — Build Domain Name and Resolver Query 1675

res_search() — Resolver Query for Domain Name Servers (DNS) 1677

res_send() — Send Resolver Query for Domain Name Servers (DNS) 1679

__reset_exception_handler() — Unregister an Exception Handler Routine 1680

rewind() — Set File Position to Beginning of File 1681

rewinddir() — Reposition a Directory Stream to the Beginning 1683

rexec() — Execute Commands One at a Time on a Remote Host 1685

rexec_af() — execute commands one at a time on a remote host 1687

rindex() — Search for Character 1688

rint(), rintf(), rintl() — Round to Nearest Integral Value 1689

rintd32(), rintd64(), rintd128() — Round to Nearest Integral Value 1690

rmdir() — Remove a Directory 1692

round(), roundf(), roundl() — Round to the Nearest Integer 1695

roundd32(), roundd64(), roundd128() — Round to the Nearest Integer . . . 1696

rpmatch() — Test for a Yes/No Response Match 1699

samequantumd32(), samequantumd64(), samequantumd128() — Determine if

Exponents X and Y are the Same 1701

sbrk() — Change Space Allocation 1703

scalb() — Load Exponent . 1705

scalbn(), scalbnf(), scalbnl(), scalbln(), scalblnf(), scalblnl() — load exponent

functions . 1706

scalbnd32(), scalbnd64(), scalbnd128() and scalblnd32(), scalblnd64(),

scalblnd128() — load exponent functions 1708

scanf() — Read and Format Data 1710

sched_yield() — Release the Processor to Other Threads 1711

seed48() — Pseudo-Random Number Initializer 1712

seekdir() — Set Position of Directory Stream 1714

select(), pselect() — Monitor Activity on Files/Sockets and Message Queues 1715

selectex() — Monitor Activity on Files/Sockets and Message Queues 1725

semctl() — Semaphore Control Operations 1728

semget() — Get a Set of Semaphores 1731

semop() — Semaphore Operations 1734

__semop_timed() — Semaphore Operations With Timeout 1737

send() — Send Data on a Socket 1740

send_file() — Send File Data Over a Socket 1743

sendmsg() — Send Messages on a Socket 1747

sendto() — Send Data on a Socket 1752

__server_classify() — Set Classify Area Field 1756

Contents xxi

||

||

|
||

|
||

||

__server_classify_create() — Create a Classify Area 1760

__server_classify_destroy() — Delete a Classify Area 1761

__server_classify_reset() — Reset a Classify Area to an Initial State 1762

__server_init() — Initialize Server 1763

__server_pwu() — Process Server Work Unit 1766

__server_threads_query() — Query the number of threads 1771

__set_exception_handler() — Register an Exception Handler Routine 1772

setbuf() — Control Buffering 1776

setcontext() — Restore User Context 1778

setegid() — Set the Effective Group ID 1781

setenv() — Add, Delete, and Change Environment Variables 1783

seteuid() — Set the Effective User ID 1787

setgid() — Set the Group ID 1789

setgrent() — Reset Group Database to First Entry 1791

setgroups() — Set the Supplementary Group ID List for the Process 1792

sethostent() — Open the Host Information Data Set 1793

setibmopt() — Set IBM TCP/IP Image 1794

setibmsockopt() — Set IBM Specific Options Associated with a Socket 1796

setipv4sourcefilter — Set source filter 1798

setitimer() — Set Value of an Interval Timer 1800

setjmp() — Preserve Stack Environment 1802

_setjmp() — Set Jump Point for a Nonlocal Goto 1806

setkey() — Set Encoding Key 1809

setlocale() — Set Locale . 1811

setlogmask() — Set the Mask for the Control Log 1821

setnetent() — Open the Network Information Data Set 1822

set_new_handler() — Register a Function for set_new_handler() 1823

setpeer() — Preset the Socket Peer Address 1825

setpgid() — Set Process Group ID for Job Control 1826

setpgrp() — Set Process Group ID 1828

setpriority() — Set Process Scheduling Priority 1829

setprotoent() — Open the Protocol Information Data Set 1831

setpwent() — Reset User Database Search 1832

setregid() — Set Real and Effective Group IDs 1833

setreuid() — Set Real and Effective User IDs 1835

setrlimit() — Control Maximum Resource Consumption 1837

setservent() — Open the Network Services Information Data Set 1840

setsid() — Create Session, Set Process Group ID 1841

setsockopt() — Set Options Associated with a Socket 1843

setsourcefilter — Set source filter 1852

setstate() — Change Generator for random() 1854

set_terminate() — Register a Function for terminate() 1855

_SET_THLIIPADDR() — Set the Client’s IP Address 1856

setuid() — Set the Effective User ID 1857

set_unexpected() — Register a Function for unexpected() 1860

setutxent() — Reset to Start of utmpx Database 1861

setvbuf() — Control Buffering 1862

shmat() — Shared Memory Attach Operation 1864

shmctl() — Shared Memory Control Operations 1866

shmdt() — Shared Memory Detach Operation 1868

shmget() — Get a Shared Memory Segment 1869

shutdown() — Shut Down All or Part of a Duplex Connection 1873

__shutdown_registration() — Register OMVS Shutdown Options 1875

sigaction() — Examine or Change a Signal Action 1880

__sigactionset() — Examine and/or Change Signal Actions 1891

sigaddset() — Add a Signal to the Signal Mask 1899

xxii z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

||

sigaltstack() — Set and/or Get Signal Alternate Stack Context 1901

sigdelset() — Delete a Signal from the Signal Mask 1903

sigemptyset() — Initialize a Signal Mask to Exclude All Signals 1905

sigfillset() — Initialize a Signal Mask to Include All Signals 1907

sighold() — Add a Signal to a Thread 1909

sigignore() — Set Disposition to Ignore a Signal 1910

siginterrupt() — Allow Signals to Interrupt Functions 1911

sigismember() — Test If a Signal Is in a Signal Mask 1912

siglongjmp() — Restore the Stack Environment and Signal Mask 1914

signal() — Handle Interrupts 1917

signbit() — Determines whether the sign of its argument is negative 1922

__signgam() — Return signgam Reference 1923

sigpause() — Unblock a Signal and Wait for a Signal 1924

sigpending() — Examine Pending Signals 1925

sigprocmask() — Examine or Change a Thread 1927

sigqueue() — Queue a Signal to a Process 1930

sigrelse() — Remove a Signal from a Thread 1932

sigset() — Change a Signal Action and/or a Thread 1933

sigsetjmp() — Save Stack Environment and Signal Mask 1936

sigstack() — Set and/or Get Signal Stack Context 1939

sigsuspend() — Change Mask and Suspend the Thread 1941

sigtimedwait() — Wait for Queued Signals 1944

sigwait() — Wait for an Asynchronous Signal 1946

sigwaitinfo() — Wait for Queued Signals 1949

sin(), sinf(), sinl() — Calculate Sine 1951

sind32(), sind64(), sind128() — Calculate Sine 1953

sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine 1955

__sinpid32(), __sinpid64(), __sinpid128() — Calculate Sine of pi * x 1957

sleep() — Suspend Execution of a Thread 1959

__smf_record() — Record an SMF Record 1961

snprintf() — Format and write data 1962

sockatmark — Determine whether a socket is at the out-of-band mark 1963

sock_debug() — Provide Syscall Tracing Facility 1966

sock_debug_bulk_perf0() — Produce a Report When a Socket Configured 1967

sock_do_bulkmode() — Use Bulk Mode for Messages Read by the Socket 1968

sock_do_teststor() — Check for Attempt to Access Storage Outside 1969

socket() — Create a Socket 1970

socketpair() — Create a Pair of Sockets 1974

spawn(), spawnp() — Spawn a New Process 1976

__spawn2(), __spawnp2() — Spawn a New Process Using Enhanced

Inheritance Structure . 1989

sprintf() — Format and Write Data to Buffer 1997

sqrt(), sqrtf(), sqrtl() — Calculate Square Root 1998

sqrtd32(), sqrtd64(), sqrtd128() — Calculate Square Root 2000

srand() — Set Seed for rand() Function 2002

srandom() — Use Seed to Initialize Generator for random() 2004

srand48() — Pseudo-Random Number Initializer 2005

sscanf() — Read and Format Data from Buffer 2007

stat() — Get File Information 2008

statvfs() — Get File System Information 2012

step() — Pattern Match with Regular Expression 2015

strcasecmp() — Case-insensitive String Comparison 2017

strcat() — Concatenate Strings 2018

strchr() — Search for Character 2020

strcmp() — Compare Strings 2022

strcoll() — Compare Strings 2024

Contents xxiii

||

||

||

||

strcpy() — Copy String . 2026

strcspn() — Compare Strings 2028

strdup() — Duplicate a String 2030

strerror() — Get Pointer to Run-time Error Message 2031

strerror_r() — Get Copy of Run-time Error Message 2032

strfmon() — Convert Monetary Value to String 2033

strftime() — Convert to Formatted Time 2038

strlen() — Determine String Length 2043

strncasecmp() — Case-insensitive String Comparison 2045

strncat() — Concatenate Strings 2046

strncmp() — Compare Strings 2048

strncpy() — Copy String . 2050

strpbrk() — Find Characters in String 2052

strptime() — Date and Time Conversion 2054

strrchr() — Find Last Occurrence of Character in String 2058

strspn() — Search String . 2060

strstr() — Locate Substring 2062

strtocoll() — Return Collating Element for String 2064

strtod() — Convert Character String to Double 2066

strtod32(), strtod64(), strtod128() — Convert Character String to Decimal

Floating Point . 2069

strtof() — Convert Character String to Float 2072

strtoimax() — Convert character string to intmax_t integer type 2074

strtok() — Tokenize String . 2076

strtok_r() — Split String into Tokens 2078

strtol() — Convert Character String to Long 2079

strtold() — Convert Character String to Long Double 2082

strtoll() — Convert String to Signed Long Long 2084

strtoul() — Convert String to Unsigned Integer 2086

strtoull() — Convert String to Unsigned Long Long 2089

strtoumax() — Convert character string to uintmax_t integer type 2091

strxfrm() — Transform String 2093

__superkill() — Sends ″super″ SIGKILL to terminate target process 2095

svc99() — Access Supervisor Call 2096

swab() — Copy and Swap Bytes 2100

swapcontext() — Save and Restore User Context 2101

swprintf() — Format and Write Wide Characters 2105

swscanf() — Read a Wide-Character String 2106

symlink() — Create a Symbolic Link to a Pathname 2107

sync() — Schedule File System Updates 2110

sysconf() — Determine System Configuration Options 2111

syslog() — Send a Message to the Control Log 2116

system() — Execute a Command 2118

t_accept() — Accept a Connect Request 2124

takesocket() — Acquire a Socket from Another Program 2127

t_alloc() — Allocate a Library Structure 2129

tan(), tanf(), tanl() — Calculate Tangent 2131

tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent 2133

t_bind() — Bind an Address to a Transport Endpoint 2135

tcdrain() — Wait Until Output Has Been Transmitted 2138

tcflow() — Suspend or Resume Data Flow on a Terminal 2141

tcflush() — Flush Input or Output on a Terminal 2144

tcgetattr() — Get the Attributes for a Terminal 2147

__tcgetcp() — Get Terminal Code Page Names 2149

tcgetpgrp() — Get the Foreground Process Group ID 2152

xxiv z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
||

tcgetsid() — Get Process Group ID for Session Leader for Controlling

Terminal . 2154

t_close() — Close a Transport Endpoint 2155

t_connect() — Establish a Connection with Another Transport User 2156

tcperror() — Print the Error Messages of a Socket Function 2159

tcsendbreak() — Send a Break Condition to a Terminal 2161

tcsetattr() — Set the Attributes for a Terminal 2163

__tcsetcp() — Set Terminal Code Page Names 2175

tcsetpgrp() — Set the Foreground Process Group ID 2179

__tcsettables() — Set Terminal Code Page Names and Conversion Tables 2182

tdelete() — Binary Tree Delete 2187

telldir() — Current Location of Directory Stream 2189

tempnam() — Generate a Temporary File Name 2190

terminate() — Terminate After Failures in C++ Error Handling 2192

t_error() — Produce Error Message 2193

tfind() — Binary Tree Find Node 2195

t_free() — Free a Library Structure 2197

tgamma(), tgammaf(), tgammal() — Calculate Gamma Function 2199

t_getinfo() — Get Protocol-specific Service Information 2200

t_getprotaddr() — Get the Protocol Addresses 2202

t_getstate() — Get the Current State 2203

time() — Determine current UTC time 2204

times() — Get Process and Child Process Times 2206

tinit() — Attach and Initialize MTF Subtasks 2209

t_listen() — Listen for a Connect Indication 2211

t_look() — Look at the Current Event on a Transport Endpoint 2213

tmpfile() — Create Temporary File 2216

tmpnam() — Produce Temporary File Name 2218

toascii() — Translate Integer to a 7-bit ASCII Character 2220

__toCcsid() — Convert Codeset Name to Coded Character Set ID 2226

__toCSName() — Convert Coded Character Set ID to Codeset Name . . . 2227

tolower(), toupper() — Convert Character Case 2228

_tolower() — Translate Uppercase Characters to Lowercase 2229

t_open() — Establish a Transport Endpoint 2230

t_optmgmt() — Manage Options for a Transport Endpoint 2232

_toupper() — Translate Lowercase Characters to Uppercase 2239

towlower(), towupper() — Convert Wide Character Case 2240

towctrans() — transliterate wide character transliteration 2241

t_rcv() — Receive Data or Expedited Data Sent Over a Connection 2242

t_rcvconnect() — Receive the Confirmation from a Connect Request 2244

t_rcvdis() — Retrieve Information from Disconnect 2246

t_rcvrel() — Acknowledge Receipt of an Orderly Release Indication 2248

t_rcvudata() — Receive a Data Unit 2249

t_rcvuderr() — Receive a Unit Data Error Indication 2250

trunc(), truncf(), truncl() — Truncate an integer value 2251

truncd32(), truncd64(), truncd128() — CTruncate an integer value 2252

truncate() — Truncate a File to a Specified Length 2253

tsched() — Schedule MTF Subtask 2255

tsearch() — Binary Tree Search 2257

t_snd() — Send Data or Expedited Data Over a Connection 2259

t_snddis() — Send User-initiated Disconnect Request 2261

t_sndrel() — Initiate an Orderly Release 2263

t_sndudata() — Send a Data Unit 2264

t_strerror() — Produce an Error Message String 2265

t_sync() — Synchronize Transport Library 2266

tsyncro() — Wait for MTF Subtask Termination 2268

Contents xxv

||

tterm() — Terminate MTF Subtasks 2270

ttyname() — Get the Name of a Terminal 2272

ttyname_r() — Find Pathname of a Terminal 2274

ttyslot() — Find the Slot in the utmpx File of the Current User 2275

t_unbind() — Disable a Transport Endpoint 2276

twalk() — Binary Tree Walk 2277

tzset() — Set the Time Zone 2279

ualarm() — Set the Interval Timer 2282

__ucreate() — Create a Heap Using User-Provided Storage 2283

__ufree() — Return Storage to a User-Created Heap 2285

__uheapreport() — Produce a Storage Report for a User-Created Heap 2286

ulimit() — Get/Set Process File Size Limits 2287

ulltoa() — Convert unsigned long long into a string 2288

ultoa() — Convert unsigned long into a string 2289

__umalloc() — Allocate Storage from a User-Created Heap 2290

umask() — Set and Retrieve File Creation Mask 2291

umount() — Remove a Virtual File System 2293

uname() — Display Current Operating System Name 2296

uncaught_exception() — Determine if an Exception is being Processed 2299

UnDoExportWorkUnit() — WLM Undo Export Service 2301

UnDoImportWorkUnit() — WLM Undo Import Service 2303

unexpected() — Handle Exception Not Listed in Exception Specification 2305

ungetc() — Push Character onto Input Stream 2307

ungetwc() — Push a Wide Character onto a Stream 2310

unlink() — Remove a Directory Entry 2312

unlockpt() — Unlock a Pseudoterminal Master/Slave Pair 2314

unsetenv() — Delete an Environment Variable 2315

usleep() — Suspend Execution for an Interval 2316

utime() — Set File Access and Modification Times 2317

utimes() — Set File Access and Modification Times 2320

__utmpxname() — Change the utmpx Database Name 2322

utoa() — Convert unsigned int into a string 2323

va_arg(), va_copy(), va_end(), va_start() — Access Function Arguments 2324

valloc() — Page-Aligned Memory Allocator 2330

vfork() — Create a New Process 2332

vfprintf() — Format and Print Data to Stream 2335

vfscanf(), vscanf(), vsscanf() — Format Input of a STDARG Argument List 2337

vfwprintf(), vswprintf(), vwprintf() — Format and Write Wide Characters of a

stdarg Argument List . 2338

vfwscanf(), vwscanf(), vswscanf() — Wide-character Formatted Input of a

STDARG Argument List . 2341

vprintf() — Format and Print Data to stdout 2342

vsnprintf() — Format and print data to fixed length buffer 2344

vsprintf() — Format and Print Data to Buffer 2345

vswprintf() — Format and Write Wide Characters of a stdarg Argument List 2347

vwprintf() — Format and Write Wide Characters of a stdarg Argument List 2348

wait() — Wait for a Child Process to End 2349

waitid() — Wait for Child Process to Change State 2352

waitpid() — Wait for a Specific Child Process to End 2354

wait3() — Wait for Child Process to Change State 2358

wcrtomb() — Convert a Wide Character to a Multibyte Character 2360

wcscat() — Append to Wide-Character String 2362

wcschr() — Search for Wide-Character Substring 2364

wcscmp() — Compare Wide-Character Strings 2366

wcscoll() — Language Collation String Comparison 2368

wcscpy() — Copy Wide-Character String 2370

xxvi z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcscspn() — Find Offset of First Wide-Character Match 2372

wcsftime() — Format Date and Time 2374

wcsid() — Character Set ID for Wide Character 2376

wcslen() — Calculate Length of Wide-Character String 2378

wcsncat() — Append to Wide-Character String 2380

wcsncmp() — Compare Wide-Character Strings 2382

wcsncpy() — Copy Wide-Character String 2384

wcspbrk() — Locate First Wide Characters in String 2386

wcsrchr() — Locate Last Wide Character in String 2388

wcsrtombs() — Convert Wide-Character String to Multibyte String 2390

wcsspn() — Search for Wide Characters in a String 2393

wcsstr() — Locate a Wide Character Sequence 2395

wcstod() — Convert Wide-Character String to a Double Floating-Point 2397

wcstod32(), wcstod64(), wcstod128() — Convert Wide-Character String to

Decimal Floating Point . 2400

wcstof() — Convert a Wide-Character String to Float 2403

wcstoimax() — Convert a Wide-Character String to a intmax_t 2405

wcstok() — Break a Wide-Character String into Tokens 2407

wcstol() — Convert a Wide-Character String to a Long Integer 2409

wcstold() — Convert a Wide-Character String to Long Double 2411

wcstoll() — Convert a Wide-Character String to a Long Long Integer 2413

wcstombs() — Convert Wide-Character String to Multibyte Character String 2416

wcstoul() — Convert a Wide-Character String to an Unsigned Long Integer 2418

wcstoull() — Convert a Wide-Character String to an Unsigned Long Long

Integer . 2420

wcstoumax() — Convert a Wide-Character String to a intmax_t 2423

wcswcs() — Locate Wide-Character Substring in Wide-Character String 2425

wcswidth() — Determine the Display Width of a Wide-Character String 2427

wcsxfrm() — Transform a Wide-Character String 2428

wctob() — Convert Wide Character to Byte 2430

wctomb() — Convert Wide Character to Multibyte Character 2432

wctrans(), towctrans() — transliterate wide character 2434

wctype() — Obtain Handle for Character Property Classification 2435

wcwidth() — Determine the Display Width of a Wide Character 2436

w_getmntent() — Get Information on Mounted File Systems 2438

w_getpsent() — Get Process Data 2441

w_ioctl(), __w_pioctl() — Control of Devices 2444

wmemchr() — Locate Wide Character 2447

wmemcmp() — Compare Wide Character 2449

wmemcpy() — Copy Wide Character 2451

wmemmove() — Move Wide Character 2453

wmemset() — Set Wide Character 2455

wordexp() — Perform Shell Word Expansions 2457

wordfree() — Free Shell Word Expansion Memory 2461

__w_pioctl() — Control of Devices 2462

wprintf() — Format and Write Wide Characters 2463

write() — Write Data on a File or Socket 2464

__writedown() — Query or change the setting of the write-down privilege of

an ACEE. . 2470

writev() — Write Data on a File or Socket from an Array 2472

__wsinit() — Reinitialize Writable Static 2475

w_statfs() — Get the File System Status 2476

w_statvfs() — Get the File System Status 2478

y0(), y1(), yn() — Bessel Functions of the Second Kind 2480

Library Functions for the System Programming C (SPC) Facilities 2482

Contents xxvii

|
||

Appendix A. XL C/C++ Macros 2483

Appendix B. Function support table 2495

Preinitialized Environments for Authorized Programs 2495

Enhanced ASCII Support . 2495

Library function support . 2497

Appendix C. Accessibility 2537

Using assistive technologies 2537

Keyboard navigation of the user interface 2537

z/OS information . 2537

Notices . 2539

Programming Interface Information 2541

Standards . 2541

Trademarks . 2542

Index . 2545

xxviii z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Figures

1. Language Environment libraries . 7

2. Overlap of C Standards and Extensions . 107

3. Program Flow of a Fetchable Module . 567

4. Program Flow of fetchep() . 580

5. Format Specification for fprintf(), printf(), and sprintf() 649

6. Syntax of Conversion Specification for fscanf(), scanf(), and sscanf() 684

© Copyright IBM Corp. 1996, 2007 xxix

xxx z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Tables

 1. Syntax examples . xxxiv

 2. z/OS XL C/C++ and related documents . xxxvi

 3. Documents by task . xxxviii

 4. Feature Test Macros and Standards . 22

 5. Definitions in errno.h . 41

 6. Definitions in float.h . 46

 7. Item Values defined in langinfo.h . 53

 8. Definitions of Resource Limits . 55

 9. Elements of lconv Structure . 57

10. Monetary Formatting Values . 59

11. Symbolic Constants defined in sys/__cpl.h . 87

12. sys/types.h: _OE_SOCKETS or _ALL_SOURCE 90

13. sys/types.h: _OE_SOCKETS or _XOPEN_SOURCE_EXTENDED 1 90

14. sys/types.h: _OPEN_THREADS . 90

15. sys/types.h: _POSIX_SOURCE . 90

16. sys/types.h: _XOPEN_SOURCE . 90

17. sys/types.h: _XOPEN_SOURCE 500 . 90

18. sys/types.h: _XOPEN_SOURCE_EXTENDED 1 91

19. Fields of tm Structure . 94

20. Symbolic Constants defined in xti.h . 101

21. Built-in Library Functions . 108

22. Baud Rate Codes . 258

23. Struct f_attributes Element Descriptions . 267

24. Description of __dyn_t Data Structure Elements 454

25. Struct f_cnvrt Element Descriptions . 530

26. Elements Returned in fldata_t Data Structure . 602

27. Position Options Parameter for flocate() . 605

28. Values for the Positional Parameter . 626

29. Keyword Parameters for File Mode . 628

30. Async-signal-safe library functions . 633

31. Flag Characters for fprintf() Family . 650

32. Precision Argument in fprintf() Family . 651

33. Type Characters and their Meanings . 653

34. Conversion Specifiers in fscanf(), scanf() and sscanf() 685

35. Characters for which isascii() returns nonzero 1008

36. Resulting Feedback Codes: . 1077

37. Resulting Feedback Codes: . 1079

38. Resulting Feedback Codes: . 1082

39. Resulting Feedback Codes: . 1083

40. Resulting Feedback Codes: . 1085

41. Resulting Feedback Codes: . 1087

42. Elements of stat Structure . 1163

43. __osname() Operating System Information . 1334

44. Invoked Exception Handlers . 1772

45. Values for Category Arguments of setlocale() 1811

46. Return String as Determined by Category and Locale Values 1817

47. Signals . 1881

48. Signals Supported by C or C++ — POSIX(OFF) 1919

49. Values Returned in stat Structure . 2008

50. Values Returned in statvfs Structure . 2012

51. Monetary formats when cs_precedes = 1 . 2035

52. Monetary formats when cs_precedes = 0 . 2035

53. Conversion Specifiers Used by strftime() . 2038

© Copyright IBM Corp. 1996, 2007 xxxi

||

54. Conversion Specifiers Used by strptime() . 2054

55. Modified Directives Used by strptime() . 2055

56. Elements Contained by __S99parms Structure 2096

57. Events and t_look() . 2214

58. uname() Operating System Information . 2297

59. Variables Stored in Structure Returned by w_getpsent() 2441

60. C/C++ Macros: A - E . 2483

61. C/C++ Macros: F - M . 2486

62. C/C++ Macros: N - Y . 2489

63. Status of External Variables in Enhanced ASCII 2495

64. Library function support table . 2497

xxxii z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

About this document

This document provides reference information about z/OS® XL C/C++ run-time

library functions, macros, and header files.

Note: As of z/OS V1R7, the z/OS C/C++ compiler has been rebranded to z/OS XL

C/C++.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line (|) to

the left of the change.

You may notice changes in the style and structure of some of the contents in this

document; for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram

symbols, items that may be contained within the diagrams (keywords, variables,

delimiters, operators, fragment references, operands) and provides syntax examples

that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that

comprise a command statement. They are read from left to right and from top to

bottom, following the main path of the horizontal line.

Symbols

The following symbols may be displayed in syntax diagrams:

Symbol Definition

��─── Indicates the beginning of the syntax diagram.

───� Indicates that the syntax diagram is continued to the next line.

�─── Indicates that the syntax is continued from the previous line.

───�� Indicates the end of the syntax diagram.

Syntax items

Syntax diagrams contain many different items. Syntax items include:

v Keywords - a command name or any other literal information.

v Variables - variables are italicized, appear in lowercase, and represent the name

of values you can supply.

v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.

v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.

v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.

v Separators - a separator separates keywords, variables or operators. For

example, a comma (,) is a separator.

© Copyright IBM Corp. 1996, 2007 xxxiii

Note: If a syntax diagram shows a character that is not alphanumeric (for example,

parentheses, periods, commas, equal signs, a blank space), enter the

character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or

default. Fragments, separators, and delimiters may be displayed as required or

optional.

Item type Definition

Required Required items are displayed on the main path of the horizontal

line.

Optional Optional items are displayed below the main path of the horizontal

line.

Default Default items are displayed above the main path of the horizontal

line.

Syntax examples

The following table provides syntax examples.

 Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the

horizontal line. You must specify these items.

�� KEYWORD required_item ��

Required choice.

A required choice (two or more items) appears

in a vertical stack on the main path of the

horizontal line. You must choose one of the

items in the stack.

�� KEYWORD required_choice1

required_choice2
 ��

Optional item.

Optional items appear below the main path of

the horizontal line.

�� KEYWORD

optional_item
 ��

Optional choice.

An optional choice (two or more items) appears

in a vertical stack below the main path of the

horizontal line. You may choose one of the

items in the stack.

�� KEYWORD

optional_choice1

optional_choice2

 ��

Default.

Default items appear above the main path of

the horizontal line. The remaining items

(required or optional) appear on (required) or

below (optional) the main path of the horizontal

line. The following example displays a default

with optional items.

��
 default_choice1

KEYWORD

optional_choice2

optional_choice3

��

Variable.

Variables appear in lowercase italics. They

represent names or values.

�� KEYWORD variable ��

xxxiv z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 1. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the main

path of the horizontal line indicates an item that

can be repeated.

A character within the arrow means you must

separate repeated items with that character.

An arrow returning to the left above a group of

repeatable items indicates that one of the items

can be selected, or a single item can be

repeated.

��

�

KEYWORD

repeatable_item

��

��

�

 ,

KEYWORD

repeatable_item

��

Fragment.

The fragment symbol indicates that a labelled

group is described below the main syntax

diagram. Syntax is occasionally broken into

fragments if the inclusion of the fragment would

overly complicate the main syntax diagram.

�� KEYWORD fragment ��

fragment:

 ,required_choice1

,default_choice

,required_choice2

,optional_choice

z/OS XL C/C++ and related documents

This topic summarizes the content of the z/OS XL C/C++ documents and shows

where to find related information in other documents.

About this document xxxv

Table 2. z/OS XL C/C++ and related documents

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Programming Guide,

SC09-4765

Guidance information for:

v XL C/C++ input and output

v Debugging z/OS XL C programs that use input/output

v Using linkage specifications in C++

v Combining C and assembler

v Creating and using DLLs

v Using threads in z/OS UNIX® System Services applications

v Reentrancy

v Handling exceptions, error conditions, and signals

v Performance optimization

v Network communications under z/OS UNIX System Services

v Interprocess communications using z/OS UNIX System Services

v Structuring a program that uses C++ templates

v Using environment variables

v Using System Programming C facilities

v Library functions for the System Programming C facilities

v Using run-time user exits

v Using the z/OS XL C multitasking facility

v Using other IBM products with z/OS XL C/C++ (CICS® Transaction Server

for z/OS, CSP, DWS, DB2®, GDDM®, IMS™, ISPF, QMF™)

v Internationalization: locales and character sets, code set conversion

utilities, mapping variant characters

v POSIX character set

v Code point mappings

v Locales supplied with z/OS XL C/C++

v Charmap files supplied with z/OS XL C/C++

v Examples of charmap and locale definition source files

v Converting code from coded character set IBM-1047

v Using built-in functions

v Programming considerations for z/OS UNIX System Services C/C++

z/OS XL C/C++ User’s Guide,

SC09-4767

Guidance information for:

v z/OS XL C/C++ examples

v Compiler options

v Binder options and control statements

v Specifying Language Environment run-time options

v Compiling, IPA Linking, binding, and running z/OS XL C/C++ programs

v Utilities (Object Library, CXXFILT, DSECT Conversion, Code Set and

Locale, ar and make, BPXBATCH, c89, xlc)

v Diagnosing problems

v Cataloged procedures and REXX™ EXECs supplied by IBM

v Customizing default options for the z/OS XL C/C++ compiler

z/OS XL C/C++ Language Reference,

SC09-4815

Reference information for:

v The C and C++ languages

v Lexical elements of z/OS XL C and C++

v Declarations, expressions, and operators

v Implicit type conversions

v Functions and statements

v Preprocessor directives

v C++ classes, class members, and friends

v C++ overloading, special member functions, and inheritance

v C++ templates and exception handling

v z/OS XL C and C++ compatibility

xxxvi z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 2. z/OS XL C/C++ and related documents (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Messages,

GC09-4819

Provides error messages and return codes for the compiler, and its related

application interface libraries and utilities. For the XL C/C++ run-time library

messages, refer to z/OS Language Environment Run-Time Messages,

SA22-7566. For the c89 and xlc utility messages, refer to z/OS UNIX System

Services Messages and Codes, SA22-7807.

z/OS XL C/C++ Run-Time Library

Reference, SA22-7821

Reference information for:

v header files

v library functions

z/OS C Curses, SA22-7820 Reference information for:

v Curses concepts

v Key data types

v General rules for characters, renditions, and window properties

v General rules of operations and operating modes

v Use of macros

v Restrictions on block-mode terminals

v Curses functional interface

v Contents of headers

v The terminfo database

z/OS XL C/C++ Compiler and

Run-Time Migration Guide for the

Application Programmer, GC09-4913

Guidance and reference information for:

v Common migration questions

v Application executable program compatibility

v Source program compatibility

v Input and output operations compatibility

v Class library migration considerations

v Changes between releases of z/OS

v Pre-z/OS C and C++ compilers to current compiler migration

v Other migration considerations

z/OS Metal C Programming Guide and

Reference, SA23-2225

Guidance and reference information for:

v Metal C run time

v Metal C programming

v AR mode

Standard C++ Library Reference,

SC09-4949

The documentation describes how to use the following three main

components of the Standard C++ Library to write portable C/C++ code that

complies with the ISO standards:

v ISO Standard C Library

v ISO Standard C++ Library

v Standard Template Library (C++)

The ISO Standard C++ library consists of 51 required headers. These 51 C++

library headers (along with the additional 18 Standard C headers) constitute a

hosted implementation of the C++ library. Of these 51 headers, 13 constitute

the Standard Template Library, or STL.

C/C++ Legacy Class Libraries

Reference, SC09-7652

Reference information for:

v UNIX System Laboratories (USL) I/O Stream Library

v USL Complex Mathematics Library

This reference is part of the Run-Time Library Extensions documentation.

IBM Open Class Library Transition

Guide, SC09-4948

The documentation explains the various options to application owners and

users for migrating from the IBM® Open Class® library to the Standard C++

Library.

About this document xxxvii

Table 2. z/OS XL C/C++ and related documents (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS Common Debug Architecture

User’s Guide, SC09-7653

This documentation is the user’s guide for IBM’s libddpi library. It includes:

v Overview of the architecture

v Information on the order and purpose of API calls for model user

applications and for accessing DWARF information

v Information on using the Common Debug Architecture with C/C++ source

This user’s guide is part of the Run-Time Library Extensions documentation.

z/OS Common Debug Architecture

Library Reference, SC09-7654

This documentation is the reference for IBM’s libddpi library. It includes:

v General discussion of Common Debug Architecture

v Description of APIs and data types related to stacks, processes, operating

systems, machine state, storage, and formatting

This reference is part of the Run-Time Library Extensions documentation.

DWARF/ELF Extensions Library

Reference, SC09-7655

This documentation is the reference for IBM’s extensions to the libdwarf and

libelf libraries. It includes information on:

v Consumer APIs

v Producer APIs

This reference is part of the Run-Time Library Extensions documentation.

Debug Tool documentation, available

on the Debug Tool for z/OS library

page on the World Wide Web

The documentation, which is available at www.ibm.com/software/awdtools/
debugtool/library/, provides guidance and reference information for debugging

programs, using Debug Tool in different environments, and language-specific

information.

APAR and README files (Shipped

with Program materials)

Partitioned data set CBC.SCCNDOC on the product tape contains the

members, APAR, and README, which provide additional information for

using the z/OS XL C/C++ licensed program, including:

v Isolating reportable problems

v Keywords

v Preparing an Authorized Program Analysis Report (APAR)

v Problem identification worksheet

v Maintenance on z/OS

v Late changes to z/OS XL C/C++ publications

Note: For complete and detailed information on linking and running with Language Environment services and using

the Language Environment run-time options, refer to z/OS Language Environment Programming Guide, SA22-7561.

For complete and detailed information on using interlanguage calls, refer to z/OS Language Environment Writing

Interlanguage Communication Applications, SA22-7563.

The following table lists the z/OS XL C/C++ and related documents. The table

groups the documents according to the tasks they describe.

 Table 3. Documents by task

Tasks Documents

Planning, preparing, and migrating to z/OS XL

C/C++

v z/OS XL C/C++ Compiler and Run-Time Migration Guide for the

Application Programmer, GC09-4913

v z/OS Language Environment Customization, SA22-7564

v z/OS Language Environment Run-Time Application Migration

Guide, GA22-7565

v z/OS UNIX System Services Planning, GA22-7800

v z/OS and z/OS.e Planning for Installation, GA22-7504

Installing v z/OS Program Directory

v z/OS and z/OS.e Planning for Installation, GA22-7504

v z/OS Language Environment Customization, SA22-7564

xxxviii z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/software/awdtools/debugtool/library/

Table 3. Documents by task (continued)

Tasks Documents

Option customization v z/OS XL C/C++ User’s Guide, SC09-4767

Coding programs v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS Metal C Programming Guide and Reference, SA23-2225

v z/OS Language Environment Concepts Guide, SA22-7567

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Programming Reference, SA22-7562

Coding and binding programs with

interlanguage calls

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Writing Interlanguage Communication

Applications, SA22-7563

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Compiling, binding, and running programs v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Compiling and binding applications in the z/OS

UNIX System Services (z/OS UNIX)

environment

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS UNIX System Services User’s Guide, SA22-7801

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Debugging programs v README file

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Messages, GC09-4819

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS Language Environment Run-Time Messages, SA22-7566

v z/OS UNIX System Services Messages and Codes, SA22-7807

v z/OS UNIX System Services User’s Guide, SA22-7801

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS UNIX System Services Programming Tools, SA22-7805

v Debug Tool documentation, available on the Debug Tool Library

page on the World Wide Web (www.ibm.com/software/awdtools/
debugtool/library/)

v z/OS messages database, available on the z/OS Library page at

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/ through the

LookAt Internet message search utility.

Developing debuggers and profilers v z/OS Common Debug Architecture User’s Guide, SC09-7653

v z/OS Common Debug Architecture Library Reference, SC09-7654

v DWARF/ELF Extensions Library Reference, SC09-7655

Packaging XL C/C++ applications v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ User’s Guide, SC09-4767

Using shells and utilities in the z/OS UNIX

System Services environment

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS UNIX System Services Messages and Codes, SA22-7807

About this document xxxix

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Table 3. Documents by task (continued)

Tasks Documents

Using sockets library functions in the z/OS

UNIX System Services environment

v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

Using the ISO Standard C++ Library to write

portable C/C++ code that complies with ISO

standards

v Standard C++ Library Reference, SC09-4949

Migrating from the IBM Open Class Library to

the Standard C++ Library

v IBM Open Class Library Transition Guide, SC09-4948

Porting a z/OS UNIX System Services

application to z/OS

v z/OS UNIX System Services Porting Guide

This guide contains useful information about supported header files

and C functions, sockets in z/OS UNIX System Services, process

management, compiler optimization tips, and suggestions for

improving the application’s performance after it has been ported.

The Porting Guide is available as a PDF file which you can

download, or as web pages which you can browse, at the following

web address: www.ibm.com/servers/eserver/zseries/zos/unix/
bpxa1por.html

Working in the z/OS UNIX System Services

Parallel Environment

v z/OS UNIX System Services Parallel Environment: Operation and

Use, SA22-7810

v z/OS UNIX System Services Parallel Environment: MPI

Programming and Subroutine Reference, SA22-7812

Performing diagnosis and submitting an

Authorized Program Analysis Report (APAR)

v z/OS XL C/C++ User’s Guide, SC09-4767

v CBC.SCCNDOC(APAR) on z/OS XL C/C++ product tape

Note: For information on using the prelinker, see the appendix on prelinking and linking z/OS XL C/C++ programs in

z/OS XL C/C++ User’s Guide.

Softcopy documents

The z/OS XL C/C++ publications are supplied in PDF and BookMaster® formats on

the following CD: z/OS Collection, SK3T-4269. They are also available at

www.ibm.com/software/awdtools/czos/library/.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe Reader,

you can download it (subject to Adobe license terms) from the Adobe web site at

www.adobe.com.

You can also browse the documents on the World Wide Web by visiting the z/OS

library at http://www.ibm.com/servers/eserver/zseries/zos/bkserv/.

Note: For further information on viewing and printing softcopy documents and

using BookManager®, see z/OS Information Roadmap.

Softcopy examples

Most of the larger examples in the following documents are available in

machine-readable form:

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Programming Guide, SC09-4765

In the following documents, a label on an example indicates that the example is

distributed as a softcopy file:

xl z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html
http://www.ibm.com/software/awdtools/czos/library/
http://www.adobe.com
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ User’s Guide, SC09-4767

The label is the name of a member in the CBC.SCCNSAM data set. The labels

begin with the form CCN or CLB. Examples labelled as CLB appear only in the

z/OS XL C/C++ User’s Guide, while examples labelled as CCN appear in all three

documents, and are further distinguished by x following CCN, where x represents

one of the following:

v R and X refer to z/OS XL C/C++ Language Reference, SC09-4815

v G refers to z/OS XL C/C++ Programming Guide, SC09-4765

v U refers to z/OS XL C/C++ User’s Guide, SC09-4767

z/OS XL C/C++ on the World Wide Web

Additional information on z/OS XL C/C++ is available on the World Wide Web on

the z/OS XL C/C++ home page at: www.ibm.com/software/awdtools/czos/

This page contains late-breaking information about the z/OS XL C/C++ product,

including the compiler, the C/C++ libraries, and utilities. There are links to other

useful information, such as the z/OS XL C/C++ information library and the libraries

of other z/OS elements that are available on the Web. The z/OS XL C/C++ home

page also contains links to other related Web sites.

Where to find more information

Please see z/OS Information Roadmap for an overview of the documentation

associated with z/OS, including the documentation available for z/OS Language

Environment.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS systems to

access IBM message explanations using LookAt from a TSO/E command line

(for example: TSO/E prompt, ISPF, or z/OS UNIX System Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the

z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

About this document xli

http://www.ibm.com/software/awdtools/czos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in the

LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book

might refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide. Starting with z/OS V1R4, z/OS

users can obtain the IBM Health Checker for z/OS from the z/OS Downloads page

at http://www.ibm.com/servers/eserver/zseries/zos/downloads/.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

Information updates on the web

For the latest information updates that have been provided in PTF cover letters and

Documentation APARs for z/OS, see the online document at: http://
publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

This document is updated weekly and lists documentation changes before they are

incorporated into z/OS publications.

xlii z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

http://www.ibm.com/servers/eserver/zseries/zos/downloads/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Summary of changes

Summary of changes

for SA22-7821-09

z/OS Version 1 Release 9

 The book contains information previously presented in z/OS C/C++ Run-Time

Library Reference, SA22-7821-08, which supports z/OS Version 1 Release 8.

New information

New functions:

v ceild32(), ceild64(), ceild128()

v copysignd32(), copysignd64(), copysignd128()

v cosd32(), cosd64(), cosd128()

v __cospid32(), __cospid64(), __cospid128()

v expd32(), expd64(), expd128()

v fabsd32(), fabsd64(), fabsd128()

v fdimd32(), fdimd64(), fdimd128()

v fe_dec_getround(), fe_dec_setround()

v floord32(), floord64(), floord128()

v fmaxd32(), fmaxd64(), fmaxd128()

v frexpd32(), frexpd64(), frexpd128()

v getipv4sourcefilter()

v getsourcefilter()

v ilogbd32(), ilogbd64(), ilogbd128()

v ldexpd32(), ldexpd64(), ldexpd128()

v __le_traceback()

v llroundd32(), llroundd64(), llroundd128()

v logbd32(), logbd64(), logbd128()

v logd32(), logd64(), logd128()

v log10d32(), log10d64(), log10d128()

v lrintd32(), lrintd64(), lrintd128(), llrintd32(), llrintd64(), llrintd128()

v lroundd32(), lroundd64(), lroundd128()

v modfd32(), modfd64(), modfd128()

v nand32(), nand64(), nand128()

v nearbyintd32(), nearbyintd64(), nearbyintd128()

v nextafterd32(), nextafterd64(), nextafterd128()

v nexttowardd32(), nexttowardd64(), nexttowardd128()

v posix_openpt()

v powd32(), powd64(), powd128()

v pselect()

v pthread_atfork()

v pthread_attr_getguardsize()

v pthread_attr_getschedparam()

v pthread_attr_getstack()

© Copyright IBM Corp. 1996, 2007 xliii

v pthread_attr_getstackaddr()

v pthread_attr_setguardsize()

v pthread_attr_setschedparam()

v pthread_attr_setstack()

v pthread_attr_setstackaddr()

v quantized32(), quantized64(), quantized128()

v rintd32(), rintd64(), rintd128()

v roundd32(), roundd64(), roundd128()

v samequantumd32(), samequantumd64(), samequantumd128()

v scalbnd32(), scalbnd64(), scalbnd128(), scalblnd32(), scalblnd64(), scalblnd128()

v setipv4sourcefilter()

v setsourcefilter()

v sind32(), sind64(), sind128()

v __sinpid32(), __sinpid64(), __sinpid128()

v sqrtd32(), sqrtd64(), sqrtd128()

v sockatmark()

v strtod32(), strtod64(), strtod128()

v truncd32(), truncd64(), truncd128()

v wcstod32(), wcstod64(), wcstod128()

New headers:

v netinet/tcp.h

v sys/select.h

New feature test macros

v _IEEEV1_COMPATIBILITY

v __STDC_WANT_DEC_FP__

v _UNIX03_THREADS

v _UNIX03_WITHDRAWN

Changed information

Modified functions:

v abs(), absf(), absl()

v aio_read(), aio_write()

v assert()

v bcmp()

v bcopy()

v brk()

v bzero()

v chroot()

v confstr()

v connect()

v cuserid()

v ecvt()

v __errno2()

xliv z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v fcvt()

v fegetenv()

v fegetround()

v feholdexcept()

v fesetenv()

v feupdateenv()

v fopen()

v fpclassify()

v fp_read_rnd()

v fprintf(), printf(), sprintf()

v fp_swap_rnd()

v freopen()

v fscanf(), scanf(), sscanf()

v fseek()

v fstat()

v ftell()

v ftime()

v ftw()

v gai_strerror()

v gamma()

v gcvt()

v getaddrinfo()

v getdate()

v getdtablesize()

v gethostbyaddr(), gethostbyname()

v getnameinfo()

v getpagesize()

v getpass()

v getsockopt()

v getw()

v getwd()

v gmtime(), gmtime_r()

v iconv(), iconv_close(), iconv_open()

v ilogb(), ilogbf(), ilogbl()

v index()

v initstate()

v ioctl()

v isfinite(), isinf()

v isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater()

v isnan()

v isnormal(), isunordered()

v localtime(), localtime_r()

v lrint(), lrintf(), lrintl(), llrint(), llrintf(), llrintl()

v lstat()

v makecontext()

Summary of changes xlv

v mbstowcs()

v mktemp(), mktime()

v nearbyint(), nearbyintf(), nearbyintl()

v nextafter(), nextafterf(), nextafterl()

v nftw()

v open()

v openlog()

v perror()

v __poe()

v putw()

v readdir(), readdir_r()

v re_comp()

v recv(), recvfrom(), recvmsg()

v re_exec()

v regex()

v rindex()

v rint(), rintf(), rintl()

v round(), roundf(), roundl()

v scalb()

v sched_yield()

v setcontext()

v setenv()

v setgid()

v setsockopt()

v sigaddset()

v sigdelset()

v sigismember()

v signbit()

v sigprocmask()

v sigwait()

v socket()

v stat()

v step()

v strftime(), strptime()

v swapcontext()

v sysconf()

v syslog()

v tcgetsid()

v tcsetattr()

v tmpfile()

v tsched()

v ttyslot()

v ualarm()

v usleep()

v utimes()

xlvi z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v valloc()

v vfork()

v wait3()

v wcstol(), wcstoll(), wcstoul(), wcstoull()

v wcswcs()

v wcsxfrm()

Modified headers:

v aio.h

v ctype.h

v dirent.h

v errno.h

v fenv.h

v float.h

v langinfo.h

v limits.h

v math.h

v netinet/in.h

v pthread.h

v re_comp.h

v regexp.h

v sched.h

v signal.h

v stdarg.h

v stdlib.h

v sys/__cpl.h

v sys/modes.h

v sys/ps.h

v sys/resource.h

v sys/socket.h

v sys/wait.h

v tgmath.h

v time.h

v uheap.h

v varargs.h

v wchar.h

v wcstr.h

Modified feature test macros:

v _ALL_SOURCE

v _OPEN_SOURCE

v _OPEN_SYS

v _OPEN_SYS_MUTEX_EXT

v _OPEN_SYS_SOCK_IPV6

v _OPEN_THREADS

v _POSIX_C_SOURCE

Summary of changes xlvii

v _UNIX03_SOURCE

v _XOPEN_SOURCE

This document has been enabled for the following types of advanced searches in

the online z/OS Library Center: examples.

You may notice changes in the style and structure of some content in this document

— for example, headings that use uppercase for the first letter of initial words only,

and procedures that have a different look and format. The changes are ongoing

improvements to the consistency and retrievability of information in our documents.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22-7821-08

z/OS Version 1 Release 8

 The book contains information previously presented in z/OS C/C++ Run-Time

Library Reference, SA22-7821-07, which supports z/OS Version 1 Release 7.

New information

New functions:

v flockfile(), ftrylockfile(), funlockfile()

v getc_unlocked(), getchar_unlocked(), putc_unlocked(), putchar_unlocked()

Changed information

The Enhanced ASCII Support section has been moved to Appendix B and modified

to include the level of support for Preinitialized Environments for Authorized

Programs.

Modified functions:

v fldata()

v flocate()

v fgetpos()

v fseek()

v fsetpos()

v ftell()

v ftello()

v fseeko()

Functions with Enhanced ASCII support added this release:

v flockfile(), ftrylockfile(), funlockfile()

v getc_unlocked(), getchar_unlocked(), putc_unlocked(), putchar_unlocked()

Modified header files:

v termios.h

Modified feature test macros:

xlviii z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v _SHARE_EXT_VARS

Modified External Variables:

v daylight

v getdate_err

v h_errno

v optarg

v opterr

v optind

v optopt

v t_errno

v timezone

Modified description:

v Changed External Variables in Chapter 3, Library Functions. See “External

Variables” on page 110.

This document has been enabled for the following types of advanced searches in

the online z/OS Library Center: examples.

You may notice changes in the style and structure of some content in this document

— for example, headings that use uppercase for the first letter of initial words only,

and procedures that have a different look and format. The changes are ongoing

improvements to the consistency and retrievability of information in our documents.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22-7821-07

z/OS Version 1 Release 7

 The book contains information previously presented in z/OS C/C++ Run-Time

Library Reference, SA22-7821-06, which supports z/OS Version 1 Release 6.

New information

New functions:

v atoll()

v cabs(), cabsf(), cabsl()

v cacos(), cacosf(), cacosl()

v cacosh(), cacoshf(), cacoshl()

v carg(), cargf(), cargl()

v casin(), casinf(), casinl()

v casinh(), casinhf(), casinhl()

v catan(), catanf(), catanl()

v catanh(), catanhf(), catanhl()

v ccos(), ccosf(), ccosl()

v ccosh(), ccoshf(), ccoshl()

Summary of changes xlix

v cexp(), cexpf(), cexpl()

v cimag(), cimagf(), cimagl()

v clog(), clogf(), clogl()

v conj(), conjf(), conjl()

v cpow(), cpowf(), cpowl()

v cproj(), cprojf(), cprojl()

v creal(), crealf(), creall()

v csin(), csinf(), csinl()

v csinh(), csinhf(), csinhl()

v csqrt(), csqrtf(), csqrtl()

v ctan(), ctanf(), ctanl()

v ctanh(), ctanhf(), ctanhl()

v _Exit()

v feclearexcept()

v fegetenv()

v fegetexceptflag()

v fegetround()

v feholdexcept()

v feraiseexcept()

v fesetenv()

v fesetexceptflag()

v fesetround()

v fetestexcept()

v feupdateenv()

v fma(), fmaf(), fmal()

v fmax(), fmaxf(), fmaxl()

v fmin(), fminf(), fminl()

v fpclassify()

v fwide()

v fwprintf(), wprintf()

v fwscanf(), wscanf()

v imaxabs()

v imaxdiv()

v ilogbf(), ilogbl()

v inet6_rth_space()

v inet6_rth_init()

v inet6_rth_add()

v inet6_rth_reverse()

v inet6_rth_segments()

v inet6_rth_getaddr()

v inet6_opt_init()

v inet6_opt_append()

v inet6_opt_finish()

v inet6_opt_set_val()

v inet6_opt_next()

l z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v inet6_opt_find()

v inet6_opt_get_val()

v isfinite()

v isgreater(),

v isinf(),

v isgreaterequal(),

v isless(),

v islessequal(),

v islessgreater(),

v isnormal(),

v isunordered()

v llround(), llroundf(), llroundl()

v logbf(), logbl()

v llrint()

v lrint(), lrintf(), lrintl(), llrintf(), llrintl()

v lroundl()

v nan(), nanf(), nanl()

v nearbyint(), nearbyintf(), nearbyintl()

v nextafterf(), nextafterl()

v nexttoward(), nexttowardf(), nexttowardl()

v __pow_i()

v __pow_ii()

v pthread_setcancelstate()

v pthread_setcanceltype()

v pthread_testcancel()

v pthread_sigmask()

v pthread_setconcurrency()

v pthread_getconcurrency()

v pthread_key_delete()

v rintf(), rintl()

v round(), roundf(), roundl()

v scalbn(), scalbnf(), scalbnl()

v scalbln(), scalblnf(), scalblnl()

v sched_yield()

v signbit()

v strerror_r()

v strtof()

v strtoimax()

v strtold()

v strtoumax()

v unatexit()

v unsetenv()

v va_copy()

v vfscanf(), vscanf(), vsscanf()

v vfwprintf(), vwprintf()

Summary of changes li

v vfwscanf(), vwscanf(), vswscanf()

v wcstof()

v wcstoimax()

v wcstold()

v wcstoumax()

v wctrans(),towctrans()

New header files:

v complex.h

v fenv.h

v stdbool.h

v stdint.h

v tgmath.h

New feature test macros files:

v _NOISOC99_SOURCE

Changed information

The Enhanced ASCII Support section has been moved to Appendix B and modified

to include the level of support for Preinitialized Environments for Authorized

Programs.

Modified functions:

v acoshf(), acoshl()

v asinhf(), asinhl()

v cbrtf(), cbrtl()

v __chattr()

v copysign()

v ecvt()

v exp2(), exp2f(), exp2l()

v expm1(), expm1f(), expm1l()

v fcvt()

v fork()

v fprintf(), printf(), sprintf()

v fscanf(), scanf(), sscanf()

v gcvt()

v givesocket()

v hypotf(), hypotl()

v iswblank()

v lgammal()

v log1pf(), log1pl()

v perror()

v poll()

v popen()

v printf()

v pthread_create()

lii z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v remainderf(), remainderl()

v remquo(), remquof(), remquol()

v scalbn()

v selectex()

v strfmon()

v strftime()

v strtol()

v strtoll()

v strtoul()

v strtoull()

v swprintf()

v tgammal()

v vfork()

v vswprintf()

v wcscat()

v wcschr()

v wcscmp()

v wcscpy()

v wcscspn()

v wcsftime()

v wcspbrk()

v wcsspn()

v wcswcs()

v wcsncat()

v wcsncmp()

v wcsncpy()

v wcsrchr()

v wcstod()

v wcstol()

v wcstoll()

v wcstoul()

v wcstoull()

v wcstoumax()

v wordexp()

Functions with Enhanced ASCII support added this release:

v atoll()

v fwprintf(), wprintf()

v fwscanf(), wscanf()

v isblank()

v iswblank()

v strtof(), strtold()

v strtoimax(), strtoumax()

v strerror_r()

v unsetenv()

Summary of changes liii

v vfwprintf(), vwprintf()

v vfscanf(), vscanf(), vsscanf()

v vfwscanf(), vswscanf(), vwscanf()

v wcstof(), wcstold()

v wcstoll(), wcstoull()

v wcstoimax(), wcstoumax()

Modified header files:

v float.h

v inttypes.h

v limits.h

v locale.h

v math.h

v stdlib.h

v time.h

v wchar.h

v wcstr.h

Modified feature test macros:

v _ISOC99_SOURCE

v _MSE_PROTOS

v _OPEN_THREADS

This document has been enabled for the following types of advanced searches in

the online z/OS Library Center: examples.

Starting with z/OS V1R2, you may notice changes in the style and structure of

some content in this document — for example, headings that use uppercase for the

first letter of initial words only, and procedures that have a different look and format.

The changes are ongoing improvements to the consistency and retrievability of

information in our documents.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

liv z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Chapter 1. About IBM z/OS XL C/C++

The XL C/C++ feature of the IBM z/OS licensed program provides support for C

and C++ application development on the z/OS platform.

z/OS XL C/C++ includes:

v A C compiler (referred to as the z/OS XL C compiler)

v A C++ compiler (referred to as the z/OS XL C++ compiler)

v Performance Analyzer host component, which supports the IBM C/C++

Productivity Tools for OS/390 product

v A set of utilities for C/C++ application development

Notes:

1. The Run-Time Library Extensions base element was introduced in z/OS V1R5.

It includes the Common Debug Architecture (CDA) Libraries, the c89 utility, and,

as of z/OS V1R6, the xlc utility. The Common Debug Architecture provides a

consistent and common format for debugging information across the various

languages and operating systems that are supported on the IBM System z™

platform. Run-Time Library Extensions also includes legacy libraries to support

existing programs. These are the UNIX System Laboratories (USL) I/O Stream

Library and USL Complex Mathematics Library. The IBM Open Class Library is

not supported.

2. The Standard C++ Library is included with Language Environment libraries.

3. The z/OS XL C/C++ compiler works with the mainframe interactive Debug Tool

product and WebSphere® Developer for System z, integrated with IBM Debug

Tool for z/OS and IBM Debug Tool Utilities and Advanced Functions for z/OS.

IBM offers the C and C++ compilers on other platforms, such as the AIX, Linux,

OS/400®, and z/VM operating systems. The C compiler is also available on the

VSE/ESA platform.

Changes for z/OS V1R9

z/OS XL C/C++ has made the following performance and usability enhancements

for the z/OS V1R9 release:

z/OS XL C support for system program development – METAL option

Prior to V1R9, z/OS XL C compiler-generated code required

Language Environment for C run-time library functions and required

the establishment of an overall execution context, including the

heap storage and dynamic storage area. This dependency meant

that the XL C compiler could only generate code to run in an

environment where Language Environment services existed.

 The METAL compiler option, which is provided with z/OS V1R9,

generates code that does not have Language Environment run-time

dependencies. In addition, language features are provided to

embed small pieces of HLASM source within C statements. Most

assembler macros can be used in this embedded HLASM code.

Function prolog and epilog code can be provided for all functions

that have extern scope. When applied together, these features can

assist with writing programs suitable for use in an MVS™ system

level environment, as well as for inter-operating with most programs

written in HLASM. Any system services that the program needs can

be obtained directly by calling Assembler Services.

© Copyright IBM Corp. 1996, 2007 1

z/OS XL C/C++ support for decimal floating-point formats (DFP)

z/OS V1R9 XL C/C++ supports the decimal floating-point formats in

addition to the current hex and binary floating-point formats. The

decimal formats are specified by the revised IEEE 754 Floating

Point Standard. This support assists with avoiding potential

rounding problems, which can result from using binary or

hexadecimal floating-point types to handle decimal calculations.

z/OS XL C/C++ provides the following:

v Decimal type specifiers through the _Decimal32, _Decimal64, and

_Decimal128 reserved keywords

v Decimal literal support

v Conversion between decimal types and the other floating-point

types

CDAHLASM utility to produce debug information

The CDAHLASM utility produces debug information in DWARF

format and ADATA format. Debuggers can use the DWARF debug

information to debug Metal C applications. The CDAASMC

cataloged procedure is provided to execute this utility.

New compiler options

z/OS V1R9 XL C/C++ introduces the following new compiler

options:

v ARMODE (C compiler only)

v ASMDATASIZE (C compiler only)

v ASSERT(RESTRICT)

v DFP

v EPILOG (C compiler only)

v GENASM (C compiler only)

v METAL (C compiler only)

v PROLOG (C compiler only)

v RESERVED_REG (C compiler only)

New compiler suboption

z/OS V1R9 XL C/C++ introduces the following new compiler

suboption:

v TARGET(zOSV1R9)

New pragma directives

z/OS V1R9 XL C introduces the following new pragma directives:

v #pragma epilog

v #pragma prolog

Performance improvements

As an ongoing effort, improvements are provided in the generated

code to take advantage of new instructions in the hardware

architecture. You can benefit from these improvements by

recompiling your existing source without code changes. Additional

built-in functions are provided to help programs use selected

hardware instructions directly. For information on these built-in

functions, see the built-in functions described in z/OS XL C/C++

Programming Guide.

2 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

For information on the changes that the Language Environment element has made

for z/OS V1R9, see "What's New in Language Environment® for z/OS" in z/OS

Language Environment Concepts Guide.

The XL C/C++ compilers

The following sections describe the C and C++ languages and the z/OS XL C/C++

compilers.

The C language

The C language is a general purpose, versatile, and functional programming

language that allows a programmer to create applications quickly and easily. C

provides high-level control statements and data types as do other structured

programming languages. It also provides many of the benefits of a low-level

language.

The C++ language

The C++ language is based on the C language and includes all of the advantages

of C listed above. In addition, C++ also supports object-oriented concepts, generic

types or templates, and an extensive library. For a detailed description of the

differences between z/OS XL C++ and z/OS XL C, refer to z/OS XL C/C++

Language Reference.

The C++ language introduces classes, which are user-defined data types that may

contain data definitions and function definitions. You can use classes from

established class libraries, develop your own classes, or derive new classes from

existing classes by adding data descriptions and functions. New classes can inherit

properties from one or more classes. Not only do classes describe the data types

and functions available, but they can also hide (encapsulate) the implementation

details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access

control to data and functions, and better type checking and exception handling. It

also supports polymorphism and the overloading of operators.

Common features of the z/OS XL C and XL C++ compilers

The XL C and XL C++ compilers, when used with the Language Environment

element, offer many features to increase your productivity and improve program

execution times:

v Optimization support:

– Extra Performance Linkage (XPLINK) function calling convention, which has

the potential for a significant performance increase when used in an

environment of frequent calls between small functions. XPLINK makes

subroutine calls more efficient by removing non-essential instructions from the

main path.

– Algorithms to take advantage of the zSeries® architecture to achieve improved

optimization and memory usage through the OPTIMIZE and IPA compiler

options.

– The OPTIMIZE compiler option, which instructs the compiler to optimize the

machine instructions it generates to try to produce faster-running object code

and improve application performance at run time.

Chapter 1. About IBM z/OS XL C/C++ 3

– Interprocedural Analysis (IPA), to perform optimizations across procedural and

compilation unit boundaries, thereby optimizing application performance at run

time.

– Additional optimization capabilities are available with the INLINE compiler

option.

v DLLs (dynamic link libraries) to share parts among applications or parts of

applications, and dynamically link to exported variables and functions at run time.

DLLs allow a function reference or a variable reference in one executable to use

a definition located in another executable at run time.

You can use DLLs to split applications into smaller modules and improve system

memory usage. DLLs also offer more flexibility for building, packaging, and

redistributing applications.

v Full program reentrancy

With reentrancy, many users can simultaneously run a program. A reentrant

program uses less storage if it is stored in the Link Pack Area (LPA) or the

Extended Link Pack Area (ELPA) and simultaneously run by multiple users. It

also reduces processor I/O when the program starts up, and improves program

performance by reducing the transfer of data to auxiliary storage. z/OS XL C

programmers can design programs that are naturally reentrant. For those

programs that are not naturally reentrant, z/OS XL C programmers can use

constructed reentrancy. To do this, compile programs with the RENT option and

use the program management binder supplied with z/OS or the Language

Environment prelinker and program management binder. The z/OS XL C++

compiler always uses the constructed reentrancy algorithms.

v Locale-based internationalization support derived from IEEE POSIX 1003.2-1992

standard. Also derived from X/Open CAE Specification, System Interface

Definitions, Issue 4 and Issue 4 Version 2. This allows you to use locales to

specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,

PL/1, compiled Java™, and Fortran, to enable you to integrate z/OS XL C/C++

code with existing applications.

v Exploitation of z/OS and z/OS UNIX System Services technology.

z/OS UNIX System Services is the IBM implementation of the open operating

system environment, as defined in the XPG4 and POSIX standards.

v Support features in the following standards at the system level:

– ISO/IEC 9899:1999

– ISO/IEC 9945-1:1990 (POSIX-1)/IEEE POSIX 1003.1-1990

– The core features of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– The core features of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE

POSIX committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

– The core features of IEEE 754-1985 (R1990) IEEE Standard for Binary

Floating-Point Arithmetic (ANSI), as applicable to the IBM System z

environment.

– X/Open CAE Specification, Networking Services, Issue 4

– A subset of IEEE Std. 1003.1-2001 (Single UNIX Specification, Version 3).

v Support for the Euro currency

4 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

z/OS XL C compiler-specific features

In addition to the features common to z/OS XL C and XL C++, the z/OS XL C

compiler provides you with the following capabilities:

v The ability to write portable code that supports the following standards:

– ISO/IEC 9899:1999

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Languages, Issue 3, Common Usage C

– FIPS-160

v System programming capabilities, which allow you to use z/OS XL C in place of

assembler

v Extensions of the standard definitions of the C language to provide you with

support for the z/OS environment, such as fixed-point (packed) decimal data

support

z/OS XL C++ compiler-specific features

In addition to the features common to z/OS XL C and XL C++, the z/OS XL C++

compiler supports the Programming languages - C++ (ISO/IEC 14882:1998)

standard. Also, it further conforms to the Programming languages - C++ (ISO/IEC

14882:2003(E)) standard, which incorporates the latest Technical Corrigendum 1.

Class libraries

z/OS V1R9 XL C/C++ uses the following thread-safe class libraries:

v Standard C++ Library, including the Standard Template Library (STL), and other

library features of Programming languages - C++ (ISO/IEC 14882:1998) and

Programming languages - C++ (ISO/IEC 14882:2003(E))

v UNIX System Laboratories (USL) C++ Language System Release I/O Stream

and Complex Mathematics Class Libraries

Note: As of z/OS V1R5, all application development using the C/C++ IBM Open

Class Library (Application Support Class and Collection Class Libraries) is

not supported. As of z/OS V1R9, the execution of applications using the

C/C++ IBM Open Class Library is not supported. For additional information,

see IBM Open Class Library Transition Guide.

For new code and enhancements to existing applications, the Standard C++ Library

should be used. The Standard C++ Library includes the following:

v Stream classes for performing input and output (I/O) operations

v The Standard C++ Complex Mathematics Library for manipulating complex

numbers

v The Standard Template Library (STL) which is composed of C++ template-based

algorithms, container classes, iterators, localization objects, and the string class

Utilities

The z/OS XL C/C++ compilers provide the following utilities:

v The xlc utility to invoke the compiler using a customizable configuration file.

v The c89 utility to invoke the compiler using host environment variables.

v The CXXFILT utility to map z/OS XL C++ mangled names to their original

function names.

Chapter 1. About IBM z/OS XL C/C++ 5

v The DSECT conversion utility to convert descriptive assembler DSECTs into

z/OS XL C/C++ data structures.

v The makedepend utility to derive all dependencies in the source code and write

these into the makefile. The make command will determine which source files to

recompile, whenever a dependency has changed. This frees the user from

manually monitoring such changes in the source code.

v The CDAHLASM utility, which produces debug information in DWARF (for Metal

C applications) and ADATA formats. This utility uses the HLASM assembler to

compile the source files produced by compiling Metal C code.

Language Environment utilities include:

v The object library utility (C370LIB; also known as EDCALIAS) to update

partitioned data set (PDS and PDSE) libraries of object modules. The object

library utility supports XPLINK, IPA, and LP64 compiled objects.

v The prelinker which combines object modules that comprise a z/OS XL C/C++

application to produce a single object module. The prelinker supports only object

and extended object format input files, and does not support GOFF.

Note: IBM has stabilized the prelinker. Further enhancements will not be made

to the prelinker utility. IBM recommends that you use the binder instead of

the prelinker and linker.

dbx

You can use the dbx shell command to debug programs, as described in z/OS

UNIX System Services Programming Tools and z/OS UNIX System Services

Command Reference.

Refer to www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1dbx.html for further

information on dbx.

Language Environment element

z/OS XL C/C++ exploits the C/C++ run-time environment and library of run-time

services available with the Language Environment element provided with z/OS.

The Language Environment element consists of four language-specific run-time

libraries, and Base Routines and Common Services, as shown in Figure 1 on page

7. This element establishes a common run-time environment and common run-time

services for language products, user programs, and other products.

6 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1dbx.html

The common execution environment is composed of data items and services that

are included in library routines available to an application that runs in the

environment. Language Environment services include:

v Services that satisfy basic requirements common to most applications. These

include support for the initialization and termination of applications, allocation of

storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. z/OS XL C/C++

contains these functions within a library of callable routines, and includes

interfaces to operating system functions and a variety of other commonly used

functions.

v Run-time options that help in the execution, performance, and diagnosis of your

application.

v Access to operating system services; z/OS UNIX System Services is available to

you or your program through the z/OS XL C/C++ language bindings.

v Access to language-specific library routines, such as the z/OS XL C/C++ library

functions.

Note: The Language Environment run-time option TRAP(ON) should be set when

using z/OS XL C/C++. Refer to z/OS Language Environment Programming

Reference for details on the Language Environment run-time options.

AMODE 64 considerations

Throughout this document AMODE 64 restrictions are indicated with notes like this

one for Hiperspace™:

Restriction: Hiperspace is not supported in AMODE 64.
.

Following are restrictions for AMODE 64:

v Hiperspace is not supported.

v The SPC facility is not supported.

v The following header files are not supported:

– csp.h

– ims.h

– leawi.h

– mtf.h

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Language Environment libraries

Chapter 1. About IBM z/OS XL C/C++ 7

– re_comp.h

– regexp.h

– spc.h

v The following feature test macros are obsolete:

– _LARGE_FILES

– _LARGE_MEM

See the feature test macro description for more details.

v The following feature test macros are not supported:

– __LIBASCII

– _OE_SOCKETS

v The following functions are not supported:

– advance()

– brk()

– compile()

– __console()

– __csplist

– ctdli()

– fortrc()

– iscics()

– __openMvsRel()

– __pcblist

– pthread_quiesce_and_get_np()

– re_comp()

– re_exec()

– regcmp()

– regex()

– sbrk()

– sock_debug_bulk_perf0()

– sock_do_bulkmode()

– step()

– tsched()

– tsetsubt()

– tsyncro()

– tterm()

– valloc()

v The following external variables are not supported:

– __loc1

– loc1

– loc2

– locs

Language Environment downward compatibility

Language Environment downward compatibility support is provided. Assuming that

you have met the required programming guidelines and restrictions, described in

z/OS Language Environment Programming Guide, this support enables you to

8 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

develop applications on higher release levels of z/OS for use on platforms that are

running lower release levels of z/OS. In XL C and XL C++, downward compatibility

support is provided through the XL C/C++ TARGET compiler option. See TARGET

in z/OS XL C/C++ User’s Guide for details on this compiler option.

For example, a company may use z/OS V1R9 with the Language Environment

element on a development system where applications are coded, link-edited, and

tested, while using any supported lower Language Environment release on their

production systems where the finished application modules are used.

Downward compatibility support is not the roll-back of new function to prior releases

of the operating system. Applications developed that exploit the downward

compatibility support must not use any Language Environment function that is

unavailable on the lower release of z/OS where the application will be used.

The downward compatibility support includes toleration PTFs for lower releases of

z/OS to assist in diagnosing applications that do not meet the programming

requirements for this support. (Specific PTF numbers can be found in the PSP

buckets.)

The diagnosis assistance that will be provided by the toleration PTFs includes

detection of an unsupported program object format. If the program object format is

at a level which is not supported by the target deployment system, then the

deployment system will produce an abend when trying to load the application

program. The abend will indicate that the Data Facility Storage Management

Subsystem (DFSMS™) software was unable to find or load the application program.

Correcting this problem does not require the installation of any toleration PTFs.

Instead, you will need to recreate the program object that is compatible with the

older deployment system.

Language Environment downward compatibility support and the downward

compatibility support that is provided by toleration PTFs does not change upward

compatibility. That is, applications coded and link-edited with one Language

Environment release will continue to run on later Language Environment releases

without the need to recompile or re-link edit the application, independent of the

downward compatibility support.

The current z/OS level header files and SYSLIB can be used (the user no longer

has to copy header files and SYSLIB data sets from the deployment release).

Note: As of z/OS V1R3, the executables produced with the binder’s

COMPAT=CURRENT setting will not run on lower levels of z/OS. You will

have to explicitly override to a particular program object level, or use the

COMPAT=MIN setting introduced in z/OS V1R3.

About prelinking, linking, and binding

When describing the process to build an application, this document refers to the

bind step.

Normally, the program management binder is used to perform the bind step.

However, in many cases the prelink and link steps can be used in place of the bind

step. When they cannot be substituted, and the program management binder alone

must be used, it will be stated. For more information, refer to Prelinking and linking

z/OS XL C/C++ programs and Binding z/OS XL C/C++ programs in z/OS XL C/C++

User’s Guide.

Chapter 1. About IBM z/OS XL C/C++ 9

The terms bind and link have multiple meanings.

v With respect to building an application:

In both instances, the program management binder is performing the actual

processing of converting the object file(s) into the application executable module.

Object files with longname symbols, reentrant writable static symbols, and

DLL-style function calls require additional processing to build global data for the

application.

The term link refers to the case where the binder does not perform this additional

processing, due to one of the following:

– The processing is not required, because none of the object files in the

application use constructed reentrancy, use long names, are DLL or are C++.

– The processing is handled by executing the prelinker step before running the

binder.

The term bind refers to the case where the binder is required to perform this

processing.

v With respect to executing code in an application:

The linkage definition refers to the program call linkage between program

functions and methods. This includes the passing of control and parameters.

Refer to "Program Linkage" in z/OS XL C/C++ Language Reference for more

information on linkage specification.

Some platforms have a single linkage convention. z/OS has a number of linkage

conventions, including standard operating system linkage, Extra Performance

Linkage (XPLINK), and different non-XPLINK linkage conventions for C and C++.

Notes on the prelinking process

You cannot use the prelinker if you are using the XPLINK, GOFF, or LP64 compiler

options. IBM recommends using the binder instead of the prelinker whenever

possible.

The prelinker was designed to process long names and support constructed

reentrancy in earlier versions of the C compiler on the MVS and OS/390® operating

systems. The Language Environment prelinker provides output that is compatible

with the linkage editor, which is shipped with the binder.

The binder is designed to include the functions of the prelinker, the linkage editor,

the loader, and a number of APIs to manipulate the program object. Thus, the

binder is a superset of the linkage editor. Its functionality provides a high level of

compatibility with the prelinker and linkage editor, but provides additional

functionality in some areas. Generally, the terms binding and linking are

interchangeable. In particular, the binder supports:

v Inputs from the object module

v XOBJ, GOFF, load module and program object

v Auto call resolutions from z/OS UNIX archives and C370LIB object directories

v Long external names

v All prelinker control statements

Notes:

1. You need to use the binder for XPLINK objects.

2. As of z/OS V1R7, the Hierarchical File System (HFS) functionality has been

stabilized and zSeries File System (zFS) is the strategic file system for z/OS

UNIX System Services. The term z/OS UNIX file system includes both HFS and

zFS.

10 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

For more information on the compatibility between the binder, and the linker and

prelinker, see z/OS MVS Program Management: User’s Guide and Reference.

Updates to the prelinking, linkage-editing, and loading functions that are performed

by the binder are delivered through the binder. If you use the Language

Environment prelinker and the linkage editor (supplied through the binder), you

have to apply the latest maintenance for the Language Environment element as

well as the binder.

If you still need to use the prelinker and linkage editor, see Prelinker and linkage

editor options in z/OS XL C/C++ User’s Guide.

File format considerations

You can use the binder in place of the prelinker and linkage editor but there are

exceptions, which are file format considerations. For further information, on when

you cannot use the binder, see Binding z/OS XL C/C++ programs in z/OS XL

C/C++ User’s Guide.

The program management binder

The binder provided with z/OS combines the object modules, load modules, and

program objects comprising an application. It produces a single z/OS output

program object or load module that you can load for execution. The binder supports

all C and C++ code, provided that you store the output program in a PDSE member

or a z/OS UNIX System Services file.

If you cannot use a PDSE member or z/OS UNIX file, and your program contains

C++ code, or C code that is compiled with any of the RENT, LONGNAME, DLL or

IPA compiler options, you must use the prelinker. C and C++ code compiled with

the GOFF or XPLINK compiler options cannot be processed by the prelinker.

Using the binder without using the prelinker has the following advantages:

v Faster rebinds when recompiling and rebinding a few of your source files

v Rebinding at the single compile unit level of granularity (except when you use the

IPA compile-time option)

v Input of object modules, load modules, and program objects

v Improved long name support:

– Long names do not get converted into prelinker generated names

– Long names appear in the binder maps, enabling full cross-referencing

– Variables do not disappear after prelink

– Fewer steps in the process of producing your executable program

The Language Environment prelinker combines the object modules comprising a

z/OS XL C/C++ application and produces a single object module. You can link-edit

the object module into a load module (which is stored in a PDS), or bind it into a

load module or a program object (which is stored in a PDS, PDSE, or z/OS UNIX

file).

z/OS UNIX System Services

z/OS UNIX System Services provides capabilities under z/OS to make it easier to

implement or port applications in an open, distributed environment. z/OS UNIX is

available to z/OS XL C/C++ application programs through the C/C++ language

bindings available with the Language Environment element.

Chapter 1. About IBM z/OS XL C/C++ 11

Together, z/OS UNIX, the Language Environment element, and the z/OS XL C/C++

compilers provide an application programming interface that supports industry

standards.

z/OS UNIX provides support for both existing z/OS applications and new z/OS

UNIX applications through the following:

v C programming language support as defined by ISO C

v C++ programming language support as defined by ISO C++

v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;

subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:

System Interfaces and Headers, Issue 4, Version 2, which provides standard

interfaces for better source code portability with other conforming systems; and

X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open

UNIX descriptions of sockets and X/Open Transport Interface (XTI)

v z/OS UNIX extensions that provide z/OS-specific support beyond the defined

standards

v The z/OS UNIX Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell

– A shell, tcsh, based on the C shell, csh

– Tools and utilities that support the X/Open Single UNIX Specification, also

known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide

z/OS support. The following is a partial list of utilities that are included:

ar Creates and maintains library archives

as Invokes HLASM to create assembler applications

BPXBATCH Allows you to submit batch jobs that run shell commands,

scripts, or z/OS XL C/C++ executable files in z/OS UNIX files

from a shell session

c89 Uses host environment variables to compile, assemble, and

bind z/OS UNIX, C/C++ and assembler applications

dbx Provides an environment to debug and run programs

gencat Merges the message text source files (usually *.msg) into a

formatted message catalog file (usually *.cat)

iconv Converts characters from one code set to another

ld Combines object files and archive files into an output

executable file, resolving external references

lex Automatically writes large parts of a lexical analyzer based on

a description that is supplied by the programmer

localedef Creates a compiled locale object

make Helps you manage projects containing a set of interdependent

files, such as a program with many z/OS source and object

files, keeping all such files up to date with one another

xlc Allows you to invoke the compiler using a customizable

configuration file

yacc Allows you to write compilers and other programs that parse

input according to strict grammar rules

– Support for other utilities such as:

dspcat Displays all or part of a message catalog

12 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dspmsg Displays a selected message from a message catalog

mkcatdefs Preprocesses a message source file for input to the gencat

utility

runcat Invokes mkcatdefs and pipes the message catalog source

data (the output from mkcatdefs) to gencat

v Access to the Hierarchical File System (HFS), with support for the POSIX.1 and

XPG4 standards

v Access to the zSeries File System (zFS), which provides performance

improvements over HFS, and also supports the POSIX.1 and XPG4 standards

v z/OS XL C/C++ I/O routines, which support using z/OS UNIX files, standard z/OS

data sets, or a mixture of both

v Application threads (with support for a subset of POSIX.4a)

v Support for z/OS XL C/C++ DLLs

z/OS UNIX System Services offers program portability across multivendor operating

systems, with support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft

6), and XPG4.2.

For application developers who have worked with other UNIX environments, the

z/OS UNIX Shell and Utilities is a familiar environment for XL C/C++ application

development. If you are familiar with existing MVS development environments, you

may find that the z/OS UNIX System Services environment can enhance your

productivity. Refer to z/OS UNIX System Services User’s Guide for more

information on the Shell and Utilities.

z/OS XL C/C++ applications with z/OS UNIX System Services C

functions

All z/OS UNIX System Services C functions are available at all times. In some

situations, you must specify the POSIX(ON) run-time option. This is required for the

POSIX.4a threading functions, the POSIX system() function, and signal handling

functions where the behavior is different between POSIX/XPG4 and ISO.

You can invoke a z/OS XL C/C++ program that uses z/OS UNIX C functions using

the following methods:

v Directly from a shell.

v From another program, or from a shell, using one of the exec family of functions,

or the BPXBATCH utility from TSO or MVS batch.

v Using the POSIX system() call.

v Directly through TSO or MVS batch without the use of the intermediate

BPXBATCH utility. In some cases, you may require the POSIX(ON) run-time

option.

Input and output

The z/OS XL C/C++ run-time library that supports the z/OS XL C/C++ compiler

supports different input and output (I/O) interfaces, file types, and access methods.

The Standard C++ Library provides additional support.

I/O interfaces

The z/OS XL C/C++ run-time library supports the following I/O interfaces:

Chapter 1. About IBM z/OS XL C/C++ 13

C Stream I/O

This is the default and the ISO-defined I/O method. This method processes

all input and output on a per-character basis.

Record I/O

The library can also process your input and output by record. A record is a

set of data that is treated as a unit. It can also process VSAM data sets by

record. Record I/O is a z/OS XL C/C++ extension to the ISO standard.

TCP/IP Sockets I/O

z/OS UNIX System Services provides support for an enhanced version of

an industry-accepted protocol for client/server communication that is known

as sockets. A set of C language functions provides support for z/OS UNIX

sockets. z/OS UNIX sockets correspond closely to the sockets used by

UNIX applications that use the Berkeley Software Distribution (BSD) 4.3

standard (also known as Berkeley sockets). The slightly different interface

of the X/Open CAE Specification, Networking Services, Issue 4, is supplied

as an additional choice. This interface is known as X/Open Sockets.

 The z/OS UNIX socket application program interface (API) provides support

for both UNIX domain sockets and Internet domain sockets. UNIX domain

sockets, or local sockets, allow interprocess communication within z/OS,

independent of TCP/IP. Local sockets behave like traditional UNIX sockets

and allow processes to communicate with one another on a single system.

With Internet sockets, application programs can communicate with each

other in the network using TCP/IP.

In addition, the Standard C++ Library provides stream classes, which support

formatted I/O in C++. You can code sophisticated I/O statements easily and clearly,

and define input and output for your own data types. This helps improve the

maintainability of programs that use input and output.

File types

In addition to conventional files, such as sequential files and partitioned data sets,

the z/OS XL C/C++ run-time library supports the following file types:

Virtual Storage Access Method (VSAM) data sets

z/OS XL C/C++ has native support for the following VSAM data sets:

v Key-Sequenced Data Sets (KSDS). Use KSDS to access a record

through a key within the record. A key is one or more consecutive

characters that are taken from a data record that identifies the record.

v Entry-Sequenced Data Sets (ESDS). Use ESDS to access data in the

order it was created (or in reverse order).

v Relative-Record Data Sets (RRDS). Use RRDS for data in which each

item has a particular number (for example, a telephone system where a

record is associated with each telephone number).

For more information on how to perform I/O operations on these VSAM file

types, see "Performing VSAM I/O operations" in z/OS XL C/C++

Programming Guide.

Hierarchical File System files

z/OS XL C/C++ recognizes Hierarchical File System (HFS) file names. The

name specified on the fopen() or freopen() call has to conform to certain

rules. See "Opening Files" in z/OS XL C/C++ Programming Guide for the

details of these rules. You can create regular HFS files, special character

HFS files, or FIFO HFS files. You can also create links or directories.

14 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Note: As of z/OS V1R7, the Hierarchical File System (HFS) functionality

has been stabilized and zSeries File System (zFS) is the strategic

UNIX System Services file system for z/OS.

Memory files

Memory files are temporary files that reside in memory. For improved

performance, you can direct input and output to memory files rather than to

devices. Since memory files reside in main storage and only exist while the

program is executing, you primarily use them as work files. You can access

memory files across load modules through calls to non-POSIX system()

and C fetch(); they exist for the life of the root program. Standard streams

can be redirected to memory files on a non-POSIX system() call using

command line redirection.

Hiperspace expanded storage

Large memory files can be placed in Hiperspace expanded storage to free

up some of your home address space for other uses. Hiperspace expanded

storage or high performance space is a range of up to 2 GB of contiguous

virtual storage space. A program can use this storage as a buffer

(1 gigabyte(GB) = 230 bytes).

zSeries File System

zSeries File System (zFS) is a z/OS UNIX file system that can be used in

addition to the Hierarchical File System (HFS). zFS may provide

performance gains in accessing files that are frequently accessed and

updated. The I/O functions in the z/OS XL C/C++ run-time library support

zFS.

Additional I/O features

z/OS XL C/C++ provides additional I/O support through the following features:

v Large file support, which enables I/O to and from z/OS UNIX System Services

files that are larger than 2 GB (see "large file support" in z/OS XL C/C++

Language Reference)

v User error handling for serious I/O failures (SIGIOERR)

v Improved sequential data access performance through enablement of the

DFSMS software support for 31-bit sequential data buffers and sequential data

striping on extended format data sets

v Full support of PDSEs on z/OS (including support for multiple members opened

for write)

v Overlapped I/O support under z/OS (NCP, BUFNO)

v Multibyte character I/O functions

v Fixed-point (packed) decimal data type support in formatted I/O functions

v Support for multiple volume data sets that span more than one volume of DASD

or tape

v Support for Generation Data Group I/O

The System Programming C facility

The System Programming C (SPC) facility allows you to build applications that do

not require dynamic loading of Language Environment libraries. It also allows you to

tailor your application for better utilization of the low-level services available on your

operating system. SPC offers a number of advantages:

v You can develop applications that can be executed in a customized environment

rather than with Language Environment services. Note that if you do not use

Chapter 1. About IBM z/OS XL C/C++ 15

Language Environment services, only some built-in functions and a limited set of

z/OS XL C/C++ run-time library functions are available to you.

v You can substitute the z/OS XL C language in place of assembly language when

writing system exit routines by using the interfaces that are provided by SPC.

v SPC lets you develop applications featuring a user-controlled environment in

which a z/OS XL C environment is created once and used repeatedly for C

function execution from other languages.

v You can utilize co-routines by using a two-stack model to write application service

routines. In this model, the application calls on the service routine to perform

services independent of the user. The application is then suspended when

control is returned to the user application.

Interaction with other IBM products

When you use z/OS XL C/C++, you can write programs that utilize the power of

other IBM products and subsystems:

v CICS Transaction Server for z/OS

You can use the CICS Command-Level Interface to write C/C++ application

programs. The CICS Command-Level Interface provides data, job, and task

management facilities that are normally provided by the operating system.

v DB2 Universal Database™ for z/OS

DB2 programs manage data that is stored in relational databases. You can

access the data by using a structured set of queries that are written in Structured

Query Language (SQL).

A DB2 program uses SQL statements that are embedded in the application

program. The SQL translator (DB2 preprocessor) translates the embedded SQL

into host language statements, which are then compiled by the z/OS XL C/C++

compilers. Alternatively, use the SQL compiler option to compile a DB2 program

with embedded SQL without using the DB2 preprocessor. The DB2 program

processes requests, then returns control to the application program.

v Debug Tool

z/OS XL C/C++ supports program development by using the Debug Tool. This

tool allows you to debug applications in their native host environment, such as

CICS Transaction Server for z/OS, IMS, and DB2. Debug Tool provides the

following support and function:

– Step mode

– Breakpoints

– Monitor

– Frequency analysis

– Dynamic patching

You can record the debug session in a log file, and replay the session. You can

also use Debug Tool to help capture test cases for future program validation, or

to further isolate a problem within an application.

You can specify either data sets or z/OS UNIX System Services files as source

files.

For further information, see www.ibm.com/software/awdtools/debugtool/.

v WebSphere Developer for System z

z/OS V1R7 XL C/C++ and later releases enable you to use WebSphere

Developer for System z V7.0 to improve the efficiency of application

development. For information on WebSphere Developer for System z, see:

http://www.ibm.com/software/awdtools/devzseries/.

v IBM C/C++ Productivity Tools for OS/390

16 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/devzseries/

Note: Starting with z/OS V1R5, both the C/C++ compiler optional feature and

the Debug Tool product will need to be installed if you wish to use IBM

C/C++ Productivity Tools for OS/390. For more information on Debug Tool,

refer to www.ibm.com/software/awdtools/debugtool/.

With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your

z/OS application development environment out to the workstation, while

remaining close to your familiar host environment. IBM C/C++ Productivity Tools

for OS/390 includes the following workstation-based tools to increase your

productivity and code quality:

– Performance Analyzer to help you analyze, understand, and tune your C and

C++ applications for improved performance

– Distributed Debugger that allows you to debug C or C++ programs from the

convenience of the workstation

– Workstation-based editor to improve the productivity of your C and C++

source entry

– Advanced online help, with full text search and hypertext topics as well as

printable, viewable, and searchable Portable Document Format (PDF)

documents

Note: References to Performance Analyzer in this document refer to the IBM

OS/390 Performance Analyzer included in the IBM C/C++ Productivity

Tools for OS/390 product.

In addition, IBM C/C++ Productivity Tools for OS/390 includes the following host

components:

– Debug Tool

– Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and

analyze a profile of the execution of your host z/OS XL C or C++ application. Use

this information to time and tune your code so that you can increase the

performance of your application.

Use the Distributed Debugger to debug your z/OS XL C or C++ application

remotely from your workstation. Set a breakpoint with the simple click of the

mouse. Use the windowing capabilities of your workstation to view multiple

segments of your source and your storage, while monitoring a variable at the

same time.

Use the workstation-based editor to quickly develop C and C++ application code

that runs on z/OS. Context-sensitive help information is available to you when

you need it.

v IBM Fault Analyzer for z/OS

The IBM Fault Analyzer helps developers analyze and fix application and system

failures. It gathers information about an application and the surrounding

environment at the time of the abend, providing the developer with valuable

information needed for developing and testing new and existing applications. For

more information, refer to: www.ibm.com/software/awdtools/faultanalyzer/.

v Application Performance Analyzer for z/OS

The Application Performance Analyzer for z/OS is an application program

performance analysis tool that helps you to:

– Optimize the performance of your existing application

– Improve the response time of your online transactions and batch turnaround

times

– Isolate performance problems in applications

Chapter 1. About IBM z/OS XL C/C++ 17

http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/faultanalyzer/

For more information, refer to: www.ibm.com/software/awdtools/apa/.

v ISPF Software Configuration and Library Manager facility (SCLM)

The ISPF Software Configuration and Library Manager facility (SCLM) maintains

information about the source code, objects and load modules. It also keeps track

of other relationships in your application, such as test cases, JCL, and

publications. The SCLM Build function translates input to output, managing not

only compilation and linking, but all associating processes required to build an

application. This facility helps to ensure that your production load modules match

the source in your production source libraries. For more information, refer to:

www.ibm.com/software/awdtools/ispf/features/sclm-ov.html.

v Graphical Data Display Manager (GDDM)

GDDM programs provide a comprehensive set of functions to display and print

applications most effectively:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts (including support for the double-byte character set)

– Business image support

– Saving and restoring graphic pictures

– Support for many types of display terminals, printers, and plotters

For more information, refer to: www.ibm.com/software/applications/gddm/.

v Query Management Facility (QMF)

z/OS XL C supports the Query Management Facility (QMF), a query and report

writing facility, which allows you to write applications through a callable interface.

You can create applications to perform a variety of tasks, such as data entry,

query building, administration aids, and report analysis. For more information,

refer to: www.ibm.com/software/data/qmf/.

v z/OS Java support

The Java language supports the Java Native Interface (JNI) for making calls to

and from C/C++. These calls do not use ILC support but rather the Java-defined

JNI, which is supported by both compiled and interpreted Java code. Calls to C

or C++ do not distinguish between these two.

Additional features of z/OS XL C/C++

 Feature Description

long long Data Type z/OS XL C/C++ supports long long as a native data type when the compiler option

LANGLVL(LONGLONG) is turned on. This option is turned on by default by the

compiler option LANGLVL(EXTENDED). As of z/OS V1R7, the XL C compiler supports

long long as a native data type (according to the ISO/IEC 9899:1999 standard), when

the LANGLVL(STDC99) option or LANGLVL(EXTC99) option is in effect.

Multibyte Character Support z/OS XL C/C++ supports multibyte characters for those national languages such as

Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by z/OS XL C library functions and encoded in

units of one length. These normalized characters are called wide characters.

Conversions between multibyte and wide characters can be performed by string

conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),

as well as the family of wide-character I/O functions. Wide-character data can be

represented by the wchar_t data type.

18 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

http://www.ibm.com/software/awdtools/applicationmonitor/
http://www.ibm.com/software/awdtools/ispf/features/sclm-ov.html
http://www.ibm.com/software/applications/gddm/
http://www.ibm.com/software/data/qmf/

Feature Description

Extended Precision

Floating-Point Numbers

z/OS XL C/C++ provides three z/Architecture® floating-point number data types: single

precision (32 bits), declared as float; double precision (64 bits), declared as double;

and extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical

calculations.

z/OS XL C/C++ also supports IEEE 754 floating-point representation (base-2 or binary

floating-point formats). By default, float, double, and long double values are

represented in z/Architecture floating-point formats (base-16 floating-point formats).

However, the IEEE 754 floating-point representation is used if you specify the

FLOAT(IEEE) compiler option. For details on this support, see the description of the

FLOAT option in z/OS XL C/C++ User’s Guide.

As of z/OS V1R9, XL C/C++ also supports IEEE 754 decimal floating-point

representation (base-10 floating-point formats), with the types _Decimal32, _Decimal64,

and _Decimal128, if you specify the DFP compiler option. For details on this support,

see the description of the DFP option in z/OS XL C/C++ User’s Guide.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command

line or when calling programs using the system() function.

National Language Support z/OS XL C/C++ provides message text in either American English or Japanese. You

can dynamically switch between these two languages.

Coded Character Set (Code

Page) Support

The z/OS XL C/C++ compiler can compile C/C++ source written in different EBCDIC

code pages. In addition, the iconv utility converts data or source from one code page to

another.

Selected Built-in Library

Functions

For selected library functions, the compiler generates an instruction sequence directly

into the object code during optimization to improve execution performance. String and

character functions are examples of these built-in functions. No actual calls to the

library are generated when built-in functions are used.

Multi-threading Threads are efficient in applications that allow them to take advantage of any

underlying parallelism available in the host environment. This underlying parallelism in

the host can be exploited either by forking a process and creating a new address

space, or by using multiple threads within a single process. For more information, refer

to "Using Threads in z/OS UNIX Applications" in z/OS XL C/C++ Programming Guide.

Packed Structures and

Unions

z/OS XL C provides support for packed structures and unions. Structures and unions

may be packed to reduce the storage requirements of a z/OS XL C program or to

define structures that are laid out according to COBOL or PL/I structure alignment rules.

Fixed-point (Packed)

Decimal Data

z/OS XL C supports fixed-point (packed) decimal as a native data type for use in

business applications. The packed data type is similar to the COBOL data type COMP-3

or the PL/I data type FIXED DEC, with up to 31 digits of precision.

Long Name Support For portability, external names can be mixed case and up to 32 K - 1 characters in

length. For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under

z/OS, z/OS UNIX System Services, and TSO. You can also use the system() function

to call EXECs on z/OS and TSO, or shell scripts using z/OS UNIX System Services.

Exploitation of Hardware Use the ARCHITECTURE compiler option to select the minimum level of machine

architecture on which your program will run. Note that certain features provided by the

compiler require a minimum architecture level. For more information, refer to the

ARCHITECTURE compiler option in z/OS XL C/C++ User’s Guide.

Use the TUNE compiler option to optimize your application for a specific machine

architecture within the constraints imposed by the ARCHITECTURE option. The TUNE

level must not be lower than the setting in the ARCHITECTURE option. For more

information, refer to the TUNE compiler option in z/OS XL C/C++ User’s Guide.

Chapter 1. About IBM z/OS XL C/C++ 19

Feature Description

Built-in Functions for

Floating-Point and Other

Hardware Instructions

Use built-in functions for floating-point and other hardware instructions that are

otherwise inaccessible to XL C/C++ programs. For more information, see the built-in

functions described in z/OS XL C/C++ Programming Guide.

20 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Chapter 2. Header Files

This part describes each header file, explains its contents, and lists the functions

that use the file. The function descriptions are described in Chapter 3, “Part 3.

Library Functions,” on page 103.

The header files provided with the z/OS XL C/C++ Library contain macro and

constant definitions, type definitions, and function declarations. Some functions

require definitions and declarations from header files to work correctly. The inclusion

of header files is optional, as long as the necessary statements from the header

files are coded directly into the source.

The C/C++ header files are shipped in the CEE.SCEEH* data sets and in the

/usr/include directory in the Hierarchical File System (HFS).

The following header files are not supported in AMODE 64:

v csp.h

v ims.h

v leawi.h

v mtf.h

v re_comp.h

v regexp.h

v spc.h

use the #include directive to select header files to include with your application, for

example, #include <stdio.h>.

For information about the #include directive, see z/OS XL C/C++ Language

Reference and z/OS XL C/C++ User’s Guide.

Feature Test Macros

Many of the symbols that are defined in headers are “protected” by a feature test

macro (FTM). These “protected” symbols are invisible to the application unless the

user defines the feature test macro with #define, using either of the following

methods:

v In the source code before including any header files.

v On the compilation command.

Note that the LANGLVL compiler option does not define or undefine these macros.

The following feature test macros are obsolete in AMODE 64:

v _LARGE_FILES

v _LARGE_MEM

See the feature test macro description for more details.

The following feature test macros are not supported in AMODE 64:

v __LIBASCII

v _OE_SOCKETS

© Copyright IBM Corp. 1996, 2007 21

Table 4 summarizes the relationships between the feature test macros and the

standards. ‘Yes’ indicates that a feature test macro makes visible the symbols

related to a standard.

Feature test macros that do not apply to POSIX standards are not listed in this

table.

 Table 4. Feature Test Macros and Standards

Feature Test Macro POSIX.1 POSIX.1a POSIX.2 POSIX.4a XPG4.2

XPG4.2

Ext SUSV3

_ALL_SOURCE Yes Yes Yes Yes Yes Yes

_ALL_SOURCE_NO_THREADS Yes Yes Yes Yes Yes

_OE_SOCKETS Yes Yes

_OPEN_DEFAULT Yes Yes Yes

_OPEN_SOURCE 1 Yes Yes Yes Yes

_OPEN_SOURCE 2 Yes Yes Yes Yes Yes Yes

_OPEN_SOURCE 3 Yes Yes Yes Yes Yes Yes

_OPEN_SYS Yes Yes Yes Yes

_OPEN_SYS_IPC_EXTENSIONS Yes Yes Yes

_OPEN_SYS_PTY_EXTENSIONS Yes Yes Yes Yes

_OPEN_SYS_SOCK_EXT Yes Yes Yes Yes

_OPEN_THREADS Yes Yes Yes

_POSIX1_SOURCE 1 Yes

_POSIX1_SOURCE 2 Yes Yes

_POSIX_C_SOURCE 1 Yes

_POSIX_C_SOURCE 2 Yes Yes

_POSIX_C_SOURCE 200112L Yes Yes Yes Yes

_POSIX_SOURCE Yes

_XOPEN_SOURCE Yes Yes Yes

_XOPEN_SOURCE_EXTENDED 1 Yes Yes Yes Yes

_XOPEN_SOURCE 500 Yes Yes Yes Yes

_XOPEN_SOURCE 600 Yes Yes Yes Yes Yes Yes

The following feature test macros (FTM) are supported:

_ALL_SOURCE

 This feature test macro exposes the following namespaces: POSIX.1,

POSIX.1a, POSIX.2, POSIX.4a draft 6, XPG4, and XPG4.2, as well as

additions to z/OS UNIX drawn from Single UNIX Specification, Version 2.

 In addition, defining _ALL_SOURCE makes visible a number of symbols

which are not permitted under ANSI, POSIX or XPG4, but which are

provided as an aid to porting C-language applications to z/OS UNIX System

Services services. Extensions made visible with the following feature test

macros are implicit in _ALL_SOURCE:

v _OPEN_SYS_DIR_EXT

v _OPEN_SYS_EXT

v _OPEN_SYS_IPC_EXTENSIONS

v _OPEN_SYS_MAP_EXTENTION

v _OPEN_SYS_PTY_EXTENSIONS

v _OPEN_SYS_SOCK_EXT

v _OPEN_SYS_SOCK_EXT2

v _OPEN_SYS_SOCK_IPV6

If _OPEN_THREADS is not explicitly defined in the application,

_ALL_SOURCE will define _OPEN_THREADS 1 except when any of the

following are present:

Header Files

22 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

||||||
|
||

|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|
|

v _ALL_SOURCE_NO_THREADS

v _UNIX03_THREADS

v _XOPEN_SOURCE 600

_ALL_SOURCE does not expose functionality first introduced in Single

UNIX Specification, Version 3 under macro definitions _XOPEN_SOURCE

600 or _POSIX_C_SOURCE 200112L, although it does tolerate interfaces

made visible by defining _OPEN_THREADS to 2 or 3.

 In order to stabilize the namespace, no future extensions, whether POSIX,

XOPEN, or MVS, will expand the definition of _ALL_SOURCE. Any future

enhancement will require new, explicit feature test macros to add symbols

to this namespace.

_ALL_SOURCE_NO_THREADS

 This feature test macro provides the same function as _ALL_SOURCE, except

it does not expose threading services (_OPEN_THREADS).

_IEEEV1_COMPATIBILITY

 In 1999, the C/C++ Run-Time Library provided IEEE754 floating-point

arithmetic support in support of IBM’s Java group. The Java language had a

bit-wise requirement for its math library, meaning that all platforms needed

to produce the same results as Sun Microsystems’ fdlibm (Freely

Distributed LIBM) library. Therefore, Sun Microsystems’ fdlibm code was

ported to the C/C++ Run-Time Library to provide IEEE754 floating-point

arithmetic support. Subsequent to the C/C++ Run-Time Library’s 1999

release of IEEE754 floating-point math support, IBM’s Java group provided

their own support of IEEE754 floating point arithmetic and no longer use the

C/C++ Run-Time Library for this support.

 Beginning in z/OS V1R9, a subset of the original fdlibm functions are being

replaced by new versions that are designed to provide improved

performance and accuracy. The new versions of these functions are

replaced at the existing entry points. However, as a migration aid, IBM has

provided new entry points for the original fdlibm versions. Applications that

take no action will automatically use the updated functions. There are two

methods for accessing the original functions.

 This feature test macro provides an environment for the following C/C++

functions:

v do not include <math.h>

v include <math.h> and define the _FP_MODE_VARIABLE feature test

macro

Either of the above will cause the application to be running in what is called

″variable″ mode with respect to floating-point math functions called within

the compile unit. See z/OS XL C/C++ Programming Guide for more details

on the environment variable.

 The second method is through a feature test macro, described here, that

can be used by applications that do include <math.h> and do not define the

_FP_MODE_VARIABLE feature test macro.

 If the application conforms to the rules of the second method, then the

feature test macro can be used to access the original fdlibm versions of the

following functions:

Header Files

Chapter 2. Header Files 23

|

|

|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|

|
|
|
|

|
|
|

|
|
|

acos(), acosh(), asin(), asinh(), atan(), atanh(), atan2(),

cbrt(), cos(), cosh(), erf(), erfc(), exp(), expm1(),

gamma(), hypot(), lgamma(), log(), log1p(), log10(), pow(),

rint(), sin(), sinh(), tan(), tanh()

A recompile and relink of the application is required to access the original

fdlibm versions.

_ISOC99_SOURCE

 This feature test macro makes available all interfaces associated with

ISO/IEC 9899:1999 except for interfaces requiring a compiler that is

designed to support C99. This feature test macro also exposes the

namespace normally exposed by the _MSE_PROTOS feature test macro,

unless _NOISOC99_SOURCE is defined. The _ISOC99_SOURCE feature

test macro is not required when a compiler that is designed to support C99

is used.

Note: If both _NOISOC99_SOURCE and _ISOC99_SOURCE are defined

before inclusion of the first header, new C99 interfaces will not be

exposed.

_LARGE_FILES

 This feature test macro enables certain functions to operate on HFS files

that are larger than 2 gigabytes in size. When this feature test macro is

selected it must be used in conjunction with the compiler option,

LANGLVL(LONGLONG) to activate the long long data type. The following

functions will be activated to operate on HFS files of all sizes by expanding

appropriate offset and file size values to a 64 bit value.

 creat(), fcntl(), fgetpos(), fopen(), freopen(), fseek(), fseeko(),fsetpos(),

fstat(), ftell(), ftello(), ftruncate(), getrlimit(), lockf(), lseek(), lstat(), mmap(),

open(), read(), setrlimit(), stat(), truncate(), and write().

Restriction: This feature test macro is incompatible with the __LIBASCII

feature test macro.

Note: This feature test macro is obsolete in AMODE 64. Large Files for

HFS support is automatic in the LP64 programming model, therefore

all behaviors with respect to Large Files for HFS are automatically

included for AMODE 64 C/C++ applications.

_LARGE_MEM

 This feature test macro is provided for AMODE 31 applications that need

access to AMODE 64 values. Use of large memory support requires

LANGLVL(LONGLONG).

Note: This feature test macro is obsolete in AMODE 64. Large memory

support is automatic in the LP64 programming model, therefore all

behaviors with respect to large memory are automatically included

for AMODE 64 C/C++ applications.

__LIBASCII

 This feature test macro provides an ASCII-like environment for the following

C/C++ functions:

 access(), asctime(), atof(), atoi(), atol(), chdir(), chmod(),

 chown(), creat(), ctime(), dllload(), dllqueryfn(), dynalloc()

 ecvt(), execv(), execve(), execvp(), fcvt(), fdopen(), fopen(),

Header Files

24 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|

freopen(), ftok(), gcvt(), getcwd(), getenv(), getgrnam(),

 gethostbyaddr(), gethostbyname(), gethostname(), getlogin(),

 getopt(), getpass(), getpwnam(), getpwuid(), getservbyname(),

 getwd(), inetaddr(), inet_ntoa(),isalnum(), isalpha(), iscntrl(),

 isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),

 isupper(), isxdigit(), link(), localeconv(), mbstowcs(), mbtowc(),

 mkdir(), mknod(), mktemp(), nl_langinfo(), open(), opendir(),

 perror(), popen(), ptsname(), putenv(), readdir(), regcomp(),

 remove(), rename(), rexec(), rmdir(), scanf(), setenv(),

 setkey(), setlocale(), setvbuf(), sprintf(), sscanf(),

 stat(), statvfs(), strcasecmp(), strerror(), strncasecmp(),

 strtod(), strtol(), strtoul(), system(), tempnam(), tmpnam(),

 toascii(), tolower(), toupper(), uname(), unlink(), utime(),

 utimes()

For each application program using one or more of these functions, where

the input/output is ASCII, add the following feature test macro:

v #define __LIBASCII

v Recompile using the CONV(ISO8859-1) option to cause the compiler to

generate all strings defined in the source program in ASCII rather than

EBCDIC format.

Restriction: This feature test macro is not supported in AMODE 64.

Restriction: Enhanced ASCII and __LIBASCII are independent, and

should not be used together. using Enhanced ASCII and

__LIBASCII together is not supported.

Note: The libascii functions are as thread-safe as the run-time library with

the exception of the getopt() function. The libascii getopt() function is

not thread-safe. The second argument is changed for a short period

of time from EBCDIC to ASCII and then back to EBCDIC. This

feature test macro is incompatible with the _LARGE_FILES feature

test macro.

_LONGMAP

 Programs compiled with the LONGNAME compiler option and which use

POSIX functions must define _LONGMAP when using the Prelinker outside

of a z/OS UNIX shell environment.

_MSE_PROTOS

 The _MSE_PROTOS feature test macro does the following:

1. Selects behavior for a multibyte extension support (MSE) function

declared in wchar.h as specified by ISO/IEC 9899:1990/Amendment

1:1994 instead of behavior for the function as defined by CAE

Specification, System Interfaces and Headers, Issue 4, July 1992

(XPG4), and

2. Exposes declaration of an MSE function declared in wchar.h which is

specified by ISO/IEC 9899:1990/Amendment 1:1994 but not by XPG4.

Note: Defining _ISOC99_SOURCE or using a compiler that is designed to

support C99 also exposes this namespace provided that

_NOISOC99_SOURCE is not also defined.

_NOISOC99_SOURCE

Header Files

Chapter 2. Header Files 25

This feature test macro prevents exposure of new interfaces that are part of

the C99 standard. This feature test macro must be defined before inclusion

of the first header in order to prevent new C99 interfaces from being

exposed.

Note: If both _NOISOC99_SOURCE and _ISOC99_SOURCE are defined

before inclusion of the first header, new C99 interfaces will not be

exposed.

_OE_SOCKETS

 This feature test macro defines a BSD-like socket interface for the function

prototypes and structures involved. This can be used with

_XOPEN_SOURCE_EXTENDED 1 and the XPG4.2 socket interfaces will be

replaced with the BSD-like interfaces.

Restriction: This feature test macro is not supported in AMODE 64.

_OPEN_DEFAULT

 When defined to 0, and if no other feature test macro is defined, then all

symbols will be visible. If in addition to _OPEN_DEFAULT only POSIX

and/or XPG4 feature test macros are defined, then only the symbols so

requested will be visible. Otherwise, additional symbols (for example, those

visible when the LNGLVL(EXTENDED) compiler options specified), may be

exposed.

 When defined to 1, this provides the base level of z/OS UNIX System

Services services functionality, which is POSIX.1, POSIX.1a and POSIX.2.

_OPEN_MSGQ_EXT

 This feature test macro defines an interface which enables use of select(),

selectex() and poll() to monitor message and file descriptors.

_OPEN_SOURCE

 When defined to 1, this defines all of the functionality that was available on

MVS 5.1. This macro is equivalent to specifying _OPEN_SYS.

 When defined to 2, this defines all of the functionality that is available on

MVS 5.2.2, including XPG4, XPG4.2, and all of the z/OS UNIX System

Services extensions.

 When defined to 3, this macro is equivalent to specifying _ALL_SOURCE.

 If _OPEN_THREADS is not explicitly defined in the application,

_OPEN_SOURCE will define _OPEN_THREADS 1 except when any of the

following are present:

v _ALL_SOURCE_NO_THREADS

v _UNIX03_THREADS

v _XOPEN_SOURCE 600

_OPEN_SYS

 When defined to 1, this indicates that symbols required by POSIX.1,

POSIX.1a, POSIX.2 are made visible. Any symbols defined by the

_OPEN_THREADS macro are allowed.

 If _OPEN_THREADS is not explicitly defined in the application,

_OPEN_SYS will define _OPEN_THREADS 1 except when any of the

following are present:

Header Files

26 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|
|

|

|

|

|
|
|

v _ALL_SOURCE_NO_THREADS

v _UNIX03_THREADS

v _XOPEN_SOURCE 600

Additional symbols can be made visible if any of the exposed standards

explicitly allows the symbol to appear in the header in question or if the

symbol is defined as a z/OS UNIX System Services services extension.

_OPEN_SYS_DIR_EXT

 This feature test macro defines the interface and function prototypes for

__opendir2() and __readdir2().

_OPEN_SYS_FILE_EXT

 When defined to any value with #define, _OPEN_SYS_FILE_EXT indicates

that symbols required for file conversion, file tagging, and file attributes

manipulation functionality are made visible.

_OPEN_SYS_IPC_EXTENSIONS

 This feature test macro defines z/OS UNIX System Services services

extensions to the X/Open InterProcess Communications functions. When

_OPEN_SYS_IPC_EXTENSIONS is defined, the POSIX.1, POSIX.1a, and

the XPG4 symbols are visible. This macro should be used in conjunction

with _XOPEN_SOURCE.

_OPEN_SYS_MUTEX_EXT

 This feature test macro allows pthread condition variables and mutexes in

shared memory. When this feature is defined, pthread_mutex_t and

pthread_cond_t will grow significantly in size.

 When either _XOPEN_SOURCE 600 or _UNIX03_THREADS are defined,

the namespace includes all elements made visible by the

_OPEN_SYS_MUTEX_EXT macro. In this case,

_OPEN_SYS_MUTEX_EXT is redundant and does not need to be defined

by the application.

_OPEN_SYS_PTY_EXTENSIONS

 This feature test macro defines z/OS UNIX System Services services

extensions to the X/Open Pseudo TTY functions. When

_OPEN_SYS_PTY_EXTENSIONS is defined, the POSIX.1, POSIX.1a, XPG4, and

XPG4.2 symbols are visible. This macro should be used in conjunction with

_XOPEN_SOURCE_EXTENDED 1.

_OPEN_SYS_SOCK_EXT

 This feature test macro defines the interface for function prototypes and

structures for the extended sockets and bulk mode support.

_OPEN_SYS_SOCK_EXT2

 This feature test macro defines the interface and function prototype for

accept_and_recv().

_OPEN_SYS_SOCK_IPV6

 When defined, indicates that symbols related to Internet Protocol Version 6

(IPv6) are made visible.

 Defining _XOPEN_SOURCE to 600 will expose the IPv6 symbols required

in Single Unix Specification, Version 3. However, these symbols only

comprise a subset of the complete namespace associated with

Header Files

Chapter 2. Header Files 27

|

|

|

|
|
|

|
|
|
|
|

|
|
|

_OPEN_SYS_SOCK_IPV6. Although an application is allowed to define

both macros, such an application may not be strictly conforming to Single

UNIX Specification, Version 3.

_OPEN_THREADS

 When defined to 1, this indicates that symbols required by POSIX.1,

POSIX.1a, and POSIX.4a(draft 6) are made visible.

 When defined to 2, additional pthread functions introduced in z/OS V1R07

from Single UNIX Specification, Version 3 are made visible, along with

those made visible when this is defined to 1. The following symbols are

added to the namespace when _OPEN_THREADS is defined to 2:

 Interfaces Constants

pthread_getconcurrency() PTHREAD_CANCEL_ENABLE

pthread_setconcurrency() PTHREAD_CANCEL_DISABLE

pthread_setcancelstate() PTHREAD_CANCEL_DEFERRED

pthread_setcanceltype() PTHREAD_CANCEL_ASYNCHRONOUS

pthread_sigmask()

pthread_testcancel()

pthread_key_delete()

When defined to 3, all pthread functions required for the Threads option of

Single UNIX Specification, Version 3 are exposed, although behavior and

function signatures are still based on the POSIX.4a draft 6 specification. In

addition to the symbols exposed by _OPEN_THREADS 2,

_OPEN_THREADS 3 adds the following symbols to the namespace:

 Interfaces Constants

pthread_atfork() PTHREAD_CANCEL_CANCELED

pthread_attr_getguardsize() PTHREAD_COND_INITIALIZER

pthread_attr_getschedparam() PTHREAD_CREATE_DETACHED

pthread_attr_getstack() PTHREAD_CREATE_JOINABLE

pthread_attr_getstackaddr() PTHREAD_EXPLICIT_SCHED

pthread_attr_setguardsize()

pthread_attr_setschedparam()

pthread_attr_setstack()

pthread_attr_setstackaddr()

Thread interfaces listed above and first exposed by _OPEN_THREADS 2 or

3 are fully compliant with Single UNIX Specification, Version 3. However,

the other threading interfaces in the library will not exhibit the new behavior

or use function signatures changed in the new standard. Applications that

define _UNIX03_THREADS or _XOPEN_SOURCE 600 will obtain threads

support that complies fully with Single UNIX Specification, Version 3.

 If _OPEN_THREADS is defined with _XOPEN_SOURCE 600,

_OPEN_THREADS takes precedence and overrides the default threads

behavior of _XOPEN_SOURCE 600. However, _OPEN_THREADS and

_UNIX03_THREADS are mutually exclusive.

Note: Feature test macros _OPEN_SYS, _OPEN_SOURCE, and

_ALL_SOURCE incorporate _OPEN_THREADS 1 by default, if

_OPEN_THREADS has not been explicitly defined in the application,

except when any of the following are present:

Header Files

28 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

|||

||

||

||

||

||

||

||
|

|
|
|
|
|

|||
||
||
||
||
||
||
||
||
||
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

v _ALL_SOURCE_NO_THREADS

v _UNIX03_THREADS

v _XOPEN_SOURCE 600

_POSIX1_SOURCE

v When defined to 1, it has the same meaning as _POSIX_SOURCE.

v When defined to 2, both the POSIX.1a symbols and the POSIX.1

symbols are made visible. Additional symbols can be made visible if

POSIX.1a explicitly allows the symbol to appear in the header in question.

_POSIX_C_SOURCE

v When defined to 1, it indicates that symbols required by POSIX.1 are

made visible. Additional symbols can be made visible if POSIX.1 explicitly

allows the symbol to appear in the header in question.

v When defined to 2, both the POSIX.1 and POSIX.2 symbols are made

visible.

v When defined to 200112L, the Single UNIX Specification, Version 3

symbols are made visible, including POSIX.1 and POSIX.2. Since

Version 3 is aligned with the ISO C standard (ISO/IEC 9899:1999), this

definition of the feature test macro also exposes the C99 namespace.

v The _POSIX_C_SOURCE 200112L definition is available beginning with

z/OS V1R9. Targeting earlier releases will result in an error during

compile-time.

v Additional symbols can be made visible if POSIX.2 explicitly allows the

symbol to appear in the header in question.

_POSIX_SOURCE

 When defined to any value with #define, it indicates that symbols required

by POSIX.1 are made visible. Additional symbols can be made visible if

POSIX.1 explicitly allows the symbol to appear in the header in question.

_SHARE_EXT_VARS

 This feature test macro provides access to POSIX and XPG4 external

variables of an application from a dynamically loaded module such as a

DLL. For those external variables that have a function to access a

thread-specific value, it provides access to the thread-specific value of the

external variable without having to explicitly invoke the function.

 Individual variables can be externalized by using the feature test macros

prefixed with _SHR_ and the feature test macros that are shown as follows.

The entire set can be accessed by defining _SHARE_EXT_VARS.

 Note: When an application is compiled with the XPLINK or LP64 option:

v The POSIX and XPG4 external variables will be resolved through

the C run-time library side-deck in the SCEELIB data set and will

be accessible from all dynamically loaded modules. See z/OS XL

C/C++ Programming Guide for more details.

v The _SHARE_EXT_VARS feature test macro, and the following

feature test macros with the _SHR_ prefix, are only necessary for

accessing the thread-specific values without having to explicitly

invoke the function.

_SHR_DAYLIGHT

Header Files

Chapter 2. Header Files 29

|

|

|

|
|
|
|

|
|
|

To share access to the daylight external variable from a dynamically

loaded module such as a DLL, define the _SHR_DAYLIGHT feature

test macro and include time.h in your program source.

_SHR_ENVIRON

 If you have declared char **environ in your program and want to

access the environment variable array from a dynamically loaded

module such as a DLL, define the _SHR_ENVIRON feature test

macro and include stdlib.h in the program source.

_SHR_H_ERRNO

 To share access to the h_errno external variable from a dynamically

loaded module such as a DLL, define the _SHR_H_ERRNO feature

test macro and include netdb.h in your program source.

_SHR__LOC1

 To share access to the __loc1 external variable from a dynamically

loaded module such as a DLL, define _SHR__LOC1 feature test

macro and include libgen.h in your program source.

_SHR_LOC1

 To share access to the loc1 external variable from a dynamically

loaded module such as a DLL, define _SHR_LOC1 feature test

macro and include regexp.h in your program source.

_SHR_LOC2

 To share access to the loc2 external variable from a dynamically

loaded module such as a DLL, define _SHR_LOC2 feature test

macro and include regexp.h in your program source.

_SHR_LOCS

 To share access to the locs external variable from a dynamically

loaded module such as a DLL, define _SHR_LOCS feature test

macro and include regexp.h in your program source.

_SHR_OPTARG

 To share access to the optarg external variable from a dynamically

loaded module such as a DLL, define the _SHR_OPTARG feature

test macro and include unistd.h or stdio.h in your program source.

_SHR_OPTERR

 To share access to the opterr external variable from a dynamically

loaded module such as a DLL, define the _SHR_OPTERR feature

test macro and include unistd.h or stdio.h in your program source.

_SHR_OPTIND

 To share access to the optind external variable from a dynamically

loaded module such as a DLL, define _SHR_OPTIND feature test

macro and include unistd.h or stdio.h in your program source.

_SHR_OPTOPT

 To share access to the optopt external variable from a dynamically

loaded module such as a DLL, define the _SHR_OPTOPT feature

test macro and include unistd.h or stdio.h in your program source.

_SHR_SIGNGAM

Header Files

30 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

To share access to the signgam external variable from a

dynamically loaded module such as a DLL, define the

_SHR_SIGNGAM feature test macro and include math.h in your

program source.

_SHR_T_ERRNO

 To share access to the t_errno external variable from a dynamically

loaded module such as a DLL, define the _SHR_T_ERRNO feature

test macro and include xti.h in your program source.

_SHR_TIMEZONE

 To share access to the timezone external variable from a

dynamically loaded module such as a DLL, define the

_SHR_TIMEZONE feature test macro and include time.h in your

program source. To avoid name space pollution when

_SHR_TIMEZONE is defined, the timezone variable must be

referred to as _timezone.

_SHR_TZNAME

 To share access to the tzname external variable from dynamically

loaded module such as a DLL, define the _SHR_TZNAME feature

test macro and include time.h in your program source.

__STDC_CONSTANT_MACROS

 This feature test macro is required by C++ applications wishing to expose

macros for integer constants as documented in <stdint.h>.

__STDC_FORMAT_MACROS

 This feature test macro is required by C++ applications wishing to expose

macros for format specifiers as documented in <inttypes.h>.

__STDC_WANT_DEC_FP__

 This MACRO will be added to the C99 DFP specification (for C and C++).

The user will define this MACRO when DFP support is wanted. It will cause

all DFP-oriented definitions in <math.h> and other headers to be exposed if

__IBM_DFP is defined.

__STDC_LIMIT_MACROS

 This feature test macro is required by C++ applications wishing to expose

limits of specified-width integer types and limits of other integer types as

documented in <stdint.h>.

_UNIX03_SOURCE

 This feature test macro exposes new Single UNIX Specification, Version 3

interfaces. It does not change the behavior of existing APIs, nor expose

interfaces controlled by feature test macros such as

_XOPEN_SOURCE_EXTENDED. Functions and behavior exposed by

_UNIX03_SOURCE are a subset and not the complete implementation of

the Single UNIX Specification, Version 3. To expose the full Single UNIX

Specification, Version 3 implementation available in the C/C++ Run-time,

see _XOPEN_SOURCE or _POSIX_C_SOURCE.

Release

Interfaces Exposed with

_UNIX03_SOURCE

z/OS V1R06 dlclose(), dlerror(), dlopen(), dlsym()

Header Files

Chapter 2. Header Files 31

|

|
|
|
|

|
|
|
|

||

Release

Interfaces Exposed with

_UNIX03_SOURCE

z/OS V1R07 sched_yield(), strerror_r(), unsetenv()

z/OS V1R08 flockfile(), ftrylockfile(), funlockfile(),

getc_unlocked(), getchar_unlocked(),

putc_unlocked(), putchar_unlocked()

z/OS V1R09 posix_openpt(), pselect(), sockatmark()

Note: This feature test macro does not expose any new pthread interfaces.

See _OPEN_THREADS and _UNIX03_THREADS to expose pthread

interfaces.

_UNIX03_THREADS

 This feature test exposes all pthread functions, function signatures, and

behaviors required for the Threads option of Single UNIX Specification,

Version 3. The macro is available for compiles targeting z/OS V1R9 or later.

 Defining _UNIX03_THREADS exposes the content covered by feature test

macro _OPEN_SYS_MUTEX_EXT, so that the latter is redundant and need

not be defined with _UNIX03_THREADS.

 It is not necessary to define this feature test macro, if _XOPEN_SOURCE

is defined to 600. Unless _OPEN_THREADS is defined,

_XOPEN_SOURCE 600 will make available the same interfaces and

behaviors as _UNIX03_THREADS.

 _UNIX03_THREADS and _OPEN_THREADS are mutually exclusive.

_UNIX03_WITHDRAWN

 Defining this feature test macro exposes any language elements, previously

in the Legacy Feature Group or marked obsolescent, that have been

removed from Single Unix Specification, Version 3. These elements would

not otherwise be visible in the namespace exposed by compiling with

_XOPEN_SOURCE 600 or POSIX_C_SOURCE 200112L.

 The following withdrawn symbols are exposed when

_UNIX03_WITHDRAWN is defined:

 Functions Constants

brk() CLOCK_TICKS

chroot() IUCLC

cuserid() L_cuserid

gamma() NOSTR

getdtablesize() OLCUC

getpagesize() PASS_MAX

getpass() _SC_2_ C_VERSION

getw() _SC_PASS_MAX

putw() _SC_XOPEN_XCU_VERSION

regcmp() TMP_MAX

regex() XCASE

sbrk() YESSTR

sigstack()

Header Files

32 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

||

||
|
|

||
|

|

|
|
|

|
|
|

|
|
|
|

|

|

|
|
|
|
|

|
|

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

Functions Constants

ttyslot()

valloc() External Variable

wait3() __loc1

_VARARG_EXT_

 This feature test macro allows users of the va_arg, va_end, and va_start

macros to define the va_list type differently.

_XOPEN_SOURCE

 This feature test macro defines the functionality defined in the XPG4

standard dated July 1992.

 When defined to 500, this feature test macro makes available certain key

functions that are associated with Single UNIX Specification, Version 2.

 When defined to 600, this feature test macro exposes the complete

implementation of the Single UNIX Specification, Version 3, including the

namespace defined by _POSIX_C_SOURCE 200112L as well as

namespaces associated with the X/Open System Interface (XSI) extension

and these options and option groups:

v File Synchronization

v Memory Mapped Files

v Memory Protection

v Realtime Signals Extension

v Thread Stack Address Attribute

v Thread Stack Size Attribute

v Thread Process-Shared Synchronization

v Thread-Safe Functions

v Threads

v Encryption Option Group

v Legacy Option Group

v XSI Streams Option Group

The use of _XOPEN_SOURCE 600 exposes namespaces covered by

several other feature test macros, and as such, makes those macros

redundant. The following need not be defined when _XOPEN_SOURCE

600 is defined:

 _ISOC99_SOURCE _POSIX_C_SOURCE

_LARGE_FILES _UNIX03_THREADS

_OPEN_SYS_MUTEX_EXT _UNIX03_SOURCE

_POSIX_SOURCE _XOPEN_SOURCE_EXTENDED

If _OPEN_THREADS is defined with _XOPEN_SOURCE 600,

_OPEN_THREADS takes precedence and overrides Single UNIX

Specification, Version 3 threads behavior. Whenever _OPEN_THREADS is

in effect, the _OPEN_SYS_MUTEX_EXT extensions are also dropped,

unless the application explicitly defines this macro.

 The _XOPEN_SOURCE 600 definition is available beginning with z/OS

V1R9. Targeting earlier releases will result in an error during compile-time.

Header Files

Chapter 2. Header Files 33

||

||

||

||
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

Full support of Single UNIX Specification, Version 3 requires use of a C99

compliant compiler. Most of the namespace is available to older compilers,

but some elements of Version 3 (e.g. <complex.h>,<tgmath.h>) will not be

visible. Applications must use a C99 compliant compiler or compile with

LANGLVL(LONGLONG) to obtain large file support when defining

_XOPEN_SOURCE 600.

_XOPEN_SOURCE_EXTENDED

 When defined to 1, this defines the functionality defined in the XPG4

standard plus the set of “Common APIs for UNIX-based Operating

Systems”, April, 1994, draft.

aio.h

The aio.h header file contains definitions for asynchronous I/O operations. It

declares these functions:

 aio_read() aio_write() aio_cancel()

aio_suspend() aio_error() aio_return()

Usage note

There are several sockets oriented extensions to asynchronous I/O available with

the BPX1AIO callable service, such as asynchronous accept(), asynchronous forms

of all five pairs of read and write type operations, and receiving I/O completion

notifications via an ECB, exit program, or through a message queue. The <aio.h>

header contains all the structure fields, constants, and prototypes necessary to use

BPX1AIO from a C program. These extensions are exposed when the _AIO_OS390

feature test macro is defined. The BPX1AIO stub resides in SYS1.CSSLIB and

must be bound with your program. For a more detailed description of asynchronous

I/O services, see BPX1AIO in z/OS UNIX System Services Programming:

Assembler Callable Services Reference.

arpa/inet.h

The arpa/inet.h header file contains definitions for internet operations.

arpa/nameser.h

The arpa/nameser.h header file contains the definitions used to support the

construction of queries and the inspection of answers received from a Domain

Name Server available in a network. It also contains the macros GETSHORT(),

PUTSHORT(), GETLONG(), and PUTLONG() that are used to construct or inspect

DNS requests.

assert.h

The assert.h header file defines the assert() macro that allows you to insert

diagnostics into your code. You must include assert.h when you use assert().

cassert

The cassert header file contains definitions for C++ for enforcing assertions when

functions execute. Include the standard header into a C++ program to effectively

include the standard header <assert.h> within the std namespace.

Header Files

34 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

namespace std {

#include <assert.h>

 };

_Ccsid.h

The _Ccsid.h header file declares functions, symbols and data types used in CCSID

to codeset name conversion.

cctype

The cctype header file contains definitions for C++ for classifying characters.

Include the standard header into a C++ program to effectively include the standard

header <ctype.h> within the std namespace.

namespace std {

#include <ctype.h>

 };

ceeedcct.h

The ceeedcct.h header file contains C declarations of the Language Environment

condition tokens.

cerrno

The cerrno header file contains definitions for C++ for testing error codes reported

by library functions. Include the standard header into a C++ program to effectively

include the standard header <errno.h> within the std namespace.

namespace std {

#include <errno.h>

 };

cfloat

The cfloat header file contains definitions for C++ for testing floating-point type

properties. Include the standard header into a C++ program to effectively include

the standard header <float.h> within the std namespace.

namespace std {

#include <float.h>

 };

cics.h

The cics.h header file declares the iscics() function, which verifies whether cics is

running.

ciso646

The ciso646 header file contains definitions for C++ for programming in ISO646

variant character sets. Include the standard header into a C++ program to

effectively include the standard header <iso646.h> within the std namespace.

namespace std {

#include <iso646.h>

 };

Header Files

Chapter 2. Header Files 35

climits

The climits header file contains definitions for C++ for testing integer type

properties. Include the standard header into a C++ program to effectively include

the standard header <limits.h> within the std namespace.

namespace std {

#include <limits.h>

 };

clocale

The clocale header file contains definitions for C++ for adapting to different cultural

conventions. Include the standard header into a C++ program to effectively include

the standard header <locale.h> within the std namespace.

namespace std {

#include <locale.h>

 };

cmath

The cmath header file contains definitions for C++ for computing common

mathematical functions. Include the standard header into a C++ program to

effectively include the standard header <math.h> within the std namespace.

namespace std {

#include <math.h>

 };

collate.h

The collate.h header includes declarations of functions that allow retrieval of

information regarding the current locale’s collating properties. It declares these

functions:

 cclass() collequiv() collorder() collrange() colltostr()

getmccoll() getwmccoll() ismccollel() maxcoll() strtocoll()

For more information about the effect of locale, see setlocale(), locale.h, or look up

the individual functions in this book . For still more information, see the chapter ,

“Internationalization: Locales and Character Sets” in z/OS XL C/C++ Programming

Guide.

complex.h

The complex.h header file contains function declarations for all the complex math

functions listed below.

 cabs() cabsf() cabsl() cacos() cacosf()

cacosh() cacoshf() cacoshl() cacosl() carg()

cargf() cargl() casin() casinf() casinh()

casinhf() casinhl() casinl() catan() catanf()

catanh() catanhf() catanhl() catanl() ccos()

ccosf() ccosh() ccoshf() ccoshl() ccosl()

cexp() cexpf() cexpl() cimag() cimagf()

cimagl() clog() clogf() clogl() conj()

conjf() conjl() cpow() cpowf() cpowl()

Header Files

36 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cproj() cprojf() cprojl() creal() crealf()

creall() csin() csinf() csinh() csinhf()

csinhl() csinl() csqrt() csqrtf() csqrtl()

ctan() ctanf() ctanh() ctanhf() ctanhl()

ctanl()

Macros

complex

expands to _Complex, where _Complex is a type specifier.

_Complex_I

expands to const float _Complex with the value of the imaginary unit

I expands to _Complex_I

 Compile Requirement

Use of this header requires a compiler that is designed to support C99.

Restriction: This header is not supported for C++ applications.

Note: The UNIX System Laboratories (USL) Complex Mathematics Class Library

also contains a header file that is called complex.h and it is used only for

C++ applications.

cpio.h

The cpio.h header file contains CPIO archive values.

csetjmp

The csetjmp header file contains definitions for C++ for executing nonlocal goto

statements. Include the standard header into a C++ program to effectively include

the standard header <setjmp.h> within the std namespace.

namespace std {

#include <setjmp.h>

 };

csignal

The csignal header file contains definitions for C++ for controlling various

exceptional conditions. Include the standard header into a C++ program to

effectively include the standard header <signal.h> within the std namespace.

namespace std {

#include <signal.h>

 };

csp.h

Restriction: This header file is not supported in AMODE 64.

The csp.h header file declares the __csplist macro, which obtains the CSP

parameter list.

Header Files

Chapter 2. Header Files 37

These macros are not supported under z/OS UNIX System Services services and

they are not supported for C++ applications.

cstdarg

The cstdarg header file contains definitions for C++ for accessing a varying number

of arguments. Include the standard header into a C++ program to effectively include

the standard header <stdarg.h> within the std namespace.

namespace std {

#include <stdarg.h>

 };

cstddef

The cstddef header file contains definitions for C++ for defining several useful types

and macros. Include the standard header into a C++ program to effectively include

the standard header <stddef.h> within the std namespace.

namespace std {

#include <stddef.h>

 };

cstdio

The cstdio header file contains definitions for C++ for performing input and output.

Include the standard header into a C++ program to effectively include the standard

header <stdio.h> within the std namespace.

namespace std {

#include <stdio.h>

 };

cstdlib

The cstdlib header file contains definitions for C++ for performing a variety of

operations. Include the standard header into a C++ program to effectively include

the standard header <stdlib.h> within the std namespace.

namespace std {

#include <stdlib.h>

 };

cstring

The cstring header file contains definitions for C++ for manipulating several kinds of

strings. Include the standard header into a C++ program to effectively include the

standard header <string.h> within the std namespace.

namespace std {

#include <string.h>

 };

ctest.h

The ctest.h header file contains declarations for the functions that involve

debugging and diagnostics. The diagnostic functions are:

 cdump() csnap() ctest() ctrace()

Header Files

38 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ctime

The ctime header file contains definitions for C++ for converting between various

time and date formats. Include the standard header into a C++ program to

effectively include the standard header <time.h> within the std namespace.

namespace std {

#include <time.h>

 };

ctype.h

The ctype.h header file declares functions used in character classification. The

functions declared are:

 isalnum() isalpha() isblank() iscntrl() isdigit()

isgraph() islower() isprint() ispunct() isspace()

isupper() isxdigit() tolower() toupper()

_XOPEN_SOURCE

 isascii() toascii() _tolower() _toupper()

For more information about the effect of locale, see setlocale(), locale.h, or look up

the individual functions in this book . For still more information, see the chapter ,

“Internationalization: Locales and Character Sets” in z/OS XL C/C++ Programming

Guide.

cwchar

The cwchar header file contains definitions for C++ for manipulating wide streams

and several kinds of strings. Include the standard header into a C++ program to

effectively include the standard header <wchar.h> within the std namespace.

namespace std {

#include <wchar.h>

 };

cwctype

The cwctype header file contains definitions for C++ for classifying wide characters.

Include the standard header into a C++ program to effectively include the standard

header <wctype.h> within the std namespace.

namespace std {

#include <wctype.h>

 };

decimal.h

The decimal.h header file is not supported under z/OS C++ applications.

The decimal.h header file contains declarations for those built-in functions that

perform fixed-point decimal operations. The functions declared are:

 decabs() decchk() decfix()

Header Files

Chapter 2. Header Files 39

||||||
|

The header file also contains definitions of constants that specify the ranges of the

decimal data types.

dirent.h

The dirent.h header file contains constants, prototypes, and typedef definitions for

POSIX directory access functions. It declares the following functions.

_OPEN_SYS_DIR_EXT

 __opendir2() __readdir2()

_POSIX_SOURCE

 closedir() opendir() readdir() rewinddir()

_XOPEN_SOURCE

 seekdir() telldir()

_XOPEN_SOURCE 500

 readdir_r()

This header file can be used by C++ POSIX(OFF) functions. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

dlfcn.h

The dlfcn.h header file declares the following macros for use in the construction of a

dlopen() mode argument::

RTLD_LAZY

Relocations are performed at an implementation-defined time.

RTLD_NOW

Relocations are performed when the object is loaded.

RTLD_GLOBAL

All symbols are available for relocation processing of other modules.

RTLD_LOCAL

All symbols are not made available for relocation processing by other

modules.

 dlclose() dlerror() dlsym() dlopen()

dll.h

The dll.h header file declares the following functions:

 dllload() dllqueryvar() dllqueryfn() dllfree()

Header Files

40 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

||||||
|

|

||||||
|

Use this header file when using these functions to import functions and variables

from a DLL.

dynit.h

The dynit.h header file contains information for dynamic allocation routines.

Specifically, it contains declarations of the dynalloc() and dynfree() functions, the

definition of the dyninit() macro, declarations of related structures, and definitions of

related constants.

env.h

The env.h header file is used to declare the setenv() and clearenv() functions, which

are used in POSIX programs to set and clear environment variables. The env.h

header file requires the _POSIX1_SOURCE 2 feature test macro.

errno.h

The errno.h header file defines the symbolic constants that are returned in the

external variable errno.

 Table 5. Definitions in errno.h

EACCES Permission denied

EADDRINUSE Address in use

EADDRNOTAVAIL Address not available

EADV Advertise error

EAFNOSUPPORT Address family not supported

EAGAIN Resource temporarily unavailable

EALREADY Connection already in progress

EBADF Bad file descriptor

EBADMSG Bad message

EBUSY Resource busy

ECANCELED Operation canceled

ECHILD No child processes

ECICS Function not supported under CICS

ECOMM Communication error on send

ECONNABORTED Connection aborted

ECONNREFUSED Connection refused

ECONNRESET Connection reset

EDEADLK Resource deadlock avoided

EDESTADDRREQ Destination address required

EDOM Domain error

EDOTDOT Cross mount point (not an error)

EDQUOT Reserved

EEXIST File exists

EFAULT Bad address

EFBIG File too large

EHOSTDOWN Host is down

EHOSTUNREACH Destination host can not be reached

EIBMBADCALL A bad socket-call constant in IUCV header

EIBMBADPARM Other IUCV header error

EIBMCANCELLED Request canceled

EIBMCONFLICT Conflicting call outstanding on socket

EIBMIUCVERR Request failed due to IUCV error

EIBMSOCKINUSE Assigned socket number already in use

EIBMSOCKOUTOFRANGE Assigned socket number out of range

Header Files

Chapter 2. Header Files 41

Table 5. Definitions in errno.h (continued)

EIDRM Identifier removed

EILSEQ Illegal byte sequence

EINPROGRESS Connection in progress

EINTR Interrupted function call

EINTRNODATA Function call interrupted before any data received

EINVAL Invalid argument

EIO Input/output error

EISCONN Socket is already connected

EISDIR Is a directory

ELEMSGERR Message file was not found in the hierarchical file

system

ELEMULTITHREAD Language Environment member language cannot

allow fork() in a multithreaded environment

ELEMULTITHREADFORK Function not allowed in child of fork() in

multithreaded environment

ELENOFORK Language Environment member language cannot

tolerate a fork()

ELOOP A loop exists in symbolic links encountered during

resolution of the path argument

EMFILE Too many open files

EMLINK Too many links

EMSGSIZE Message too long

EMULTIHOP Multihop is not allowed

EMVSBADCHAR Bad character in environment variable name

EMVSCATLG Catalog obtain error

EMVSCPLERROR A CPL service failed

EMVSCVAF Catalog Volume Access Facility error

EMVSDYNALC Dynamic allocation error

EMVSERR An MVS internal error

EMVSEXPIRE Password has expired

EMVSINITIAL Process initialization err

EMVSNORTL Access to the z/OS UNIX System Services services

version of the C RTL is denied

EMVSNOTXP z/OS UNIX System Services services are not active

EMVSPARM Bad parameters were passed to the service

EMVSPASSWORD Password is invalid

EMVSPATHOPTS Access mode argument conflicts with PATHOPTS

parameter

EMVSPFSFILE PDSE/X encountered a permanent file error

EMVSPFSPERM PDSE/X encountered a system error

EMVSSAF2ERR SAF/RACF error

EMVSSAFEXTRERR SAF/RACF extract error

EMVSTODNOTSET System TOD clock not set

ENAMETOOLONG File name too long

ENETDOWN The local interface to use or reach the destination

ENETRESET Network dropped connection on reset

ENETUNREACH Network unreachable

ENFILE Too many open files in system

ENOBUFS No buffer space available

ENODATA No message available

ENODEV No such device

ENOENT No such file or directory

ENOEXEC Exec format error

ENOLINK The link has been severed

ENOLCK No locks available

Header Files

42 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

Table 5. Definitions in errno.h (continued)

ENOMEM Not enough space

ENOMSG No message of desired type

ENONET Machine is not on the network

ENOPROTOOPT Protocol not available

ENOREUSE The socket cannot be reused

ENOSPC No space left on device

ENOSR No stream resource

ENOSYS Function not implemented

ENOSTR Not a stream

ENOTBLK Block device required

ENOTCONN The socket is not connected.

ENOTDIR Not a directory

ENOTEMPTY Directory not empty

ENOTSOCK Descriptor does not refer to a socket

ENOTSUP Not supported.

ENOTTY Inappropriate I/O control operation

ENXIO No such device or address

EOFFLOADboxDOWN Offload box down

EOFFLOADboxERROR Offload box error

EOFFLOADboxRESTART Offload box restarted

EOPNOTSUPP Operation not supported on socket

EOVERFLOW Value too large to be stored in data type

EPERM Operation not permitted

EPFNOSUPPORT Protocol family not supported

EPIPE Broken pipe

EPROCLIM Too many processes

EPROTO Protocol error

EPROTONOSUPPORT Protocol not supported

EPROTOTYPE The socket type is not supported by the protocol

ERANGE Range error

EREMCHG Remote address changed

EREMOTE Too many levels of remote in path

EROFS Read-only file system

ERREMOTE Object is remote

ESHUTDOWN Cannot send after socket shutdown

ESOCKTNOSUPPORT Socket type not supported

ESPIPE Invalid seek

ESRCH No such process

ESRMNT srmount error

ESTALE The file handle is stale

ETIME Stream ioctl() timeout

ETIMEDOUT Socket not connected

ETOOMANYREFS Too many references: cannot splice

ETXTBSY Text file busy

EUSERS Too many users

EWOULDBLOCK Problem on nonblocking socket

EXDEV A link to a file on another file system was attempted

E2BIG Argument list too long

The errno.h header file also defines errno, which is a modifiable lvalue having type

int. If you intend to test the value of errno after library function calls, first set it to 0,

because the library functions do not reset the value to 0.

Header Files

Chapter 2. Header Files 43

||

||

strerror() or perror() functions can be used to print the description of the

message associated with a particular errno.

To test for the explicit error, use the macro names defined in errno.h, rather than

specific values of these macros. Doing so will ensure future compatibility and

portability.

errno.h also declares the __errno2() prototype.

exception

The exception header file defines several types and functions related to the

handling of exceptions.

namespace std {

 class exception;

 class bad_exception;

 typedef void (*terminate_handler)();

 typedef void (*unexpected_handler)();

 terminate_handler

 set_terminate(terminate_handler ph) throw();

 unexpected_handler

 set_unexpected(unexpected_handler ph) throw();

 void terminate();

 void unexpected();

 bool uncaught_exception();

 };

bad_exception

class bad_exception : public exception {

 };

The class describes an exception that can be thrown from an unexpected handler.

The value returned by what() is an implementation-defined C string. None of the

member functions throw any exceptions.

exception

class exception {

public:

 exception() throw();

 exception(const exception& rhs) throw();

 exception& operator=(const exception& rhs) throw();

 virtual ~exception() throw();

 virtual const char *what() const throw();

 };

The class serves as the base class for all exceptions thrown by certain expressions

and by the Standard C++ library. The C string value returned by what() is left

unspecified by the default constructor, but may be defined by the constructors for

certain derived classes as an implementation-defined C string. None of the member

functions throw any exceptions.

terminate_handler

typedef void (*terminate_handler)();

The type describes a pointer to a function suitable for use as a terminate handler.

unexpected_handler

typedef void (*unexpected_handler)();

Header Files

44 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The type describes a pointer to a function suitable for use as an unexpected

handler.

fcntl.h

The fcntl.h header file declares the following POSIX functions for creating, opening,

rewriting, and manipulating files.

_POSIX_SOURCE

 creat() fcntl() open()

features.h

The features.h header file contains definitions for feature test macros. For

information on feature test macros, see “Feature Test Macros” on page 21.

fenv.h

The fenv.h header contains the following data types, macros and functions. This

header is supported under IEEE Binary Floating-Point only and is required to define

the feature test macro _ISOC99_SOURCE or requires the compiler that is designed

to support C99 to expose the functionality. The decimal floating-point macros,

prefixed by FE_DEC_ and _FE_DEC_, are used by the fe_dec_getround and

fe_dec_setround functions to get and set the rounding mode of decimal

floating-point operations. Decimal floating-point functionality additionally requires the

__STDC_WANT_DEC_FP__ feature test macro to be defined.

Data types

fenv_t represents the entire floating-point environment.

fexcept_t

represents the floating-point status flags collectively.

 Macros

FE_DIVBYZERO

defines the divide by zero exception

_FE_DEC_AWAYFROMZERO

rounds away from zero

FE_DEC_DOWNWARD

rounds towards minus infinity

_FE_DEC_PREPAREFORSHORTER

rounds to prepare for shorter precision

FE_DEC_TONEAREST

rounds to nearest

FE_DEC_TONEARESTFROMZERO

rounds to nearest, ties away from zero

_FE_DEC_TONEARESTTOWARDZERO

rounds to nearest, ties toward zero

FE_DEC_TOWARDZERO

rounds toward zero

Header Files

Chapter 2. Header Files 45

|
|
|
|
|
|
|
|

|

||

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

FE_DEC_UPWARD

rounds toward plus infinity

FE_INEXACT

defines the inexact exception

FE_INVALID

defines the invalid exception

FE_OVERFLOW

defines the overflow exception

FE_UNDERFLOW

defines the underflow exception

FE_ALL_EXCEPT

defines the bitwise OR of all the exception macros.

FE_DOWNWARD

rounds towards minus infinity

FE_TONEAREST

rounds to nearest

FE_TOWARDZERO

rounds toward zero

FE_UPWARD

rounds towards plus infinity

FE_DFL_ENV

defines the floating-point environment as it was available at program start

up

Functions

 feclearexcept() fegetenv() fegetexceptflag() fegetround() feholdexcept()

feraiseexcept() fesetenv() fesetexceptflag() fesetround() fetestexcept()

feupdateenv() fe_dec_getround() fe_dec_setround()

float.h

The float.h header file contains definitions of constants listed in ANSI 2.2.4.2.2, that

describe the characteristics of the internal representations of the three floating-point

data types, float, double, and long double. The definitions are:

 Table 6. Definitions in float.h

Constant Description

FLT_ROUNDS The rounding mode for floating-point addition.

FLT_RADIX The radix for z/OS XL C applications, The FLT_RADIX

value depends on the compile option FLOAT.

FLOAT(HEX) gives value 16. FLOAT(IEEE) gives value

2.

FLT_MANT_DIG DBL_MANT_DIG

LDBL_MANT_DIG

The number of hexadecimal digits stored to represent

the significant of a fraction.

FLT_DIG DBL_DIG LDBL_DIG The number of decimal digits, q, such that any

floating-point number with q decimal digits can be

rounded into a floating-point number with p radix

FLT_RADIX digits and back again, without any change to

the q decimal digits.

Header Files

46 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|
|
|
|

Table 6. Definitions in float.h (continued)

Constant Description

FLT_MIN_EXP DBL_MIN_EXP

LDBL_MIN_EXP

The minimum negative integer such that FLT_RADIX

raised to that power minus 1 is a normalized

floating-point number.

FLT_MIN_10_EXP

DBL_MIN_10_EXP

LDBL_MIN_10_EXP

The minimum negative integer such that 10 raised to that

power is in the range of normalized floating-point

numbers.

FLT_MAX_EXP DBL_MAX_EXP

LDBL_MAX_EXP

The maximum integer such that FLT_RADIX raised to

that power minus 1 is a representable finite floating-point

number.

FLT_MAX_10_EXP

DBL_MAX_10_EXP

LDBL_MAX_10_EXP

The maximum integer such that 10 raised to that power

is in the range of representable finite floating-point

numbers.

FLT_MAX DBL_MAX LDBL_MAX The maximum representable finite floating-point number.

FLT_EPSILON DBL_EPSILON

LDBL_EPSILON

The difference between 1.0 and the least value greater

than 1.0 that is representable in the given floating-point

type.

FLT_MIN DBL_MIN LDBL_MIN The minimum normalized positive floating-point number.

DECIMAL_DIG The minimum number of decimal digits needed to

represent all the significant digits for type long double.

FLT_EVAL_METHOD Describes the evaluation mode for floating point

operations. This value is 1, which evaluates all

operations and constants of types float and double to

type double and that of long double to type long double.

DEC_EVAL_METHOD The decimal floating-point evaluation format.

The float.h header file also contains constants that describe the characteristics of

the internal representations of the three decimal floating-point data types,

_Decimal32, _Decimal64, and _Decimal128. The prefixes DEC32_, DEC64_, and

DEC128_ are used to denote the types _Decimal32, _Decimal64, and

_Decimal128, respectively.

 Constant Description

DEC32_MANT_DIG

DEC64_MANT_DIG

DEC128_MANT_DIG

The number of digits in the coefficient.

DEC32_MIN_EXP

DEC64_MIN_EXP

DEC128_MIN_EXP

The minimum exponent.

DEC32_MAX_EXP

DEC64_MAX_EXP

DEC128_MAX_EXP

The maximum exponent.

DEC32_MAX

DEC64_MAX

DEC128_MAX

The maximum representable finite decimal

floating number.

Header Files

Chapter 2. Header Files 47

||

Constant Description

DEC32_EPSILON

DEC64_EPSILON

DEC128_EPSILON

The difference between 1 and the least value

greater than 1 that is representable in the

given floating point type.

DEC32_MIN

DEC64_MIN

DEC128_MIN

The minimum normalized positive decimal

floating number.

DEC32_DEN

DEC64_DEN

DEC128_DEN

The minimum denormalized positive decimal

floating number.

DEC_EVAL_METHOD The decimal floating-point evaluation format.

fmtmsg.h

The fmtmsg.h header file contains message display structures.

fnmatch.h

The fnmatch.h header file contains filename matching types.

fpxcp.h

The fpxcp.h header file declares floating-point exception interfaces.

__ftp.h

The __ftp.h header file contains definitions for FTP resolver functions.

ftw.h

The ftw.h header file contains file tree traversal constants.

glob.h

The glob.h header file contains pathname pattern matching types.

grp.h

The grp.h header file declares functions used to access group databases.

_POSIX_SOURCE

 getgrgid() getgrnam()

_OPEN_SYS

 initgroups() setgroups()

Header Files

48 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

_XOPEN_SOURCE_EXTENDED 1

 setgrent() endgrent() getgrent()

iconv.h

The iconv.h header file declares the iconv_open(), iconv(), and iconv_close()

functions that deal with code conversion.

_Ieee754.h

The _Ieee754.h header file declares IEEE 754 interfaces.

ims.h

Restriction: This header file is not supported in AMODE 64.

The ims.h header file declares the ctdli() function that invokes IMS facilities. The

function is not supported from an z/OS UNIX System Services services program

running POSIX(ON).

inttypes.h

The following macros are defined in inttypes.h. Each expands to a character string

literal containing a conversion specifier which can be modified by a length modifier

that can be used in the format argument of a formatted input/output function when

converting the corresponding integer type. These macros have the general form of

PRI (character string literals for the fprintf() and fwprintf() family of functions) or

SCN (character string literals for the fscanf() and fwscanf() family of functions),

followed by the conversion specifier, followed by a name corresponding to a similar

type name in <inttypes.h>. In these names, the suffix number represents the width

of the type. For example, PRIdFAST32 can be used in a format string to print the

value of an integer of type int_fast32_t.

This header defines the type imaxdiv_t.

Note: Requires long long to be available.

imaxdiv_t is a structure type that is the type of the value returned by the imaxdiv()

function. It is functionally equivalent to lldiv_t.

Compile requirement:

In the following list all macros with the suffix MAX or 64 require long long to be

available.

 PRId8 PRId16 PRId32 PRId64

PRIdLEAST8 PRIdLEAST16 PRIdLEAST32 PRIdLEAST64

PRIdFAST8 PRIdFAST16 PRIdFAST32 PRIdFAST64

PRIdMAX

PRIdPTR

PRIi8 PRIi16 PRIi32 PRIi64

PRIiLEAST8 PRIiLEAST16 PRIiLEAST32 PRIiLEAST64

PRIiFAST8 PRIiFAST16 PRIiFAST32 PRIiFAST64

PRIiMAX

Header Files

Chapter 2. Header Files 49

PRIiPTR

Example

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdio.h>

int main(void)

{

int8_t i = 40;

printf("Demonstrating the use of the following macros:\n");

printf("Using PRId8, the printed value of 40 "

"is %" PRId8"\n", i);

printf("Using PRIiFAST8, the printed value of 40 "

"is %" PRIiFAST8"\n", i);

printf("Using PRIoLEAST8, the printed value of 40 "

"is %" PRIoLEAST8 "\n", i);

return 0;

}

Output:

Demonstrating the use of the following macros:

Using PRId8, the printed value of 40 is 40

Using PRIiFAST8, the printed value of 40 is 40

Using PRIoLEAST8, the printed value of 40 is 50

Compile requirement:

In the following list all macros with the suffix MAX or 64 require long long to be

available.

Macros for fprintf family for unsigned integers:

 PRIo8 PRIo16 PRIo32 PRIo64

PRIoLEAST8 PRIoLEAST16 PRIoLEAST32 PRIoLEAST64

PRIoFAST8 PRIoFAST16 PRIoFAST32 PRIoFAST64

PRIoMAX

PRIoPTR

PRIu8 PRIu16 PRIu32 PRIu64

PRIuLEAST8 PRIuLEAST16 PRIuLEAST32 PRIuLEAST64

PRIuFAST8 PRIuFAST16 PRIuFAST32 PRIuFAST64

PRIuMAX

PRIuPTR

PRIx8 PRIx16 PRIx32 PRIx64

PRIxLEAST8 PRIxLEAST16 PRIxLEAST32 PRIxLEAST64

PRIxFAST8 PRIxFAST16 PRIxFAST32 PRIxFAST64

PRIxMAX

PRIxPTR

PRIX8 PRIX16 PRIX32 PRIX64

PRIXLEAST8 PRIXLEAST16 PRIXLEAST32 PRIXLEAST64

PRIXFAST8 PRIXFAST16 PRIXFAST32 PRIXFAST64

PRIXMAX

PRIXPTR

Example

Header Files

50 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdio.h>

int main(void)

{

uint32_t i = 24000;

printf("Demonstrating the use of the following macros:\n");

printf("Using PRIuPTR, the address of the variable "

"is %" PRIuPTR "\n", i);

printf("Using PRIXFAST32, the printed value of 24000 "

"is %" PRIXFAST32"\n", i);

printf("Using PRIxLEAST32, the printed value of 24000 "

"is %" PRIxLEAST32 "\n", i);

return 0;

}

Output:

Demonstrating the use of the following macros:

Using PRIuPTR, the address of the variable is 538874544

Using PRIXFAST32, the printed value of 24000 is 5DC0

Using PRIxLEAST32, the printed value of 24000 is 5dc0

Compile requirement:

In the following list all macros with the suffix MAX or 64 require long long to be

available.

Macros for fscanf family for signed integers:

 SCNd8 SCNd16 SCNd32 SCNd64

SCNdLEAST8 SCNdLEAST16 SCNdLEAST32 SCNdLEAST64

SCNdFAST8 SCNdFAST16 SCNdFAST32 SCNdFAST64

SCNdMAX

SCNdPTR

SCNi8 SCNi16 SCNi32 SCNi64

SCNiLEAST8 SCNiLEAST16 SCNiLEAST32 SCNiLEAST64

SCNiFAST8 SCNiFAST16 SCNiFAST32 SCNiFAST64

SCNiMAX

SCNiPTR

Example

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdio.h>

int main(void)

{

 int32_t i;

 printf("Enter decimal value ");

 scanf("%" SCNdFAST32, i);

 printf("Print result: %" PRIdFAST32 "\n", i);

 return 0;

}

Output:

Enter decimal value 23

Print result: 23

Header Files

Chapter 2. Header Files 51

Compile requirement:

In the following list all macros with the suffix MAX or 64 require long long to be

available.

Macros for fscanf family for signed integers:

 SCNo8 SCNo16 SCNo32 SCNo64

SCNoLEAST8 SCNoLEAST16 SCNoLEAST32 SCNoLEAST64

SCNoFAST8 SCNoFAST16 SCNoFAST32 SCNoFAST64

SCNoMAX

SCNoPTR

SCNu8 SCNu16 SCNu32 SCNu64

SCNuLEAST8 SCNuLEAST16 SCNuLEAST32 SCNuLEAST64

SCNuFAST8 SCNuFAST16 SCNuFAST32 SCNuFAST64

SCNuMAX

SCNuPTR

SCNx8 SCNx16 SCNx32 SCNx64

SCNxLEAST8 SCNxLEAST16 SCNxLEAST32 SCNxLEAST64

SCNxFAST8 SCNxFAST16 SCNxFAST32 SCNxFAST64

SCNxMAX

SCNxPTR

Example

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdio.h>

int main(void)

{

 intmax_t i;

 printf("Enter hex value ");

 scanf("%" SCNxMAX, i);

 printf("Print result: %020" PRIxMAX "\n", i);

 return 0;

}

Output :

Enter hex value 0x32

Print result: 00000000000000000032

iso646.h

The header file iso646.h allows the user to use the following macros in place of the

associated operator.

Macros Operators

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

Header Files

52 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

or ||

or_eq |=

xor ̂

xor_eq ^=

langinfo.h

The langinfo.h header file contains the declaration for the nl_langinfo() function.

The header file also defines the macros that, in turn, define constants used to

identify the information queried by nl_langinfo() in the current locale. The

following macros are defined:

 Table 7. Item Values defined in langinfo.h

Item Name Description

ABDAY_1 Abbreviated first day of the week

ABDAY_2 Abbreviated second day of the week

ABDAY_3 Abbreviated third day of the week

ABDAY_4 Abbreviated fourth day of the week

ABDAY_5 Abbreviated fifth day of the week

ABDAY_6 Abbreviated sixth day of the week

ABDAY_7 Abbreviated seventh day of the week

ABMON_1 Abbreviated first month

ABMON_2 Abbreviated second month

ABMON_3 Abbreviated third month

ABMON_4 Abbreviated fourth month

ABMON_5 Abbreviated fifth month

ABMON_6 Abbreviated sixth month

ABMON_7 Abbreviated seventh month

ABMON_8 Abbreviated eighth month

ABMON_9 Abbreviated ninth month

ABMON_10 Abbreviated tenth month

ABMON_11 Abbreviated eleventh month

ABMON_12 Abbreviated twelfth month

ALT_DIGITS String of semicolon separated alternative symbols for digits

AM_STR String for morning

CODESET Current encoded character set of the process

CRNCYSTR Local currency symbol, preceded by ’-’ if the symbol should appear

before the value, ’+’ if the symbol should appear after the value, or

’.’ if the symbol should replace the radix character.

D_FMT String for formatting date

D_T_FMT String for formatting date and time

DAY_1 Name of the first day of the week

DAY_2 Name of the second day of the week

DAY_3 Name of the third day of the week

DAY_4 Name of the fourth day of the week

DAY_5 Name of the fifth day of the week

DAY_6 Name of the sixth day of the week

DAY_7 Name of the seventh day of the week

ERA String of semicolon separated era segments

ERA_D_FMT String for era date format

ERA_D_T_FMT String for era date and time format

ERA_T_FMT String for era time format

MON_1 Name of the first month

MON_2 Name of the second month

Header Files

Chapter 2. Header Files 53

|
|
|

Table 7. Item Values defined in langinfo.h (continued)

Item Name Description

MON_3 Name of the third month

MON_4 Name of the fourth month

MON_5 Name of the fifth month

MON_6 Name of the sixth month

MON_7 Name of the seventh month

MON_8 Name of the eighth month

MON_9 Name of the ninth month

MON_10 Name of the tenth month

MON_11 Name of the eleventh month

MON_12 Name of the twelfth month

NOEXPR Negative response expression

NOSTR Negative response string

PM_STR String for afternoon

RADIXCHAR Radix character

T_FMT String for formatting time

T_FMT_AMPM String for formatting time in 12-hour clock format

THOUSEP Separator for thousands

YESEXPR Affirmative response expression

YESSTR affirmative response string

Note:

The YESSTR and NOSTR constants are kept for historical reasons. They

were part of the Legacy Feature in Single UNIX Specification, Version 2.

They have been withdrawn and are not supported as part of Single UNIX

Specification, Version 3.

If it is necessary to continue using these constants in an application written

for Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

For more information about the effect of locale, see setlocale(), locale.h, or look up

the individual functions in this book . For still more information, see the chapter ,

“Internationalization: Locales and Character Sets” in z/OS XL C/C++ Programming

Guide.

lc_core.h

The lc_core.h header file contains locale-related data structures.

lc_sys.h

The lc_sys.h header file contains definitions used by the localedef utility for building

references to locale methods in ASCII locales.

Header Files

54 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|
|
|

__le_api.h

The __le_api.h header file declares the following AMODE 64 C functions in

Language Environment:

 __le_cib_get() __le_condition_token_build() __le_msg_add_insert()

__le_msg_get() __le_msg_get_and_write()

__le_msg_write() __le_set_debug_resume_mch()

Restrictions:

v This header is supported in AMODE 64 only. For AMODE 31, the

leawi.h header file should be used.

leawi.h

Restriction: This header file is not supported in AMODE 64. For AMODE 64, the

__le_api.h header file should be used.

The leawi.h header file contains internal macros. The header file is required for

applications that use Language Environment Application Writer Interfaces (LE AWI).

libgen.h

The libgen.h header file contains definitions for pattern matching functions.

limits.h

The limits.h header file contains symbolic names that represent standard values for

limits on resources, such as the maximum value for an object of type char.

 Table 8. Definitions of Resource Limits

ATEXIT_MAX 2048

BC_DIM_MAX 32768

BC_SCALE_MAX 32767

BC_STRING_MAX 2048

CHAR_BIT 8

CHAR_MAX 127 (_CHAR_SIGNED)

CHAR_MAX 255

CHAR_MIN (-128) (_CHAR_SIGNED)

CHAR_MIN 0

COLL_WEIGHTS_MAX 2

__DIR_NAME_MAX 256

EXPR_NEST_MAX 32

INT_MAX 2147483647

INT_MIN (-2147483647 - 1)

LINE_MAX 2048

LLONG_MAX (9223372036854775807LL)

LLONG_MIN (-LLONG_MAX-1)

LONG_MAX 2147483647

LONGLONG_MAX (9223372036854775807LL)

LONG_MIN (-2147483647L - 1)

LONGLONG_MIN (-LONGLONG_MAX - 1)

MB_LEN_MAX 4

NGROUPS_MAX 300

Header Files

Chapter 2. Header Files 55

Table 8. Definitions of Resource Limits (continued)

_POSIX_ARG_MAX 4096

_POSIX_CHILD_MAX 25

_POSIX_DATAKEYS_MAX 32

_POSIX_LINK_MAX 8

_POSIX_MAX_CANON 255

_POSIX_MAX_INPUT 255

_POSIX_NAME_MAX 14

_POSIX_NGROUPS_MAX 8

_POSIX_OPEN_MAX 20

_POSIX_PATH_MAX 255

_POSIX_PIPE_BUF 512

_POSIX_SSIZE_MAX 32767

_POSIX_STREAM_MAX 8

POSIX_SYMLOOP 24

_POSIX_TZNAME_MAX 6

_POSIX2_BC_BASE_MAX 99

_POSIX2_BC_DIM_MAX 2048

_POSIX2_BC_SCALE_MAX 99

_POSIX2_BC_STRING_MAX 1000

_POSIX2_COLL_WEIGHTS_MAX 2

_POSIX2_EXPR_NEST_MAX 32

_POSIX2_LINE_MAX 2048

_POSIX2_RE_DUP_MAX 255

RE_DUP_MAX 255

SCHAR_MAX 127

SCHAR_MIN (-128)

SHRT_MAX 32767

SHRT_MIN (-32768)

SSIZE_MAX 2147483647

UCHAR_MAX 255

UINT_MAX 4294967295

ULONG_MAX 4294967295U

ULONGLONG_MAX (18446744073709551615ULL)

ULLONG_MAX (18446744073709551615ULL)

USHRT_MAX 65535

When compiled with SUSV3 thread support (_UNIX03_THREADS or

_XOPEN_SOURCE 600), limits.h adds the following constants:

 PTHREAD_STACK_MIN 4096(1048576 in 64-bit)

_POSIX_THREAD_

DESTRUCTOR_ITERATIONS

4

_POSIX_THREAD_KEYS_MAX 128

_POSIX_THREAD_THREADS_MAX 64

localdef.h

The localdef.h header file defines data structures for locale objects which are

loaded by setlocale(). The data structures in localdef.h are not a supported

programming interface.

Header Files

56 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|

|

|
|

|||

|
|
|

||

||
|

locale.h

The locale.h header file contains declarations for the localdtconv() and localeconv()

library functions, which retrieve values from the current locale, and for the

setlocale() function, used to query or change locale settings for internationalized

applications.

The locale.h file declares the lconv structure. Table 9 below shows the elements of

the lconv structure and the defaults for the C locale.

 Table 9. Elements of lconv Structure

Element Purpose of Element Default

char *decimal_point Decimal-point character used to format

non-monetary quantities.

″.″

char *thousands_sep Character used to separate groups of digits

to the left of the decimal-point character in

formatted non-monetary quantities.

″″

char *grouping String indicating the size of each group of

digits in formatted non-monetary quantities.

The value of each character in the string

determines the number of digits in a group. A

value of CHAR_MAX indicates that there are no

further groupings. 0 indicates that the

previous element is to be used for the

remainder of the digits.

″″

char *int_curr_symbol International currency symbol for the current

locale. The first three characters contain the

alphabetic international currency symbol. The

fourth character (usually a space) is the

character used to separate the international

currency symbol from the monetary quantity.

″″

char *currency_symbol Local currency symbol of the current locale. ″″

char *mon_decimal_point Decimal-point character used to format

monetary quantities.

″.″

char *mon_thousands_sep Separator for digits in formatted monetary

quantities.

″″

char *mon_grouping String indicating the size of each group of

digits in formatted monetary quantities. The

value of each character in the string

determines the number of digits in a group. A

value of CHAR_MAX indicates that there are no

further groupings. 0 indicates that the

previous element is to be used for the

remainder of the digits.

″″

char *positive_sign String indicating the positive sign used in

monetary quantities.

″″

char *negative_sign String indicating the negative sign used in

monetary quantities.

″″

char int_frac_digits The number of displayed digits to the right of

the decimal place for internationally

formatted monetary quantities.

UCHAR_MAX

char frac_digits Number of digits to the right of the decimal

place in monetary quantities.

UCHAR_MAX

Header Files

Chapter 2. Header Files 57

Table 9. Elements of lconv Structure (continued)

Element Purpose of Element Default

char p_cs_precedes Value indicating the placement of the

currency symbol in a nonnegative, formatted

monetary quantity. For a list of valid values,

see Table 10 on page 59.

UCHAR_MAX

char p_sep_by_space Value indicating the use of white space in a

nonnegative, formatted monetary quantity.

For a list of valid values, see Table 10 on

page 59.

UCHAR_MAX

char n_cs_precedes Value indicating the placement of the

currency symbol in a negative, formatted

monetary quantity. For a list of valid values,

see Table 10 on page 59.

UCHAR_MAX

char n_sep_by_space Value indicating the use of white space in a

negative, formatted monetary quantity. For a

list of valid values, see Table 10 on page 59.

UCHAR_MAX

char p_sign_posn Value indicating the position of the

positive_sign for a nonnegative formatted

monetary quantity. For a list of valid values,

see Table 10 on page 59.

UCHAR_MAX

char n_sign_posn Value indicating the position of the

negative_sign for a negative formatted

monetary quantity. For a list of valid values,

see Table 10 on page 59.

UCHAR_MAX

char *left_parenthesis Negative-valued monetary symbol.

Note: This element is an IBM-specific

extension.

″″

char *right_parenthesis Negative-valued monetary symbol.

Note: This element is an IBM-specific

extension.

″″

char *debit_sign Debit_sign character string.

Note: This element is an IBM-specific

extension.

″″

char *credit_sign Credit_sign character string.

Note: This element is an IBM-specific

extension.

″″

char int_p_cs_precedes For international formatting, value indicating

the placement of the currency symbol in a

nonnegative, monetary quantity. For a list of

valid values, see Table 10 on page 59.

UCHAR_MAX

char int_n_cs_precedes For international formatting, value indicating

the placement of the currency symbol in a

negative, monetary quantity. For a list of

valid values, see Table 10 on page 59.

UCHAR_MAX

char int_p_sep_by_space For international formatting, value indicating

the use of white space in a nonnegative,

monetary quantity. For a list of valid values,

see Table 10 on page 59.

UCHAR_MAX

char int_n_sep_by_space For international formatting, value indicating

the use of white space in a negative,

monetary quantity. For a list of valid values,

see Table 10 on page 59.

UCHAR_MAX

Header Files

58 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 9. Elements of lconv Structure (continued)

Element Purpose of Element Default

char int_p_sign_posn For international formatting, value indicating

the position of the positive sign for a

nonnegative monetary quantity. For a list of

valid values, see Table 10.

UCHAR_MAX

char int_n_sign_posn For international formatting, value indicating

the position of the negative sign for a

negative monetary quantity. For a list of valid

values, see Table 10.

UCHAR_MAX

For a list of valid values, see Table 10.

 Table 10. Monetary Formatting Values

Element Values

cs_precedes 0 The currency_symbol succeeds the value for the formatted monetary

quantity;

1 The currency_symbol precedes the value for the formatted monetary

quantity

sep_by_space 0 No space separates the currency_symbol from the formatted monetary

quantity;

1 If currency_symbol and sign string are adjacent, a space separates

them from the value. Otherwise, the currency symbol and value are

separated by a space.

2 If currency_symbol and sign string are adjacent, a space separates

them from each other. Otherwise, the sign string and value are

separated by a space.

sign_posn 0 Parentheses surround the quantity and currency_symbol;

1 The sign string precedes the quantity and currency_symbol;

2 The sign string succeeds the quantity and currency_symbol;

3 The sign string immediately precedes currency_symbol;

4 The sign string immediately succeeds currency_symbol;

5 Substitute debit_sign or credit_sign for negative_sign or

positive_sign, respectively.

Note: This value is an IBM-specific extension.

The locale.h file declares the dtconv structure:

struct dtconv {

 char *abbrev_month_names[12]; /* Abbreviated month names */

 char *month_names[12]; /* full month names */

 char *abbrev_day_names[7]; /* Abbreviated day names */

 char *day_names[7]; /* full day names */

 char *date_time_format; /* date and time format */

 char *date_format; /* date format */

 char *time_format; /* time format */

 char *am_string; /* AM string */

 char *pm_string; /* PM string */

 char *time_format_ampm; /* long date format */

 char *iso_std8601_2000; /* ISO 8601:2000 std date format*/

};

Note: This structure is an IBM-specific extension.

Header Files

Chapter 2. Header Files 59

The locale.h file also contains macro definitions for use with the setlocale() function:

 LC_ALL LC_COLLATE LC_CTYPE LC_MONETARY

LC_NUMERIC LC_TIME LC_TOD NULL

LC_MESSAGES LC_SYNTAX

The aspects of a program related to national language or to cultural characteristics

(such as time zone, currency symbols, and sorting order of characters) can be

customized at run time using different locales, to suit users’ requirements at those

locales. The methods for doing so are discussed in the internationalization chapter

of z/OS XL C/C++ Programming Guide.

math.h

The math.h header file contains function declarations for all the floating-point math

functions:

No feature test macro required.

Notes:

v nan(), nanf(), and nanl() functions are supported under IEEE only.

v For the C99 math functions, it is required to define the feature test macro

_ISO_C99_SOURCE or requires a compiler that is designed to support C99 to

expose the functionality.

 absf() absl() acos() acosf() acoshf()

acoshl() acosl() asin() asinf() asinhf()

asinhl() asinl() atan() atan2() atan2f()

atan2l() atanf() atanl() cbrtf() cbrtl()

ceil() ceilf() ceill() copysign() copysignf()

copysignl() cos() cosf() cosh() coshf()

coshl() cosl() exp() expf() expl()

expm1f() expm1l() exp2() exp2f() exp2l()

fabsf() fabsl() floor() floorf() floorl()

fma() fmaf() fmal() fmax() fmaxf()

fmaxl() fmin() fminf() fminl() fmod()

fmodf() fmodl() frexp() frexpf() frexpl()

hypotf() hypotl() ilogbf() ilogbl() ldexp()

ldexpf() ldexpl() lgammaf() lgammal() llrint()

llrintf() llrintl() llround() llroundf() llroundl()

log() logbf() logbl() logf() logl()

log1pf() log1pl() log10() log10f() log10l()

lrint() lrintf() lrintl() lround() lroundf()

lroundl() modf() modff() modfl() nan()

nanf() nanl() nearbyint() nearbyintf() nearbyintl()

nextafterf() nextafterl() nexttoward() nexttowardf() nexttowardl()

pow() powf() powl() remainderf() remainderl()

remquo() remquof() remquol() rintf() rintl()

round() roundf() roundl() scalbln() scalblnf()

scalblnl() sin() sinf() sinh() sinhf()

sinhl() sinl() sqrt() sqrtf() sqrtl()

tan() tanf() tanh() tanhf() tanhl()

tanl() tgamma() tgammaf() tgammal()

Header Files

60 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Special Behavior for C++

For C++ applications, each of the base functions in the following list is also

overloaded for float, double, and long double. For example:

v float sqrt(float)

v double sqrt(double)

v long double sqrt(long double)

_XOPEN_SOURCE

 erf() erfc() gamma() hypot() isnan()

jn() j0() j1() lgamma() yn()

y0() y1()

_XOPEN_SOURCE_EXTENDED 1

 acosh() asinh() atanh() cbrt() expm1()

ilogb() logb() log1p() nextafter() remainder()

rint() scalb()

__STDC_WANT_DEC_FP__

 ceild32() ceild64() ceild128() copysignd32() copysignd64()

copysignd128() cosd32() cosd64() cosd128() __cospid32()

__cospid64() __cospid128() expd32() expd64() expd128()

fabsd32() fabsd64() fabsd128() fdimd32() fdimd64()

fdimd128() floord32() floord64() floord128() fmaxd32()

fmaxd64() fmaxd128() fmind32() fmind64() fmind128()

frexpd32() frexpd64() frexpd128() ilogbd32() ilogbd64()

ilogbd128() ldexpd32() ldexpd64() ldexpd128() llrintd32()

llrintd64() llrintd128() llroundd32() llroundd64() llroundd128()

logd32() logd64() logd128() log10d32() log10d64()

log10d128() logbd32() logbd64() logbd128() lrintd32()

lrintd64() lrintd128() lroundd32() lroundd64() lroundd128()

modfd32() modfd64() modfd128() nand32() nand64()

nand128() nearbyintd32() nearbyintd64() nearbyintd128() nextafterd32()

nextafterd64() nextafterd128() nexttowardd32() nexttowardd64() nexttowardd128()

powd32() powd64() powd128() quantized32() quantized64()

quantized128() rintd32() rintd64() rintd128() roundd32()

roundd64() roundd128() samequantumd32() samequantumd64() samequantumd128()

scalblnd32() scalblnd64() scalblnd128() scalbnd32() scalbnd64()

scalbnd128() sind32() sind64() sind128() __sinpid32()

__sinpid64() __sinpid128() sqrtd32() sqrtd64() sqrtd128()

truncd32() truncd64() truncd128()

For C++ applications, the following functions are overloaded for _Decimal32,

_Decimal64, and _Decimal128:

 abs() ceil() copysign() cos() exp()

fabs() fdim() floor() fmax() fmin()

frexp() ilogb() ldexp() llrint() llround()

log() log10() logb() lrint() lround()

Header Files

Chapter 2. Header Files 61

|
|

||||||

|||||

|||||

|||||

modf() nearbyint() nextafter() nexttoward() pow()

rint() round() scalbn() scalbln() sin()

sqrt() trunc()

For example:

v _Decimal32 ceil(_Decimal32)

v _Decimal64 ceil(_Decimal64)

v _Decimal128 ceil(_Decimal128)

Object-like macros

Note: The floating point macros and the macros INFINITY and NAN are supported

under IEEE only.

DEC_INFINITY

A constant expression of type _Decimal32 representing infinity.

DEC_NAN

A quiet decimal floating NaN for the type _Decimal32.

HUGE_VAL_D32

A constant expression of type _Decimal32 representing +infinity.

HUGE_VAL_D64

A constant expression of type _Decimal64 representing +infinity.

HUGE_VAL_D128

A constant expression of type _Decimal128 representing +infinity.

HUGE_VALF

A very large positive number that expands to a float expression

HUGE_VALL

A very large positive number that expands to a long double expression.

INFINITY

A constant expression of type float representing positive infinity.

NAN A constant expression of type float representing a quiet NaN.

FP_INFINITE

The value of the macro fpclassify for an argument that is plus or minus

infinity. This expands to an integer constant expression.

FP_NAN

The value of the macro fpclassify for an argument that is not-a-number

(NaN). This expands to an integer constant expression.

FP_NORMAL

The value of the macro fpclassify for an argument that is finite and

normalized. This expands to an integer constant expression.

FP_SUBNORMAL

The value of the macro fpclassify for an argument that is finite and

denormalized. This expands to an integer constant expression.

FP_ZERO

The value of the macro fpclassify for an argument that is positive or

negative. This expands to an integer constant expression.

Header Files

62 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|||||

|||||

|||||
|

|

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

FP_FAST_FMA

Indicates that the fma function generally executes about as fast as, or faster

than, a multiply and an add of double operands.

FP_FAST_FMAF

This is the float version of FP_FAST_FMA.

FP_FAST_FMAL

This is the long double version of FP_FAST_FMA.

Note: Decimal floating-point does not support FP_FAST_FMAD32,

FP_FAST_FMAD64, and FP_FAST_FMAD128.

FP_ILOGB0

The value returned by ilogb() if its argument is zero.

FP_ILOGBNAN

The value returned by ilogb() if its argument is a NaN.

MATH_ERRNO

This is defined as value 1 (one) and is used for testing the value of the

macro math_errhandling to determine whether a math function reports an

error by storing a nonzero value in errno.

MATH_ERREXCEPT

This is defined as value 2 and is used for testing the value of the macro

math_errhandling to determine whether a math function reports an error by

raising an invalid floating point exception.

math_errhandling

This macro expands to an expression that has type int and the value

MATH_ERRNO, MATH_ERREXCEPT, or the bitwise OR of both. This

implementation defines this macro as MATH_ERRNO.

 Function-like macros

 fpclassify() isfinite() ininf() isgreater() isgreaterequal()

isless() islessequal() islessgreater() isnormal() isunordered()

signbit()

The header file includes declarations for the built-in functions abs() and fabs(). For

information about built-in functions, see “Built-in Functions” on page 107.

The math.h header file declares the macro HUGE_VAL, which expands to a positive

double constant expression, not necessarily representable as a float. Similarly, the

macros HUGE_VALF and HUGE_VALL are respectively float and long double

analogs of HUGE_VAL.

For all mathematical functions, a domain error occurs when an input argument is

outside the range of values allowed for that function. If a domain error occurs, errno

is set to the value of EDOM.

A range error occurs if the result of the function cannot be represented in a float,

double, long double, _Decimal32, _Decimal64, or _Decimal128 value. If the

magnitude of the result is too large (overflow), the function returns the positive or

negative value of the macro HUGE_VAL, HUGE_VALF, HUGE_VALL,

HUGE_VAL_D32, HUGE_VAL_D64, or HUGE_VAL_D128, as applicable, and sets

errno to ERANGE. If the result is too small (underflow), the function returns 0.

Header Files

Chapter 2. Header Files 63

|
|

|
|
|
|
|
|

float_t and double_t are floating-point types whose type depends on the value of

FLT_EVAL_METHOD. FLT_EVAL_METHOD is 1 which implies both float_t and

double_t are double.

Note: Decimal floating-point does not support FP_FAST_FMAD32,

FP_FAST_FMAD64, and FP_FAST_FMAD128.

memory.h

The memory.h header file contains declarations for memory operations.

monetary.h

The monetary.h header file contains the declaration for the strfmon() function.

For more information about the effect of locale, see setlocale(), locale.h, or look up

the individual functions in this book . For still more information, see the chapter ,

“Internationalization: Locales and Character Sets” in z/OS XL C/C++ Programming

Guide.

msgcat.h

The msgcat.h header file contains message catalog structures and definitions. The

data structures in msgcat.h are not a supported programming interface.

mtf.h

Restriction: This header file is not supported in AMODE 64.

The mtf.h header file contains declarations for the multitasking facility (MTF)

functions:

 tinit() tsched() tsyncro() tterm()

tsched() is a built-in function.

This header file also contains definitions of macros for certain return values from

the above functions.

This header file is supported only under z/OS C applications. The functions are not

supported under z/OS UNIX System Services services.

_Nascii.h

The _Nascii.h header file contains the externals for the correspondence table and

functions that support bimodal application development.

ndbm.h

The ndbm.h header file contains definitions for ndbm database operations.

netdb.h

The netdb.h header file contains definitions for network database operations.

Header Files

64 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

net/if.h

The net/if.h header file contains network interface structures and definitions.

net/rtrouteh.h

The net/rtrouteh.h header file contains network routing structures and definitions.

netinet/icmp6.h

The netinet/icmp6.h header file defines structures and constants for ICMPv6 header

options.

The following structures are exposed with this header file:

v icmp6_hdr

v nd_router_solicit

v nd_router_advert

v nd_neighbor_solicit

v nd_neighbor_advert

v nd_redirect

v nd_opt_hdr

v nd_opt_prefix_info

v nd_opt_rd_hdr

v nd_opt_mtu

v mld_hdr

v icmp6_router_renum

v rr_pco_match

v rr_pco_use

v rr_result

The following definitions are associated with the icmp6_hdr structure:

v icmp6_data32

v icmp6_data16

v icmp6_data8

v icmp6_pptr

v icmp6_mtu

v icmp6_id

v icmp6_seq

v icmp6_maxdelay

The following definitions are associated with ICMPv6 Type and Code values:

v ICMP6_DST_UNREACH

v ICMP6_PACKET_TOO_BIG

v ICMP6_TIME_EXCEEDED

v ICMP6_PARAM_PROB

v ICMP6_INFOMSG_MASK

v ICMP6_ECHO_REQUEST

v ICMP6_ECHO_REPLY

Header Files

Chapter 2. Header Files 65

v ICMP6_DST_UNREACH_NOROUTE

v ICMP6_DST_UNREACH_ADMIN

v ICMP6_DST_UNREACH_BEYONDSCOPE

v ICMP6_DST_UNREACH_ADDR

v ICMP6_DST_UNREACH_NOPORT

v ICMP6_TIME_EXCEED_TRANSIT

v ICMP6_TIME_EXCEED_REASSEMBLY

v ICMP6_PARAMPROB_HEADER

v ICMP6_PARAMPROB_NEXTHEADER

v ICMP6_PARAMPROB_OPTION

The following definitions are associated with the nd_router_solicit structure:

v ND_ROUTER_SOLICIT

v nd_rs_type

v nd_rs_code

v nd_rs_cksum

v nd_rs_reserved

The following definitions are associated with the nd_router_advert structure:

v ND_ROUTER_ADVERT

v nd_ra_type

v nd_ra_code

v nd_ra_cksum

v nd_ra_curhoplimit

v nd_ra_flags_reserved

v ND_RA_FLAG_MANAGED

v ND_RA_FLAG_OTHER

v nd_ra_router_lifetime

The following definitions are associated with the nd_neighbor_solicit structure:

v ND_NEIGHBOR_SOLICIT

v nd_ns_type

v nd_ns_code

v nd_ns_cksum

v nd_ns_reserved

The following definitions are associated with the nd_neighbor_advert structure:

v ND_NEIGHBOR_ADVERT

v nd_na_type

v nd_na_code

v nd_na_cksum

v nd_na_flags_reserved

v ND_NA_FLAG_ROUTER

v ND_NA_FLAG_SOLICITED

v ND_NA_FLAG_OVERRIDE

The following definitions are associated with the nd_redirect structure:

Header Files

66 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v ND_REDIRECT

v nd_rd_type

v nd_rd_code

v nd_rd_cksum

v nd_rd_reserved

The following definitions are associated with the nd_opt_hdr structure:

v ND_OPT_SOURCE_LINKADDR

v ND_OPT_TARGET_LINKADDR

v ND_OPT_PREFIX_INFORMATION

v ND_OPT_REDIRECTED_HEADER

v ND_OPT_MTU

The following definitions are associated with nd_opt_prefix_info structure:

v ND_OPT_PI_FLAG_ONLINK

v ND_OPT_PI_FLAG_AUTO

The following definitions are associated with the mld_hdr structure:

v MLD_LISTENER_QUERY

v MLD_LISTENER_REPORT

v MLD_LISTENER_REDUCTION

v mld_type

v mld_code

v mld_cksum

v mld_maxdelay

v mld_reserved

The following definitions are associated with the icmp6_router_renum structure:

v ICMP6_ROUTER_RENUMBERING

v rr_type

v rr_code

v rr_cksum

v rr_seqnum

v ICMP6_RR_FLAGS_TEST

v ICMP6_RR_FLAGS_REQRESULT

v ICMP6_RR_FLAGS_FORCEAPPLY

v ICMP6_RR_FLAGS_SPECSITE

v ICMP6_RR_FLAGS_PREVDONE

The following definitions are associated with the rr_pco_match structure:

v RPM_PCO_ADD

v RPM_PCO_CHANGE

v RPM_PCO_SETGLOBAL

The following definitions are associated with the rr_pco_use structure:

v ICMP6_RR_PCOUSE_RAFLAGS_ONLINK

v ICMP6_RR_PCOUSE_RAFLAGS_AUTO

Header Files

Chapter 2. Header Files 67

v ICMP6_RR_PCOUSE_FLAGS_DECRVLTIME

v ICMP6_RR_PCOUSE_FLAGS_DECRPLTIME

v nd_ns_reserved

The following definitions are associated with the rr_result structure:

v ICMP6_RR_RESULT_FLAGS_OOB

v ICMP6_RR_RESULT_FLAGS_FORBIDDEN

netinet/in.h

The netinet/in.h header file contains definitions for the internet protocol family.

The following structure definition is supported for IPv6:

v struct ip6_mtuinfo{};

The following functions are supported for IPv6:

v inet6_rth_space()

v inet6_rth_init()

v inet6_rth_add()

v inet6_rth_reverse()

v inet6_rth_segments()

v inet6_rth_getaddr()

v inet6_opt_init()

v inet6_opt_append()

v inet6_opt_finish()

v inet6_opt_set_val()

v inet6_opt_next()

v inet6_opt_find()

v inet6_opt_get_val()

The following macros are supported for IPv6:

 IN6_IS_ADDR_LINKLOCAL

 IN6_IS_ADDR_LOOPBACK

 IN6_IS_ADDR_MC_GLOBAL

 IN6_IS_ADDR_MC_LINKLOCAL

 IN6_IS_ADDR_MC_NODELOCAL

 IN6_IS_ADDR_MC_ORGLOCAL

 IN6_IS_ADDR_MC_SITELOCAL

 IN6_IS_ADDR_MULTICAST

 IN6_IS_ADDR_SITELOCAL

 IN6_IS_ADDR_UNSPECIFIED

 IN6_IS_ADDR_V4COMPAT

 IN6_IS_ADDR_V4MAPPED

Structures:

struct ip_mreq{

 struct in_addr imr_multiaddr;

 struct in_addr imr_interface;

};

Socket options:

Header Files

68 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|
|
|

|

v MCAST_INCLUDE

v MCAST_EXCLUDE

v IP_BLOCK_SOURCE

v IP_UNBLOCK_SOURCE

v IP_ADD_SOURCE_MEMBERSHIP

v IP_DROP_SOURCE_MEMBERSHIP

v MCAST_JOIN_GROUP

v MCAST_LEAVE_GROUP

v MCAST_BLOCK_SOURCE

v MCAST_UNBLOCK_SOURCE

v MCAST_JOIN_SOURCE_GROUP

v MCAST_LEAVE_SOURCE_GROUP

Structure:

Multicast filter support is accessed by defining feature test macro

_OPEN_SYS_SOCKET_EXT3. The feature test also exposes symbols in

sys/socket.h

struct ip_mreq{}

struct ip_mreq_source {};

struct group_req {};

struct group_source_req {};

setipv4sourcefilter()

getipv4sourcefilter()

setsourcefilter()

getsourcefilter()

netinet/ip6.h

The netinet/ip6.h header file defines structures and constants for IPv6 header

options.

The following structures are exposed with this header file:

v ip6_hdr

v ip6_hbh

v ip6_dest

v ip6_rthdr

v ip6_rthdr0

v ip6_frag

v ip6_opt

v ip6_opt_jumbo

v ip6_opt_nsap

v ip6_opt_tunnel

v ip6_opt_router

The following definitions are associated with the ip6_hdr structure:

v ip6_vcf

v ip6_flow

v ip6_plen

v ip6_nxt

Header Files

Chapter 2. Header Files 69

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

v ip6_hlim

v ip6_hops

v ip6_src

v ip6_dst

The following definitions are associated with the extension header structure:

v IP6F_OFF_MASK

v IP6F_RESERVED_MASK

v IP6F_MORE_FRAG

The following definitions are associated with the option header structure:

v IP6OPT_TYPE

v IP6OPT_TYPE_SKIP

v IP6OPT_TYPE_DISCARD

v IP6OPT_TYPE_FORCEICMP

v IP6OPT_TYPE_ICMP

v IP6OPT_MUTABLE

v IP6OPT_PAD1

v IP6OPT_PADN

v IP6OPT_JUMBO

v IP6OPT_NSAP_ADDR

v IP6OPT_TUNNEL_LIMIT

v IP6OPT_ROUTER_ALERT

v IP6OPT_JUMBO_LEN

v IP6_ALERT_MLD

v IP6_ALERT_RSVP

v IP6_ALERT_AN

netinet/tcp.h

The netinet/tcp.h header contains definitions for the Internet Transmission Control

Protocol (TCP) .

new

The <new> header file defines several types and functions that control allocation

and freeing of storage under program control.

Some of the functions declared in this header are replaceable. The implementation

supplies a default version. A program can, however, define a function with the same

signature to replace the default version at link time. The replacement version must

satisfy the requirements of the function.

namespace std {

 typedef void (*new_handler)();

 class bad_alloc;

 class nothrow_t;

 extern const nothrow_t nothrow;

// FUNCTIONS

 new_handler set_new_handler(new_handler ph) throw();

};

// OPERATORS

void operator delete(void *p) throw();

Header Files

70 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|

void operator delete(void *, void *) throw();

void operator delete(void *p, const std::nothrow_t&) throw();

void operator delete[](void *p) throw();

void operator delete[](void *, void *) throw();

void operator delete[](void *p, const std::nothrow_t&) throw();

void *operator new(std::size_t n) throw(std::bad_alloc);

void *operator new(std::size_t n, const std::nothrow_t&) throw();

void *operator new(std::size_t n, void *p) throw();

void *operator new[](std::size_t n) throw(std::bad_alloc);

void *operator new[](std::size_t n, const std::nothrow_t&) throw();

void *operator new[](std::size_t n, void *p) throw();

The <new> header file supercedes the new.h header, which remains for

compatibility as a wrapper to <new>.

bad_alloc

class bad_alloc : public exception {

 };

The class describes an exception thrown to indicate that an allocation request did

not succeed. The value returned by what() is an implementation-defined C string.

None of the member functions throw any exceptions.

new_handler

typedef void (*new_handler)();

The type points to a function suitable for use as a new handler.

nothrow

extern const nothrow_t nothrow;

The object is used as a function argument to match the parameter type nothrow_t.

nothrow_t

class nothrow_t {};

The class is used as a function parameter to operator new to indicate that the

function should return a null pointer to report an allocation failure, rather than throw

an exception.

new.h

The ISO/ANSI C++ Standard (ISO/IEC 14882:1998(E)) supersedes this header with

the new header <new>. However, new.h remains for compatibility as a wrapper for

TARGET releases of z/OS V1R2 and later.

For compilations with a TARGET release before z/OS V1R2, the new.h header file

declares the set_new_handler() function, which is used for z/OS C++ exception

handling (try, throw, and catch). This header file also declares array and non-array

version of the allocation operator new and the deallocation operator delete.

nlist.h

The nlist.h header file declares the nlist() function.

Header Files

Chapter 2. Header Files 71

nl_types.h

The nl_types.h header file defines the following types:

 nl_item int used as manifest constant by nl_langinfo()

nl_catd pointer to a catalog descriptor structure

The header also contains these constants:

 NL_SETD NL_CAT_LOCALE

The following functions are prototyped:

 catclose() catgets() catopen()

No feature test macro is required for nl_item.

To expose the other definitions in this header, compile with the _XOPEN_SOURCE

feature test macro defined.

For more information about the effect of locale, see setlocale(), locale.h, or look up

the individual functions in this book . For still more information, see the chapter ,

“Internationalization: Locales and Character Sets” in z/OS XL C/C++ Programming

Guide.

poll.h

The poll.h header file contains definitions for the poll() function.

pthread.h

The pthread.h header file contains function declarations and mappings for threading

interfaces and defines a number of constants used by those functions. The header

includes the sched.h header. When _UNIX03_THREADS is defined, pthread.h also

includes the time.h header. For _OPEN_THREADS applications, pthread.h defines

the timespec structure.

There is a lot of overlap in the namespaces identified by the _OPEN_THREADS

and _UNIX03_THREADS feature test macros. There are, however, behavioral

differences between functions of the same name exposed by _OPEN_THREADS

(POSIX.4a Draft 6) and by _UNIX03_THREADS (Single UNIX Specification, Version

3). See the individual function descriptions for specific details.

_OPEN_THREADS 1

 pthread_attr_destroy() pthread_attr_getdetachstate()

pthread_attr_getstacksize() pthread_attr_init()

pthread_attr_setdetachstate() pthread_attr_setstacksize()

pthread_cancel() pthread_cleanup_pop()

pthread_cleanup_push() pthread_condattr_destroy()

pthread_condattr_init() pthread_cond_broadcast()

pthread_cond_destroy() pthread_cond_init()

pthread_cond_signal() pthread_cond_timedwait()

pthread_cond_wait() pthread_create()

Header Files

72 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

|
|
|
|
|

pthread_detach() pthread_equal()

pthread_exit() pthread_getspecific()

pthread_join() pthread_key_create()

pthread_kill() pthread_mutexattr_destroy()

pthread_mutexattr_getpshared() pthread_mutexattr_gettype()

pthread_mutexattr_init() pthread_mutexattr_setpshared()

pthread_mutexattr_settype() pthread_mutex_destroy()

pthread_mutex_init() pthread_mutex_lock()

pthread_mutex_trylock() pthread_mutex_unlock()

pthread_once() pthread_rwlockattr_destroy()

pthread_rwlockattr_getpshared() pthread_rwlockattr_init()

pthread_rwlockattr_setpshared() pthread_rwlock_destroy()

pthread_rwlock_init() pthread_rwlock_rdlock()

pthread_rwlock_tryrdlock() pthread_rwlock_trywrlock()

pthread_rwlock_unlock() pthread_self()

pthread_setintr() pthread_setintrtype()

pthread_setspecific() pthread_testintr()

pthread_tag_np() pthread_yield()

_OPEN_THREADS 2

 pthread_getconcurrency() pthread_key_delete()

pthread_setcancelstate() pthread_setcanceltype()

pthread_setconcurrency() pthread_testcancel()

_OPEN_THREADS 3

 pthread_atfork()

pthread_attr_getguardsize() pthread_attr_setguardsize()

pthread_attr_getschedparam() pthread_attr_setschedparam()

pthread_attr_getstack() pthread_attr_setstack()

pthread_attr_getstackaddr() pthread_attr_setstackaddr()

_UNIX03_THREADS

 pthread_atfork() pthread_getspecific()

pthread_attr_destroy() pthread_join()

pthread_attr_getdetachstate() pthread_key_create()

pthread_attr_getguardsize() pthread_key_delete()

pthread_attr_getschedparam() pthread_mutex_destroy()

pthread_attr_getstack() pthread_mutex_init()

pthread_attr_getstackaddr() pthread_mutex_lock()

pthread_attr_getstacksize() pthread_mutex_trylock()

pthread_attr_init() pthread_mutex_unlock()

pthread_attr_setdetachstate() pthread_mutexattr_destroy()

pthread_attr_setguardsize() pthread_mutexattr_getpshared()

pthread_attr_setschedparam() pthread_mutexattr_gettype()

pthread_attr_setstack() pthread_mutexattr_init()

pthread_attr_setstackaddr() pthread_mutexattr_setpshared()

pthread_attr_setstacksize() pthread_mutexattr_settype()

pthread_cancel() pthread_once()

Header Files

Chapter 2. Header Files 73

||

|

|||

||

||

||

||
|

|

|||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

pthread_cleanup_pop() pthread_rwlock_destroy()

pthread_cleanup_push() pthread_rwlock_init()

pthread_cond_broadcast() pthread_rwlock_rdlock()

pthread_cond_destroy() pthread_rwlock_tryrdlock()

pthread_cond_init() pthread_rwlock_trywrlock()

pthread_cond_signal() pthread_rwlock_unlock()

pthread_cond_timedwait() pthread_rwlock_wrlock()

pthread_cond_wait() pthread_rwlockattr_destroy()

pthread_condattr_destroy() pthread_rwlockattr_getpshared()

pthread_condattr_getpshared() pthread_rwlockattr_init()

pthread_condattr_init() pthread_rwlockattr_setpshared()

pthread_condattr_setpshared() pthread_self()

pthread_create() pthread_setcancelstate()

pthread_detach() pthread_setcanceltype()

pthread_equal() pthread_setconcurrency()

pthread_exit() pthread_setspecific()

pthread_getconcurrency() pthread_testcancel()

 PTHREAD_CANCEL_ASYNCHRONOUS PTHREAD_MUTEX_DEFAULT

PTHREAD_CANCEL_DEFERRED PTHREAD_MUTEX_ERRORCHECK

PTHREAD_CANCEL_DISABLE PTHREAD_MUTEX_INITIALIZER

PTHREAD_CANCEL_ENABLE PTHREAD_MUTEX_NORMAL

PTHREAD_CANCELED PTHREAD_MUTEX_RECURSIVE

PTHREAD_COND_INITIALIZER PTHREAD_ONCE_INIT

PTHREAD_CREATE_DETACHED PTHREAD_PROCESS_PRIVATE

PTHREAD_CREATE_JOINABLE PTHREAD_PROCESS_SHARED

PTHREAD_EXPLICIT_SCHED PTHREAD_RWLOCK_INITIALIZER_NP

PTHREAD_INHERIT_SCHED

_OPEN_SYS

 pthread_attr_getsynctype_np() pthread_attr_getweight_np()

pthread_attr_setsynctype_np() pthread_attr_setweight_np()

pthread_condattr_getkind_np() pthread_condattr_setkind_np()

pthread_join_d4_np() pthread_mutexattr_getkind_np()

pthread_mutexattr_setkind_np() pthread_quiesce_and_get_np()

pthread_security_np() pthread_set_limit_np()

pthread_tag_np()

_OPEN_SYS_MUTEX_EXT

 pthread_condattr_getpshared() pthread_condattr_setpshared()

The pthread.h header defines the following constants:

 __COND_DEFAULT __COND_NODEBUG

__DETACHED __HEAVY_WEIGHT

__MEDIUM_WEIGHT __MUTEX_NODEBUG

__MUTEX_NONRECURSIVE __MUTEX_RECURSIVE

__UNDETACHED NO_PRIO_INHERIT

Header Files

74 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
|

|||

||

||

||

||

||

||

||

||

||
|

|

PRIO_INHERIT PTHREAD_DEFAULT_SCHED

PTHREAD_INHERIT_SCHED PTHREAD_INTR_ASYNCHRONOUS

PTHREAD_INTR_CONTROLLED PTHREAD_INTR_DISABLE

PTHREAD_INTR_ENABLE PTHREAD_ONCE_INIT

PTHREAD_SCOPE_GLOBAL PTHREAD_SCOPE_LOCAL

SCHED_FIFO SCHED_OTHER

SCHED_RR PRIO_PROTECT

__THDQ_FREEZE __THDQ_FREEZE_GET

__THDQ_ID __THDQ_UNFREEZE_ALL

__THDQ_VER01

Furthermore, pthread.h defines these macros:

 PTHREAD_MUTEX_DEFAULT PTHREAD_MUTEX_ERRORCHECK

PTHREAD_MUTEX_NORMAL PTHREAD_MUTEX_INITIALIZER

PTHREAD_MUTEX_RECURSIVE PTHREAD_RWLOCK_INITIALIZER

__THDQ_LENGTH

_OPEN_THREADS 2

 PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_DISABLE

PTHREAD_CANCEL_DEFERRED PTHREAD_CANCEL_ASYNCHRONOUS

pwd.h

The pwd.h header file declares functions that access the user database through a

password structure. The header file also defines the passwd structure.

_POSIX_SOURCE

 getpwnam() getpwuid()

_XOPEN_SOURCE_EXTENDED 1

 endpwent() getpwent() setpwent()

re_comp.h

The re_comp.h header file contains regular expression matching functions for

re_comp().

Note:

This header is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use regcomp(), regexec(), regerror() and regfree() functions and the

header, which provide full internationalized regular expression functionality

compatible with IEEE Std 1003.1-2001 Regular Expressions.

Applications conforming to Single UNIX Specification, Version 3 must not

include the <re_comp.h> header file.

Header Files

Chapter 2. Header Files 75

|
|
|
|
|
|

|
|

regex.h

The regex.h header file contains definitions for the following regular expression

functions.

 regcomp() regerror() regexec() regfree()

The regex.h header file declares the regex_t type, which can store a compiled

regular expression.

The regex.h header file declares the following macros:

v Values of the cflags parameter of the regcomp() function: REG_EXTENDED,

REG_ICASE, REG_NEWLINE, REG_NOSUB

v Values of the eflags parameter of the regexec() function: REG_NOTBOL,

REG_NOTEOL

v Values of the errcode parameter of the regerror() function: REG_*.

regexp.h

The regexp.h header file contains regular expression declarations.

Note:

This header is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use regcomp(), regexec(), regerror() and regfree() functions and the

header, which provide full internationalized regular expression functionality

compatible with IEEE Std 1003.1-2001 Regular Expressions.

Applications conforming to Single UNIX Specification, Version 3 must not

include the <regexp.h> header file.

resolv.h

The resolv.h header file contains the __res_state structure and the definitions to

support the IP Address Resolution functions commonly called the Resolver. It

contains the prototypes for the following functions — dn_comp(), dn_expand(),

dn_find(), dn_skipname(), res_init(), res_mkquery(), res_query(), res_querydomain(),

res_search(), and res_send() — which are used to communicate with a Domain

Name Server (DNS).

rexec.h

The rexec.h header file declares the rexec() and rexec_af() functions.

sched.h

The sched.h header file declares functions to manipulate and examine process

execution scheduling.

_UNIX03_SOURCE

 sched_yield()

Header Files

76 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|

|
|

When compiled with SUSV3 thread support (_UNIX03_THREADS or

_XOPEN_SOURCE 600), sched.h defines the following symbols:

 SCHED_FIFO SCHED_OTHER SCHED_RR

and the sched_param structure.

search.h

The search.h header file contains definitions for searching tables.

setjmp.h

The setjmp.h header file contains function declarations for longjmp() and setjmp(),

which use the system stack to affect the program state. It also defines one buffer

type, jmp_buf, that the setjmp() and longjmp() functions use to save and restore the

program state.

_POSIX_SOURCE

setjmp.h declares functions siglongjmp() and sigsetjmp() and defines a buffer type

sigjmp_buf used by siglongjmp() and sigsetjmp().

_XOPEN_SOURCE_EXTENDED 1

setjmp.h declares the functions _longjmp() and _setjmp(). See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information about using POSIX support.

signal.h

The signal.h header file defines the following values.

v Functions:

 raise() signal()

v Macros:

 SIG_DFL SIG_ERR SIG_IGN SIG_PROMOTE

v Signals:

 SIGABND SIGABRT SIGFPE SIGILL SIGINT

SIGIOERR SIGSEGV SIGTERM SIGUSR1 SIGUSR2

v The type sig_atomic_t, which is the largest integer type the processor can load

or store automatically in the presence of asynchronous interrupts.

The following functions are supported only in a POSIX program. You must specify

the POSIX(ON) run-time option for these functions. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

 kill() sigaction() __sigactionset() sigaddset() sigdelset()

sigemptyset() sigfillset() sigismember() siglongjmp() sigpending()

Header Files

Chapter 2. Header Files 77

|
|

||||
|

|

sigprocmask() sigsuspend() sigtimedwait() sigwait() sigwaitinfo()

The following values are available in z/OS UNIX System Services services only:

v Signals:

 SIGALRM SIGCHLD SIGCONT SIGHUP SIGKILL

SIGPIPE SIGQUIT SIGSTOP SIGTHCONT SIGTHSTOP

SIGTTIN SIGTTOU SIGTSTP SIGIO SIGTRAP

SIGCLD SIGDCE

v The structures sigaction, __sigactionset_t, __sigactionset_s, sigset_t, and

pid_t.

v options arguments for sigprocmask(): SIG_BLOCK, SIG_UNBLOCK, and

SIG_SETMASK.

v Flags for the sa_flags field, available in z/OS UNIX System Services services

only: SA_NOCLDSTOP and _SA_OLD_STYLE.

_XOPEN_SOURCE_EXTENDED 1:

v Signals:

 SIGBUS SIGPOLL SIGPROF SIGSYS SIGURG

SIGXCPU SIGXFSZ SIGVTALRM SIGWINCH

v Functions:

 bsd_signal() killpg() sigaltstack() sighold() sigignore()

siginterrupt() sigpause() sigrelse() sigset() sigstack()

Note: bsd_signal() has been marked obsolescent in Single UNIX Specification,

Version 3 and may be withdrawn in a future version. The sigaction()

function is preferred for portability.

_OPEN_THREADS 2:

v Functions:

 pthread_sigmask()

_UNIX03_THREADS:

v pthread_kill()

spawn.h

The spawn.h header file contains spawn() constants and inheritance structure.

spc.h

Restriction: This header file is not supported in AMODE 64.

This header file is supported only for z/OS C applications.

The spc.h header file contains declarations for the functions available in the system

programming environment, as described in “using the System Programming C

Header Files

78 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

|

|

Facility” in z/OS XL C/C++ Programming Guide. The functions are:

 edcxregs edcxusr edcxusr2 __xhotc() __xhotl()

__xhott() __xhotu() __xregs() __xsacc() __xsrvc()

__xusr() __xusr2() __24malc() __4kmalc()

The spc.h header file also declares these functions, used for the allocation of

storage and writing of strings, (which are described in Chapter 3, “Part 3. Library

Functions”):

 calloc() free() malloc() realloc() sprintf()

stdarg.h

The stdarg.h header file defines macros used to access arguments in functions with

variable-length argument lists:

 va_arg() va_copy() va_start()

va_end()

The stdarg.h header file also defines the structure va_list.

stdbool.h

The <stdbool.h> header defines the following macros:

bool expands to _Bool

__bool_true_false_are_defined

expands to 1

false expands to 0

true expands to 1

Restriction: This header is not supported for C++ applications.

stddef.h

The stddef.h header file contains definitions of the commonly used pointers,

variables, and types, from the typedef statements, as listed below:

ptrdiff_t

The signed long type of the result of subtracting two pointers.

size_t typedef for the type of the value returned by sizeof.

wchar_t

typedef for a wide-character constant.

stddef.h defines the macros NULL and offsetof. NULL is a pointer that never

points to a data object. The offsetof macro expands to the number of bytes

between a structure member and the start of the structure. The offsetof macro has

the form offsetof(structure_type, member)

Header Files

Chapter 2. Header Files 79

|
|||

stdefs.h

The stdefs.h header file contains the same information as found in <stddef.h>.

stdint.h

The stdint.h header defines integer types, limits of specified width integer types,

limits of other integer types and macros for integer constant expressions.

Note: For the exact width integer types, minimum width integer types and limits of

specified width integer types we support bit sizes N with the values 8, 16,

32, and 64.

The following exact width integer types are defined.

v intN_t

v uintN_t

The following minimum-width integer types are defined.

v int_leastN_t

v uint_leastN_t

The following fastest minimum-width integer types are defined. These types are the

fastest to operate with among all integer types that have at least the specified

width.

v int_fastN_t

v uint_fastN_t

The following greatest-width integer types are defined. These types hold the value

of any signed/unsigned integer type.

Note: Requires long long to be available.

v intmax_t

v uintmax_t

The following integer types capable of holding object pointers are defined.

v intptr_t

v uintptr_t

Object-like macros for limits of integer types

Note: For the exact width integer limits, minimum width integer limits and limits of

specified width integer types we support bit sizes N with the values 8, 16,

32, and 64.

Macros for limits of exact width integer types.

v INTN_MAX

v INTN_MIN

v UINTN_MAX

Macros for limits of minimum width integer types.

v INT_LEASTN_MAX

v INT_LEASTN_MIN

Header Files

80 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v UINT_LEASTN_MAX

Macros for limits of fastest minimum width integer types,

v INT_FASTN_MAX

v INT_FASTN_MIN

v UINT_FASTN_MAX

Macros for limits of greatest width integer types.

Note: Requires long long to be available.

v INTMAX_MAX

v INTMAX_MIN

v UINTMAX_MAX

Macros for limits of pointer integer types.

v INTPTR_MAX

v INTPTR_MIN

v UINTPTR_MAX

Macros for limits of ptrdiff_t.

v PTRDIFF_MAX

v PTRDIFF_MIN

Macros for limits of sig_atomic_t.

v SIG_ATOMIC_MAX

v SIG_ATOMIC_MIN

Macro for limit of size_t.

v SIZE_MAX

Macros for limits of wchar_t.

v WCHAR_MAX

v WCHAR_MIN

Macros for limits of wint_t.

v WINT_MAX

v WINT_MIN

Function-like macros for integer constants

Note: For the following macro for minimum width integer constants, we support bit

sizes N with the values 8, 16, 32, and 64.

Macros for minimum width integer constants.

v INTN_C(value)

v UINTN_C(value)

Example:

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdio.h>

Header Files

Chapter 2. Header Files 81

int main(void)

 {

 uint32_t a = UINT32_C(1234);

 printf("%u\n",a);

 }

Output

1234

Here is an example of how the compiler expands the macro

| uint32_t a = UINT32_C(1234);

+ uint32_t a = 1234U;

Macros for greatest width integer constants

Note: Requires long long to be available.

v INTMAX_C(value)

v UINTMAX_C(value)

Example:

/* long long required */

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdio.h>

 int main(void)

 {

 intmax_t a = INTMAX_C(45268724);

 printf("%jd\n",a);

 }

Output

45268724

Here is an example of how the compiler expands the macro with the LP64 compiler

option:

| intmax_t a = INTMAX_C(45268724);

+ intmax_t a = 45268724L;

Otherwise the compiler expands to:

| intmax_t a = INTMAX_C(45268724);

+ intmax_t a = 45268724LL;

stdio.h

The stdio.h header file declares functions that deal with standard input and output.

One of these functions, fdopen(), is supported only in a POSIX program. See “z/OS

XL C/C++ applications with z/OS UNIX System Services C functions” on page 13

for more information.

The stdio.h header file also declares these functions:

 clearerr() clrmemf() fclose() fdelrec() feof()

Header Files

82 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ferror() fflush() fgetc() fgetpos() fgets()

fldata() flocate() fopen() fprintf() fputc()

fputs() fread() freopen() fscanf() fseek()

fseeko() fsetpos() ftell() ftello() fupdate()

fwrite() getc() getchar() gets() perror()

printf() putc() putchar() puts() remove()

rename() rewind() scanf() setbuf() setvbuf()

sprintf() sscanf() svc99() tmpfile() tmpnam()

ungetc() vfprintf() vprintf() vsprintf()

Defined Types in stdio.h

The FILE type is defined in stdio.h. Stream functions use a pointer to the FILE type

to get access to a given stream. The system uses the information in the FILE

structure to maintain the stream. The C standard streams stdin, stdout, and

stderr are also defined in stdio.h.

The type fpos_t is defined in stdio.h for use with fgetpos() and fsetpos().

The types __S99parms, __S99rbx_t, and __S99emparms_t are defined in stdio.h for

use with the svc99() function.

The type fldata_t is defined in stdio.h for use with the fldata() function.

The types __amrc_type and __amrc2_type are defined in stdio.h for use in

determining error information when I/O functions fail.

Macros Defined in stdio.h

You can use these macros as constants in your programs, but you should not alter

their values.

BUFSIZ Specifies the buffer size to be used by the setbuf() library function

when you are allocating buffers for stream I/O. This value is the

expected size of the user’s buffer supplied to setbuf(). If a larger

buffer is required, for example, if blocksize is larger than BUFSIZ,

or if special buffer attributes are required, z/OS XL C/C++

applications will not use the user’s buffer.

EOF The value returned by an I/O function when the End Of File (EOF)

(or in some cases, an error) is found.

FOPEN_MAX The maximum number of files that can be open simultaneously.

FILENAME_MAX The maximum number of characters in a filename. Can be used in

the size specification of an array (for example, to hold the filename

returned by fldata()).

L_tmpnam The size of the longest temporary name that can be generated by

the tmpnam() function.

L_ctermid Maximum size of a character array for ctermid() output. This macro

is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page

13 for more information.

NULL A pointer which never points to a data object.

TMP_MAX The maximum number of unique file names that can be generated

by the tmpnam() function.

Header Files

Chapter 2. Header Files 83

The macros SEEK_CUR, SEEK_END, and SEEK_SET expand to integral constant

expressions and can be used as the third argument to fseek().

The macros _IOFBF, _IOLBF, and _IONBF expand to integral constant expressions

with distinct values suitable for use as the third argument to the setvbuf() function.

The following macros expand to integer constant expressions suitable for

interpreting values returned by fldata(), in the fldata_t structure.

 __APPEND __BINARY __DISK __DUMMY

__ESDS __ESDS_PATH __HFS __HIPERSPACE

__KSDS __KSDS_PATH __MEMORY __MSGFILE

__NORLS __NOTVSAM __OTHER __PRINTER

__READ __RECORD __RLS __RSDS

__TAPE __TDQ __TERMINAL __TEXT

__UPDATE __WRITE

The following macros expand to integral constant expressions suitable for use as

the fourth argument to the flocate() function.

 __KEY_EQ __KEY_EQ_BWD __KEY_FIRST __KEY_GE

__KEY_LAST __RBA_EQ __RBA_EQ_BWD

The following macros expand to integral constant expressions suitable for use as

the argument to the function clrmemf().

 __CURRENT __CURRENT_LOWER __LOWER

The following macros expand to integral constant expressions suitable for use to

determine the last operation reported in the __amrc_type structure. All these macros

are described in z/OS XL C/C++ Programming Guide.

 __BSAM_BLDL __BSAM_CLOSE __BSAM_CLOSE_T

__BSAM_NOTE __BSAM_OPEN __BSAM_POINT

__BSAM_READ __BSAM_STOW __BSAM_WRITE

__C_CANNOT_EXTEND __C_DBCS_SI_TRUNCATE __C_DBCS_SO_TRUNCATE

__C_DBCS_TRUNCATE __C_DBCS_UNEVEN __C_FCBCHECK

__C_TRUNCATE __CELMSGF_WRITE __CICS_WRITEQ_TD

__HSP_CREATE __HSP_DELETE __HSP_EXTEND

__HSP_READ __HSP_WRITE __INTERCEPT_READ

__INTERCEPT_WRITE __IO_CATALOG __IO_DEVTYPE

__IO_INIT __IO_LOCATE __IO_OBTAIN

__IO_RDJFCB __IO_RENAME __IO_SCRATCH

__IO_TRKCALC __IO_UNCATALOG __LFS_CLOSE

__LFS_FSTAT __LFS_LSEEK __LFS_OPEN

__LFS_READ __LFS_WRITE __NOSEEK_REWIND

__OS_CLOSE __OS_OPEN __QSAM_FREEPOOL

__QSAM_GET __QSAM_PUT __QSAM_RELSE

__QSAM_TRUNC __SVC99_ALLOC __SVC99_ALLOC_NEW

__SVC99_UNALLOC __TGET_READ __TPUT_WRITE

__VSAM_CLOSE __VSAM_ENDREQ __VSAM_ERASE

__VSAM_GENCB __VSAM_GET __VSAM_MODCB

__VSAM_OPEN_ESDS __VSAM_OPEN_ESDS_PATH __VSAM_OPEN_FAIL

__VSAM_OPEN_KSDS __VSAM_OPEN_KSDS_PATH __VSAM_OPEN_RRDS

Header Files

84 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__VSAM_POINT __VSAM_PUT __VSAM_SHOWCB

__VSAM_TESTCB

stdlib.h

The stdlib.h header file contains declarations for the following functions:

 abort() abs()[1,3] alloca()[1] atexit() atof()

atoi() atol() bsearch() calloc() cds()[1]

clearenv() cs()[1] csid() div()[3] exit()

fetch()[2] fetchep()[2] free() getenv() labs()

ldiv() llabs() lldiv() __librel() malloc()

mblen() mbstowcs() mbtowc() qsort() rand()

realloc() release()[2] rpmatch() setenv() srand()

strtod() strtol() strtoll() strtoul() strtoull()

system() unatexit() wcsid() wcstombs() wctomb()

strtod32()[4] strtod64()[4] strtod128()[4]

_UNIX03_SOURCE

 unsetenv()

[1] Built-in function.

[2] Not supported under C++ applications.

[3] Special Behavior for C++: For C++ applications, the functions abs() and div()

are also overloaded for the type long.

[4] The __STDC_WANT_DEC_FP__ feature test macro is required to expose

decimal floating-point functionality.

Two type definitions are added to stdlib.h for the Compare and Swap functions cs()

and cds(). The structures defined are __cs_t and __cds_t.

The type size_t is declared in the header file. It is used for the type of the value

returned by sizeof. The type wchar_t is declared and used for a wide character

constant. For more information on the types size_t and wchar_t, see “stddef.h” on

page 79.

The stdlib.h declares div_t and ldiv_t, which define the structure types that are

returned by div() and ldiv().

The stdlib.h file also contains definitions for the following macros:

NULL The NULL pointer constant (also defined in

stddef.h).

EXIT_SUCCESS Used by the atexit() function.

EXIT_FAILURE Used by the atexit() function.

RAND_MAX Expands to an integer representing the largest

number that the RAND function can return.

MB_CUR_MAX Expands to an integer representing the maximum

Header Files

Chapter 2. Header Files 85

|||||

|
|

number of bytes in a multibyte character. This value

is dependent on the current locale.

 If MB_CUR_MAX is set to 1, multibyte functions will

behave as if all multibyte characters are one byte

long; wide-character functions are not supported

and full DBCS support is not provided. If

MB_CUR_MAX is 4, all DBCS support provided by

the library is enabled.

string.h

The string.h header file declares the string manipulation functions and their built-in

versions:

No feature test macro required.

 memchr()[1] memcmp()[1] memcpy()[1] memmove() memset()[1]

strcat()[1] strchr()[1] strcmp()[1] strcoll() strcpy()[1]

strcspn() strerror() strlen()[1] strncat()[1] strncmp()[1]

strncpy()[1] strpbrk() strrchr()[1] strspn() strstr()

strtok() strxfrm()

_UNIX03_SOURCE

 strerror_r

[1] Built-in function.

_XOPEN_SOURCE

 memccpy()

_XOPEN_SOURCE_EXTENDED 1

 strdup()

The string.h header file also defines the macro NULL and the type size_t. For more

information see “stddef.h” on page 79.

strings.h

The strings.h header file contains definitions for string operations.

stropts.h

The stropts.h header file declares the following functions:

 fattach() fdetach() getmsg() getpmsg()

ioctl() isastream() putmsg() putpmsg()

Header Files

86 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

syslog.h

The syslog.h header file contains definitions for system error logging.

sys/acl.h

The sys/acl.h header enables users to manipulate ACLs. It also declares the

following functions:

 acl_create_entry() acl_delete_entry() acl_delete_fd() acl_delete_file()

acl_first_entry() acl_free() acl_from_text() acl_get_entry()

acl_get_fd() acl_get_file() acl_init() acl_set_fd()

acl_set_file() acl_sort() acl_to_text() acl_update_entry()

acl_valid()

sys/__cpl.h

The sys/__cpl.h header contains definition for the __cpl() function. It also defines

the following constants:

 Table 11. Symbolic Constants defined in sys/__cpl.h

Symbolic Constant Description

CPL_QUERY Request data from available Coupling Facilities

CPL_CFSIZER Request a structure size

CPL_CFSIZER_W_LVL Request a structure size with the level of the CF

sys/file.h

The sys/file.h header file defines file manipulation constants.

sys/__getipc.h

The sys/__getipc.h header file contains definitions to get interprocess

communication information.

sys/ioctl.h

The sys/ioctl.h header file contains system I/O definitions and structures.

sys/ipc.h

The sys/ipc.h header file contains definitions for the interprocess communication

access structure.

sys/layout.h

The sys/layout.h header file contains declarations for supporting bidirectional (Bidi)

conversion of data between Visual (MVS) and Implicit (z/OS UNIX) formats. Initial

support is for Arabic and Hebrew data.

sys/mman.h

The sys/mman.h header file contains memory management declarations.

Header Files

Chapter 2. Header Files 87

|

sys/__messag.h

The sys/__messag.h header file contains definitions for the __console() function.

sys/mntent.h

This header file is supported only in an _OPEN_SYS program. See “z/OS XL

C/C++ applications with z/OS UNIX System Services C functions” on page 13 for

more information.

The sys/mntent.h header file declares the w_getmntent() function and it defines the

structures mnte2 and w_mntent, along with some related constants.

sys/modes.h

The sys/modes.h header file contains several macro definitions:

v Defined constant masks and bits for values of type mode_t, such as the st_mode

field of the stat struct

v A defined constant mask for the st_genvalue field of the stat struct

v Function-like macros for testing values of the st_mode field of the stat struct.

Under z/OS XL C support, these definitions are included in sys/stat.h to make

sys/stat.h conform with POSIX.

sys/msg.h

The sys/msg.h header file contains definitions for message queue structures.

sys/ps.h

The sys/ps.h header file declares the w_getpsent() function that provides process

data and defines the structure w_psproc along with some related constants.

It requires the _OPEN_SOURCE 1 feature test macro.

sys/resource.h

The sys/resource.h header file contains definitions for XSI resource operations,

including declarations, constants, and structures used by the following functions:

v getpriority()

v getrlimit()

v getrusage()

v setpriority()

v setrlimit()

sys/select.h

The sys/select.h header file contains definitions for select types.

sys/sem.h

The sys/sem.h header file contains definitions for the semaphore facility.

Header Files

88 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|

|
|

|

|

|

|

|

|

|

sys/server.h

The sys/server.h header file contains definitions for using WorkLoad Manager

services.

sys/shm.h

The sys/shm.h header file contains definitions for the shared memory facility.

sys/socket.h

The sys/socket.h header file contains sockets definitions.

The structure sockaddr_storage is exposed by defining the feature test macro

_OPEN_SYS_SOCK_IPV6 or _OPEN_SYS_SOCK_EXT3.

sys/stat.h

The sys/stat.h header file declares the following functions related to z/OS UNIX

System Services files and their access:

 chaudit() chmod() creat() fchaudit() fchmod()

fstat() lstat() mkdir() mkfifo() mknod()

__mount() mount() __open_stat() stat() umask()

umount()

sys/statfs.h

The sys/statfs.h header file declares the w_statfs() function that provides file system

status and the w_statfs structure. It requires the _OPEN_SYS feature test macro.

sys/statvfs.h

The sys/statvfs.h header file contains definitions for file system status.

sys/time.h

The sys/time.h header file contains definitions for time types.

sys/timeb.h

The sys/timeb.h header file contains additional definitions for date and time.

sys/times.h

The sys/times.h header file declares the times() function that gets processor times

for use by processes. It requires the _POSIX_SOURCE feature test macro.

sys/ttydev.h

The sys/ttydev.h header file defines constants used by the terminal I/O functions.

Header Files

Chapter 2. Header Files 89

|
|

sys/types.h

The sys/types.h header file defines a collection of typedef symbols and structures.

 Table 12. sys/types.h: _OE_SOCKETS or _ALL_SOURCE

u_char unsigned char

u_int unsigned int

ushort unsigned short

u_short unsigned short

u_long unsigned long

 Table 13. sys/types.h: _OE_SOCKETS or _XOPEN_SOURCE_EXTENDED 1

in_addr_t Internet address

ip_addr_t Internet address

caddr_t Used for message data pointer

 Table 14. sys/types.h: _OPEN_THREADS

pthread_t Identify a thread

pthread_attr_t Identify a thread attribute object

pthread_mutex_t Mutexes

pthread_mutexattr_t Identify a mutex attribute object

pthread_cond_t Condition variables

pthread_condattr_t Identify a condition attribute object

pthread_key_t Thread-specific data keys

pthread_once_t Dynamic package initialization

 Table 15. sys/types.h: _POSIX_SOURCE

dev_t Device numbers

gid_t Group IDs

ino_t File serial numbers

mode_t Some file attributes

nlink_t Link counts

off_t File sizes, long

pid_t Process IDs and process group ids

size_t unsigned long

ssize_t Signed long

uid_t user IDs

time_t Time values

clock_t Time values, int

sigset_t Signal set

cc_t cc_t

tty control chars

speed_t tty baud rate

tcflag_t tty modes

mtm_t Mount requests

rdev_t Device numbers

 Table 16. sys/types.h: _XOPEN_SOURCE

key_t Interprocess communications, long

 Table 17. sys/types.h: _XOPEN_SOURCE 500

blksize_t Block sizes

blkcnt_t File block counts

fsblkcnt_t Filesystem block counts

Header Files

90 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 17. sys/types.h: _XOPEN_SOURCE 500 (continued)

fsfilcnt_t File serial numbers

suseconds_t Time values in range [-1,1,000,000]

 Table 18. sys/types.h: _XOPEN_SOURCE_EXTENDED 1

id_t General identifier, can contain a pid_t or a gid_t

useconds_t Microseconds

sa_family_t Address family

in_port_t AF_INET port

sys/uio.h

The sys/uio.h header file contains definitions for vector I/O operations.

sys/un.h

The sys/un.h header file contains definitions for UNIX-domain sockets.

sys/__ussos.h

The sys/__ussos.h header file contains the _SET_THLIIPADDR() macro, which sets

a client’s IP address for security facility authorization (SAF).

sys/utsname.h

The sys/utsname.h header file declares the utsname structure and the uname()

function, which returns the name of the current operating system. It requires the

_POSIX_SOURCE feature test macro.

sys/wait.h

The sys/wait.h header file declares the following functions, used for holding

processes.

_POSIX_SOURCE

 wait() waitpid()

_XOPEN_SOURCE_EXTENDED 1

 waitid() wait3()

Note: wait3() has been withdrawn in Single UNIX Specification, Version 3.

sys/__wlm.h

The sys/__wlm.h header file contains definitions for WorkLoad Manager functions.

tar.h

The tar.h header file contains definitions for the tar utility.

Header Files

Chapter 2. Header Files 91

|

terminat.h

The ISO/ANSI C++ Standard (ISO/IEC 14882:1998(E)) supersedes this header with

the new header <exception>. However, terminat.h remains for compatibility as a

wrapper for TARGET releases of z/OS V1R2 and later.

For compilations with a TARGET release before z/OS V1R2, the terminat.h header

file, which is used for z/OS XL C++ exception handling, declares the terminate() and

set_terminate() functions.

termios.h

The termios.h header file contains constants, prototypes, and typedef definitions of

POSIX terminal I/O functions. It includes the __termcp structure, and declares the

following functions:

 cfgetispeed() cfgetospeed() cfsetispeed() cfsetospeed() tcdrain()

tcflow() tcflush() tcgetattr() __tcgetcp() tcgetsid()

tcsendbreak() tcsetattr() __tcsetcp() __tcsettables()

These functions are supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

The termios.h header file also contains constants, prototypes and typedef definitions

for the w_ioctl() function.

tgmath.h

The header tgmath.h includes the headers math.h and complex.h and defines a

number of type-generic macros. This requires the compiler that is designed to

support C99.

Use of the macro invokes a function whose corresponding real type and type

domain are determined by the arguments for the generic parameters. If there is

more than one real floating type argument, usual arithmetic conversions are applied

to the real floating type arguments so that they have compatible types. Then,

v If any argument has type _Decimal128, the type determined is _Decimal128.

v Otherwise, if any argument has type _Decimal64, the type determined is

_Decimal64.

v Otherwise, if any argument has type _Decimal32, the type determined is

_Decimal32.

v Otherwise, if any argument has type long double, the type determined is long

double.

v Otherwise, if any argument has type double or is of integer type, the type

determined is double.

v Otherwise, if none of the above the type determined is float.

All the functions in math.h and complex.h have their corresponding type generic

macros in this header where if for a function in math.h, there is a corresponding c

prefixed function in complex.h, then the corresponding type generic macro has the

same name as the one in math.h. The macros are:

 acos acosh asin asinh atan atan2

Header Files

92 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|

|
|

|
|

|
|

|
|

|

atanh carg cbrt ceil cimag conj

copysign cos cosh cproj creal erf

erfc exp exp2 expm1 fabs fdim

floor fma fmax fmin fmod frexp

hypot ilogb ldexp lgamma llrint llround

log log10 log1p log2 logb lrint

lround nearbyint nextafter nexttoward pow remainder

remquo rint round scalbln scalbn sin

sinh sqrt tan tanh tgamma trunc

quantize() samequantum()

[1] The following type-generic macros are not supported for decimal-floating point

types: carg(), cimag(), conj(), cproj(), creal().

Restrictions:

v This header does not support the _FP_MODE_VARIABLE feature

test macro.

v This header is not supported for C++ applications.

Examples

The macro exp (int n) invokes the function exp (int n)

The macro acosh (float f) invokes the function acoshf (float f)

The macro log (float complex fc) invokes the complex function clogf (float

complex fc)

The macro pow (double complex dc, float f) invokes cpow (double complex dc,

float f)

time.h

The time.h header file declares the time and date functions:

 asctime() clock() ctime() difftime() gmtime()

localtime() mktime() strftime() strptime() time()

tzset()[1]

[1] These functions are supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

The time.h header file also provides:

v A structure timespec containing the following members:

 time_tv_sec; seconds

 long tv_nsec; nanoseconds

v A structure tm containing the components of a calendar time. See Table 19 on

page 94 for a list of the members of the tm structure. This structure is used by

the functions asctime(), gmtime(), localtime(), mktime(), strftime(), and

strptime().

v A macro CLOCKS_PER_SEC equal to the number per second of the value returned

by the clock() function.

Header Files

Chapter 2. Header Files 93

|||||

|
|

v Types clock_t, time_t, and size_t.

v The NULL pointer constant. For more information on NULL and the type size_t,

see “stddef.h” on page 79.

v The macro CLK_TCK, which is the number of clock ticks per second, is kept for

historical reasons. It was used in connection with the return value of the clock()

function. CLK_TCK has been withdrawn and is not supported as part of Single

UNIX Specification, Version 3. New applications should use

sysconf(_SC_CLK_TCK) instead of the CLK_TCK macro.

However, if it is necessary to continue using this symbol in an application written

for Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX Specification,

Version 3.

 Table 19. Fields of tm Structure

Field Description

tm_sec Seconds (0-60)

tm_min Minutes (0-59)

tm_hour Hours (0-23)

tm_mday Day of month (1-31)

tm_mon Month (0-11; January = 0)

tm_year Year (current year minus 1900)

tm_wday Day of week (0-6; Sunday = 0)

tm_yday Day of year (0-365; January 1 = 0)

tm_isdst Zero if Daylight Saving Time is not in effect; positive if Daylight Saving Time

is in effect; negative if the information is not available.

The time functions are affected by the current locale selected. The LC_CTYPE

category affects the behavior of the strftime(), strptime(), and wcsftime() functions.

The LC_TOD category affects the behavior of the gmtime(), mktime(), and

localtime() functions.

typeinfo

The typeinfo header file defines several types associated with the type-identification

operator typeid, which yields information about both static and dynamic types.

namespace std {

 class type_info;

 class bad_cast;

 class bad_typeid;

 };

type_info

The class describes type information generated within the program by the

implementation. Objects of this class effectively store a pointer to a name for the

type, and an encoded value suitable for comparing two types for equality or

collating order. The names, encoded values, and collating order for types are all

unspecified and may differ between program executions.

Header Files

94 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

|
|
|
|
|

An expression of the form typeid x is the only way to construct a (temporary)

typeinfo object. The class has only a private copy constructor. Since the assignment

operator is also private, you cannot copy or assign objects of class typeinfo either.

class type_info {

public:

 virtual ~type_info();

 bool operator==(const type_info& rhs) const;

 bool operator!=(const type_info& rhs) const;

 bool before(const type_info& rhs) const;

 const char *name() const;

private:

 type_info(const type_info& rhs);

 type_info& operator=(const type_info& rhs);

 };

type_info::operator!=

bool operator!=(const type_info& rhs) const;

The function returns !(*this == rhs).

type_info::operator==

bool operator==(const type_info& rhs) const;

The function returns a nonzero value if *this and rhs represent the

same type.

type_info::before

bool before(const type_info& rhs) const;

The function returns a nonzero value if *this precedes rhs in the

collating order for types.

type_info::name

const char *name() const;

The function returns a C string which specifies the name of the type.

bad_cast

class bad_cast : public exception {

 };

The class describes an exception thrown to indicate that a dynamic cast

expression, of the form:

 dynamic_cast<type>(expression)

generated a null pointer to initialize a reference. The value returned by what() is an

implementation-defined C string. None of the member functions throw any

exceptions.

bad_typeid

class bad_typeid : public exception {

 };

The class describes an exception thrown to indicate that a typeid operator

encountered a null pointer. The value returned by what() is an implementation-
defined C string. None of the member functions throw any exceptions.

Header Files

Chapter 2. Header Files 95

typeinfo.h

The ISO/ANSI C++ Standard (ISO/IEC 14882:1998(E)) supersedes this header with

the new header <typeinfo>. While this header represents function that did not

previously exist on the z/OS and OS/390 operating systems, it is being provided

now for compatibility as a wrapper to <typeinfo>.

The typeinfo.h header file contains definitions for types associated with the

type-identification operator typeid, which yields information about both static and

dynamic types.

ucontext.h

The ucontext.h header file contains the prototypes and definitions needed by the

following functions:

 getcontext() setcontext() makecontext() swapcontext()

uheap.h

The uheap.h header file contains the prototypes and definitions needed by the

following functions:

 __ucreate() __umalloc() __ufree() __uheapreport()

ulimit.h

The ulimit.h header file contains definitions for ulimit commands.

unexpect.h

The ISO/ANSI C++ Standard (ISO/IEC 14882:1998(E)) supersedes this header with

the new header <exception>. However, unexpect.h remains for compatibility as a

wrapper for TARGET releases of z/OS V1R2 and later.

For compilations with a TARGET release before z/OS V1R2, the unexpect.h header

file, which is used for z/OS XL C++ exception handling, declares the unexpected()

and set_unexpected() functions.

unistd.h

The unistd.h header file declares a number of implementation-specific functions:

 __atoe() __atoe_l() __check_resource_auth_np()

__convert_id_np() __etoa() __etoa_l() __isPosixOn()

__smf_record() __wsinit()

XPLINK

__a2e_l() __a2e_s() __e2a_l() __e2a_s()

There are also a large number of POSIX and UNIX functions declared, shown

below with the minimum feature test macro needed to expose them:

 access() alarm() chdir() chown()

close() ctermid() dup() dup2()

Header Files

96 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|||||
|

|

|

|
|

|||||
||||

execl() execle() execlp() execv()

execve() execvp() _exit() fork()

fpathconf() getcwd() getegid() geteuid()

getgid() getgroups() getlogin() getpgrp()

getpid() getppid() getuid() isatty()

link() lseek() pathconf() pause()

pipe() read() rmdir() setgid()

setpgid() setsid() setuid() sleep()

sysconf() tcgetpgrp() tcsetpgrp() ttyname()

unlink() write()

__certificate() __getlogin1() __login() __pid_affinity()

POSIX1_SOURCE = 2

 fchown() fsync() ftruncate() readlink()

setegid() setgeuid() symlink()

POSIX_C_SOURCE = 2

External Variables

 optarg opterr optind optopt

_XOPEN_SOURCE

 chroot() confstr() crypt() cuserid()

encrypt() getopt() getpass() nice()

swab()

_XOPEN_SOURCE = 500

 brk() fchdir() getdtablesize() gethostid()

gethostname() getlogin_r() getpagesize() getpgid()

getsid() getwd() lchown() lockf()

pread() pwrite() sbrk() setpgrp()

setregid() setreuid() sync() truncate()

ttyname_r() ualarm() usleep() vfork()

The unistd.h header file also defines many symbols to represent configuration

variables and implementation features provided. Some of these are used at compile

time, while others are used to interrogate the system during run-time, using

sysconf(), confstr(), pathconf(), or fpathconf().

utime.h

The utime.h header file declares the utimbuf structure and the utime() function,

which is used to set file access and modification times.

The utime() function is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

Header Files

Chapter 2. Header Files 97

|

|||||
||||
|

|

|

|||||
|

|

|

|
|
|
|

utmpx.h

The utmpx.h header file contains user accounting database definitions.

varargs.h

The varargs.h header file contains definitions for handling variable argument lists.

Note:

This header is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use the <stdarg.h> header to support variable argument list

functionality compatible with IEEE Std 1003.1-2001.

Applications conforming to Single UNIX Specification, Version 3 must not

include the header file.

variant.h

The variant.h header file declares the getsyntx() function, which returns

LC_SYNTAX characters. It also contains the declaration of the variant structure:

struct variant {

 char *codeset; /* code set of the current locale */

 char backslash; /* encoding of \ */

 char right_bracket; /* encoding of] */

 char left_bracket; /* encoding of [*/

 char right_brace; /* encoding of } */

 char left_brace; /* encoding of { */

 char circumflex; /* encoding of ̂ */

 char tilde; /* encoding of ~ */

 char exclamation_mark; /* encoding of ! */

 char number_sign; /* encoding of # */

 char vertical_line; /* encoding of | */

 char dollar_sign; /* encoding of $ */

 char commercial_at; /* encoding of @ */

 char grave_accent; /* encoding of ̀ */

};

 struct variant *getsyntx(void);

For more information about the effect of locale, see setlocale(), locale.h, or look up

the individual functions in this book . For still more information, see the chapter ,

“Internationalization: Locales and Character Sets” in z/OS XL C/C++ Programming

Guide.

wchar.h

The wchar.h header file contains the declaration for the supported subset of the

ISO/C Multibyte Support extensions introduced in ISO/IEC 9899:1990/Amendment

1:1993(E) extensions. The following functions are declared in wchar.h:

 btowc() fgetwc() fgetws() fputwc() fputws()

fwide() fwprintf() fwscanf() getwc() getwchar()

mbrlen() mbrtowc() mbsinit() mbsrtowcs() putwc()

putwchar() swprintf() swscanf() ungetwc() vfwprintf()

vfwscanf() vswprintf() vswscanf() vwprintf() vwscanf()

Header Files

98 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

|
|

wcrtomb() wcscat() wcschr() wcscmp() wcscoll()

wcscpy() wcscspn() wcsftime() wcslen() wcsncat()

wcsncmp() wcsncpy() wcspbrk() wcsrchr() wcsrtombs()

wcsspn() wcsstr() wcstod() wcstok() wcstol()

wcstoll() wcstoul() wcstoull() wcswidth() wcsxfrm()

wctob() wcwidth() wprintf() wscanf() wcstod32()[1]

wcstod64()[1] wcstod128()[1]

[1] The __STDC_WANT_DEC_FP__ feature test macro is required to expose

decimal floating-point functionality.

You don’t need to include stdio.h and stdarg.h to use the header file.

The header file wchar.h contains definitions of the following types:

mbstate_t

Conversion-state information needed when converting between sequences

of multibyte characters and wide characters.

size_t typedef for the type of the value returned by sizeof.

wchar_t

typedef for a wide-character constant.

win_t An integral type unchanged by integral promotions that can hold any value

corresponding to members of the extended character set, as well as WEOF

(see below).

FILE The FILE structure type is defined in both stdio.h and wchar.h. Stream

functions use a pointer to the FILE type to get access to a given stream.

The system uses the information in the FILE structure to maintain the

stream. The C standard streams stdin, stdout, and stderr are also defined

in stdio.h.

va_list

This type is defined in both stdarg.h and wchar.h.

The header file wchar.h also contains definitions of the following constants:

NULL A pointer that never points to a data object.

WEOF Expands to a constant expression of type wint_t, whose value

does not correspond to any member of the extended character set.

It indicates End Of File (EOF).

WCHAR_MIN Defines the lower limit of the wchar_t type.

WCHAR_MAX Defines the upper limit of the wchar_t type.

You can perform wide-character input/output on the streams described in the

ISO/IEC 9899:1990 standard, subclause 7.9.2. This standard expands the definition

of a stream to include an orientation for both text and binary streams. For more

information about DBCS orientation, see the section on Double-Byte Characters

Sets in z/OS XL C/C++ Programming Guide.

The wide-character string functions are also declared in wcstr.h for compatibility

with previous releases of C/370, although wcstr.h may be withdrawn in the future.

Header Files

Chapter 2. Header Files 99

|
|||||

|
|

For more information about the effect of locale, see setlocale(), locale.h, or look up

the individual functions in this book . For still more information, see the chapter ,

“Internationalization: Locales and Character Sets” in z/OS XL C/C++ Programming

Guide.

wcstr.h

The wcstr.h header file declares the following multibyte functions:

 wcscat() wcschr() wcscmp() wcscpy() wcscspn()

wcslen() wcsncat() wcsncmp() wcsncpy() wcspbrk()

wcsrchr() wcsspn() wcswcs()

wcstr.h also defines the types size_t, NULL, wchar_t, and wint_t.

The wide-character string functions are also declared in wchar.h for compatibility

with previous releases of C/370. wcstr.h may be withdrawn in future releases of the

z/OS XL C/C++ product.

wcstr.h is a non-standard header provided for compatibility with previous releases of

C/370. Functions in wcstr.h are exposed by compiling with LANGLVL(EXTENDED).

The wcstr.h header may be withdrawn in future releases of the z/OS XL C/C++

product. The wide character functions in wcstr.h are also declared in the wchar.h

header, which is the standard interface.

wctype.h

The wctype.h header declares functions that deal with wide character properties.

The following are declared as functions and are also defined as macros:

 iswalnum() iswalpha() iswblank() iswcntrl() iswctype()

iswdigit() iswgraph() iswlower() iswprint() iswpunct()

iswspace() iswupper() iswxdigit() towlower() towupper()

wctype()

The following are declared as prototypes only:

 towctrans() wctrans() wctype()

The wctype.h header defines the types wctrans_t, wctype_t and wint_t. The

wctype.h defines the macro WEOF, which expands to a constant expression of type

wint_t, whose value does not correspond to any member of the extended character

set. The macro WEOF indicates End Of File (EOF).

wordexp.h

The wordexp.h header file contains definitions for word expansion types.

xti.h

The xti.h header file declares the following under the

_XOPEN_SOURCE_EXTENDED 1 feature test macro:

Header Files

100 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

Symbolic constants

 Table 20. Symbolic Constants defined in xti.h

Symbolic Constant Description

TBADADDR Incorrect addr format

TBADOPT Incorrect option format

TACCES Incorrect permissions

TBADF Illegal transport fd

TNOADDR Could not allocate addr

TOUTSTATE Out of state

TBADSEQ Bad call sequence number

TSYSERR System error

TLOOK Event requires attention

TBADDATA Illegal amount of data

TBUFOVFLW Buffer not large enough

TFLOW Flow control

TNODATA No data

TNODIS Discon_ind not found on queue

TNOUDERR unitdata error not found

TBADFLAG Bad flags

TNOREL No ord rel found on queue

TNOTSUPPORT Primitive not supported

TSTATECHNG State currently changing

TNOSTRUCTYPE unknown struct-type requested

TBADNAME Invalid transport name

TBADQLEN Qlen is zero

TADDRBUSY Address in use

TINDOUT Outstanding connect indications

TPROVMISMATCH Transport provider mismatch

TRESQLEN Resfd specified to accept w/qlen>0

TRESADDR Resfd not bound to same addr as fd

TQFULL Incoming connection queue full

TPROTO XTI protocol error

T_LISTEN Connection indication received

T_CONNECT Connect confirmation received

T_DATA Normal data received

T_EXDATA Expedited data received

T_DISCONNECT Disconnect received

T_UDERR Datagram error indication

T_ORDREL Orderly release indication

T_GODATA Sending normal data is possible

T_GOEXDATA Sending expedited data is possible

T_EVENTS Event mask

T_MORE More data

T_EXPEDITED Expedited data

T_NEGOTIATE Set opts

T_CHECK Check opts

T_DEFAULT Get default opts

T_SUCCESS Successful

T_FAILURE Failure

T_CURRENT Current opts

T_PARTSUCCESS Partial success

T_READONLY Read-only

T_NOTSUPPORT Not supported

T_BIND S

Header Files

Chapter 2. Header Files 101

Header Files

102 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Chapter 3. Part 3. Library Functions

This part describes the z/OS XL C/C++ Run-Time Library functions, including the

built-in library functions used by the z/OS XL C/C++ compilers.

Names

Identifiers (function names, macros, types) defined by the various standards in the

headers are reserved. Also reserved are:

v Identifiers that begin with an underscore and either an uppercase letter or

another underscore.

v Identifiers that end with “_t”.

Do not use these reserved identifiers for any purpose other than those defined in

the documentation.

All identifiers other than the ISO C identifiers comprise the user’s name space. You

are free to use any of these names. However, a number of names in the z/OS XL

C/C++ Run-Time Library encroach on the user’s name space. This is a result of

our desire to provide names that are meaningful and easy to remember, or to

support industry-defined names, for example: fetchep() or pthread_cancel(). The

header files cause these names to be renamed into reserved names and these in

turn are mapped onto the external entry point names that usually are

operating-system specific.

If you want to use names in the z/OS XL C/C++ Run-Time Library which are in the

user’s name space as defined, just include the appropriate header. If you cannot

include the appropriate header because it would bring in other names that collide

with your own private names, but you still want to use some of the functions defined

there, you can refer to these functions by their reserved internal names. These

reserved names are unique, not longer than 8 characters, and usually start with a

double underscore.

The IBM z/OS XL C/C++ compiler automatically maps all underscores and

lowercase letters in external identifiers in source code to ‘@’ characters and

uppercase characters in the object deck. Thus, to refer to the fetchep() function

without including the stdlib.h header, you can use its reserved internal name

__ftchep(), which is then automatically mapped to the external entry point @@FTCHEP.

For C++ functions, you must ensure C by declaring the functions as extern “C”.

Functions that are mapped this way have the external entry point listed in the

function description in this part under the heading, “External Entry Point”.

See also the following section s in z/OS XL C/C++ Language Reference for more

information on external names:

v “#pragma csect”

v “#pragma map”

v “External Name Mapping”

See also the following section s in z/OS XL C/C++ User’s Guide:

v “Prelinking a C Application”

v The LONGNAME compiler option

See also “Naming Conventions” in “Using Environment Variables”, in z/OS XL

C/C++ Programming Guide for details about external names.

© Copyright IBM Corp. 1996, 2007 103

Unsupported functions and external variables in AMODE 64

All program examples in this book have been tested to work in 32-bit mode. Some

examples may not work in AMODE 64. As examples are updated for AMODE 64, a

statement of AMODE 64 support will be added to the description of the example.

The following functions are not supported in AMODE 64:

v advance()

v brk()

v compile()

v __console()

v __csplist

v ctdli()

v fortrc()

v iscics()

v __openMvsRel()

v __pcblist

v pthread_quiesce_and_get_np()

v re_comp()

v re_exec()

v regcmp()

v regex()

v sbrk()

v sock_debug_bulk_perf0()

v sock_do_bulkmode()

v step()

v tinit()

v tsched()

v tsetsubt()

v tsyncro()

v tterm()

v valloc()

The following external variables are not supported in AMODE 64:

v __loc1

v loc1

v loc2

v locs

Standards

Each function description begins with a table to indicate the standards/extensions,

language support, and dependencies. See the table below for more details:

 Standards / Extensions C or C++ Dependencies

ISO C C only POSIX(ON)

ISO C Amendment C++ only OS/390 V2R6

Library Functions

104 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Standards / Extensions C or C++ Dependencies

POSIX.1 both OS/390 V2R7

POSIX.1a OS/390 V2R8

POSIX.2 OS/390 V2R9

POSIX.4a OS/390 V2R10

POSIX.4b z/OS V1R1

BSD 4.3 z/OS V1R2

XPG4 z/OS V1R3

XPG4.2 z/OS V1R4

SAA z/OS V1R5

C Library z/OS V1R6

Language Environment z/OS V1R7

z/OS UNIX System Services z/OS V1R8

Single UNIX Specification,

Version 2

z/OS V1R9

ISO/ANSI C++ AMODE 64

RFC2292

RFC2553

RFC3678

ANSI/IEEE Standard P754

C99

Single UNIX Specification,

Version 3

C/C++ DFP

By indicating a standard, we refer to the origin of the function, not necessarily the

compliance. For example, functions that are enriched by features from XPG4 have

XPG4 listed.

These are the standards referred to:

v Standards/extensions

 1. ISO C refers to ISO/IEC 9899:1990(E).

 2. ISO C Amendment refers to a subset of the ISO/IEC 9899:1990/Amendment

1:1993(E).

 3. POSIX

– POSIX.1 refers to ISO/IEC 9945-1:1990/IEEE POSIX 1003.1-1990.

– POSIX.1a refers to a subset of IEEE POSIX 1003.1a, Draft 7, May 1992.

– POSIX.2 refers to IEEE Portable Operating System Interface (POSIX)

Part 2, P1003.2 draft 12.

– POSIX.4a refers to a subset of IEEE POSIX 1003.4a, Draft 6, Feb.

26,1992.

 4. XPG4 refers to X/Open Common Applications Environment Specification,

System Interfaces and Headers, Issue 4.

 5. XPG4.2 refers to X/Open Common Applications Environment Specification,

System Interfaces and Headers, Issue 4, Version 2.

Library Functions

Chapter 3. Part 3. Library Functions 105

|||

|||

|||

|
|
||

|||

|||

|||

|
|
||

6. ISO/ANSI C++ refers to the ISO/ANSI C++ Standard (ISO/IEC

14882:1998(E)).

 7. RFC2553 refers to the Basic Socket Interface Extensions for IPv6

(draft-ietf-ipngwg-rfc2253bis-05.txt, dated February 2002).

Note: Not all of the support described in this draft is available on z/OS.

 8. RFC2292 refers to the Advanced Sockets API for IPv6 (draft-ietf-ipngwg-
rfc2292bis-06.txt, dated February 25, 2002).

Note: Not all of the support described in this draft is available on z/OS.

 9. C99 refers to ISO/IEC 9899:1999(E).

10. Single UNIX Specification, Version 2 refers to IEEE Std 1003.1-1997.

11. Single UNIX Specification, Version 3 refers to IEEE Std 1003.1-2001.

12. Extensions refers to one of the following:

a. SAA refers to the IBM Systems Application Architecture Common

Programming Interface (SAA CPI) Level 2 definition of the C language.

b. C Library refers to the functions that are extensions to the run-time

library, before the Language Environment product.

c. Language Environment refers to functions that are extensions to the

conventional standards.

d. z/OS UNIX System Services refers to functions that provide z/OS UNIX

System Services support beyond the defined standards.

13. C/C++ DFP refers to:

a. ISO/IEC TR24732 -- Extensions for the programming language C to

support decimal floating point arithmetic.

b. ISO/IEC TR24733 -- Extensions for the programming language C++ to

support decimal floating point arithmetic.

v Language support

C or C++ refers to whether the function is supported for the z/OS XL C compiler,

the z/OS XL C++ compiler, or both.

v Dependencies

Some functions have the following dependencies identified. If the dependencies

are not met, then the function fails, and returns an errno of EMVSNORTL.

Functions defined by the standards that cannot fail, will cause abnormal

termination and return Language Environmen condition CEE5001.

– POSIX(ON) required refers to whether the enclave can run with the POSIX

semantics.

POSIX is an application characteristic that is maintained at the enclave level.

After you have established the characteristic during enclave initialization, you

cannot change it.

When you set POSIX to ON, you can use functions that are unique to POSIX,

such as pthread_create().

One of the effects of POSIX(ON) is the enablement of POSIX signal handling

semantics, which interact closely with the z/OS Language Environment

condition handling semantics. Where ambiguities exist between ANSI and

POSIX semantics, the POSIX run-time setting indicates the POSIX semantics

to follow.For more information about running POSIX programs, please see

“z/OS XL C/C++ applications with z/OS UNIX System Services C functions”

on page 13.

Library Functions

106 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|

|
|

|
|

These standards do have some overlap, as illustrated in Figure 2.

 The C library contains several functions that are extensions to the SAA CPI Level 2

definition. These library functions are available only if the LANGLVL(EXTENDED)

compile-time option is in effect. As indicated, some of the stub routines for the

extensions are available if you specify LANGLVL(ANSI). They are made available

for compatibility with Version 1; they may not be available in the future. (Within

run-time libraries, a stub routine is a routine that contains the minimum lines of

code required to locate a given routine at run time.)

Many of the symbols that are defined in headers are “protected” by a feature test

macro. For information on the relationships between feature test macros and the

standards, see “Feature Test Macros” on page 21.

Using C Include Files from C++

If you need to use an old C header file in a C++ program, use extern, like this:

extern "C" {

 #include "myhdr.include"

}

Built-in Functions

Built-in functions are ones for which the compiler generates inline code at compile

time. Every call to a built-in function eliminates a run-time call to the function having

the same name in the dynamic library.

Built-in functions are used by application code, while it is running, without reference

to the dynamic library. Although built-in functions increase the size of a generated

application slightly, this should be offset by the improved performance resulting from

reducing the overhead of the dynamic calls. Built-in functions can be used with the

System Programming C (SPC) Facilities to generate free-standing C applications.

Restriction: The SPC facility is not supported in AMODE 64.

C/370
extensions

z/OS
UNIX

extensions

POSIX XPG4

XPG4.2

SAA

ISO C ISO C
Amendments

Figure 2. Overlap of C Standards and Extensions

Library Functions

Chapter 3. Part 3. Library Functions 107

Table 21 shows all of the built-in functions. In the listing of library functions, each

built-in function is labelled as such.

 Table 21. Built-in Library Functions

abs() alloca() cds() cs() decabs()

decchk() decfix() fabs() fortrc() memchr()

memcmp() memcpy() memset() strcat() strchr()

strcmp() strcpy() strlen() strncat() strncmp()

strncpy() strrchr() tsched()

The built-in versions of these functions are accessed by preprocessor macros

defined in the standard header files. They are not used unless the appropriate

header file (such as decimal.h, math.h, stdlib.h, or string.h) is included in the

source file.

Your program will use the built-in version of a standard function only if you include

the associated standard header file. However, decfix(), decabs(), and decchk() are

implemented only as built-in functions. They are not available without including the

header file.

If you are using the standard header file, but want to use the function in the

dynamic library instead of the built-in function, you can force a call to the dynamic

library by putting parentheses around the function name in your source code:

(memcpy)(buf1, buf2, len)

The built-in functions are documented in “Built-in Functions” on page 107 in z/OS

XL C/C++ Programming Guide.

If you will never use the built-in version, you can also use #undef with the function

name. For example, #undef memcpy causes all calls to memcpy in the compilation unit

to make a dynamic call to the function rather than using the built-in version.

IEEE Binary Floating-Point

Starting with OS/390 V2R6 (including the Language Environment and C/C++

components), support has been added for IEEE binary floating-point (IEEE

floating-point) as defined by the ANSI/IEEE Standard 754-1985, IEEE Standard for

Binary Floating-Point Arithmetic.

Notes:

1. You must have OS/390 Release 6 or higher to use the IEEE Binary

Floating-Point instructions. In Release 6, the base control program (BCP) is

enhanced to support the new IEEE Binary Floating-Point hardware in the IBM

S/390 Generation 5 Server. This enables programs running on OS/390 Release

6 to use the IEEE Binary Floating-Point instructions and 16 floating-point

registers.In addition, the BCP provides simulation support for all the new

floating-point hardware instructions. This enables applications that make light

use of IEEE Binary Floating-Point, and can tolerate the overhead of software

simulation, to execute on OS/390 V2R6 without requiring an IBM S/390

Generation 5 Server.

2. The terms binary floating point and IEEE binary floating point are used

interchangeably. The abbreviations BFP and HFP, which are used in some

function names, refer to binary floating point and hexadecimal floating point

respectively.

Library Functions

108 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|
|
|

3. Under Hexadecimal Floating-Point format, the rounding mode is set to round

toward 0. Under IEEE Binary Floating-Point format, the rounding mode is to

round toward the nearest integer.

The z/OS XL C/C++ compiler provides a FLOAT option to select the format of

floating-point numbers produced in a compile unit. The FLOAT option allows you to

select either IEEE Binary Floating-Point or hexadecimal floating-point format. For

details on the z/OS XL C/C++ support, see the description of the FLOAT option in

z/OS XL C/C++ User’s Guide. In addition, two related sub-options have been

introduced, ARCH(3) and TUNE(3). The two sub-options support the new G5

processor architecture, and IEEE binary floating-point data. Refer to the

ARCHITECTURE and TUNE compiler options in z/OS XL C/C++ User’s Guide for

details.

The C/C++ run-time library interfaces, which formerly supported only hexadecimal

floating-point format, have been changed in OS/390 V2R6 to support both IEEE

Binary Floating-Point and hexadecimal floating-point formats. These interfaces are

documented in the z/OS XL C/C++ Run-Time Library Reference.

The primary documentation for the IEEE Binary Floating-Point support is contained

in z/Architecture Principles of Operation and z/OS XL C/C++ User’s Guide.

IEEE binary floating point support provides interoperability and portability between

platforms. It is anticipated that the support will be most commonly used for new and

ported applications and in emerging environments, such as Java. Customers should

not migrate existing applications that use hexadecimal floating point to binary

floating point, unless there is a specific reason.

IBM does not recommend mixing floating-point formats in an application. However,

for applications which must handle both formats, the C/C++ run-time library does

offer some support. Reference information for IEEE Binary Floating-Point can also

be found in z/OS XL C/C++ Language Reference.

IEEE Decimal Floating-Point

Starting with z/OS V1R9 (including the Language Environment and C/C++

components), support has been added for IEEE decimal floating-point as defined by

the ANSI/IEEE Standard P754/D0.15.3, IEEE Standard for Floating-Point Arithmetic.

Note:

1. You must have z/OS V1R9 or higher to use IEEE decimal floating-point,

the hardware must have the Decimal Floating Point Facility installed and

the __STDC_WANT_DEC_FP__ feature test macro must be defined.

2. The abbreviation DFP refers to IEEE Decimal Floating-Point.

3. IEEE decimal floating-point is not supported in a CICS environment.

The z/OS XL C/C++ compiler provides a DFP option to include support

for IEEE Decimal Floating-Point numbers. For details on the z/OS XL

C/C++ support, see the description of the DFP option in z/OS XL C/C++

User’s Guide. New C/C++ run-time library interfaces, which support IEEE

Decimal Floating Point numbers have been added for z/OS V1R9 and

other existing interfaces have been updated to support DFP. These

interfaces are documented in the z/OS XL C/C++ Run-Time Library

Reference. The primary documentation for the IEEE decimal

floating-point support is contained in ″z/Architecture Principles of

Library Functions

Chapter 3. Part 3. Library Functions 109

|
|
|
|
|

|

|
|
|

|

|
|
|

|

|

|
|
|
|
|
|
|
|
|

Operation″ and z/OS XL C/C++ User’s Guide. Reference information for

IEEE floating-point can also be found in z/OS XL C/C++ Language

Reference.

4. When one or more input values for a Decimal Floating Point (DFP)

library function are not in the preferred Densely Packed Decimal (DPD)

encoding, it is not defined whether or not the output values are converted

to the preferred DPD coding. Applications should not rely on the current

behavior of library functions regarding the DPD recoding of output

values.

External Variables

The POSIX 1003.1 and X/Open CAE Specification 4.2 (XPG4.2) require that the C

system header files define certain external variables. Additional variables are

defined for use with POSIX or XPG4.2 functions. If you define one of the POSIX or

XPG4 feature test macros and include one of these headers, the external variables

will be defined in your program. These external variables are treated differently

compared with other global variables in a multithreaded environment (values are

thread-specific) and across a call to a fetched module (values are propagated).

To access the global variable values the following must be specified during C/C++

compiles and z/OS bind:

Non-XPLINK (non-thread-safe)

C code must be compiled with the RENT or DLL

option (C++ code needs no additional options). The

SCEEOBJ autocall library must be specified during

the bind.

Non-XPLINK (thread-safe) No additional options are required for either C or

C++. The _SHARE_EXT_VARS feature test macro,

or the necessary _SHR_ prefixed feature test

macros must be used.

 Equivalently, the necessary thread-specific functions

can be called directly (as documented below under

each external variable).

XPLINK (non-thread-safe) No additional options (besides XPLINK) are

required for either C or C++. The C run-time library

side-deck, member CELHS003 of the SCEELIB

data set, must be included during the bind.

(c89/cc/c++ automatically include this side-deck

when the XPLINK link edit option (for example, c89

-Wl,XPLINK ...) is used.)

XPLINK (thread-safe) No additional options (besides XPLINK) are

required for either C or C++. The C run-time library

side-deck, member CELHS003 of the SCEELIB

dataset, must be included during the bind.

 The _SHARE_EXT_VARS feature test macro, or

the necessary _SHR_ prefixed feature test macros

must be used. Equivalently, the necessary

thread-specific functions can be called directly (as

documented in the later sections under each

external variable).

LP64 (non-thread-safe) No additional options (besides LP64) are required

Library Functions

110 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

|
|
|
|
|
|

|

for either C or C++. The C run-time library

side-deck, member CELQS003 of the SCEELIB

dataset, must be included during the bind.

 The _SHARE_EXT_VARS feature test macro, or

the necessary _SHR_ prefixed feature test macros

must be used.

 Equivalently, the necessary thread-specific functions

can be called directly (as documented in the later

sections under each external variable).

LP64 (thread-safe) No additional options (besides LP64) are required

for either C or C++. The C run-time library

side-deck, member CELQS003 of the SCEELIB

dataset, must be included during the bind.

(c89/cc/c++ automatically include this side-deck

when the LP64 link edit option (for example, c89

-Wl, LP64 ...) is used.)

 The _SHARE_EXT_VARS feature test macro, or

the necessary _SHR_ prefixed feature test macros

must be used.

 Equivalently, the necessary thread-specific functions

can be called directly (as documented in the later

sections under each external variable).

errno

When a run-time library function fails, the function may do any of the following to

identify the error:

v Set errno to a documented value.

v Set errno to a value that is not documented. You can use strerror() or perror() to

get the message associated with the errno.

v Not set errno.

v Clear errno.

See also errno.h.

daylight

Daylight savings time flag set by tzset(). Note that other time zone sensitive

functions such as ctime(), localtime(), mktime(), and strftime() implicitly call tzset().

Note: Use the __dlght() function to access the thread-specific value of daylight.

See also time.h.

getdate_err

The variable is set to the value below when an error occurs in the getdate()

function.

1. The DATEMASK environment variable is NULL or undefined.

2. The template file cannot be opened for reading.

3. Failed to get file status information.

4. The template file is not a regular file.

5. An error is encountered while reading the template file.

6. Memory allocation failed.

7. There is no line in the template that matches the input.

Library Functions

Chapter 3. Part 3. Library Functions 111

8. Not valid input specification.

Any changes to errno are unspecified.

Note: Use the__gderr() function to access the thread-specific value of

getdate_err.

See also time.h.

h_errno

An integer which holds the specific error code when the network name server

encounters an error. The network name server is used by the gethostbyname() and

gethostbyaddr() functions.

Note: Use the__h_errno() function to access the thread-specific value of h_errno.

See also netdb.h.

Note: This variable is kept for historical reasons. However, it is used only in

connection with the functions gethostbyaddr() and gethostbyname(), which

are obsolescent in Single UNIX Specification, Version 3, so that the h_errno

variable may also be withdrawn in the future.

__loc1

Restriction: This external variable is not supported in AMODE 64

A global character pointer which is set by the regex() function to point to the first

matched character in the input string. Use the ____loc1() function to access the

thread-specific value of __loc1.

Note:

This variable is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use the interfaces supported by the <regex.h> header, which provide

full internationalized regular expression functionality compatible with IEEE

Std 1003.1-2001 Regular Expressions.

If it is necessary to continue using this symbol in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3. See also libgen.h.

loc1

Restriction: This external variable is not supported in AMODE 64.

A pointer to characters matched by regular expressions used by step(). The value is

not propagated across a call to a fetched module.

Note:

This variable is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

Library Functions

112 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

supported as part of Single UNIX Specification, Version 3. New applications

should use the interfaces supported by the <regex.h> header, which provide

full internationalized regular expression functionality compatible with IEEE

Std 1003.1-2001 Regular Expressions. See also regexp.h.

loc2

Restriction: This external variable is not supported in AMODE 64

A pointer to characters matched by regular expressions used by step(). The value is

not propagated across a call to a fetched module.

Note:

This variable is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use the interfaces supported by the <regex.h> header, which provide

full internationalized regular expression functionality compatible with IEEE

Std 1003.1-2001 Regular Expressions. See also regexp.h.

locs

Restriction: This external variable is not supported in AMODE 64

Used by advance() to stop regular expression matching in a string. The value is not

propagated across a call to a fetched module. See also regexp.h.

Note:

This variable is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use the interfaces supported by the <regex.h> header, which provide

full internationalized regular expression functionality compatible with IEEE

Std 1003.1-2001 Regular Expressions.

optarg

Character pointer used by getopt() for options parsing variables.

Note: Use the__opargf() function to access the thread-specific value of optarg.

Note: This variable has been removed from stdio.h by Single UNIX Specification,

Version 3 and is exposed for Version 3 only in unistd.h . See also stdio.h

and unistd.h.

opterr

Error value used by getopt().

Note: Use the __operrf() function to access the thread-specific value of opterr.

Note: This variable has been removed from stdio.h by Single UNIX Specification,

Version 3 and is exposed for Version 3 only in unistd.h. See also stdio.h

and unistd.h.

Library Functions

Chapter 3. Part 3. Library Functions 113

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

optind

Integer pointer used by getopt() for options parsing variables.

Note: Use the__opindf() function to access the thread-specific value of optind.

Note: This variable has been removed from stdio.h by Single UNIX Specification,

Version 3 and is exposed for Version 3 only in unistd.h. See also stdio.h

and unistd.h.

optopt

Integer pointer used by getopt() for options parsing variables.

Note: Use the__opoptf() function to access the thread-specific value of optopt.

Note: This variable has been removed from stdio.h by Single UNIX Specification,

Version 3 and is exposed for Version 3 only in unistd.h. See also stdio.h

and unistd.h.

signgam

Storage for sign of lgamma(). This function defaults to thread-specific. See also

math.h.

stderr

Standard Error stream. The external variable will be initialized to point to the

enclave-level stream pointer for the standard error file. There is no multithreaded

function. See also stdio.h.

stdin

Standard Input stream. The external variable will be initialized to point to the

enclave-level stream pointer for the standard input file. There is no multithreaded

function. See also stdio.h.

stdout

Standard Output stream. The external variable will be initialized to point to the

enclave-level stream pointer for the standard output file. There is no multithreaded

function. See also stdio.h.

t_errno

An integer which holds the specific error code when a failure occurs in one of the

X/Open Transport Interface (XTI) functions. Use the __t_errno() function to access

the thread-specific value of t_errno.

Note: Use the__t_errno() function to access the thread-specific value of t_errno.

See also xti.h.

timezone

Long integer difference from UTC and standard time as set by tzset(). Note that

other time zone sensitive functions such as ctime(), localtime(), mktime(), and

strftime() implicitly call tzset().

Note: Use the __tzone() function to access the thread-specific value of timezone.

See also time.h.

Library Functions

114 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

|
|
|

tzname

Character pointer to unsized array of timezone strings used by tzset() and ctime().

The *tzname variable contains the Standard and Daylight Savings time zone

names. If the TZ environment variable is present and correct, tzname will be set

from TZ. Otherwise tzname will be set from the LC_TOD locale category. See the

tzset() function for a description. There is no multithreaded function. See also

time.h.

The __restrict__ macro

The restrict keyword is being made available in the form of a macro named

__restrict__ which can be used for coding before the availability of a compiler that

is designed to support C99. Once the compiler support is available, only a

recompile will be necessary. Applications need to include <features.h> before using

the __restrict__ macro.

Library Functions

Chapter 3. Part 3. Library Functions 115

abort() — Stop a Program

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

void abort(void);

General Description

Causes an abnormal program termination and returns control to the host

environment. The abort() function flushes all buffers and closes all open files. Be

aware that abnormal termination will not run the atexit() list functions.

If the abort() function is called and the user has a handler for SIGABRT, then

SIGABRT is raised; however, SIGABRT is raised again when the handler

associated with the default action is returned. The code path only passes through

the user’s handler once, even if the handler is reset. The same thing occurs if

SIGABRT is ignored; abnormal termination occurs.

The abort() function will not result in program termination if SIGABRT is caught by a

signal handler, and the signal handler does not return. You can avoid returning by

“jumping” out of the handler with setjmp() and longjmp(). In z/OS XL C programs,

you can jump out of the handler with sigsetjmp() and siglongjmp().

For more information see the process termination sections in the chapter “Using

Run-Time User Exits” in z/OS XL C/C++ Programming Guide.

Special Behavior for POSIX C Programs

To obtain access to the special POSIX behavior for abort(), the POSIX run-time

option must be set ON.

Calls to abort() raise the SIGABRT signal, using pthread_kill(), so that the signal is

directed to the same thread. A SIGABRT signal generated by abort() cannot be

blocked.

Under POSIX, the handler can use siglongjmp() to restore the environment at a

place in the code where a sigsetjmp() was previously issued. In this way, an

application can avoid the process for termination. See “z/OS XL C/C++ applications

with z/OS UNIX System Services C functions” on page 13 for more information

about using POSIX support.

Special Behavior for C++

abort

116 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

If abort() is called from a z/OS XL C++ program, the program will be terminated

immediately, without leaving the current block. Functions passed to atexit(), and

destructors for static and local (automatic) objects, will not be called.

By default, the z/OS XL C++ function terminate() calls abort().

Returned Value

The abnormal termination return code for z/OS is 2000.

Example

CELEBA01

/* CELEBA01

 This example tests for successful opening of the file myfile.

 If an error occurs, an error message is printed and the program

 ends with a call to the abort() function.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *stream;

 unlink("myfile.dat");

 if ((stream = fopen("myfile.dat", "r")) == NULL)

 {

 printf("Could not open data file\n");

 abort();

 printf("Should not see this message\n");

 }

}

Related Information

v “stdlib.h” on page 85

v “assert() — Verify Condition” on page 190

v “atexit() — Register Program Termination Function” on page 196

v “exit() — End Program” on page 494

v “pthread_kill() — Send a Signal to a Thread” on page 1474

v “raise() — Raise Signal” on page 1595

v “signal() — Handle Interrupts” on page 1917

abort

Chapter 3. Part 3. Library Functions 117

abs(), absf(), absl() — Calculate Integer Absolute Value

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

C/C++ DFP

both

Format

#include <stdlib.h>

int abs(int n);

long abs(long n); /* C++ only */

#include <math.h>

double abs(double n); /* C++ only */

float abs(float n); /* C++ only */

long double abs(long double n); /* C++ only */

float absf(float n);

long double absl(long double n);

DFP

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 abs(_Decimal32 x); /* C++ only */

_Decimal64 abs(_Decimal64 x); /* C++ only */

_Decimal128 abs(_Decimal128 x); /* C++ only */

General Description

The functions abs(), absf(), and absl() return the absolute value of an argument n.

For the integer version of abs(), the minimum allowable integer is INT_MIN+1.

(INT_MIN is a macro that is defined in the limits.h header file.) For example, with

the z/OS XL C/C++ compiler, INT_MIN+1 is -2147483648.

For the double, float, and long double versions of abs(), the minimum allowable

values are DBL_MIN+1, FLT_MIN+1, and LDBL_MIN+1, respectively. (The floating-point

macro constants are defined in the float.h header file.)

If the value entered cannot be represented as an integer, the abs(), absf(), and

absl() functions return the same value.

Notes:

v These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for more

information about IEEE Binary Floating-Point.

Note:

abs, absf, absl

118 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|
|

||

|

|

|
|
|
|
|
|

|

Special Behavior for C++:

For C++ applications, abs() is also overloaded for the types long, float, and long

double.

Returned Value

The returned value is the absolute value, if the absolute value is possible to

represent.

Otherwise the input value is returned.

There are no errno values defined.

Example

CELEBA02

/* CELEBA02

 This example calculates the absolute value of an integer

 x and assigns it to y.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int x = −4, y;

 y = abs(x);

 printf("The absolute value of %d is %d.\n", x, y);

}

Output

The absolute value of -4 is 4.

Related Information

v “float.h” on page 46

v “limits.h” on page 55

v “math.h” on page 60

v “stdlib.h” on page 85

v “fabs(), fabsf(), fabsl() — Calculate Floating-Point Absolute Value” on page 511

v “labs() — Calculate Long Absolute Value” on page 1060

abs, absf, absl

Chapter 3. Part 3. Library Functions 119

accept() — Accept a New Connection on a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int accept(int socket, struct sockaddr *__restrict__ address,

 socklen_t *__restrict__address_len);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

int accept(int socket, struct sockaddr *address, int *address_len);

General Description

The accept() call is used by a server to accept a connection request from a client.

When a connection is available, the socket created is ready for use to read data

from the process that requested the connection. The call accepts the first

connection on its queue of pending connections for the given socket socket. The

accept() call creates a new socket descriptor with the same properties as socket

and returns it to the caller. If the queue has no pending connection requests,

accept() blocks the caller unless socket is in nonblocking mode. If no connection

requests are queued and socket is in nonblocking mode, accept() returns −1 and

sets the error code to EWOULDBLOCK. The new socket descriptor cannot be used

to accept new connections. The original socket, socket, remains available to accept

more connection requests.

Parameter Description

socket The socket descriptor.

address The socket address of the connecting client that is filled in by

accept() before it returns. The format of address is determined by

the domain that the client resides in. This parameter can be NULL if

the caller is not interested in the client address.

address_len Must initially point to an integer that contains the size in bytes of

the storage pointed to by address. On return, that integer contains

the size required to represent the address of the connecting socket.

If this value is larger than the size supplied on input, then the

information contained in sockaddr is truncated to the length

supplied on input. If address is NULL, address_len is ignored.

The socket parameter is a stream socket descriptor created with the socket() call. It

is usually bound to an address with the bind() call. The listen() call marks the

accept

120 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|

socket as one that accepts connections and allocates a queue to hold pending

connection requests. The listen() call places an upper boundary on the size of the

queue.

The address parameter is a pointer to a buffer into which the connection requester’s

address is placed. The address parameter is optional and can be set to be the

NULL pointer. If set to NULL, the requester’s address is not copied into the buffer.

The exact format of address depends on the addressing domain from which the

communication request originated. For example, if the connection request originated

in the AF_INET domain, address points to a sockaddr_in structure, or if the

connection request originated in the AF_INET6 domain, address points to a

sockaddr_in6 structure. The sockaddr_in and sockaddr_in6 structures are

defined in netinet/in.h. , The address_len parameter is used only if the address is

not NULL. Before calling accept(), you must set the integer pointed to by

address_len to the size of the buffer, in bytes, pointed to by address. On successful

return, the integer pointed to by address_len contains the actual number of bytes

copied into the buffer. If the buffer is not large enough to hold the address, up to

address_len bytes of the requester’s address are copied. If the actual length of the

address is greater than the length of the supplied sockaddr, the stored address is

truncated. The sa_len member of the store structure contains the length of the

untruncated address.

Note:

v This call is used only with SOCK_STREAM sockets. There is no way to screen

requesters without calling accept(). The application cannot tell the system the

requesters from which it will accept connections. However, the caller can choose

to close a connection immediately after discovering the identity of the requester.

v The accept() function has a dependency on the level of the Enhanced ASCII

Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

A socket can be checked for incoming connection requests using the select() call.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, accept() returns a nonnegative socket descriptor.

If unsuccessful, accept() returns -1 and sets errno to one of the following values:

Error Code Description

EAGAIN If during an accept call that changes identity, the UID of the new

identity is already at MAXPROCUID, the accept call fails.

EBADF The socket parameter is not within the acceptable range for a

socket descriptor.

EFAULT Using address and address_len would result in an attempt to copy

the address into a portion of the caller’s address space into which

information cannot be written.

EINTR A signal interrupted the accept() call before any connections were

available.

EINVAL listen() was not called for socket descriptor socket.

accept

Chapter 3. Part 3. Library Functions 121

EIO There has been a network or transport failure.

EMFILE An attempt was made to open more than the maximum number of

file descriptors allowed for this process.

EMVSERR Two consecutive accept calls that cause an identity change are not

allowed. The original identity must be restored (close() the socket

that caused the identity change) before any further accepts are

allowed to change the identity

ENFILE The maximum number of file descriptors in the system are already

open.

ENOBUFS Insufficient buffer space is available to create the new socket.

ENOTSOCK The socket parameter does not refer to a valid socket descriptor.

EOPNOTSUPP

The socket type of the specified socket does not support accepting

connections.

EWOULDBLOCK

The socket descriptor socket is in nonblocking mode, and no

connections are in the queue.

Example

The following are two examples of the accept() call. In the first, the caller wishes to

have the requester’s address returned. In the second, the caller does not wish to

have the requester’s address returned.

int clientsocket;

int s;

struct sockaddr clientaddress;

int address_len;

int accept(int s, struct sockaddr *addr, int *address_len);

/* socket(), bind(), and listen() have been called */

/* EXAMPLE 1: I want the address now */

address_len = sizeof(clientaddress);

clientsocket = accept(s, &clientaddress, &address_len);

/* EXAMPLE 2: I can get the address later using getpeername() */

clientsocket = accept(s, (struct sockaddr *) 0, (int *) 0);

Related Information

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “bind() — Bind a Name to a Socket” on page 211

v “connect() — Connect a Socket” on page 325

v “getpeername() — Get the Name of the Peer Connected to a Socket” on page

821

v “listen() — Prepare the Server for Incoming Client Requests” on page 1104

v “socket() — Create a Socket” on page 1970

accept

122 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

accept_and_recv() — Accept Connection and Receive First Message

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

X/Open

#define _OPEN_SYS_SOCK_EXT2

#include <sys/socket.h>

int accept_and_recv(int socket, int *accept_socket,

 struct sockaddr *remote_address,

 socklen_t *remote_address_len,

 struct sockaddr *local_address,

 socklen_t *local_address_len,

 void *buffer, size_t length);

General Description

The accept_and_recv() function extracts the first connection on the queue of

pending connections. It either reuses the specified socket (if accept_socket is not

-1) or creates a new socket with the same socket type, protocol, and address family

as the listening socket (if accept_socket is -1). It then returns the first block of data

sent by the peer and returns the local and remote socket addresses associated with

the connection.

The function takes the following arguments:

Parameter Description

socket Specifies a socket that was created with socket(), has been bound

to an address with bind(), and has issued a successful call to

listen().

accept_socket Pointer to an int which specifies the socket on which to accept the

incoming connection. The socket must not be bound or connected.

Use of this parameter lets the application reuse the accepting

socket. It is possible that the system may choose to reuse a

different socket than the one the application specified by this

argument. In this case, the system will set *accept_socket to the

socket actually reused.

 A value of -1 for *accept_socket indicates that the accepting socket

should be assigned by the system and returned to the application in

this parameter. It is recommended that a value of -1 be used on the

first call to accept_and_recv(). For more details, see “Application

Usage” on page 124.

remote_address

Either a NULL pointer or a pointer to a sockaddr structure where

the address of the connecting socket will be returned.

remote_address_len

Points to a socklen_t item. On input, this item specifies the length

of the supplied sockaddr structure. On output, this item contains the

length of the stored address.

accept_and_recv

Chapter 3. Part 3. Library Functions 123

local_address Either a NULL pointer or a pointer to a sockaddr structure where

the address of the local socket will be returned.

local_address_len

Points to a socklen_t item. On input, this item specifies the length

of the supplied sockaddr structure. On output, this item contains the

length of the stored address.

buffer Either a NULL pointer, or a pointer to a buffer where the message

should be stored. If this is a NULL pointer, no receive is performed,

and accept_and_recv() completes when the incoming connection is

received.

length Specifies the length in bytes of the buffer pointed to by the buffer

argument.

If *accept_socket is not -1, the incoming connection will be accepted on the socket

specified by *accept_socket. The system may choose to reuse a different socket. If

it does, the system will change *accept_socket to reflect the socket actually used.

If remote_address is not a NULL pointer, the address of the peer for the accepted

connection is stored in the sockaddr structure pointed to by remote_address, and

the length of this address is stored in the object pointed to by remote_address_len.

If local_address is not a NULL pointer, the address of the local socket associated

with this connection is stored in the sockaddr structure pointed to by local_address,

and the length of this address is stored in the object pointed to by

local_address_len.

If the actual length of the address is greater than the length of the supplied

sockaddr structure, the stored address will be truncated.

Nonblocking mode is not supported for this function. If O_NONBLOCK is set on the

socket file descriptor, the function will return with -1 and errno will be set to

EOPNOTSUPP. If the listen queue is empty of connection requests and O_NONBLOCK is

not set on the socket file descriptor, accept_and_recv() will block and will not return

until an incoming connection is received. In addition, if buffer is not NULL,

accept_and_recv will not return until the first block of data on the connection has

been received.

Note: The accept_and_recv() function has a dependency on the level of the

Enhanced ASCII Extensions. See “Enhanced ASCII Support ” on page 2495

for details.

Application Usage

On the first call to accept_and_recv(), it is recommended that the application set the

socket pointed to by accept_socket to -1. This will cause the system to assign the

accepting socket. The application then passes the assigned value into the next call

to accept_and_recv() (by setting accept_socket = socket_ptr).

To take full advantage of the performance improvements offered by the

accept_and_recv() function, a process/thread model different from the one where a

parent accepts in a loop and spins off child process threads is needed. The

parent/process thread is eliminated. Multiple worker processes/threads are created,

and each worker process/thread then executes the accept_and_recv() function in a

loop. The performance benefits of accept_and_recv() include fewer buffer copies,

recycled sockets, and optimal scheduling.

accept_and_recv

124 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Returned Value

If successful, accept_and_recv() returns the number of bytes actually stored in the

buffer pointed to by the buffer argument.

If unsuccessful, accept_and_recv() returns -1 and sets errno to one of the following

values:

Error Code Description

EBADF One of two errors occurred:

1. The socket argument is not a valid descriptor.

2. accept_socket does not point to a valid descriptor.

ECONNABORTED

A connection has been aborted.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT The data buffer pointed to by accept_socket, remote_address,

remote_address_len, local_address, local_address_len, or buffer

was not valid.

EINTR The accept_and_recv() function was interrupted by a signal that

was caught before a valid connection arrived.

EINTRNODATA

The accept_and_recv() function was interrupted by a signal that

was caught after a valid connection arrived, but before the first

block of data arrived.

EINVAL The socket is not accepting connections.

EIO An I/O error occurred.

EISCONN The accept_socket is either bound or connected already.

EMFILE OPEN_MAX descriptors are already open in the calling process.

ENFILE The maximum number of descriptors in the system are already

open.

ENOBUFS No buffer space is available.

ENOMEM There was insufficient memory available to complete the operation.

ENOREUSE Socket reuse is not supported.

ENOSR There were insufficient STREAMS resources available for the

operation to complete.

ENOTSOCK The socket argument does not refer to a socket, or accept_socket

does not point to a socket.

EOPNOTSUPP

One of three errors occurred:

1. The socket type of the specified socket does not support

accepting connections.

2. O_NONBLOCK is set for this socket and nonblocking is not

supported for this function.

3. The accept_and_recv() function is not supported by this

platform.

EPROTO A protocol error has occurred.

accept_and_recv

Chapter 3. Part 3. Library Functions 125

Related Information

v “sys/socket.h” on page 89

v “accept() — Accept a New Connection on a Socket” on page 120

v “getpeername() — Get the Name of the Peer Connected to a Socket” on page

821

v “getsockname() — Get the Name of a Socket” on page 859

v “read() — Read From a File or Socket” on page 1602

accept_and_recv

126 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

access() — Determine Whether a File Can be Accessed

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int access(const char *pathname, int how);

General Description

Determines how an HFS file can be accessed. When checking to see if a process

has appropriate permissions, access() looks at the real user ID (UID) and group ID

(GID), not the effective IDs.

pathname is the name of the file whose accessibility you want to test. The how

argument indicates the access modes you want to test. The following symbols are

defined in the unistd.h header file for use in the how argument:

F_OK Tests whether the file exists.

R_OK Tests whether the file can be accessed for reading.

W_OK Tests whether the file can be accessed for writing.

X_OK Tests whether the file can be accessed for execution.

You can take the bitwise inclusive-OR of any or all of the last three symbols to test

several access modes at once. If you are using F_OK to test for the file’s existence,

you cannot use OR with any of the other symbols.

Returned Value

If the specified access is permitted, access() returns 0.

If the given file cannot be accessed in the specified way, access() returns −1 and

sets errno to one of the following values:

Error Code Description

EACCES The process does not have appropriate permissions to access the

file in the specified way, or does not have search permission on

some component of the pathname prefix.

EINVAL The value of how is incorrect.

ELOOP A loop exists in the symbolic links.

ENAMETOOLONG

pathname is longer than PATH_MAX characters. The PATH_MAX

value is determined using pathconf().

ENOENT There is no file named pathname, or the pathname argument is an

empty string.

access

Chapter 3. Part 3. Library Functions 127

||||

|
|
|
|
|

||

|

ENOTDIR Some component of the pathname prefix is not a directory.

EROFS The argument how has specified write access for a file on a

read-only file system.

Returned Value for POSIX C Programs

The following errno values behave differently when a program is running with

POSIX(ON):

Error Code Description

ELOOP A loop exists in the symbolic links. This error is issued if the number

of symbolic links detected in the resolution is greater than

POSIX_SYMLOOP (a value defined in the limits.h header file).

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX, when

_POSIX_NO_TRUNC (defined in the unistd.h header file) is in

effect. The PATH_MAX and NAME_MAX values are determined

using pathconf().

See “z/OS XL C/C++ applications with z/OS UNIX System Services C functions” on

page 13 for more information about using POSIX support.

Example

CELEBA03

/* CELEBA03

 The following example determines how a file is accessed.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#undef _POSIX_SOURCE

#include <unistd.h>

main() {

 char path[]="/";

 if (access(path, F_OK) != 0)

 printf("'%s' does not exist!\n", path);

 else {

 if (access(path, R_OK) == 0)

 printf("You have read access to '%s'\n", path);

 if (access(path, W_OK) == 0)

 printf("You have write access to '%s'\n", path);

 if (access(path, X_OK) == 0)

 printf("You have search access to '%s'\n", path);

 }

}

Output

From a non-superuser:

You have read access to ’/’

You have search access to ’/’

access

128 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “limits.h” on page 55

v “unistd.h” on page 96

v “chmod() — Change the Mode of a File or Directory” on page 280

v “stat() — Get File Information” on page 2008

access

Chapter 3. Part 3. Library Functions 129

acl_create_entry() — Add a New Extended ACL Entry to the ACL

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_create_entry(lacl_t *acl_p, acl_entry_t entry_p, int version);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_create_entry() function creates a new extended ACL entry in the ACL

pointed to by the contents of the pointer argument acl_p. The contents of the

acl_entry are specified by entry_p. ACL working storage is allocated as needed.

The first call to acl_get_entry() following the call to acl_create_entry() will obtain the

first extended ACL entry in the ACL, as ordered by the system.

The version tells the function the version of ACL entry. See “sys/acl.h” on page 87

for ACL entry mapping.

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the acl_create_entry() function returns -1

and sets errno to the corresponding value:

Error Code Description

EINVAL Argument acl_p does not point to a pointer to an ACL structure.

Argument entry_d does not point to a valid extended ACL entry.

ENOMEM The ACL working storage requires more memory than is available.

Related Information

v “sys/acl.h” on page 87

acl_create_entry

130 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

acl_delete_entry() — Delete an Extended ACL Entry from the ACL

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_delete_entry(lacl_t acl_d, acl_entry_t entry_d);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_delete_entry() function removes the extended ACL entry indicated by

entry_d in the ACL pointed to by argument acl_d. The first call to acl_get_entry()

following the call to acl_delete_entry() will obtain the first extended ACL entry in the

ACL, as ordered by the system.

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the acl_delete_entry() function returns -1

and sets errno to the corresponding value:

Error Code Description

EINVAL Argument acl_d does not point to a pointer to an ACL structure.

Argument entry_d does not point to a valid extended ACL entry or

not within the given ACL structure.

Related Information

v “sys/acl.h” on page 87

acl_delete_entry

Chapter 3. Part 3. Library Functions 131

acl_delete_fd() — Delete an ACL by File Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_delete_fd (int fd, int type_d);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_delete_fd() function deletes the type_d ACL. That means that all extended

ACL entries are deleted for type_d ACL. A file/dir subject must match the owner of

the directory/file or the subject must have appropriate privileges.

The effective UID of the process must match the owner of the directory/file or the

process must have appropriate privileges. If the type_d is the directory/file default

and the object referred to by fd is not a directory, then the function will fail. An

attempt to delete an ACL from a file that does not have that ACL is not considered

an error.

Upon successful completion, the acl_delete_fd() will delete the type ACL associated

with the file referred by argument fd. If unsuccessful, the type ACL associated with

the file object referred by argument fd will not be changed.

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the acl_delete_fd() function returns -1 and

sets errno to the corresponding value:

Error Code Description

EBADF The fd argument is not a valid file descriptor.

EINVAL Argument type_d is not a valid ACL type.

ENOTDIR The type specifies directory/file default ACL and the argument fd

does not refer to a directory object.

EACCES The process does not have appropriate privilege to delete the type

ACL.

Related Information

v “sys/acl.h” on page 87

v “acl_delete_file() — Delete an ACL by Filename” on page 133

acl_delete_fd

132 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

acl_delete_file() — Delete an ACL by Filename

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_delete_file (const char *path_p, int type_d);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_delete_file() function deletes the type_d ACL. That means that all extended

ACL entries are deleted for type_d ACL. A file/directory always has base ACL

entries so they cannot be deleted. The effective UID of the process must match the

owner of the directory/file or the process must have appropriate privileges.

If the type_d is the directory/file default and the object referred to by fd is not a

directory, then the function will fail. An attempt to delete an ACL from a file that

does not have that ACL is not considered an error.

Upon successful completion, the acl_delete_file() will delete the type ACL

associated with the file referred by argument path_p. If unsuccessful, the type ACL

associated with the file object referred by argument path_p will not be changed.

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the acl_delete_file() function returns -1 and

sets errno to the corresponding value:

Error Code Description

EACCES Search permission is denied for a component of the path prefix or

the object exists and the subject does not have appropriate access

rights.

EINVAL Argument type_d is not a valid ACL type.

ENAMETOOLONG

The length of the pathname argument exceeds PATH_MAX, or a

pathname component is longer than NAME_MAX and

{_POSIX_NO_TRUNC} is in effect for that file. For symbolic links,

the length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. PATH_MAX and NAME_MAX values can be

determined by using pathconf().

acl_delete_file

Chapter 3. Part 3. Library Functions 133

ENOENT The named object does not exist or the path_p argument points to

an empty string.

ENOTDIR The type specified was directory/file default but the argument

path_p is not a directory or a component of the path prefix is not a

directory.

Related Information

v “sys/acl.h” on page 87

v “acl_delete_fd() — Delete an ACL by File Descriptor” on page 132

acl_delete_file

134 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

acl_first_entry() — Return to Beginning of ACL Working Storage

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_first_entry (lacl_t acl_d);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

A call to acl_first_entry() sets the internal ACL entry offset descriptor for the acl_d

argument such that a subsequent call to acl_get_entry() using the same acl_d

argument obtains the first extended ACL entry in the ACL.

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the acl_init() function returns -1 and sets

errno to the corresponding value:

Error Code Description

EINVAL Argument acl_d does not point to an ACL structure.

Related Information

v “sys/acl.h” on page 87

v “acl_get_entry() — Get an ACL Entry” on page 140

acl_first_entry

Chapter 3. Part 3. Library Functions 135

acl_free() — Release Memory Allocated to an ACL Data Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_free (lacl_t acl_d);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_free() function frees any releasable memory currently allocated to the ACL

data object identified by acl_d. Use of the object reference pointed to by acl_d after

the memory has been released is undefined.

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the acl_free() function returns -1 and sets

errno to the corresponding value:

Error Code Description

EINVAL The value of the acl_d argument is not valid.

Related Information

v “sys/acl.h” on page 87

v “acl_init() — Initialize ACL Working Storage” on page 146

acl_free

136 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

acl_from_text() — Create an ACL from Text

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_from_text (const char *buf_p, short OpType, acl_all_t ptr, char **ret);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_from_text() function converts the text form of an ACL referred to by buf_p

into the acl_t form of an ACL. It parses both the extended and base ACL entries.

If successful, the structure that ptr points to will be updated with ACL entries for the

3 types of ACLs. The structure members that ptr points to must either be NULL or

point to a valid acl_t structure. If the structure member is not NULL, ACL entries

contained in buf_p will be merged in. New storage for those structure members may

be allocated as needed and in that case passed-in storage will be freed, so

structure members may point to a different storage than the one originally supplied.

If ptr is NULL, the acl_from_text will fail. If the buf_p has no ACL entries (such as

empty string, only empty lines, etc), acl_from_text() will fail with errno set to EINVAL

and ret will point to the null terminator in buf_p.

Working storage is allocated for the individual ACLs structures as needed and need

to be freed using acl_free().

If the function is unsuccessful due to error encountered in parsing, ret will contain

the address of beginning of extended/base ACL entry where the error was found in

buf_p and errno will be set to EINVAL. Otherwise ret will be NULL.

The text form of the ACL referred to by buf_p may be incomplete or may be a

non-valid ACL as defined by acl_valid(). The buf_p must be null terminated. The

first call to acl_get_entry() following the call to acl_from_text() obtains the first entry

in the ACL as ordered by the system.

For OpType =ACL_DELETE, the extended ACL entries will be updated with the flag

bit to be removed from the ACL when acl_set_fd() or acl_set_file() is called. The

base ACL entries are parsed but not put into the structure that ptr points to since

you cannot delete base ACL entries.

The buf_p cannot have a mixture of ACL entry delimiters (newline and comma). All

ACL entries in the buf must use the same delimiter, either a newline or comma. For

acl_from_text

Chapter 3. Part 3. Library Functions 137

a mixture of delimiters, acl_from_text() will fail with errno set to EINVAL and ret

parameter will point to the delimiter in error.

acl_all_t :

index 0 access acl

index 1 file default acl

index 2 directory default acl

Valid text input format based on OpType:

tag fdefault, default (access if nothing is specified)

type user, group, other

id uid, gid, username, groupname

perm rwx (or ’-’ for no permission), octal (0-7) , +/ ̂ (where + is turn on

and ̂ is turn off)

Pound sign (#) is used to designate a comment. When the input is separated by

commas, everything past # is treated as a comment. When the input is separated

by a newline, everything after # till the newline is considered a comment.

Comments are ignored and are not stored in the buffer.

 ACL_ADD tag:type:id:perm // extended ACL entry

 type::perm // base ACL entry

 ACL_MODIFY same as ACL_ADD

 ACL_DELETE tag:type:id // extended ACL entry

Note: The extended ACL entries must have the type (group or user) and the id

(uid/gid). The base ACL entries do not have a value for the id field. The id

field or the lack of one is what distinguishes the base ACL entry from the

extended ACL entry. The base ACL entries do not have the tag fields since

they only apply to access ACL.

The acl_from_text() allows for trailing ACL entry separator (newline or comma). For

relative permission settings, only one of ’+’ or ’^’ is allowed per ACL entry. When

using relative permissions you must have at least one of r, w, or x. For example:

+rw or ^rwx.

Returned Value

Upon successful completion, the function returns a zero.

If any of the following conditions occur, the acl_from_text() function returns -1 and

sets errno to the corresponding value:

Error Code Description

EINVAL Argument buf_p cannot be translated into an ACL.

ENOMEM The ACL working storage requires more memory than is available.

E2BIG The number of base ACL entries exceeded allowable 3.

 The ret will contain the address in buf_p where the error was found.

acl_from_text

138 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “sys/acl.h” on page 87

v “acl_free() — Release Memory Allocated to an ACL Data Object” on page 136

v “acl_to_text() — Convert an ACL to Text” on page 154

acl_from_text

Chapter 3. Part 3. Library Functions 139

acl_get_entry() — Get an ACL Entry

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_get_entry (lacl_t acl_d, acl_entry_t *entry_p);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_get_entry() function obtains a descriptor to the next extended ACL entry of

the ACL indicated by argument acl_d. Upon successful execution, the

acl_get_entry() function returns a descriptor for the extended ACL entry via entry_p.

Argument acl_d must refer to a valid acl_t structure.

The first call to acl_get_entry() following a call to acl_first_entry(), acl_from_text(),

acl_get_fd(), acl_get_file(), acl_set_fd(), acl_set_file(), or acl_valid() obtains the first

extended ACL entry in the ACL, as ordered by the system. Subsequent calls to

acl_get_entry() obtain successive extended ACL entries, until the last entry is

obtained. After the last extended ACL entry has been obtained from the acl_d the

value NULL is returned via entry_p.

To determine if ACL has any base ACL entries, check acl_d->lacl_base, which gives

the number of base ACL entries present. Then the process can access the base

ACL entries directly in the acl_d. (For example: acl_d-
>lacl_base_entries[0].acle_type is the type field of the first base ACL entry.)

Returned Value

If the function successfully obtains a pointer to the extended ACL entry, the function

returns a value of one. If the last extended ACL entry in the ACL has already been

returned by a previous call to acl_get_entry() or if ACL has no extended ACL

entries, the function returns a value of zero.

If any of the following conditions occur, the acl_get_entry() function returns -1 and

sets errno to the corresponding value:

Error Code Description

EINVAL Argument acl_d does not point to an ACL structure.

Related Information

v “sys/acl.h” on page 87

v “acl_init() — Initialize ACL Working Storage” on page 146

v “acl_get_file() — Get ACL by Filename” on page 144

acl_get_entry

140 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “acl_first_entry() — Return to Beginning of ACL Working Storage” on page 135

acl_get_entry

Chapter 3. Part 3. Library Functions 141

acl_get_fd() — Get ACL by File Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_get_fd (int fd, acl_type_t type_d, lacl_t acl_d, int *num);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_get_fd() function retrieves an ACL based on type_d argument for an object

associated with the file descriptor fd. The ACL is retrieved into the supplied working

storage pointed to by acl_d. For the type_d = ACL_ACCESS, acl_get_fd() will get

both the base ACL entries and extended ACL entries. (The base ACL entries only

apply to the ACL_ACCESS ACL.)

The working storage should be allocated using the acl_init() function. If the buffer is

not big enough, the acl_get_fd() will fail with errno=E2BIG and num will be filled

with the number of ACLs in the ACL pointed to by fd. The user can get a bigger

acl_t structure buffer using the num value and reissue the acl_get_fd().

If the object associated with the file descriptor does not have the specified ACL,

then an ACL containing zero ACL entries will be returned. If the argument fd refers

to an object other than a directory and the value of type_d is a directory/file default,

then the function will fail.

The first call to acl_get_entry() following the call to acl_get_fd() obtains the first

extended ACL entry in the ACL as ordered by the system.

The result of acl_get_fd() can be used to set that same ACL using acl_set_fd() or

acl_set_file() using OpType = ACL_ADD.

Returned Value

Upon successful completion, the function returns zero.

If any of the following conditions occur, the acl_get_fd() function returns a value of

NULL and sets errno to the corresponding value:

Error Code Description

EACCES The required access to the file referred to by fd is denied.

EBADF The fd argument is not a valid file descriptor.

acl_get_fd

142 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

EINVAL Argument type_d is not a valid ACL type. Argument acl_d does not

point to an ACL structure.

ENOTDIR The type specified was directory/file default but the argument fd

does not refer to a directory.

E2BIG The supplied buffer is too small for all extended ACL entries. num

value has the number of ACL entries that need to fit in the buffer.

Related Information

v “sys/acl.h” on page 87

v “acl_free() — Release Memory Allocated to an ACL Data Object” on page 136

v “acl_get_entry() — Get an ACL Entry” on page 140

v “acl_set_fd() — Set an ACL by File Descriptor” on page 147

acl_get_fd

Chapter 3. Part 3. Library Functions 143

acl_get_file() — Get ACL by Filename

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_get_file (const char *path_p, acl_type_t type_d, lacl_t acl_d, int *num);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_get_file() function retrieves an ACL based on type_d argument for an object

associated with the object via file name. The ACL is retrieved into the specified

working storage pointed to by acl_d. For the type_d = ACL_ACCESS, acl_get_file()

will get both the base ACL entries and extended ACL entries. The base ACL entries

only apply to the ACL_ACCESS ACL.

The working storage should be allocated using the acl_init() function. If the buffer is

not big enough, the acl_get_fd() will fail with errno=E2BIG and num will be filled

with the number of ACLs in the ACL pointed to by fd. The user can get a bigger

acl_t structure buffer using the num value and reissue the acl_get_fd().

If the object associated with the file descriptor does not have the specified ACL,

then an ACL containing zero ACL entries will be returned. If the argument fd refers

to an object other than a directory and the value of type_d is a directory/file default,

then the function will fail.

The first call to acl_get_entry() following the call to acl_get_fd() obtains the first

extended ACL entry in the ACL as ordered by the system. The result of acl_get_fd()

can be used to set that same ACL using acl_set_fd() or acl_set_file() using OpType

= ACL_ADD.

Returned Value

Upon successful completion, the function returns zero.

If any of the following conditions occur, the acl_get_file() function returns a value of

NULL and sets errno to the corresponding value:

Error Code Description

EACCES Search permission is denied for a component of the path prefix or

the object exists and the subject does not have appropriate access

rights.

acl_get_file

144 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

EINVAL Argument type_d is not a valid ACL type. Argument acl_d does not

point to an ACL structure.

ENAMETOOLONG

The length of the pathname argument exceeds PATH_MAX, or a

pathname component is longer than NAME_MAX and

{_POSIX_NO_TRUNC} is in effect for that file. For symbolic links,

the length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. PATH_MAX and NAME_MAX values can be

determined by using pathconf().

ENOENT The named object does not exist or the path_p argument points to

an empty string.

ENOTDIR The type specified was directory/file default but the argument

path_p is not a directory or a component of the path prefix is not a

directory.

E2BIG The supplied buffer is too small for all extended ACL entries. Num

value has the number of ACL entries that need to fit in the buffer.

Related Information

v “sys/acl.h” on page 87

v “acl_free() — Release Memory Allocated to an ACL Data Object” on page 136

v “acl_set_file() — Set an ACL by Filename” on page 150

v “acl_get_entry() — Get an ACL Entry” on page 140

acl_get_file

Chapter 3. Part 3. Library Functions 145

acl_init() — Initialize ACL Working Storage

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

lacl_t acl_init (int count);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_init() function allocates and initializes working storage for an ACL of at least

count extended ACL entries. A pointer to the working storage is returned. The

working storage allocated to contain the ACL must be freed by a call to acl_free().

The working storage contains an ACL with no ACL entries. The count must be

greater than 0.

The acl_init() function initializes fields in the lacl_t it returns. When those fields are

destroyed (for example, using memset or overwriting storage), the results are

unpredictable. To re-use the buffer, acl_entry_delete() all extended ACL entries and

set lacl_base = 0 or acl_free() the existing buffer and acl_init() for a new one.

Returned Value

Upon successful completion, the function returns a pointer to the working storage.

If any of the following conditions occur, the acl_init() function returns NULL and sets

errno to the corresponding value:

Error Code Description

ENOMEM The lacl_t to be returned requires more memory than is available.

EINVAL The count is less than or equal to zero.

Related Information

v “sys/acl.h” on page 87

v “acl_free() — Release Memory Allocated to an ACL Data Object” on page 136

acl_init

146 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

acl_set_fd() — Set an ACL by File Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_set_fd (int fd, acl_type_t type_d, lacl_t acl_d, short OpType,

 acl_entry_t *entry_p);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_set_fd() function associates the type_d ACL with the object referred to by

fd. The effective UID of the subject must match the owner of the object or the

subject must have appropriate privileges.

If the type_d is the directory/file default and the object referred to by fd is not a

directory, then the function will fail.

The acl_set_fd() function will succeed only if the ACL is valid as defined by the

acl_valid() function.

Upon successful completion, acl_set_fd() will set the ACL of the object. For type_d

= ACL_ACCESS, acl_set_fd() will also set the base ACL entries. The base ACL

entries only apply to ACl_ACCESS ACL type, so for any other type the base ACL

entries are ignored.

The OpType determines whether the ACL is updated or replaced.

OpType Action

ACL_ADD replace the whole ACL with the given extended and base ACL

entries

ACL_MODIFY update the ACL with the given extended and/or base ACL entries (if

individual extended ACL entries are marked for deletion, than

ACL_MODIFY removes them)

ACL_DELETE delete from the ACL the specified extended ACL entries; marks the

individual extended ACL entries for deletion (cannot delete base

ACL entries)

If Optype is ACL_MODIFY, the setting will modify the existing extended ACL entries

and add new ones if they do not exist. Both ACL entry’s mask and value are used

to determine ACL entry’s permission to set.

acl_set_fd

Chapter 3. Part 3. Library Functions 147

If OpType is ACL_ADD, the existing ACL is replaced by the new one. Only

extended ACL entry’s value is used to determine permissions to set. The object’s

previous ACL will no longer be in effect. If the object had no ACL, a new one is

added for both ACL_MODIFY and ACL_ADD.

Similarly, for OpType = ACL_ADD, base ACL entries are replaced with the new

values specified (mask field is ignored). All three base ACL entries (ACL_USER,

ACL_GROUP, and ACL_OTHER) must be specified. For OpType = ACL_MODIFY,

the base ACL entries are modified with the specified values (both mask and value

fields are used).

For Optype = ACL_MODIFY only the base ACL entries to be changed need to be

specified. The Optype = ACL_DELETE does not apply to base ACL entries since

they cannot be removed. Every file always has base ACL entries.

If the acl_set_fd() is unsuccessful, the ACL of the object referred to by argument fd

is not changed.

The ordering of entries within ACL referred to by acl_d may be changed. The first

call to acl_get_entry() following the call to acl_set_fd() obtains the first extended

ACL entry in the ACL as ordered by the system.

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the acl_set_file() function returns a value of

-1 and sets errno to the corresponding value:

Error Code Description

EACCES Search permission is denied for a component of the path prefix or

the object exists and the subject does not have appropriate access

rights.

E2BIG The ACL has more extended ACL entries than is allowed.

ENOENT The named object does not exist or the path_p argument points to

an empty string.

EINVAL Argument acl_d does not point to a valid ACL structure.

ENOSPC The directory or file system that would contain the new ACL cannot

be extended or the file system is out of space.

ENOTDIR The type_d specified was directory/file default but the argument

path_p does not refer to a directory.

ENAMETOOLONG

The length of the pathname argument exceeds PATH_MAX, or a

pathname component is longer than NAME_MAX and

{_POSIX_NO_TRUNC} is in effect for that file. For symbolic links,

the length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. PATH_MAX and NAME_MAX values can be

determined by using pathconf().

EMVSERR Other internal RACF error (more information in errno2)

 The function will return -2 and set errno to EINVAL if the base ACL entry is not

unique or is not a valid type or for ACL_ADD, there are less than 3 base ACL

entries. The entry_p will be NULL.

acl_set_fd

148 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The function will return -3 and set errno to EINVAL if the extended ACL entry is not

unique or is not a valid type. The entry_p, if not NULL, will point to the extended

ACL entry in error.

Related Information

v “sys/acl.h” on page 87

v “acl_get_fd() — Get ACL by File Descriptor” on page 142

acl_set_fd

Chapter 3. Part 3. Library Functions 149

acl_set_file() — Set an ACL by Filename

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_set_file (char *path_p, acl_type_t type_d, lacl_t acl_d, short OpType,

 acl_entry_t *entry_p);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_set_file() function associates the type_d ACL with the object referred to by

file name path_p. The effective UID of the subject must match the owner of the

object or the subject must have appropriate privileges.

If the type_d is the directory/file default and the object referred to by file name

path_p is not a directory, then the function will fail.

The acl_set_file() function will succeed only if the ACL is valid as defined by the

acl_valid() function.

Upon successful completion, acl_set_file() will set the ACL of the object. For type_d

= ACL_ACCESS, acl_set_file() will also set the base ACL entries. The base ACL

entries only apply to ACl_ACCESS ACL type, so for any other type the base ACL

entries are ignored.

The OpType determines whether the ACL is updated or replaced.

OpType Action

ACL_ADD replace the whole ACL with the given extended and base ACL

entries

ACL_MODIFY update the ACL with the given extended and/or base ACL entries (if

individual extended ACL entries are marked for deletion, then

ACL_MODIFY removes them)

ACL_DELETE delete from the ACL the specified extended ACL entries; marks the

individual extended ACL entries for deletion (cannot delete base

ACL entries)

If Optype is ACL_MODIFY, the setting will modify the existing extended ACL entries

and add new ones if they do not exist. Both ACL entry’s mask and value are used

to determine ACL entry’s permission to set.

acl_set_file

150 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If OpType is ACL_ADD, the existing ACL is replaced by the new one. Only

extended ACL entry’s value is used to determine permissions to set. The object’s

previous ACL will no longer be in effect. If the object had no ACL, a new one is

added for both ACL_MODIFY and ACL_ADD.

Similarly, for OpType = ACL_ADD, base ACL entries are replaced with the new

values specified (mask field is ignored). All three base ACL entries (ACL_USER,

ACL_GROUP, and ACL_OTHER) must be specified. For OpType = ACL_MODIFY,

the base ACL entries are modified with the specified values (both mask and value

fields are used).

For Optype = ACL_MODIFY only the base ACL entries to be changed need to be

specified. The Optype = ACL_DELETE does not apply to base ACL entries since

they cannot be removed. Every file always has base ACL entries.

If the acl_set_file() is unsuccessful, the ACL of the object referred to by argument

path_p is not changed.

The ordering of entries within ACL referred to by acl_d may be changed. The first

call to acl_get_entry() following the call to acl_set_file() obtains the first extended

ACL entry as ordered by the system.

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the acl_set_file() function will return a value

of -1 and set errno to the corresponding value:

Error Code Description

EACCES Search permission is denied for a component of the path prefix or

the object exists and the subject does not have appropriate access

rights.

E2BIG The ACL has more extended ACL entries than are allowed.

ENOENT The named object does not exist or the path_p argument points to

an empty string.

EBADF The fd argument is not a valid file descriptor.

EINVAL Argument acl_d does not point to a valid ACL structure.

ENOSPC The directory or file system that would contain the new ACL cannot

be extended or the file system is out of space.

ENOTDIR The type_d specified was directory/file default but the argument

path_p does not refer to a directory.

ENAMETOOLONG

The length of the pathname argument exceeds PATH_MAX, or a

pathname component is longer than NAME_MAX and

{_POSIX_NO_TRUNC} is in effect for that file. For symbolic links,

the length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. PATH_MAX and NAME_MAX values can be

determined by using pathconf().

EMVSERR Other internal RACF error (more information in errno2)

acl_set_file

Chapter 3. Part 3. Library Functions 151

The function will return -2 and set errno to EINVAL if the base ACL entry is not

unique or is not a valid type or for ACL_ADD, there are less than 3 base ACL

entries. The entry_p will be NULL.

The function will return -3 and set errno to EINVAL if the extended ACL entry is not

unique or is not a valid type. The entry_p, if not NULL, will point to the extended

ACL entry in error.

Related Information

v “sys/acl.h” on page 87

v “acl_get_fd() — Get ACL by File Descriptor” on page 142

v “acl_valid() — Validate an ACL” on page 157

acl_set_file

152 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

acl_sort() — Sort the Extended ACL Entries

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_sort(lacl_t acl_d);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_sort() function sorts the extended ACL entries in the following orders:

v ACL_USER lowest to highest uid

v ACL_GROUP lowest to highest gid

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the acl_sort() returns -1 and sets errno to

the corresponding value:

Error Code Description

EINVAL Argument acl_d does not point to a valid ACL structure.

Related Information

v “sys/acl.h” on page 87

acl_sort

Chapter 3. Part 3. Library Functions 153

acl_to_text() — Convert an ACL to Text

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

char * acl_to_text (const lacl_t acl_d, ssize_t *len_p, acl_type_t type_d,

 char delim);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_to_text() function translates the extended ACL entries in an ACL pointed to

by argument acl_d into a NULL terminated character string. This function allocates

any memory necessary to contain the string and returns a pointer to the string. The

memory allocated to contain the string must be freed. If the pointer len_p is not

NULL, then the function returns the full length of the string (not including the NULL

terminator) in the location pointed to by len_p. The delim parameter determines the

delimiter used to separate the ACL entries (usually newline or comma).

The mask field in the base and extended ACL entry is ignored and only the ACL

entry value field is used to display the ACL entry permissions.

For acl_d with no extended ACL entries, acl_to_text() returns NULL. When

acl_to_text() cannot convert uid/gid to username/groupname, it leaves the uid/gid in

the string.

The format of the text string:

<acl_entry>delim<acl_entry> ... <acl_entry>

where acl_entry may be:

 base_acl_tag::permissions

 user:user_name:permissions

 group:group_name:permissions

 default:user_name:permissions

base_acl_entry:

user, group, or other

permissions:

rwx (with ’-’ for no permission)

acl_to_text

154 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

default:

fdefault - file default

default - directory default

Returned Value

Upon successful completion, the function returns a pointer to the text form of an

ACL.

If any of the following conditions occur, the acl_to_text() returns NULL and sets

errno to the corresponding value:

Error Code Description

EINVAL Argument acl_d does not point to a valid ACL structure. The ACL

referenced by acl_d contains one or more improperly formed ACL

entries, or for some other reason cannot be translated into the

string form of ACL.

ENOMEM The character string to be returned requires more memory than is

available.

Related Information

v “sys/acl.h” on page 87

v “acl_free() — Release Memory Allocated to an ACL Data Object” on page 136

v “acl_from_text() — Create an ACL from Text” on page 137

acl_to_text

Chapter 3. Part 3. Library Functions 155

acl_update_entry() — Update the Extended ACL Entry

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_update_entry(lacl_t acl_d, acl_entry_t entry_s, acl_entry_t entry_d

 int version);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_update_entry() function updates the extended ACL entry entry_s with the

values from entry_d. The version tells the function the version of ACL entry. See

“sys/acl.h” on page 87 for ACL entry mapping.

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the acl_create_entry() function returns -1

and sets errno to the corresponding value:

Error Code Description

EINVAL Argument entry_s or entry_d do not point to a valid extended ACL

entry. Argument acl_d does not point to a valid ACL structure.

Related Information

v “sys/acl.h” on page 87

aclupdateentry

156 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

acl_valid() — Validate an ACL

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS 1

#include <sys/acl.h>

int acl_valid (lacl_t acl_d, acl_entry_t *entry_p);

General Description

Use access control lists (ACLs) in conjunction with permission bits to control access

to files and directories. Currently, ACLs are supported by the HFS, TFS, and zFS

file systems. You must know whether your security product supports ACLs and what

rules are used when determining file access. See z/OS UNIX System Services

Planning for details.

The acl_valid() function checks the access ACL, file default ACL, or directory default

ACL referred to by the argument acl_d for validity.

The ACL_USER, ACL_GROUP, and ACL_OTHER can only exist once in base ACL

entries. The ACL_OTHER only applies to base ACL entries.

The tag type (user, group) must contain valid values for the extended ACL entries.

The qualifier field (uid, gid) must be unique among all extended ACL entries of the

same ACL except for the extended ACL entries that are mapped for deletion (see

ACL entry mapping in “sys/acl.h” on page 87 for more information). The ordering of

base and/or extended ACL entries within ACL referred by the acl_d may be

changed.

The first call to acl_get_entry() following the call to acl_valid() obtains the first

extended ACL entry in the ACL as ordered by the system.

Returned Value

Upon successful completion, the function returns a value of zero.

If any of the following conditions occur, the location referred to by entry_p will be

undefined and the acl_valid() function returns -1 and sets errno to the

corresponding value:

Error Code Description

EINVAL Argument acl_d does not point to an ACL structure.

 If any of the following conditions occur, the acl_valid() function will set the location

referred to by entry_p to one of the ACL entries in error, return -2 and set errno to

the appropriate value.

Error Code Description

EINVAL The ACL contains extended ACL entries that are not unique or is

not a valid ACL entry type.

acl_valid

Chapter 3. Part 3. Library Functions 157

If any of the following conditions occur, the acl_valid() function will return -3 and set

errno to the appropriate value.

Error Code Description

EINVAL The ACL contains base ACL entries that are not unique or is not a

valid ACL entry type. Only one base ACL entry of the same tag type

(ACL_USER, ACL_GROUP, ACL_OTHER) may exist.

Related Information

v “sys/acl.h” on page 87

v “acl_init() — Initialize ACL Working Storage” on page 146

v “acl_get_fd() — Get ACL by File Descriptor” on page 142

v “acl_get_file() — Get ACL by Filename” on page 144

v “acl_set_fd() — Set an ACL by File Descriptor” on page 147

v “acl_set_file() — Set an ACL by Filename” on page 150

acl_valid

158 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

acos(), acosf(), acosl() — Calculate Arccosine

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double acos(double x);

float acos(float x); /* C++ only */

long double acos(long double x); /* C++ only */

float acosf(float x);

long double acosl(long double x);

General Description

Calculates the arccosine of x, expressed in radians, in the range 0 to pi.

The value of x must be between -1 and 1 inclusive.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Special Behavior for C/370

If x is less than -1 or greater than 1, the function sets errno to EDOM and returns 0.

If the correct value would cause underflow, zero is returned and the value ERANGE

is stored in errno.

Special Behavior for XPG4.2

If successful, the function returns the arccosine of x, in the range [0,pi] radians.

If the value of x is not in the range [-1,1], the function returns 0.0 and sets errno to

the following value. No other errors will occur.

Error Code Description

EDOM The value x is not in the range [-1,1].

Special Behavior for IEEE

If successful, the function returns the arccosine of the argument x.

If x is less than -1 or greater than 1, the function sets errno to EDOM and returns

NaNQ (Not a Number Quiet). No other errors will occur.

acos, acosf, acosl

Chapter 3. Part 3. Library Functions 159

||||

|
|
|
|
|
|
|

||

|

Example

CELEBA04

/* CELEBA04

 This example prompts for a value for x.

 It prints an error message if x is greater than 1 or

 less than −1; otherwise, it assigns the arccosine of

 x to y.

 */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define MAX 1.0

#define MIN −1.0

int main(void)

{

 double x, y;

 printf("Enter x\n");

 scanf("%lf", &x);

 /* Output error if not in range */

 if (x > MAX)

 printf("Error: %f too large for acos\n", x);

 else if (x < MIN)

 printf("Error: %f too small for acos\n", x);

 else {

 y = acos(x);

 printf("acos(%f) = %f\n", x, y);

 }

}

Output

Expected result if 0.4 is entered:

Enter x

acos(0.400000) = 1.159279

Related Information

v “math.h” on page 60

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

acos, acosf, acosl

160 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double acosh(double x);

C99

#define _ISOC99_SOURCE

#include <math.h>

float acoshf(float x);

long double acoshl(long double x);

General Description

The acosh functions compute the (nonnegative) arc hyperbolic cosine of x. A

domain error occurs for arguments less than 1.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

acosh X X

acoshf X X

acoshl X X

Returned Value

If successful, acosh() returns the hyperbolic arccosine of its argument x.

If the value of x is less than 1.0, then the function returns 0.0 and sets errno to

EDOM.

Special Behavior for IEEE

If successful, the function returns the hyperbolic arccosine of its argument x.

If x is less than 1.0, the function sets errno to EDOM and returns NaNQ.

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

acosh

Chapter 3. Part 3. Library Functions 161

||||

|
|
|

||

|

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

acosh

162 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

advance() — Pattern Match Given a Compiled Regular Expression

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

both

Format

#define _XOPEN_SOURCE

#include <regexp.h>

int advance(const char *string, const char *expbuf);

extern char *loc2, *locs;

General Description

Restriction: This function is not supported in AMODE 64.

The advance() function attempts to match an input string of characters with the

compiled regular expression which was obtained by an earlier call to compile().

The first parameter string is a pointer to a string of characters to be checked for a

match.

expbuf is the pointer to the regular expression which was previously obtained by a

call to compile().

The external variable loc2 will point to the next character in string after the last

character that matched the regular expression.

The external variable locs can be optionally set to point to some point in the input

regular expression string to cause the advance() function to exit its back up loop.

Note: The external variables cirf, sed, and nbra are reserved.

During the pattern matching operation, when advance() encounters a * or \{\}

sequence in the regular expression, it will advance its pointer to the string to be

matched as far as possible and will recursively call itself trying to match the rest of

the string to the rest of the regular expression. As long as there is no match,

advance() will back up along the string until it finds a match or reaches the point in

the string that initially matched the * or \{\}. It is sometime desirable to stop this

backing up before the initial point in the string is reached. If the external character

pointer locs is equal to the point in the string at some time during the back up

process, advance() will break out of the loop that backs up and will return 0 (a

failure indication).

Notes:

1. The application must provide the proper serialization for the compile(), step(),

and advance() functions if they are run under a multithreaded environment.

2. The compile(), step(), and advance() functions are provided for historical

reasons. These functions were part of the Legacy Feature in Single UNIX

Specification, Version 2. They have been withdrawn and are not supported as

advance

Chapter 3. Part 3. Library Functions 163

|
|
|

part of Single UNIX Specification, Version 3. New applications should use the

newer functions fnmatch(), glob(), regcomp() and regexec(), which provide full

internationalized regular expression functionality compatible with IEEE Std

1003.1-2001.

Returned Value

If the initial substring of string matches the regular expression in expbuf, advance()

returns nonzero.

If there is no match, advance() returns 0.

If there is a match, advance() sets an external character pointer, loc2, as a side

effect. The variable loc2 points to the next character in string after the last character

that matched the regular expression.

Related Information

v “regexp.h” on page 76

v “compile() — Compile Regular Expression” on page 316

v “fnmatch() — Match Filename or Pathname” on page 624

v “glob() — Generate Pathnames Matching a Pattern” on page 898

v “regcomp() — Compile Regular Expression” on page 1646

v “regexec() — Execute Compiled Regular Expression” on page 1653

v “step() — Pattern Match with Regular Expression” on page 2015

advance

164 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

__ae_correstbl_query() — Return Coded Character Set ID Type

(ASCII/EBCDIC)

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R2

Format

#include <_Nascii.h>

__argument_t __ae_correstbl_query(void *search_argument, int src_arg_type,

 _AE_correstbl_t **ebcdic_entry_ptr,

 _AE_correstbl_t **ascii_entry_ptr);

General Description

The __ae_correstbl_query() function is a method by which the user can obtain

coded character set id (CCSID), type, and correspondence information from the

EBCDIC/ASCII Correspondence and CCSID/Codeset Name Lookup Table,

CEL4CTBL.

The user must provide the following:

Argument Description

*search_argument

A Codeset Name or CCSID search argument.

src_arg_type Specifies whether search_argument is a Codeset Name or a

CCSID, using one of the defined values from <_Nascii.h>:

v _AE_CODESET_SRCH_ARG

v _AE_CCSID_SRCH_ARG

**ebcdic_entry_ptr

The address of an _AE_correstbl_t pointer for storing the EBCDIC

table entry.

**ascii_entry_ptr

The address of an _AE_correstbl_t pointer for storing the ASCII

table entry.

The function will then populate the supplied pointers with the address of

_AE_correstbl_t structures containing the requested codeset’s table entry as well as

the address of the corresponding codeset’s entry. However, not every EBCDIC

codeset in the table has a corresponding ASCII encoding and vice versa. When a

corresponding codeset does not exist, the pointer value returned in that argument is

zero.

For consistency, the first _AE_correstbl_t pointer address argument will be

populated with the EBCDIC entry address, and the second _AE_correstbl_t pointer

will be populated with the ASCII entry address, regardless of which was the

requested codeset and which was the corresponding codeset.

The __argument_t return value for __ae_correstbl_query() indicates the EBCDIC or

ASCII type of the provided codeset.

__ae_correstbl_query

Chapter 3. Part 3. Library Functions 165

Returned Value

If successful, __ae_correstbl_query() returns either:

v _AE_EBCDIC_TYPE, when the requested entry is EBCDIC.

v _AE_ASCII_TYPE, when the requested entry is ASCII.

If unsuccessful, because the correspondence table cannot be loaded or the

provided Codeset Name or CCSID is not valid, __ae_correstbl_query() returns

_AE_UNKNOWN_TYPE.

Related Information

v “_Ccsid.h” on page 35

v “_Nascii.h” on page 64

v “__CcsidType() — Return Coded Character Set ID Type (ASCII/EBCDIC)” on

page 247

v “__CSNameType() — Return Codeset Name Type (ASCII/EBCDIC)” on page 377

v “__toCcsid() — Convert Codeset Name to Coded Character Set ID” on page

2226

v “__toCSName() — Convert Coded Character Set ID to Codeset Name” on page

2227

__ae_correstbl_query

166 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

aio_cancel() — Cancel an Asynchronous I/O Request

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R7

Format

#define _XOPEN_SOURCE 500

#include <aio.h>

int aio_cancel(int fildes, struct aiocb *aiocbp);

General Description

The aio_cancel() function attempts to cancel one or more asynchronous I/O

requests currently outstanding against file descriptor fildes. The aiocbp argument

points to an aiocb structure for a particular request to be canceled or is NULL to

cancel all outstanding cancelable requests against fildes.

Normal asynchronous notification occurs for asynchronous I/O operations that are

successfully canceled. The associated error status is set to ECANCELED and the

return status is set to −1 for the canceled requests.

For requests that cannot be canceled, the normal asynchronous completion process

takes place when their I/O completes. In this case the aiocb is not modified by

aio_cancel().

An asynchronous operation is cancelable if it is currently blocked or becomes

blocked. Once an outstanding request can be completed it is allowed to complete.

For example, an aio_read() will be cancelable if there is no data available at the

time that aio_cancel() is called.

fildes must be a valid file descriptor, but when aiocbp is not NULL fildes does not

have to match the file descriptor with which the asynchronous operation was

initiated. For maximum portability, though, it should match.

The aio_cancel() function always waits for the request being canceled to either

complete or be canceled. When control returns from aio_cancel(), the program may

safely free the original request’s aiocb and buffer. If a signal was specified on the

original request, the signal handler for that request’s I/O complete notification may

run before, during, or after control returns from aio_cancel(), so coordination may

be necessary between the signal handler and the caller of aio_cancel(). This is

particularly unpredictable when aio_cancel() is called from a different thread than

the original request, unless the original thread no longer exists.

Canceling all requests on a given descriptor does not stop new requests from being

made or otherwise effect the descriptor. The program may start again or close the

descriptor depending on why it issued the cancel.

An individual request can only be canceled once. Subsequent attempts to explicitly

cancel the same request will fail with EALREADY.

aio_cancel

Chapter 3. Part 3. Library Functions 167

||||

|
|
||

|

Returned Value

aio_cancel() returns one of the following values:

v AIO_CANCELED if the requested operations were canceled.

v AIO_NOTCANCELED if at least one of the requested operations cannot be canceled

because it is in progress.

In this case, the state of the other operations, if any, referenced in the call to

aio_cancel() is not indicated by the return value of aio_cancel(). The application

can determine the status of these operations by using aio_error().

v AIO_ALLDONE if all of the operations have already completed. This is returned

when there are no outstanding requests found that match the criteria specified.

This is also the result returned when a file associated with fildes does not

support the asynchronous I/O function because there are no outstanding

requests to be found that match the criteria specified.

v −1 if there was an error. aio_cancel() sets errno to one of the following values:

Error Code Description

EALREADY The operation to be canceled is already being canceled.

EBADF The fildes argument is not a valid file descriptor.

Related Information

v “aio.h” on page 34

v “aio_error() — Retrieve Error Status for an Asynchronous I/O Operation” on page

169

v “aio_read() — Asynchronous Read from a Socket” on page 170

v “aio_return() — Retrieve Status for an Asynchronous I/O Operation” on page 174

v “aio_write() — Asynchronous Write to a Socket” on page 177

aio_cancel

168 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

aio_error() — Retrieve Error Status for an Asynchronous I/O Operation

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R7

Format

#define _XOPEN_SOURCE 500

#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

General Description

The aio_error() function returns the error status associated with the aiocb structure

referenced by the aiocbp argument. The error status for an asynchronous I/O

operation is the errno value that would be set by the corresponding read(), or write()

operation. If the operation has not yet completed, then the error status will be equal

to EINPROGRESS.

Returned Value

If the asynchronous I/O operation has completed successfully, aio_error() returns 0.

If the asynchronous I/O operation has completed unsuccessfully, aio_error() returns

the error status as described for read(), or write().

If the asynchronous I/O operation has not yet completed, then EINPROGRESS is

returned.

aio_error() does not set errno.

When the errno is returned is not EINPROGRESS and not zero, the errno2 set by

either read() or write() can be retrieved by using the __errno2() function.

Related Information

v “aio.h” on page 34

v “aio_read() — Asynchronous Read from a Socket” on page 170

v “aio_return() — Retrieve Status for an Asynchronous I/O Operation” on page 174

v “aio_suspend() — Wait for an Asynchronous I/O Request” on page 175

aio_error

Chapter 3. Part 3. Library Functions 169

||||

|
|
||

|

aio_read() — Asynchronous Read from a Socket

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R7

Format

#define _XOPEN_SOURCE 500

#include <aio.h>

int aio_read(struct aiocb *aiocbp);

General Description

The aio_read() function initiates an asynchronous read operation as described by

the aiocb structure (the asynchronous I/O control block).

The aiocbp argument points to the aiocb structure. This structure contains the

following members:

aio_fildes file descriptor

aio_offset file offset

aio_buf location of buffer

aio_nbytes length of transfer

aio_reqprio request priority offset

aio_sigevent signal number and value

aio_lio_opcode

operation to be performed

The operation reads up to aio_nbytes from the socket or file associated with

aio_fildes into the buffer pointed to by aio_buf. The call to aio_read() returns when

the request has been initiated or queued to the file or device (even when the data

cannot be delivered immediately).

Asynchronous I/O is currently only supported for sockets. The aio_offset field may

be set but it will be ignored.

With a stream socket an asynchronous read may be completed when the first

packet of data arrives and the application may have to issue additional reads, either

asynchronously or synchronously, to get all the data it wants. A datagram socket

has message boundaries and the operation will not complete until an entire

message has arrived.

The aiocbp value may be used as an argument to aio_error() and aio_return()

functions in order to determine the error status and return status, respectively, of

the asynchronous operation. While the operation is proceeding, the error status

retrieved by aio_error() is EINPROGRESS; the return status retrieved by aio_return()

however is unpredictable.

aio_read

170 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

If an error condition is encountered during the queueing, the function call returns

without having initiated or queued the request.

When the operation completes asynchronously the program can be notified by a

signal as specified in the aio_sigevent structure. It is significantly more efficient to

receive these notifications with sigwaitinfo() or sigtimedwait() than to let them drive

a signal handler. At this time the return and error status will have been updated to

reflect the outcome of the operation. The sigevent structure’s notification function

fields are not supported. If a signal is not desired the program can occasionally poll

the aiocb with aio_error() until the result is no longer EINPROGRESS.

Be aware that the operation may complete, and the signal handler may be

delivered, before control returns from the call to aio_read(). Even when the

operation does complete this quickly the return value from the call to aio_read() will

be zero, reflecting the queueing of the I/O request not the results of the I/O itself.

An asynchronous operation may be canceled with aio_cancel() before its

completion. Canceled operations complete with an error status of ECANCELED and

any specified signal will be delivered. Due to timing, the operation may still

complete naturally, either successfully or unsuccessfully, before it can be canceled

by aio_cancel().

If the file descriptor of this operation is closed, the operation will be deleted if it has

not completed or is not just about to complete. Signals specified for deleted

operations will not be delivered. Close() will wait for asynchronous operations in

progress for the descriptor to be deleted or completed.

You may use aio_suspend() to wait for the completion of asynchronous operations.

Sockets must be in blocking state or the operation may fail with EWOULDBLOCK.

If the control block pointed by aiocbp or the buffer pointed to by aio_buf becomes

an illegal address before the asynchronous I/O completion, then the behavior of

aio_read() is unpredictable.

If the thread that makes the aio_read() request terminates before the I/O completes

the aiocb structure will still be updated with the return and error status, and any

specified signal will be delivered to the process in which the thread was running. If

thread related storage was used on the request the results are quite unpredictable.

Simultaneous asynchronous operations using the same aiocbp, asynchronous

operations using a non-valid aiocbp, or any system action, that changes the

process memory space while asynchronous I/O is outstanding to that address

range, will produce unpredictable results

Simultaneous aio_read() operations on the same socket should not be done in

general. With stream sockets, the I/O complete notifications may not be delivered in

the same order as the bytes to which they refer, and so the byte stream may

appear out of order. With UDP sockets, each datagram will complete one aio_read()

operation, but IBM recommends against doing multiple aio_reads for UDP sockets

because this can cause significantly more system overhead as data arrives than a

single outstanding request would.

There are several sockets oriented extensions to asynchronous I/O available with

the BPX1AIO callable service, such as asynchronous accept() and asynchronous

forms of the four other read type operations: recvfrom(), recvmsg(), recv(), and

aio_read

Chapter 3. Part 3. Library Functions 171

|
|
|

readv(). Also, the I/O Completion notification might be received via an ECB, an exit

program or through a message queue. The aio.h header contains all the structure

fields, constants, and prototypes necessary to use BPX1AIO from a C program.

These extensions are exposed when the _AIO_OS390 feature flag is #defined.

BPX1AIO calls may be mixed with aio_xxxx calls and any of the regular socket

functions. For a more detailed description of asynchronous I/O services, see z/OS

UNIX System Services Programming: Assembler Callable Services Reference.

The aio_lio_opcode field is set to LIO_READ by the function aio_read().

_POSIX-PRIORITIZED_IO is not supported. The aio_reqprio field may be set but it

will be ignored.

_POSIX_SYNCHRONIZED_IO is not supported.

Returned Value

If successful, aio_read() returns 0 to the calling process.

If unsuccessful, aio_read() returns −1 and sets errno to one of the following values:

Error Code Description

EAGAIN The requested asynchronous I/O operation was not queued due to

system resource limitations.

ENOSYS The file associated with aio_fildes does not support the aio_read()

function.

Each of the following conditions may be detected synchronously at the time of the

call to aio_read(), or asynchronously. If any of the conditions below are detected

synchronously, aio_read() returns −1 and sets the errno to the corresponding value.

If any of the conditions below are detected asynchronously, the return status of the

asynchronous operation is set to −1, and the error status of the asynchronous

operation will be set to the corresponding value.

Error Code Description

EBADF The aio_fildes argument is not a valid file descriptor open for

reading.

EINVAL aio_sigevent contains an non-valid value.

EWOULDBLOCK

The file associated with aio_fildes is in nonblocking state and there

is no data available.

In the case where the aio_read() function successfully queues the I/O operation but

the operation is subsequently canceled or encounters an error, the return status of

the asynchronous operations is set to −1, and the error status of the asynchronous

operation will be set to the error status normally set by the read() function call, or to

the following value:

Error Code Description

ECANCELED The requested I/O was canceled before the I/O completed due to

an explicit call to aio_cancel().

Related Information

v “aio.h” on page 34

v “aio_cancel() — Cancel an Asynchronous I/O Request” on page 167

aio_read

172 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|

v “aio_error() — Retrieve Error Status for an Asynchronous I/O Operation” on page

169

v “aio_return() — Retrieve Status for an Asynchronous I/O Operation” on page 174

v “aio_suspend() — Wait for an Asynchronous I/O Request” on page 175

v “aio_write() — Asynchronous Write to a Socket” on page 177

aio_read

Chapter 3. Part 3. Library Functions 173

aio_return() — Retrieve Status for an Asynchronous I/O Operation

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R7

Format

#define _XOPEN_SOURCE 500

#include <aio.h>

int aio_return(const struct aiocb *aiocbp);

General Description

The aio_return() function returns the return status associated with the aiocb

structure referenced by the aiocbp argument. The return status for an asynchronous

I/O operation is the value that would be set by the corresponding read() or write()

operation. While the operation is proceeding, the error status retrieved by

aio_error() is EINPROGRESS; the return status retrieved by aio_return() however is

unpredictable. The aio_return() function may be called to retrieve the return status

of a given asynchronous operation; once aio_error() has returned with 0.

Returned Value

If the asynchronous I/O operation has completed successfully, aio_return() returns

the status as described for read() or write().

If the asynchronous I/O operation has not yet completed, then the return status is

unpredictable.

aio_return() does not set errno.

Related Information

v “aio.h” on page 34

v “aio_error() — Retrieve Error Status for an Asynchronous I/O Operation” on page

169

v “aio_read() — Asynchronous Read from a Socket” on page 170

v “aio_suspend() — Wait for an Asynchronous I/O Request” on page 175

aio_return

174 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

aio_suspend() — Wait for an Asynchronous I/O Request

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R7

Format

#define _XOPEN_SOURCE 500

#include <aio.h>

int aio_suspend(const struct aiocb *const list[],

 int nent, const struct timespec *timeout);

General Description

The aio_suspend() function suspends the calling thread when the timeout is a NULL

pointer until at least one of the asynchronous I/O operations referenced by the list

argument has completed, or until a signal interrupts the function. Or, if timeout is

not NULL, it is suspended until the time interval specified by timeout has passed. If

the time interval indicated in the timespec structure pointed to by timeout passes

before any of the I/O operations referenced by list, then aio_suspend() returns with

an error. If any of the aoicb structures in the list correspond to completed

asynchronous I/O operations (that is, the error status for the operation is not equal

to EINPROGRESS) at the time of the call, the function returns without suspending the

calling thread.

The list argument is an array of pointers to asynchronous I/O control blocks

(AIOCBs). The nent argument indicates the number of elements in the array. Each

aiocb structure pointed to will have been used in initiating an asynchronous I/O

request. This array may contain NULL pointers, which are ignored. If this array

contains pointers that refer to aiocb structures that have not been used in

submitting asynchronous I/O or aiocb structures that are not valid, the results are

unpredictable.

Returned Value

If successful, aio_suspend() returns 0.

If unsuccessful, aio_suspend() returns −1. The application may determine which

asynchronous I/O completed by scanning the associated error and return status

using aio_error() or aio_return(), respectively. aio_suspend() sets errno to one of the

following values:

Error Code Description

EAGAIN No asynchronous I/O indicated in the list referenced by list

completed in the time interval indicated by timeout.

EINTR A signal interrupted the aio_suspend() function. Note that, since

each asynchronous I/O operation may possibly provoke a signal

when it completes, this error return may be caused by the

completion of one (or more) of the very I/O operations being

awaited.

aio_suspend

Chapter 3. Part 3. Library Functions 175

||||

|
|
||

|

ENOSYS z/OS UNIX System Services does not support the aio_suspend()

function.

Usage Notes:

1. The AIOCBs represented by the list of AIOCB pointers must reside in the same

storage key as the key of the invoker of aio_suspend. If the AIOCB Pointer List

or any of the AIOCBs represented in the list are not accessible by the invoker

an EFAULT may occur.

2. AIOCB pointers in the list with a value of zero will be ignored.

3. A timeout value of zero (seconds+nanoseconds) means that the aio_suspend()

call will not wait at all. It will check for any completed asynchronous I/O

requests. If none are found it will return with a EAGAIN. If at least one is found

aio_suspend() will return with success.

4. A timeout value of a timespec with the tv_sec field set with INT_MAX, as

defined in <limits.h>, will cause the aio_suspend service to wait until a

asynchronous I/O request completes or a signal is received.

If the Macro _AIO_OS390 is defined then the following may also apply.

5. The number of pointers to AIOCBs that use application supplied event control

block (ECB) pointers for invocations of asynchronous I/O is limited to 253.

There is no limit when not using the _AIO_OS390 Feature Test Macro. See

z/OS UNIX System Services Programming: Assembler Callable Services

Reference under the BPX1AIO for information on supplying user-defined ECBs

in the AIOCB data area.

6. The AIOCBs passed to aio_suspend() must not be freed or reused by other

threads in the process while this service is still in progress. This service may

use the AIOCBs even after the asynchronous I/O completes. This restriction

excludes multiple threads from doing aio_suspend() on the same AIOCB at the

same time. Modifying the AIOCB during an aio_suspend() will produce

unpredictable results.

7. The use of these extensions will require macros from SYS1.CSSLIB. Make sure

that it is included in the SYSLIB concatenation during the compile.

Related Information

v “aio.h” on page 34

v “aio_error() — Retrieve Error Status for an Asynchronous I/O Operation” on page

169

v “aio_read() — Asynchronous Read from a Socket” on page 170

v “aio_return() — Retrieve Status for an Asynchronous I/O Operation” on page 174

aio_suspend

176 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

aio_write() — Asynchronous Write to a Socket

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R7

Format

#define _XOPEN_SOURCE 500

#include <aio.h>

int aio_write(struct aiocb *aiocbp);

General Description

The aio_write() function initiates an asynchronous write as described by the aiocb

structure (the asynchronous I/O control block).

The aiocbp argument points to the aiocb structure. This structure contains the

following members:

aio_fildes file descriptor

aio_offset file offset

aio_buf location of buffer

aio_nbytes length of transfer

aio_reqprio request priority offset

aio_sigevent signal number and value

aio_lio_opcode operation to be performed

The operation will write aio_nbytes from the buffer pointed to by aio_buf to the

socket or file associated with aio_fildes. The call to aio_write() returns when the

request has been initiated or queued to the file or device (even when the data

cannot be delivered immediately).

Asynchronous I/O is currently only supported for sockets. The aio_offset field may

be set but it will be ignored.

The aiocbp value may be used as an argument to aio_error() and aio_return()

functions in order to determine the error status and return status, respectively, of

the asynchronous operation. While the operation is proceeding, the error status

retrieved by aio_error() is EINPROGRESS; the return status retrieved by aio_return()

however is unpredictable.

If an error condition is encountered during the queueing, the function call returns

without having initiated or queued the request.

When the operation completes asynchronously the program can be notified by a

signal as specified in the aio_sigevent structure. It is significantly more efficient to

receive these notifications with sigwaitinfo() or sigtimedwait() than to let them drive

a signal handler. At this time the return and error status will have been updated to

reflect the outcome of the operation. The sigevent structure’s notification function

aio_write

Chapter 3. Part 3. Library Functions 177

||||

|
|
||

|

fields are not supported. If a signal is not desired the program can occasionally poll

the aiocb with aio_error() until the result is no longer EINPROGRESS.

Be aware that the operation may complete, and the signal handler may be

delivered, before control returns from the call to aio_read(). Even when the

operation does complete this quickly the return value from the call to aio_read() will

be zero, reflecting the queueing of the I/O request not the results of the I/O itself.

An asynchronous operation may be canceled with aio_cancel() before its

completion. Canceled operations complete with an error status of ECANCELED and

any specified signal will be delivered. Due to timing, the operation may still

complete naturally, either successfully or unsuccessfully, before it can be canceled

by aio_cancel().

If the file descriptor of this operation is closed, the operation will be deleted if it has

not completed or is not just about to complete. Signals specified for deleted

operations will not be delivered. Close() will wait for asynchronous operations in

progress for the descriptor to be deleted or completed.

You may use aio_suspend() to wait for the completion of asynchronous operations.

Sockets must be in blocking state or the operation may fail with EWOULDBLOCK.

If the control block pointed by aiocbp or the buffer pointed to by aio_buf becomes

an illegal address before the asynchronous I/O completion, then the behavior of

aio_read() is unpredictable

If the thread that makes the aio_read() request terminates before the I/O completes,

the aiocb structure will still be updated with the return and error status, and any

specified signal will be delivered to the process in which the thread was running. If

thread related storage was used on the request the results are quite unpredictable.

Simultaneous asynchronous operations using the same aiocbp, attempting

asynchronous operations using a non-valid aiocbp, or any system action, that

changes the process memory space while asynchronous I/O is outstanding to that

address range, will produce unpredictable results.

Simultaneous aio_write() operations on the same stream socket should not be done

because the data may be transmitted on the network out of order. With UDP

sockets each aio_write defines a single datagram and there is no implied order of

arrival in UDP. Beware, though, of sending too many datagrams. If there is network

congestion or the receiver is slow you can tie up a large amount of system storage

with uncontrolled aio_writes, and eventually they may start to fail with ENOBUFS.

There are several sockets oriented extensions to asynchronous I/O available with

the BPX1AIO callable service, such as asynchronous accept() and asynchronous

forms of the four other write type operations: sendto(), sendmsg(), send(), and

writev(). Also, the I/O Completion notification might be received via an ECB, an exit

program or through a message queue. The aio.h header contains all the structure

fields, constants, and prototypes necessary to use BPX1AIO from a C program.

These extensions are exposed when the _AIO_OS390 feature flag is #defined.

BPX1AIO calls may be mixed with aio_xxxx calls and any of the regular socket

functions. For a more detailed description of asynchronous I/O services, see z/OS

UNIX System Services Programming: Assembler Callable Services Reference.

The aio_lio_opcode field is set to LIO_WRITE by the function aio_write().

aio_write

178 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|

_POSIX_PRIORITIZED_IO is not supported. The aio_reqprio field may be set but it

will be ignored.

_POSIX_SYNCHRONIZED_IO is not supported.

Returned Value

If the I/O operation is successfully queued, aio_write() returns 0 to the calling

process.

If the I/O operation is not queued, aio_write() returns −1 and sets errno to one of

the following values:

Error Code Description

EAGAIN The requested asynchronous I/O operation was not queued due to

system resource limitations.

ENOSYS The file associated with aio_fildes does not support the aio_write()

function.

Each of the following conditions may be detected synchronously at the time of the

call to aio_write(), or asynchronously. If any of the conditions below are detected

synchronously, aio_write() returns −1 and sets the errno to the corresponding value.

If any of the conditions below are detected asynchronously, the return status of the

asynchronous operation is set to −1, and the error status of the asynchronous

operation will be set to the corresponding value.

Error Code Description

EBADF The aio_fildes argument is not a valid file descriptor

open for writing.

EINVAL The aio_nbytes is not a valid value or aio_sigevent

contains a value that is not valid.

EWOULDBLOCK The file associated with aio_fildes is in nonblocking

state and there is no data available.

In the case where aio_write() successfully queues the I/O operation but the

operation is subsequently canceled or encounters an error, the return status of the

asynchronous operation is set to −1, and the error status of the asynchronous

operation is set to the error status normally set by the write() function call, or to the

following value:

Error Code Description

ECANCELED The requested I/O was canceled before the I/O completed due to

an explicit call to aio_cancel().

Related Information

v “aio.h” on page 34

v “aio_cancel() — Cancel an Asynchronous I/O Request” on page 167

v “aio_error() — Retrieve Error Status for an Asynchronous I/O Operation” on page

169

v “aio_read() — Asynchronous Read from a Socket” on page 170

v “aio_return() — Retrieve Status for an Asynchronous I/O Operation” on page 174

v “aio_suspend() — Wait for an Asynchronous I/O Request” on page 175

aio_write

Chapter 3. Part 3. Library Functions 179

alarm() — Set an Alarm

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _POSIX_SOURCE

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

General Description

Generates a SIGALRM signal after the number of seconds specified by the seconds

parameter has elapsed. The SIGALRM signal delivery is directed at the calling

thread.

seconds is the number of real seconds to wait before the SIGALRM signal is

generated. Because of processor delays, the SIGALRM signal may be generated

slightly later than this specified time. If seconds is zero, any previously set alarm

request is canceled.

Only one such alarm can be active at a time. If you set a new alarm time, any

previous alarm is canceled.

This function is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

Special Behavior for XPG4

The fork() function clears pending alarms in the child thread. However, a new

thread image created by one of the exec functions inherits the time left to an alarm

in the old thread’s image.

Special Behavior for XPG4.2

alarm() will interact with the setitimer() function when the setitimer() function is used

to set the ‘real’ interval timer (ITIMER_REAL).

alarm() does not interact with the usleep() function.

Returned Value

If a prior alarm request has not yet completed, alarm() returns the number of

seconds remaining until that request would have generated a SIGALRM signal.

alarm

180 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If there are no prior alarm requests with time remaining, alarm() returns 0. Because

alarm() is always successful, there is no failure return. If any failures are

encountered that prevent alarm() from completing successfully, an abend is

generated.

Example

CELEBA05

/* CELEBA05

 The following example generates a SIGALRM signal.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <signal.h>

#include <time.h>

#include <unistd.h>

volatile int footprint=0;

void catcher(int signum) {

 puts("inside signal catcher!");

 footprint = 1;

}

main() {

 struct sigaction sact;

 volatile double count;

 time_t t;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 alarm(5); /* timer will pop in five seconds */

 time(&t);

 printf("before loop, time is %s", ctime(&t));

 for (count=0; (count<1e10) && (footprint == 0); count++);

 time(&t);

 printf("after loop, time is %s", ctime(&t));

 printf("the sum so far is %.0f\n", count);

 if (footprint == 0)

 puts("the signal catcher never gained control");

 else

 puts("the signal catcher gained control");

}

Output

before loop, time is Fri Jun 16 08:37:03 2001

inside signal catcher!

after loop, time is Fri Jun 16 08:37:08 2001

the sum so far is 17417558

Related Information

v “signal.h” on page 77

v “unistd.h” on page 96

v “exec Functions” on page 486

v “fork() — Create a New Process” on page 632

alarm

Chapter 3. Part 3. Library Functions 181

v “pause() — Suspend a Process Pending a Signal” on page 1340

v “setitimer() — Set Value of an Interval Timer” on page 1800

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sleep() — Suspend Execution of a Thread” on page 1959

v “usleep() — Suspend Execution for an Interval” on page 2316

alarm

182 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

alloca() — Allocate Storage from the Stack

Standards

 Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

Format

#include <stdlib.h>

void *alloca(unsigned int size);

General Description

The built-in alloca() function obtains memory from the stack. This eliminates the

need for an explicit free() as the memory is freed when the stack is collapsed.

If the alloca() function is unable to obtain the requested storage, control will not

return to the caller. Instead the application will terminate due to an out of memory

condition (if the reserve stack is available and the caller is not XPLINK), or it will

terminate with an abend indicating that storage could not be obtained.

To avoid infringing on the user’s name space, this nonstandard function is exposed

only when you use the compiler option, LANGLVL(EXTENDED). When you use

LANGLVL(EXTENDED) any relevant information in the header is also exposed.

Note: Storage from an alloca() is done after a setjmp() (or any variation thereof) is

freed on a longjmp() (or any variation thereof) to an XPLINK-compiled

function, and not freed on a longjmp() to a NOXPLINK-compiled function.

See the longjmp() family of functions for more details.

Returned Value

If successful, alloca() returns the address of the requested storage.

Related Information

v “stdlib.h” on page 85

v “Built-in Functions” on page 107

v “getcontext() — Get User Context” on page 750

v “longjmp() — Restore Stack Environment” on page 1143

v “_longjmp() — Nonlocal Goto” on page 1147

v “setcontext() — Restore User Context” on page 1778

v “setjmp() — Preserve Stack Environment” on page 1802

v “_setjmp() — Set Jump Point for a Nonlocal Goto” on page 1806

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

v “swapcontext() — Save and Restore User Context” on page 2101

alloca

Chapter 3. Part 3. Library Functions 183

asctime() — Convert Time to Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <time.h>

char *asctime(const struct tm *timeptr);

General Description

Converts time stored as a structure, pointed to by timeptr, to a character string. The

timeptr value can be obtained from a call to gmtime() or localtime(). Both functions

return a pointer to a tm structure defined in “time.h” on page 93.

The string result that asctime() produces contains exactly 26 characters and has the

format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

The following is an example of the string returned:

 Fri Jun 16 02:03:55 2001\n\0

Notes:

v The calendar time returned by a call to the time() function begins at epoch, which

was at 00:00:00 Coordinated Universal Time (UTC), January 1, 1970.

v The asctime() function uses a 24-hour clock format.

v The days are abbreviated to: Sun, Mon, Tue, Wed, Thu, Fri, and Sat.

v The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,

Nov, and Dec.

v All fields have a constant width.

v Dates with only one digit are preceded either with a zero or a blank space.

v The newline character (\n) and the NULL character (\0) occupy the last two

positions of the string.

v The asctime(), ctime(), and other time functions can use a common, statically

allocated buffer for holding the return string. Each call to one of these functions

may possibly destroy the result of the previous call.

Returned Value

If successful, asctime() returns a pointer to the resulting character string.

If the function is unsuccessful, it returns NULL.

asctime

184 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

|

Example

CELEBA06

/* CELEBA06

 This example polls the system clock and prints a message

 giving the current time.

 */

#include <time.h>

#include <stdio.h>

int main(void)

{

 struct tm *newtime;

 time_t ltime;

 /* Get the time in seconds */

 time(<ime);

 /* Break it down & store it in the structure tm */

 newtime = localtime(<ime);

 /* Print the local time as a string */

 printf("The current date and time are %s",

 asctime(newtime));

}

Output

The current date and time are Fri Jun 16 13:29:51 2001

Related Information

v “time.h” on page 93

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

v “tzset() — Set the Time Zone” on page 2279

asctime

Chapter 3. Part 3. Library Functions 185

asctime_r() — Convert Date and Time to a Character String

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <time.h>

char *asctime_r(const struct tm *__restrict__ tm, char *__restrict__ buf);

General Description

The asctime_r() function converts the broken-down time in the structure pointed to

by tm into a character string that is placed in the user-supplied buffer pointed to by

buf (which contains at least 26 bytes) and then returns buf.

Returned Value

If successful, asctime_r() returns a pointer to a character string containing the date

and time. This string is pointed to by the argument buf.

If unsuccessful, asctime_r() returns NULL.

There are no documented errno values.

Related Information

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

v “tzset() — Set the Time Zone” on page 2279

asctime_r

186 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

asin(), asinf(), asinl() — Calculate Arcsine

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double asin(double x);

float asin(float x); /* C++ only */

long double asin(long double x); /* C++ only */

float asinf(float x);

long double asinl(long double x);

General Description

Calculates the arcsine of x, in the range -pi/2 to pi/2 radians.

The value of x must be between -1 and 1.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

If x is less than -1 or greater than 1, the function sets errno to EDOM, and returns

0. Otherwise, it returns a nonzero value.

If the correct value would cause an underflow, 0 is returned and the value ERANGE

is stored in errno.

Special Behavior for IEEE

If successful, the function returns the arcsine of its argument x.

If x is less than -1 or greater than 1, the function sets errno to EDOM and returns

NaNQ. No other errors will occur.

Example

CELEBA07

/* CELEBA07

 This example prompts for a value for x.

 It prints an error message if x is greater than 1 or

 less than −1; otherwise, it assigns the arcsine of

 x to y.

asin, asinf, asinl

Chapter 3. Part 3. Library Functions 187

||||

|
|
|
|
|
|
|

||

|

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define MAX 1.0

#define MIN −1.0

int main(void)

{

 double x, y;

 printf("Enter x\n");

 scanf("%lf", &x);

 /* Output error if not in range */

 if (x > MAX)

 printf("Error: %f too large for asin\n", x);

 else if (x < MIN)

 printf("Error: %f too small for asin\n", x);

 else {

 y = asin(x);

 printf("asin(%f) = %f\n", x, y);

 }

}

Output

Enter x

 0.2 is entered

asin(0.200000) = 0.201358

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

asin, asinf, asinl

188 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double asinh(double x);

C99

#define _ISOC99_SOURCE

#include <math.h>

float asinhf(float x);

long double asinhl(long double x);

General Description

The asinh() functions return the hyperbolic arcsine of its argument x.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

asinh X X

asinhf X X

asinhl X X

Returned Value

asinh() returns the hyperbolic arcsine of its argument x. The function is always

successful.

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

asinh

Chapter 3. Part 3. Library Functions 189

||||

|
|
|

||

|

assert() — Verify Condition

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <assert.h>

void assert(int expression);

General Description

The assert() macro inserts diagnostics into a program. If the expression (which will

have a scalar type) is false (that is, compares equal to 0), a diagnostic message of

the form shown below is printed to stderr, and abort() is called to abnormally end

the program. The assert() macro takes no action if the expression is true (nonzero).

Without a compiler that is designed to support C99, or when compiling C++ code,

the diagnostic message has the following format:

Assertion failed: expression, file filename, line line-number.

With a compiler that is designed to support C99, or when compiling C++ code, the

diagnostic message has the following format:

Assertion failed: expression, file filename, line line-number, function function-name.

If you define NDEBUG to any value with a #define directive or with the DEFINE

compiler option, the C/C++ preprocessor expands all assert() invocations to void

expressions.

Note: The assert() function is a macro. Using the #undef directive with the assert()

macro results in undefined behavior. The assert() macro uses __FILE__,

__LINE__ and, with a compiler that is designed to support C99, __func__...

Returned Value

assert() returns no values.

Example

CELEBA08

/* CELEBA08

 In this example, the assert() macro tests the string argument for a

 null string and an empty string, and verifies that the length argument

 is positive before proceeding.

 */

#include <stdio.h>

#include <assert.h>

assert

190 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

|
|
|
|

void analyze(char *, int);

int main(void)

{

 char *string1 = "ABC";

 char *string2 = "";

 int length = 3;

 analyze(string1, length);

 printf("string1 %s is not null or empty, "

 "and has length %d \n", string1, length);

 analyze(string2, length);

 printf("string2 %s is not null or empty,"

 "and has length %d\n", string2, length);

}

void analyze(char *string, int length)

{

 assert(string != NULL); /* cannot be NULL */

 assert(*string != '\0'); /* cannot be empty */

 assert(length > 0); /* must be positive */

}

Output without a compiler that is designed to support C99

String1 ABC is not NULL or empty, and has length 3

Assertion failed: *string != ’\0’, file: CELEBA08 C A1, line: 26

Output with a compiler that is designed to support C99

String1 ABC is not NULL or empty, and has length 3

Assertion failed: *string != ’\0’, file: CELEBA08 C A1, line: 26 in function analyze

Related Information

v “assert.h” on page 34

v “abort() — Stop a Program” on page 116

assert

Chapter 3. Part 3. Library Functions 191

atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double atan(double x);

float atan(float x); /* C++ only */

long double atan(long double x); /* C++ only */

float atanf(float x);

long double atanl(long double x);

double atan2(double y, double x);

float atan2(float y, float x); /* C++ only */

long double atan2(long double y, long double x); /* C++ only */

float atan2f(float y, float x);

long double atan2l(long double y, long double x);

General Description

The atan() and atan2() functions calculate the arctangent of x and y/x, respectively.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Returns a value in the range -pi/2 to pi/2 radians.

The atan2() functions return a value in the range -pi to pi radians. If both arguments

of atan2() are zero, the function sets errno to EDOM, and returns 0. If the correct

value would cause underflow, zero is returned and the value ERANGE is stored in

errno.

Special Behavior for IEEE

If successful, atan2() returns the arctangent of y/x.

If both arguments of atan2() are zero, the function sets errno to EDOM and returns

0. No other errors will occur.

Example

CELEBA09

/* CELEBA09 */

#include <math.h>

#include <stdio.h>

atan, atanf, atanl, atan2, atan2f, atan2l

192 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|
|

||

|

int main(void)

{

 double a,b,c,d;

 c = 0.45;

 d = 0.23;

 a = atan(c);

 b = atan2(c,d);

 printf("atan(%f) = %f\n", c, a);

 printf("atan2(%f, %f) = %f\n", c, d, b);

}

Output

atan(0.450000) = 0.422854

atan2(0.450000, 0.230000) = 1.098299

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

atan, atanf, atanl, atan2, atan2f, atan2l

Chapter 3. Part 3. Library Functions 193

atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double atanh(double x);

C99

#define _ISOC99_SOURCE

#include <math.h>

float atanhf(float x);

long double atanhl(long double x);

General Description

The atanh() function returns the hyperbolic arctangent of its argument x.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

atanh X X

atanhf X X

atanhl X X

Returned Value

If successful, atanh() returns the hyperbolic arctangent of its argument x.

atanh() fails, returns 0.0 and sets errno to one of the following values:

Error Code Description

EDOM The x argument has a value greater than 1.0.

ERANGE The x argument has a value equal to 1.0.

Special Behavior for IEEE

If successful, the function returns the hyperbolic arctangent of its argument x.

If the absolute value of x is greater than 1.0, atanh() sets errno to EDOM and

returns NaNQ. If the value of x is equal to 1.0, the function sets errno to ERANGE

and returns +HUGE_VAL.

atanh

194 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

atanh

Chapter 3. Part 3. Library Functions 195

atexit() — Register Program Termination Function

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

int atexit(void (*func)(void));

General Description

Records a function, pointed to by func, that the system calls at normal program

termination. Termination is a result of exit() or returning from main(), regardless of

the language of the main() routine. Process termination started by _exit() or by a

terminating signal under Language Environment is not included.

The functions are executed in the reverse order that they were registered. The

registered function must return to ensure that all registered functions are called. The

functions registered with atexit() are started before streams and files are closed.

You may specify a number of functions to the limit set by the ATEXIT_MAX

constant, which is defined in <limits.h>.

Under z/OS UNIX services only, when a process ends, the address space is ended;

otherwise, the address space persists.

Special Behavior for z/OS XL C

The C Library atexit() function has the following restrictions:

v Any function registered by a fetched module that has been released is removed

from the list at the time of release(). See fetch(), fetchep(), and release() for

details about fetching and releasing modules.

v Any function registered in an explicitly loaded DLL (using dllload()) that has been

freed (using dllfree()) is removed from the list. But, if the DLL in question has

also been implicitly loaded, then the function is NOT removed from the atexit list.

v All C Library library functions can be used in a registered routine except exit().

v When a program is running under CICS control, if an EXEC CICS RETURN

command or an EXEC CICS XCTL command is issued, the atexit() list that has

been previously registered is not run.

v Use of the system() library function within atexit() may result in undefined

behavior.

v Use of non-C subroutines or functions in the atexit() list will result in undefined

behavior.

v The atexit() list will not be run when abort() is called.

Special Behavior for C++

v All of the behaviors listed under ″Special Behavior for z/OS XL C″.

atexit

196 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

v Because C and C++ linkage conventions are incompatible, atexit() cannot receive

C++ function pointers. If you attempt to pass a C++ function pointer to atexit(),

the compiler will flag it as an error. To use the C++ atexit() function, you must

ensure that all functions registered for atexit() have C linkage by declaring them

as extern “C”.

v You can use try, throw, and catch in a function registered for atexit(). However,

by the time an atexit() function is driven, all stack frames will have collapsed. As

a result, the only catch clauses available for throw will be the ones coded in the

atexit() function. If those catch clauses cannot handle the thrown object,

terminate() will be called.

Special Behavior for XPG4.2

The maximum number of functions that can be registered is specified by the symbol

ATEXIT_MAX which is defined in the limits.h header.

Returned Value

If successful, atexit() returns 0.

If unsuccessful, atexit() returns nonzero.

Example

CELEBA10

/* CELEBA10

 This example uses the atexit() function to call the function goodbye()

 at program termination.

 */

#include <stdlib.h>

#include <stdio.h>

#ifdef __cplusplus /* the __cplusplus macro is */

extern "C" void goodbye(void); /* automatically defined by the */

#else /* C++/MVS compiler */

void goodbye(void);

#endif

int main(void)

{

 int rc;

 rc = atexit(goodbye);

 if (rc != 0)

 printf("Error in atexit");

 exit(0);

}

void goodbye(void)

 /* This function is called at normal program termination */

{

 printf("The function goodbye was called \

at program termination\n");

}

Output

The function goodbye was called at program termination

atexit

Chapter 3. Part 3. Library Functions 197

Related Information

v “Condition Handling” in IBM Language Environment Programming Guide

v “stdlib.h” on page 85

v “abort() — Stop a Program” on page 116

v “exit() — End Program” on page 494

v “fetch() — Get a Load Module” on page 565

v “fetchep() — Share Writable Static” on page 578

v “release() — Delete a Load Module” on page 1657

v “signal() — Handle Interrupts” on page 1917

atexit

198 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__atoe() — ISO8859-1 to EBCDIC String Conversion

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <unistd.h>

int __atoe(char *string);

General Description

The __atoe() function converts an ISO8859-1 character string string to its EBCDIC

equivalent. The conversion is performed using the codeset page associated with the

current locale. The input character string up to, but not including, the NULL is

changed from an ISO8859-1 representation to that of the current locale.

The argument string points to the ISO8859-1 character string to be converted to its

EBCDIC equivalent.

Returned Value

If successful, __atoe() converts the input ISO8859-1 character string to its

equivalent EBCDIC value, and returns the length of the converted string.

If unsuccessful, __atoe() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The current locale does not describe a single-byte character set.

ENOMEM There is insufficient storage to complete the conversion process.

Note: This function may internally call iconv_open() and iconv(). The errnos

returned by these functions are propagated without modification.

Related Information

v “unistd.h” on page 96

v “iconv() — Code Conversion” on page 920

v “iconv_open() — Allocate Code Conversion Descriptor” on page 925

__atoe

Chapter 3. Part 3. Library Functions 199

__atoe_l() — ISO8859-1 to EBCDIC Conversion Operation

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <unistd.h>

int __atoe_l(char *bufferptr, int leng);

General Description

The __atoe_l() function converts leng ISO8859-1 bytes in the buffer pointed to by

bufferptr to their EBCDIC equivalent. The conversion is performed using the

codeset page associated with the current locale.

The argument bufferptr points to a buffer containing the ISO8859-1 bytes to be

converted to their EBCDIC equivalent. The input buffer is treated as sequence of

bytes, and all bytes in the input buffer are converted, including any imbedded

NULLs.

Returned Value

If successful, __atoe_l() converts the input IOS8859-1 bytes to their equivalent

EBCDIC value, and returns the number of bytes that were converted.

If unsuccessful, __atoe_l() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The current locale does not describe a single-byte character set.

ENOMEM There is insufficient storage to complete the conversion process.

Note: This function may internally call iconv_open() and iconv(). The errnos

returned by these functions are propagated without modification.

Related Information

v “unistd.h” on page 96

v “iconv() — Code Conversion” on page 920

v “iconv_open() — Allocate Code Conversion Descriptor” on page 925

__atoe_l

200 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

atof() — Convert Character String to Double

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

double atof(const char *nptr);

General Description

The atof() function converts the initial portion of the string pointed to by nptr to a

’double’. This is equivalent to

 strtod(nptr, (char**)NULL)

The double value is either hexadecimal floating point or binary floating point,

depending on the floating point mode of the thread invoking the atof() function. This

function uses _isBF() to determine the floating point mode of the invoking thread.

See the “fscanf Family of Formatted Input Functions” on page 686 for a description

of special infinity and NaN sequences recognized by z/OS formatted input functions,

including atof() and strtod() in IEEE Binary Floating-Point mode.

Returned Value

The atof() function returns the converted value if the value can be represented,

otherwise the return value is undefined.

Related Information

v “stdlib.h” on page 85

v “atoi() — Convert Character String to Integer” on page 202

v “atol() — Convert Character String to Long” on page 203

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “strtod() — Convert Character String to Double” on page 2066

v “strtol() — Convert Character String to Long” on page 2079

v “strtoul() — Convert String to Unsigned Integer” on page 2086

atof

Chapter 3. Part 3. Library Functions 201

||||

|
|
|
|
|
|

||

|

|

|
|
|

|
|

atoi() — Convert Character String to Integer

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

int atoi(const char *nptr);

General Description

The atoi() function converts the initial portion of the string pointed to by nptr to a

’int’. This is equivalent to

(int)strtol(nptr, NULL, 10)

Returned Value

There are no documented errno values.

Related Information

v “stdlib.h” on page 85

v “atof() — Convert Character String to Double” on page 201

v “atol() — Convert Character String to Long” on page 203

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “strtod() — Convert Character String to Double” on page 2066

v “strtol() — Convert Character String to Long” on page 2079

v “strtoul() — Convert String to Unsigned Integer” on page 2086

atoi

202 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

atol() — Convert Character String to Long

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

long int atol(const char *nptr);

General Description

The atol() function converts the initial portion of the string pointed to by nptr to a

’long int’. This is equivalent to

strtol(nptr, (char**)NULL, 10)

Returned Value

The atof() function returns the converted value if the value can be represented,

otherwise the return value is undefined.

Related Information

v “stdlib.h” on page 85

v “atof() — Convert Character String to Double” on page 201

v “atoi() — Convert Character String to Integer” on page 202

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “strtod() — Convert Character String to Double” on page 2066

v “strtol() — Convert Character String to Long” on page 2079

v “strtoul() — Convert String to Unsigned Integer” on page 2086

atol

Chapter 3. Part 3. Library Functions 203

||||

|
|
|
|
|
|

||

|

|

|
|

atoll() — Convert Character String to Signed Long Long

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <stdlib.h>

long long atoll(const char *nptr);

Compile Requirement

Use of this function requires the long long data type. See z/OS XL C/C++ Language

Reference for information on how to make long long available.

General Description

atoll() converts the initial portion of the string pointed to by nptr to a ’long long int’.

This is equivalent to strtoll(nptr, (char **)NULL, 10).

Returned Value

If successful, atoll() returns the converted signed long long value, represented in

the string. If unsuccessful, it returns an undefined value.

Related Information

v “stdlib.h” on page 85

v “atof() — Convert Character String to Double” on page 201

v “atoi() — Convert Character String to Integer” on page 202

v “atol() — Convert Character String to Long” on page 203

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “strtod() — Convert Character String to Double” on page 2066

v “strtol() — Convert Character String to Long” on page 2079

v “strtoul() — Convert String to Unsigned Integer” on page 2086

atoll

204 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

__a2e_l() — Convert Characters from ASCII to EBCDIC

Standards

 Standards / Extensions C or C++ Dependencies

 both z/OS V1R2

Format

#include <unistd.h>

size_t __a2e_l(char *bufptr, size_t szLen)

General Description

The __a2e_l() function converts szLen characters in bufptr from ASCII to EBCDIC,

returning the number of characters converted if successful or -1 if not. Conversion

occurs in place in the buffer. __a2e_l() is not sensitive to the locale, and only

converts between ISO8859-1 and IBM-1047.

Note: This function is valid for applications compiled XPLINK only.

Returned Value

If successful, __a2e_l() returns the number of characters converted.

If unsuccessful, __a2e_l() returns −1 and sets errno to the following value:

Error Code Description

EINVAL The pointer to bufptr is NULL or szLen is a negative value.

Related Information

v “unistd.h” on page 96

v “__a2e_s() — Convert String from ASCII to EBCDIC” on page 206

v “__e2a_l() — Convert Characters from EBCDIC to ASCII” on page 509

v “__e2a_s() — Convert String from EBCDIC to ASCII” on page 510

__a2e_l()

Chapter 3. Part 3. Library Functions 205

__a2e_s() — Convert String from ASCII to EBCDIC

Standards

 Standards / Extensions C or C++ Dependencies

 both z/OS V1R2

Format

#include <unistd.h>

size_t __a2e_s(char *string)

General Description

The __a2e_s() function converts a string from ASCII to EBCIDIC, returning the

string length if successful or -1 if not. Conversion occurs in place in the string.

__a2e_s() is not sensitive to the locale, and only converts between ISO8859-1 and

IBM-1047.

Note: This function is valid for applications compiled XPLINK only.

Returned Value

If successful, __a2e_s() returns the string length.

If unsuccessful, __a2e_s() returns −1 and sets errno to the following value:

Error Code Description

EINVAL The pointer to string is NULL.

Related Information

v “unistd.h” on page 96

v “__a2e_l() — Convert Characters from ASCII to EBCDIC” on page 205

v “__e2a_l() — Convert Characters from EBCDIC to ASCII” on page 509

v “__e2a_s() — Convert String from EBCDIC to ASCII” on page 510

__a2e_s()

206 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

a64l() — Convert Base 64 String Representation to Long Integer

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

long a64l(const char *string);

General Description

The a64l() function converts a string representation of a base 64 number into its

corresponding long value. It scans the string from left to right with the least

significant character on the left, decoding each character as a 6-bit base 64

number. If the string pointed to by string contains more than six characters, a64l()

uses only the first six. If the first six characters of the string contain a NULL

character, a64l() uses only the characters preceding the first NULL. The following

characters are used to represent digits:

Character Digit Represented

. 0

/ 1

0-9 2-11

A-Z 12-37

a-z 38-63

Returned Value

If successful, a64l() returns the long value resulting from conversion of the input

string.

If the string pointed to by string is NULL, a64l() returns 0.

There are no errno values defined.

Related Information

v “stdlib.h” on page 85

v “l64a() — Convert Long to Base 64 String Representation” on page 1167

v “strtoul() — Convert String to Unsigned Integer” on page 2086

a64l

Chapter 3. Part 3. Library Functions 207

||||

|
|
||

|

basename() — Return the Last Component of a Pathname

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <libgen.h>

char *basename(char *path);

General Description

The basename() function takes the pathname pointed to by path and returns a

pointer to the final component of the pathname, deleting any trailing ’/’ characters.

If the string consists entirely of the ’/’ character, basename() returns a pointer to the

string “/”.

If path is a NULL pointer or points to an empty string, basename() returns a pointer

to the string “.”. The basename() function may modify the string pointed to by path.

Examples:

Input String Output String

"/usr/lib" "lib"

"/usr/" "usr"

"/" "/"

Returned Value

If successful, basename() returns a pointer to the final component of path.

There are no errno values defined.

Related Information

v “libgen.h” on page 55

v “dirname() — Report the Parent Directory of a Pathname” on page 419

basename

208 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

bcmp() — Compare Bytes in Memory

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <strings.h>

int bcmp(const void *s1, const void *s2, size_t n);

General Description

The bcmp() function compares the first n bytes of the area pointed to by s1 with the

area pointed to by s2.

Note: The bcmp() function has been moved to the Legacy Option group in Single

UNIX Specification, Version 3 and may be withdrawn in a future version. The

memcmp() function is preferred for portability.

Returned Value

If s1 and s2 are identical, bcmp() returns 0. Otherwise, bcmp() returns nonzero.

Both areas are assumed to be at least n bytes long.

If the value of n is zero, bcmp() returns 0.

There are no errno values defined.

Related Information

v “strings.h” on page 86

v “bcopy() — Copy Bytes in Memory” on page 210

v “bzero() — Zero Out Bytes in Memory” on page 223

v “memcmp() — Compare Bytes” on page 1207

bcmp

Chapter 3. Part 3. Library Functions 209

||||

|
|
||

|

|
|
|

bcopy() — Copy Bytes in Memory

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <strings.h>

void bcopy(const void *s1, void *s2, size_t n);

General Description

The bcopy() function copies n bytes from the area pointed to by s1 to the area

pointed to by s2 using the memcpy() function.

Note: The bcopy() function has been moved to the Legacy Option group in Single

UNIX Specification, Version 3 and may be withdrawn in a future version. The

memmove() function is preferred for portability.

Returned Value

bcopy() returns no values.

There are no errno values defined.

Related Information

v “strings.h” on page 86

v “bcmp() — Compare Bytes in Memory” on page 209

v “bzero() — Zero Out Bytes in Memory” on page 223

v “memccpy() — Copy Bytes in Memory” on page 1204

v “memcpy() — Copy Buffer” on page 1209

v “memmove() — Move Buffer” on page 1211

bcopy

210 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|

bind() — Bind a Name to a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address, socklen_t address_len);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

int bind(int socket, struct sockaddr *address, int address_len);

General Description

The bind() function binds a unique local name to the socket with descriptor socket.

After calling socket(), a descriptor does not have a name associated with it.

However, it does belong to a particular address family as specified when socket() is

called. The exact format of a name depends on the address family.

Parameter Description

socket The socket descriptor returned by a previous socket() call.

address The pointer to a sockaddr structure containing the name that is to

be bound to socket.

address_len The size of address in bytes.

The socket parameter is a socket descriptor of any type created by calling socket().

The address parameter is a pointer to a buffer containing the name to be bound to

socket. The address_len parameter is the size, in bytes, of the buffer pointed to by

address. For AF_UNIX, this function creates a file that you later need to unlink

besides closing the socket.

Socket Descriptor Created in the AF_INET Domain

If the socket descriptor socket was created in the AF_INET domain, the format of

the name buffer is expected to be sockaddr_in, as defined in the include file

netinet/in.h:

struct in_addr

{

 ip_addr_t s_addr;

};

 struct sockaddr_in {

 unsigned char sin_len;

 unsigned char sin_family;

bind

Chapter 3. Part 3. Library Functions 211

||||

|
|
||

|

unsigned short sin_port;

 struct in_addr sin_addr;

 unsigned char sin_zero[8];

};

The sin_family field must be set to AF_INET.

The sin_port field is set to the port to which the application must bind. It must be

specified in network byte order. If sin_port is set to 0, the caller leaves it to the

system to assign an available port. The application can call getsockname() to

discover the port number assigned.

The sin_addr.s_addr field is set to the Internet address and must be specified in

network byte order. On hosts with more than one network interface (called

multihomed hosts), a caller can select the interface to which it is to bind.

Subsequently, only UDP packets and TCP connection requests from this interface

(which match the bound name) are routed to the application. If this field is set to the

constant INADDR_ANY, as defined in netinet/in.h, the caller is requesting that the

socket be bound to all network interfaces on the host. Subsequently, UDP packets

and TCP connections from all interfaces (which match the bound name) are routed

to the application. This becomes important when a server offers a service to

multiple networks. By leaving the address unspecified, the server can accept all

UDP packets and TCP connection requests made for its port, regardless of the

network interface on which the requests arrived.

The sin_zero field is not used and must be set to all zeros.

Socket Descriptor Created in the AF_INET6 Domain If the socket descriptor

socket was created in the AF_INET6 domain, the format of the name buffer is

expected to be sockaddr_in6, as defined in the include file netinet/in.h. The

structure is defined as follows:

struct sockaddr_in6 {

 uint8_t sin6_len;

 sa_family_t sin6_family;

 in_port_t sin6_port;

 uint32_t sin6_flowinfo;

 struct in6_addr sin6_addr;

 uint32_t sin6_scope_id;

};

The sin6_len field is set to the size of this structure. The SIN6_LEN macro is

defined to indicate the version of the sockaddr_in6 structure being used.

The sin6_family field identifies this as a sockaddr_in6 structure. This field overlays

the sa_family field when the buffer is cast to a sockaddr structure. The value of this

field must be AF_INET6.

The sin6_port field contains the 16-bit UDP or TCP port number. This field is used

in the same way as the sin_port field of the sockaddr_in structure. The port number

is stored in network byte order.

The sin6_flowinfo field is a 32-bit field that contains the traffic class and the flow

label.

The sin6_addr field is a single in6_addr structure. This field holds one 128-bit IPv6

address. The address is stored in network byte order.

bind

212 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The sin6_scope_id field is a 32-bit integer that identifies a set of interfaces as

appropriate for the scope of the address carried in the sin6_addr field. For a link

scope sin6_addr, sin6_scope_id, this would be an interface index. For a site scope

sin6_addr, sin6_scope_id, this would be a site identifier.

Socket Descriptor Created in the AF_UNIX Domain

If the socket descriptor socket is created in the AF_UNIX domain, the format of the

name buffer is expected to be sockaddr_un, as defined in the include file un.h.

 struct sockaddr_un {

 unsigned char sun_len;

 unsigned char sun_family;

 char sun_path[108]; /* pathname */

};

The sun_family field is set to AF_UNIX.

The sun_path field contains the NULL-terminated pathname, and sun_len contains

the length of the pathname.

Notes:

1. For AF_UNIX, when a bind is issued, a file is created with a mode of 660. In

order to allow other users to access this file, a chmod() should be issued to

modify this mode if desired.

2. For AF_UNIX, when closing sockets that were bound, you should also use

unlink() to delete the file created at bind() time.

3. The pathname the client uses on the bind() must be unique.

4. The sendto() call must specify the pathname associated with the server.

5. For AF_INET or AF_INET6, the user must have appropriate privileges to bind to

a port in the range from 1 to 1023.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The bind() function has a dependency on the level of the Enhanced ASCII

Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, bind() returns 0.

If unsuccessful, bind() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES Permission denied.

EADDRINUSE The address is already in use. See the SO_REUSEADDR option

described under “getsockopt() — Get the Options Associated with a

Socket” on page 861 and the SO_REUSEADDR described under

the “setsockopt() — Set Options Associated with a Socket” on page

1843 for more information.

EADDRNOTAVAIL

The address specified is not valid on this host. For example, the

Internet address does not specify a valid network interface.

bind

Chapter 3. Part 3. Library Functions 213

EAFNOSUPPORT

The address family is not supported (it is not AF_UNIX, AF_INET,

or AF_INET6).

EBADF The socket parameter is not a valid socket descriptor.

EINVAL The socket is already bound to an address—for example, trying to

bind a name to a socket that is already connected. Or the socket

was shut down.

EIO There has been a network or transport failure.

ENOBUFS bind() is unable to obtain a buffer due to insufficient storage.

ENOTSOCK The descriptor is for a file, not for a socket.

EOPNOTSUPP

The socket type of the specified socket does not support binding to

an address.

EPERM The user is not authorized to bind to the port specified.

The following are for AF_UNIX only:

Error Code Description

EACCES A component of the path prefix denies search permission, or the

requested name requires writing in a directory with a mode that

denies write permission.

EDESTADDRREQ

The address argument is a NULL pointer.

EIO An I/O error occurred.

ELOOP Too many symbolic links were encountered in translating the

pathname in address.

ENAMETOOLONG

A component of a pathname exceeded NAME_MAX characters, or

an entire pathname exceeded PATH_MAX characters.

ENOENT A component of the pathname does not name an existing file or the

pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname in address is not a

directory.

EROFS The name would reside on a read-only file system.

Example

The following are examples of the bind() call. It is a good idea to zero the structure

before using it to ensure that the name requested does not set any reserved fields.

AF_INET Domain Example

The following example illustrates the bind() call binding to interfaces in the AF_INET

domain. The Internet address and port must be in network byte order. To put the

port into network byte order, the htons() utility routine is called to convert a short

integer from host byte order to network byte order. The address field is set using

another utility routine, inet_addr(), which takes a character string representing the

dotted-decimal address of an interface and returns the binary Internet address

representation in network byte order.

bind

214 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

int rc;

int s;

struct sockaddr_in myname;

/* Bind to a specific interface in the Internet domain */

/* make sure the sin_zero field is cleared */

memset(&myname, 0, sizeof(myname));

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = inet_addr("129.5.24.1"); /* specific interface */

myname.sin_port = htons(1024); ...
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

/* Bind to all network interfaces in the Internet domain */

/* make sure the sin_zero field is cleared */

memset(&myname, 0, sizeof(myname));

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = INADDR_ANY; /* specific interface */

myname.sin_port = htons(1024); ...
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

/* Bind to a specific interface in the Internet domain.

 Let the system choose a port */

/* make sure the sin_zero field is cleared */

memset(&myname, 0, sizeof(myname));

myname.sin_family = AF_INET;

myname.sin_addr.s_addr = inet_addr("129.5.24.1"); /* specific interface */

myname.sin_port = 0; ...
rc = bind(s, (struct sockaddr *) &myname, sizeof(myname));

AF_UNIX Domain Example

The following example illustrates the bind() call binding to interfaces in the AF_UNIX

domain.

/* Bind to a name in the UNIX domain */

struct sockaddr_un myname;

char socket_name[]="/tmp/socket.for._"; ...
memset(&myname, 0, sizeof(myname));

myname.sun_family = AF_UNIX;

strcpy(myname.sun_path,socket_name);

myname.sun_len = sizeof(myname.sun_path); ...
rc = bind(s, (struct sockaddr *) &myname, SUN_LEN(&myname));

Related Information

v “sys/socket.h” on page 89

v “connect() — Connect a Socket” on page 325

v “getnetbyname() — Get a Network Entry by Name” on page 813

v “getsockname() — Get the Name of a Socket” on page 859

v “htons() — Translate an Unsigned Short Integer into Network Byte Order” on

page 914

v “inet_addr() — Translate an Internet Address into Network Byte Order” on page

960

v “listen() — Prepare the Server for Incoming Client Requests” on page 1104

v “socket() — Create a Socket” on page 1970

bind

Chapter 3. Part 3. Library Functions 215

brk() — Change Space Allocation

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int brk(void *addr);

General Description

Restriction: This function is not supported in AMODE 64.

The brk() function is used to change the space allocated for the calling process.

The change is made by setting the process’s break value to addr and allocating the

appropriate amount of space. The amount of allocated space increases as the

break value increases. The newly-allocated space is set to 0. However, if the

application first decrements and then increments the break value, the contents of

the reallocated space are not zeroed.

The storage space from which the brk() and sbrk() functions allocate storage is

separate from the storage space that is used by the other memory allocation

functions (malloc(), calloc(), etc.). Because this storage space must be a contiguous

segment of storage, it is allocated from the initial heap segment only and thus is

limited to the initial heap size specified for the calling program or the largest

contiguous segment of storage available in the initial heap at the time of the first

brk() or sbrk() call. Since this is a separate segment of storage, the brk() and sbrk()

functions can be used by an application that is using the other memory allocation

functions. However, it is possible that the user’s region may not be large enough to

support extensive usage of both types of memory allocation.

Prior usage of the brk() function has been limited to specialized cases where no

other memory allocation function performed the same function. Because the brk()

function may be unable to sufficiently increase the space allocation of the process

when the calling application is using other memory functions, the use of other

memory allocation functions, such as mmap(), is now preferred because it can be

used portably with all other memory allocation functions and with any function that

uses other allocation functions. Applications that require the use of brk() and/or

sbrk() should refrain from using the other memory allocation functions and should

be run with an initial heap size that will satisfy the maximum storage requirements

of the program. The brk() function is not supported from a multithreaded

environment, it will return in error if it is invoked in this environment.

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use malloc() instead of brk() or sbrk().

brk

216 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If successful, brk() returns 0.

If unsuccessful, brk() returns -1 and sets errno to one of the following values:

Error Code Description

ENOMEM The requested change would allocate more space than allowed for

the calling process, or the caller is running in a multithreaded

environment, which is not a valid environment for this function.

Related Information

v “unistd.h” on page 96

v “sbrk() — Change Space Allocation” on page 1703

brk

Chapter 3. Part 3. Library Functions 217

|
|
|
|
|

bsd_signal() — BSD Version of signal()

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

void (*bsd_signal(int sig, void (*func)(int)))(int);

General Description

The bsd_signal() function provides a partially compatible interface for programs

written to use the BSD form of the signal() function.

BSD signal() differs from ANSI signal() in that the SA_RESTART flag is set and the

SA_RESETHAND is cleared when bsd_signal() is used. Whereas for signal() both

of these flags are cleared and _SA_OLD_STYLE is set.

There are three functions available for establishing a signal’s action, signal(),

bsd_signal(), and sigaction(). The sigaction() function is the strategic way to

establish a signal’s action. The bsd_signal() and signal() functions are provided for

compatibility with BSD and ANSI, respectively.

The argument sig is the signal type. See Table 47 on page 1881 for a list of the

supported signal types or refer to the <signal.h> header. The argument func is the

signal action. It may be set to SIG_DFL, SIG_IGN, or the address of a signal

catching function that takes one input argument.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, bsd_signal() cannot

receive a C++ function pointer as the start routine function pointer If you attempt to

pass a C++ function pointer to bsd_signal(), the compiler will flag it as an error. You

can pass a C or C++ function to bsd_signal() by declaring it as extern ″C″.

Usage note

1. The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this

function.

2. The bsd_signal() function has been marked obsolescent in Single UNIX

Specification, Version 3 and may be withdrawn in a future version. The

sigaction() function is preferred for portability.

Returned Value

If successful, bsd_signal() returns the previous action established for this signal

type.

If unsuccessful, bsd_signal() returns SIG_ERR and sets errno to one of the

following values:

bsd_signal

218 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|

|
|
|

Error Code Description

EINVAL The value of the argument sig was not a valid signal type, or an

attempt was made to catch a signal that cannot be caught, or

ignore a signal that cannot be ignored.

Related Information

v “signal.h” on page 77

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

bsd_signal

Chapter 3. Part 3. Library Functions 219

bsearch() — Search Arrays

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

void *bsearch(const void *key, const void *base, size_t num, size_t size,

 int (*compare)(const void *element1, const void *element2));

General Description

Performs a binary search of an array of num elements, each of size bytes.

The pointer base points to the initial element of the array to be searched. key points

to the object containing the value being sought. The array must be sorted in

ascending key sequence, according to the comparison function. Otherwise,

undefined behavior occurs.

The compare parameter is a pointer to a function you must supply. It compares two

array elements and returns a value specifying their relationship. The bsearch()

function calls this function one or more times during the search, passing the key

and the pointer to one array element on each call. The function compares the

elements and then returns one of the following values:

Value Meaning

< 0 Object pointed to by key is less than the array element.

= 0 Object pointed to by key is equal to the array element.

> 0 Object pointed to by key is greater than the array element.

Special Behavior for C++

Because C++ and C linkage conventions are incompatible, bsearch() cannot receive

C++ function pointers. If you attempt to pass a C++ function pointer to bsearch(),

the compiler will flag it as an error. To use the C++ bsearch() function, you must

ensure that the compare function has C linkage by declaring it as extern “C”.

Returned Value

If successful, bsearch() returns a pointer to a matching element of the array. If two

or more elements are equal, the element pointed to is not specified.

If unsuccessful finding the key, bsearch() returns NULL.

Example

CELEBB01

bsearch

220 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

/* CELEBB01

 This example performs a binary search on the argv array of pointers o

 to the program arguments and finds the position of the argument PATH.

 It first removes the program name from argv, and then sorts the array

 alphabetically before calling bsearch().

 The functions compare1 and compare2 compare the values pointed to by

 arg1 and arg2, and they return the result to bsearch().

 */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#ifdef __cplusplus /* the __cplusplus macro is */

extern "C" { /* automatically defined by the */

#endif /* C++/MVS compiler */

 int compare1(const void *arg1, const void *arg2);

 int compare2(const void *arg1, const void *arg2);

#ifdef __cplusplus

}

#endif

int main(int argc, char *argv[])

{

 char **result;

 char *key = "PATH";

 int i;

 argv++;

 argc−−;

 /* sort to ensure that the input is ordered */

 qsort((char *)argv, argc, sizeof(char *), compare1);

 result = (char**)bsearch(key, (void *)argv, argc, sizeof(char *),

 compare2);

 if (result != NULL) {

 printf("The key <%s> was found.\n",*result);

 }

 else printf("Match not found\n");

}

int compare1(const void *arg1, const void *arg2)

{

 return (strcmp(*(char **)arg1, *(char **)arg2));

}

int compare2(const void *arg1, const void *arg2) {

 return (strcmp((char *)arg1, *(char **)arg2));

}

Input

progname Is there PATH in this sentence?

Output

The key <PATH> was found.

Related Information

v “stdlib.h” on page 85

v “qsort() — Sort Array” on page 1585

bsearch

Chapter 3. Part 3. Library Functions 221

btowc() — Convert Single-Byte Character to Wide-Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

C99

Single UNIX Specification, Version 3

both z/OS V1R2

Format

#include <wchar.h>

wint_t btowc(int c);

General Description

The btowc() function determines whether c constitutes a valid (one-byte) character

in the initial shift state.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

If successful, btowc() returns the wide-character representation of the character c.

If c has the value EOF or if (unsigned char)c does not constitute a valid (one-byte)

character in the initial shift state, btowc() returns WEOF.

There are no documented errno values.

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “wchar.h” on page 98

v “mbtowc() — Convert Multibyte Character to Wide Character” on page 1199

v “setlocale() — Set Locale” on page 1811

v “wctob() — Convert Wide Character to Byte” on page 2430

btowc

222 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

bzero() — Zero Out Bytes in Memory

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <strings.h>

void bzero(void *s, size_t n);

General Description

The bzero() function places n zero-valued bytes in the area pointed to by s.

Note: The bzero() function has been moved to the Legacy Option group in Single

UNIX Specification, Version 3 and may be withdrawn in a future version. The

memset() function is preferred for portability.

Returned Value

bzero() returns no values.

There are no errno values defined for bzero().

Related Information

v “strings.h” on page 86

v “bcmp() — Compare Bytes in Memory” on page 209

v “bcopy() — Copy Bytes in Memory” on page 210

v “memset() — Set Buffer to Value” on page 1213

bzero

Chapter 3. Part 3. Library Functions 223

||||

|
|
||

|

|
|
|

__cabend() — Terminate the process with an abend

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both AMODE 64

Format

#include <ctest.h>

void __cabend(int abendcode, int reasoncode,int clean_up);

General Description

Causes an abnormal process termination and returns an abend code.

Note: When TRAP(OFF) is specified, CEE3ABD behaves similarly as cleanup 0.

Parameter Description

abendcode Numeric value for the user abend code.

reasoncode Numeric value of the reason code.

clean_up Specifies whether normal process cleanup should be performed

with the type of dump the user requires.

 0 - Issue the abend without cleanup

1 - Issue the abend with cleanup honoring the TERMTHDACT

run-time option that the user has specified

2 - Issue the abend with cleanup honoring the TERMTHDACT

run-time option for system dump of the

user address space but always suppressing the CEEDUMP

3 - Issue the abend with cleanup honoring the TERMTHDACT

run-time option but always suppressing

both the system dump and the CEEDUMP

4 - Issue the abend with cleanup honoring the TERMTHDACT

run-time option for CEEDUMP but always

suppressing the system dump

5 - Issue the abend with cleanup forcing a system dump of

the user address space but not specifying the

TERMTHDACT run-time option

__cabend

224 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cabs(), cabsf(), cabsl() — Calculate the Complex Absolute Value

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double cabs(double complex z);

float cabsf(float complex z);

long double cabsl(long double complex z);

General Description

The cabs() family of functions compute the complex absolute value (also called

norm, modules, or magnitude) of z.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

cabs X X

cabsf X X

cabsl X X

Returned Value

The cabs functions return the complex absolute value.

Example

/*

 * This example calculates the complex absolute

 * value of complex number ’z’

 */

#include <complex.h>

#include <stdio.h>

void main()

{

 double complex z=3.5 + I*2.21;

 double res;

 res = cabs(z);

 printf("cabs(%f + I*%f) = %f\n",creal(z), cimag(z),res);

}

/*

 * Output:

 * cabs(3.5 + I*2.21) = 4.139336

 */

cabs, cabsf, cabsl

Chapter 3. Part 3. Library Functions 225

||||

|
|
||
|
|
|

Related Information

v “complex.h” on page 36

v “cimag(), cimagf(), cimagl() — Calculate the Complex Imaginary Part” on page

290

v “creal(), crealf(), creall() — Calculate the Complex Real Part” on page 365

cabs, cabsf, cabsl

226 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cacos(), cacosf(), cacosl() — Calculate the Complex Arc Cosine

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex cacos(double complex z);

float complex cacosf(float complex z);

long double complex cacosl(long double complex z);

General Description

The cacos() family of functions compute the complex arc cosine of z, with branch

cuts outside the interval [-1, +1] along the real axis.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

cacos X X

cacosf X X

cacosl X X

Returned Value

The cacos() family of functions return the complex arc cosine value, in the range of

a strip, mathematically unbounded along the imaginary axis and in the interval [0, π]

along the real axis.

Example

/*

 * This example calculates the complex arc-cosine of

 * complex number ’z’

 */

#include <complex.h>

#include <stdio.h>

void main()

{

 long double complex zl=3.5 + I*2.21;

 double complex zd=(double complex)zl;

 float complex zf=(float complex)zl;

 long double resl;

 double resd;

 float resf;

 char *func = "cacos";

 printf("Example of the %s complex function\n",func);

cacos, cacosf, cacosl

Chapter 3. Part 3. Library Functions 227

||||

|
|
||
|
|
|

resd = cacos(zd);

 resf = cacosf(zf);

 resl = cacosl(zl);

 printf("\t%s(%f + I*%f) = %f\n",func, creal(zd), cimag(zd),resd);

 printf("\t%sf(%f + I*%f) = %f\n",func, crealf(zf), cimagf(zf),resf);

 printf("\t%sl(%Lf + I*%Lf) = %Lf\n",func, creall(zl), cimagl(zl),resl);

}

Output:

Example of the cacos complex function

 cacos(3.500000 + I*2.210000) = 0.576628

 cacosf(3.500000 + I*2.209999) = 0.576627

 cacosl(3.500000 + I*2.210000) = 0.576628

Related Information

v “complex.h” on page 36

v “cacosh(), cacoshf(), cacoshl() — Calculate the Complex Arc Hyperbolic Cosine”

on page 229

v “catan(), catanf(), catanl() — Calculate the Complex Arc Tangent” on page 235

v “ccos(), ccosf(), ccosl() — Calculate the Complex Cosine” on page 245

v “ccosh(), ccoshf(), ccoshl() — Calculate the Complex Hyperbolic Cosine” on page

246

cacos, cacosf, cacosl

228 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cacosh(), cacoshf(), cacoshl() — Calculate the Complex Arc Hyperbolic

Cosine

Standards

Standards / Extensions

C or

C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is

designed to

support C99

Format

#include <complex.h>

double complex cacosh(double complex z);

float complex cacoshf(float complex z);

long double complex cacoshl(long double complex z);

General Description

The cacosh() family of functions compute the complex arc hyperbolic cosine of z,

with a branch cut at values less than 1 along the real axis.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

cacosh X X

cacoshf X X

cacoshl X X

Returned Value

The cacosh() family of functions return the complex arc hyperbolic cosine value, in

the range of a half-strip, non-negative value along the real axis and in the interval [-i

π, +i π] along the imaginary axis.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “cacos(), cacosf(), cacosl() — Calculate the Complex Arc Cosine” on page 227

v “ccosh(), ccoshf(), ccoshl() — Calculate the Complex Hyperbolic Cosine” on page

246

v “ccos(), ccosf(), ccosl() — Calculate the Complex Cosine” on page 245

v “csin(), csinf(), csinl() — Calculate the Complex Sine” on page 375

v “csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine” on page 376

cacosh, cacoshf, cacoshl

Chapter 3. Part 3. Library Functions 229

|
|
|
||

|
|
||
|
|
|
|

calloc() — Reserve and Initialize Storage

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

void *calloc(size_t num, size_t size);

General Description

Reserves storage space for an array of num elements, each of length size bytes.

The calloc() function then gives all the bits of each element an initial value of 0.

calloc() returns a pointer to the reserved space. The storage space to which the

returned value points is aligned for storage of any type of object.

This function is also available to C applications in free-standing System

Programming C (SPC) Facilities applications.

Special Behavior for C++

The C++ keywords new and delete are not interoperable with calloc(), free(),

malloc(), or realloc().

Returned Value

If successful, calloc() returns the pointer to the area of memory reserved.

If there is not enough space to satisfy the request or if num or size is 0, calloc()

returns NULL. If calloc() returns NULL because there is not enough storage, it sets

errno to one of the following values:

Error Code Description

ENOMEM Insufficient memory is available

Example

CELEBC01

/* CELEBC01

 This example prompts for the number of array entries required

 and then reserves enough space in storage for the entries.

 If &calloc. is successful, the example prints out each entry;

 otherwise, it prints out an error message.

 */

#include <stdio.h>

calloc

230 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

#include <stdlib.h>

int main(void)

{

 long * array; /* start of the array */

 long * index; /* index variable */

 int i; /* index variable */

 int num; /* number of entries in the array */

 printf("Enter the number of elements in the array\n");

 scanf("%i", &num);

 /* allocate num entries */

 if ((index = array = (long *)calloc(num, sizeof(long))) != NULL)

 {

 for (i = 0; i < num; ++i) /* put values in array */

 index++ = i; / using pointer notation */

 for (i = 0; i < num; ++i) /* print the array out */

 printf("array[%i] = %i\n", i, array[i]);

 }

 else

 { /* out of storage */

 printf("Out of storage\n");

 abort();

 }

}

Output

Enter the size of the array

array[0] = 0

array[1] = 1

array[2] = 2

Related Information

v “Using the System Programming C Facilities” in z/OS XL C/C++ Programming

Guide.

v “stdlib.h” on page 85

v “free() — Free a Block of Storage” on page 672

v “malloc() — Reserve Storage Block” on page 1172

v “realloc() — Change Reserved Storage Block Size” on page 1620

calloc

Chapter 3. Part 3. Library Functions 231

carg(), cargf(), cargl() — Calculate the Argument

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double carg(double complex z);

float cargf(float complex z);

long double cargl(long double complex z);

General Description

The carg() family of functions compute the argument (phase angle) of z, with a

branch cut along the negative real axis.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

carg X X

cargf X X

cargl X X

Returned Value

The carg() family of functions return the value of the argument in the interval [-π,

+π].

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “creal(), crealf(), creall() — Calculate the Complex Real Part” on page 365

v “cimag(), cimagf(), cimagl() — Calculate the Complex Imaginary Part” on page

290

v “conj(), conjf(), conjl() — Calculate the Complex Conjugate” on page 323

v “cproj(), cprojf(), cprojl() — Calculate the Projection” on page 363

carg, cargf, cargl

232 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|
|

casin(), casinf(), casinl() — Calculate the Complex Arc Sine

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex casin(double complex z);

float complex casinf(float complex z);

long double complex casinl(long double complex z);

General Description

The casin() family of functions compute the complex arc sine of z, with branch cuts

outside the interval [-1, +1] along the real axis.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

casin X X

casinf X X

casinl X X

Returned Value

The casin() family of functions return the complex arc sine value, in the range of a

strip, mathematically unbounded along the imaginary axis and in the interval [- π/2,

+ π/2] along the real axis.

Related Information

v “complex.h” on page 36

v “casinh(), casinhf(), casinhl() — Calculate the Complex Arc Hyperbolic Sine” on

page 234

v “catan(), catanf(), catanl() — Calculate the Complex Arc Tangent” on page 235

v “csin(), csinf(), csinl() — Calculate the Complex Sine” on page 375

v “csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine” on page 376

casin, casinf, casinl

Chapter 3. Part 3. Library Functions 233

||||

|
|
||
|
|
|

casinh(), casinhf(), casinhl() — Calculate the Complex Arc Hyperbolic

Sine

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#define _ISOC99_SOURCE

#include <complex.h>

double complex casinh(double complex z);

float complex casinhf(float complex z);

long double complex casinhl(long double complex z);

General Description

The casinh() family of functions compute the complex arc hyperbolic sine of z, with

branch cuts outside the interval [-i, +i] along the imaginary axis.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

casinh X X

casinhf X X

casinhl X X

Returned Value

The casinh() family of functions return the complex arc hyperbolic sine value, in the

range of a strip, mathematically unbounded along the real axis and in the interval [-i

π/2, +i π/2] along the imaginary axis.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “casin(), casinf(), casinl() — Calculate the Complex Arc Sine” on page 233

v “cacosh(), cacoshf(), cacoshl() — Calculate the Complex Arc Hyperbolic Cosine”

on page 229

v “cacos(), cacosf(), cacosl() — Calculate the Complex Arc Cosine” on page 227

v “csin(), csinf(), csinl() — Calculate the Complex Sine” on page 375

v “csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine” on page 376

casinh, casinhf, casinhl

234 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|
|

catan(), catanf(), catanl() — Calculate the Complex Arc Tangent

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex catan(double complex z);

float complex catanf(float complex z);

long double complex catanl(long double complex z);

General Description

The catan() family of functions compute the complex arc tangent of z, with branch

cuts outside the interval [-i, +i] along the imaginary axis.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

catan X X

catanf X X

catanl X X

Returned Value

The catan() family of functions return the complex arc tangent value, in the range of

a strip, mathematically unbounded along the imaginary axis and in the interval [-π/2,

+π/2] along the real axis.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “casin(), casinf(), casinl() — Calculate the Complex Arc Sine” on page 233

v “casinh(), casinhf(), casinhl() — Calculate the Complex Arc Hyperbolic Sine” on

page 234

v “catanh(), catanhf(), catanhl() — Calculate the Complex Arc Hyperbolic Tangent”

on page 236

v “csin(), csinf(), csinl() — Calculate the Complex Sine” on page 375

v “csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine” on page 376

catan, catanf, catanl

Chapter 3. Part 3. Library Functions 235

||||

|
|
||
|
|
|

catanh(), catanhf(), catanhl() — Calculate the Complex Arc Hyperbolic

Tangent

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex catanh(double complex z);

float complex catanhf(float complex z);

long double complex catanhl(long double complex z);

General Description

The catanh() family of functions compute the complex arc hyperbolic tangent of z,

with branch cuts outside the interval [-1, +1] along the real axis.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

catanh X X

catanhf X X

catanhl X X

Returned Value

The catanh() family of functions return the complex arc hyperbolic tangent value, in

the range of a strip, mathematically unbounded along the real axis and in the

interval [-i π/2, +i π/2] along the imaginary axis.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “catan(), catanf(), catanl() — Calculate the Complex Arc Tangent” on page 235

v “catanh(), catanhf(), catanhl() — Calculate the Complex Arc Hyperbolic Tangent”

v “ctan(), ctanf(), ctanl()— Calculate the Complex Tangent” on page 381

v “csin(), csinf(), csinl() — Calculate the Complex Sine” on page 375

v “csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine” on page 376

catanh, catanhf, catanhl

236 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|
|

catclose() — Close a Message Catalog Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <nl_types.h>

int catclose(nl_catd catd);

General Description

The catclose() function closes the message catalog identified by catd. If a catalog is

opened more than once in the same process, a use count is incremented.

catclose() decrements this use count. When the use count reaches zero then the

file descriptor for that catalog is closed.

Returned Value

If successful, catclose() returns 0.

If unsuccessful, catclose() returns -1 and sets errno to one of the following values:

Error Code Description

EBADF The catalog descriptor is not valid.

EINTR catclose() was interrupted by a signal.

Related Information

v “nl_types.h” on page 72

v “catgets() — Read a Program Message” on page 238

v “catopen() — Open a Message Catalog” on page 240

catclose

Chapter 3. Part 3. Library Functions 237

||||

|
|
|

||

|

catgets() — Read a Program Message

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <nl_types.h>

char *catgets(nl_catd catd, int set_id, int msg_id, const char *s);

General Description

The catgets() function attempts to read message msg_id, in set set_id, from the

message catalog identified by catd. The catd argument is a message catalog

descriptor returned from an earlier call to catopen(). The s argument points to a

default message string which will be returned by catgets() if it cannot retrieve the

identified message.

When message source files are processed by the gencat command, the CODESET

used to create them is saved in the resulting message catalog. The catgets()

function interrogates this CODESET value to see if it differs from the CODESET

value of the current locale. If it does differ then catgets() uses the iconv() function to

convert the message text coming from the message catalog into the codeset of the

current locale. The default message string (s) is not affected by this conversion. If

iconv() does not support the conversion specified by the two CODESETs then the

default message string is returned.

Returned Value

If the identified message is retrieved successfully, catgets() returns a pointer to an

internal buffer area containing the NULL-terminated message string.

If unsuccessful, catgets() returns s and sets errno to one of the following values:

Error Code Description

EBADF The catd argument is not a valid message catalog descriptor open

for reading.

EINTR The read operation was terminated due to the receipt of a signal,

and no data was transferred.

Special Behavior for z/OS UNIX Services

Error Code Description

EINVAL May be returned for several reasons:

v The message catalog identified by catd is not a valid message

catalog, or has been corrupted. Ensure that the message catalog

was created using the z/OS UNIX gencat command.

v iconv() does not support the conversion between the codeset of

the message catalog and that of the current locale. To check the

catgets

238 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

codeset that the message catalog was created in, look for the

codeset name at offset 28 into the message catalog.

ENOMSG The message identified by set_id and msg_id is not in the message

catalog.

Related Information

v “nl_types.h” on page 72

v “catclose() — Close a Message Catalog Descriptor” on page 237

v “catopen() — Open a Message Catalog” on page 240

catgets

Chapter 3. Part 3. Library Functions 239

catopen() — Open a Message Catalog

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <nl_types.h>

nl_catd catopen(const char *name, int oflag);

General Description

The catopen() function opens a message catalog and returns a message catalog

descriptor. The name argument specifies the name of the message catalog to be

opened. If name contains a ″/″, then name specifies a complete name for the

message catalog. Otherwise, the environment variable NLSPATH is used with name

substituted for %N (see the XBD specification, Chapter 6, Environment Variables). If

NLSPATH does not exist in the environment, or if a message catalog cannot be

found in any of the components specified by NLSPATH, then the default path of

″/usr/lib/nls/msg/%L/%N″ is used. The ″%L″ component of this default path is

replaced by the setting of LC_MESSAGES if the value of oflag is

NL_CAT_LOCALE, or the LANG environment variable if oflag is 0. A change in the

setting of the LANG or LC_MESSAGES will have no effect on existing open

catalogs.

A message catalog descriptor remains valid in a process until that process closes it,

or a successful call to one of the exec functions. When a message catalog is

opened the FD_CLOEXEC flag will be set. See “fcntl() — Control Open File

Descriptors” on page 527. Portable applications must assume that message catalog

descriptors are not valid after a call to one of the exec functions.

If a catalog is opened more than once in the same process, a use count is

incremented. When the use count reaches zero, by using catclose() to close the

catalog, then the file descriptor for that catalog is closed.

Returned Value

If successful, catopen() returns a message catalog descriptor for use on subsequent

calls to catgets() and catclose().

If unsuccessful, catopen() returns (nl_catd)-1 and sets errno to one of the following

values:

Error Code Description

EACCES Search permission is denied for the component of the path prefix of

the message catalog or read permission is denied for the message

catalog.

EMFILE OPEN_MAX file descriptors are currently open in the calling

process.

catopen

240 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

ENAMETOOLONG

The length of the pathname of the message catalog exceeds

PATH_MAX, or a pathname component is longer than NAME_MAX.

ENFILE Too many files are currently open in the system.

ENOENT The message catalog does not exist or the name argument points

to an empty string.

ENOMEM Insufficient storage space is available.

ENOTDIR A component of the path prefix of the message catalog is not a

directory.

Related Information

v “nl_types.h” on page 72

v “catclose() — Close a Message Catalog Descriptor” on page 237

v “catgets() — Read a Program Message” on page 238

catopen

Chapter 3. Part 3. Library Functions 241

cbrt(), cbrtf(), cbrtl() — Calculate the Cube Root

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double cbrt(double x);

C99

#define _ISOC99_SOURCE

#include <math.h>

float cbrtf(float x);

long double cbrtl(long double x);

General Description

The cbrt() function calculates the real cube root of its argument x.

Note: The following table shows which functions work in IEEE Binary Floating-Point

format and which work in hexadecimal floating-point format. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

cbrt X X

cbrtf X X

cbrtl X X

Returned Value

The cbrt functions return x to the 1/3 power.

cbrt() does not fail.

Related Information

v “math.h” on page 60

cbrt

242 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

cclass() — Return Characters in a Character Class

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <collate.h>

int cclass(char *class, collel_t **list);

General Description

Finds all the collating elements of the class, class. The list is updated to point to the

array of collating elements found. The list is valid until the next call to setlocale().

The function supports user-defined character classes. In C Library programs, the

function also supports POSIX.2 character classes.

Returned Value

If successful, cclass() returns the number of elements in the list pointed to by list.

If the first argument specifies a class that does not exist in the LC_CTYPE category

of the current locale, cclass() returns −1.

Example

CELEBC02

/* CELEBC02 */

#include <stdio.h>

#include <collate.h>

int main(void)

{

 collel_t *list; /* ptr to the digit class collation weights */

 int weights; /* no. of class collation class weights found */

 int i;

 weights = cclass("digit", &list);

 printf("weights=%d\n", weights);

 for (i=0; i<weights; i++)

 printf("*(list + %d) = %d\n", i, *(list + i));

}

Related Information

v “collate.h” on page 36

v “locale.h” on page 57

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “collequiv() — Return a List of Equivalent Collating Elements” on page 308

v “collorder() — Return List of Collating Elements” on page 310

v “collrange() — Calculate the Range List of Collating Elements” on page 312

v “colltostr() — Return a String for a Collating Element” on page 314

v “getmccoll() — Get Next Collating Element from String” on page 804

cclass

Chapter 3. Part 3. Library Functions 243

v “getwmccoll() — Get Next Collating Element from Wide String” on page 893

v “ismccollel() — Identify a Multicharacter Collating Element” on page 1030

v “maxcoll() — Return Maximum Collating Element” on page 1181

v “setlocale() — Set Locale” on page 1811

v “strtocoll() — Return Collating Element for String” on page 2064

v “wctype() — Obtain Handle for Character Property Classification” on page 2435

cclass

244 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ccos(), ccosf(), ccosl() — Calculate the Complex Cosine

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex ccos(double complex z);

float complex ccosf(float complex z);

long double complex ccosl(long double complex z);

General Description

The ccos() family of functions compute the complex cosine of z.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

ccos X X

ccosf X X

ccosl X X

Returned Value

The ccos() family of functions return the complex cosine value.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “ccosh(), ccoshf(), ccoshl() — Calculate the Complex Hyperbolic Cosine” on page

246

v “casinh(), casinhf(), casinhl() — Calculate the Complex Arc Hyperbolic Sine” on

page 234

v “casin(), casinf(), casinl() — Calculate the Complex Arc Sine” on page 233

v “csin(), csinf(), csinl() — Calculate the Complex Sine” on page 375

v “csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine” on page 376

ccos, ccosf, ccosl

Chapter 3. Part 3. Library Functions 245

||||

|
|
||
|
|
|

ccosh(), ccoshf(), ccoshl() — Calculate the Complex Hyperbolic Cosine

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#define _ISOC99_SOURCE

#include <complex.h>

double complex ccosh(double complex z);

float complex ccoshf(float complex z);

long double complex ccoshl(long double complex z);

General Description

The ccosh() family of functions compute the complex hyperbolic cosine of z.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

ccosh X X

ccoshf X X

ccoshl X X

Returned Value

The ccosh() family of functions return the complex hyperbolic cosine value.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “ccos(), ccosf(), ccosl() — Calculate the Complex Cosine” on page 245

v “cacosh(), cacoshf(), cacoshl() — Calculate the Complex Arc Hyperbolic Cosine”

on page 229

v “cacos(), cacosf(), cacosl() — Calculate the Complex Arc Cosine” on page 227

v “csin(), csinf(), csinl() — Calculate the Complex Sine” on page 375

v “csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine” on page 376

ccosh, ccoshf, ccoshl

246 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|
|

__CcsidType() — Return Coded Character Set ID Type (ASCII/EBCDIC)

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R2

Format

#include <_Ccsid.h>

__csType __CcsidType(__ccsid_t Ccsid);

General Description

__CcsidType() returns a __csType value which indicates whether the Ccsid

character codeset ID is ASCII or EBCDIC.

Returned Value

If Ccsid is valid, __CcsidType() returns a __csType value of _CSTYPE_EBCDIC or

_CSTYPE_ASCII, indicating whether the Ccsid refers to an EBCDIC or ASCII

codeset.

If Ccsid is not valid, __CcsidType() returns _CSTYPE_INVALID.

Related Information

v “_Ccsid.h” on page 35

v “__CSNameType() — Return Codeset Name Type (ASCII/EBCDIC)” on page 377

v “__toCcsid() — Convert Codeset Name to Coded Character Set ID” on page

2226

v “__toCSName() — Convert Coded Character Set ID to Codeset Name” on page

2227

__CcsidType

Chapter 3. Part 3. Library Functions 247

cds() — Compare Double and Swap

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <stdlib.h>

int cds(cds_t *oldptr, cds_t *curptr, cds_t newwords);

General Description

The cds() built-in function compares the 8-byte value pointed to by oldptr to the

8-byte value pointed to by curptr. If they are equal, the 8-byte value newwords is

copied into the location pointed to by curptr. If they are unequal, the value pointed

to by curptr is copied into the location pointed to by oldptr.

To avoid infringing on the user’s name space, this nonstandard function is exposed

only when you use the compiler option, LANGLVL(EXTENDED). When you use

LANGLVL(EXTENDED) any relevant information in the header is also exposed.

The function uses the COMPARE DOUBLE AND SWAP (CDS) instructions, which

can be used in multiprogramming or multiprocessing environments to serialize

access to counters, flags, control words, and other common storage areas. For a

detailed description, see the appendixes in the z/Architecture Principles of

Operation on number representation and instruction.

Returned Value

cds() returns 0 if the 8-byte value pointed to by oldptr is equal to the 8-byte value

pointed to by curptr.

Otherwise cds() returns 1.

Related Information

v z/Architecture Principles of Operation

v “stdlib.h” on page 85

v “cs() — Compare and Swap” on page 372

cds

248 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

cdump() — Request a Main Storage Dump

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <ctest.h>

int cdump(char *dumptitle);

General Description

1. Creates a display of the activation stack, by calling trace in the same way as

the ctrace() function does.

2. Displays the Language Environment-formatted dump.

3. If the source file was compiled with TEST(SYM), cdump() displays the contents of

the user’s variables. The output is identified with dumptitle. See the CEE3DMP

Language Environment callable service in z/OS Language Environment

Programming Guide, SA22-7561, to determine where the output is written to.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

When cdump() is invoked from a user routine, the C/C++ library issues an OS

SNAP macro to obtain a dump of virtual storage. The first invocation of cdump()

results in a SNAP identifier of 0. For each successive invocation, the ID is

increased by one to a maximum of 256, after which the ID is reset to 0.

The output of the dump is directed to the CEESNAP data set. The DD definition for

CEESNAP is as follows:

 //CEESNAP DD SYSOUT= *

If the data set is not defined, or is not usable for any reason, cdump() returns a

failure code of 1. This occurs even if the call to CEE3DMP is successful. For more

information see ″Debugging C/C++ Routines ″ in z/OS Language Environment

Debugging Guide.

Returned Value

If successful, cdump() returns 0.

If unsuccessful, cdump() returns nonzero.

cdump

Chapter 3. Part 3. Library Functions 249

Related Information

v “ctest.h” on page 38

v “csnap() — Request a Condensed Dump” on page 378

v “ctrace() — Request a Traceback” on page 393

cdump

250 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ceil(), ceilf(), ceill() — Round Up to Integral Value

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double ceil(double x);

float ceil(float x); /* C++ only */

long double ceil(long double x); /* C++ only */

float ceilf(float x);

long double ceill(long double x);

General Description

Computes the smallest integer that is greater than or equal to x.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Returns the calculated value as a double, float, or long double value.

If there is an overflow, the function sets errno to ERANGE and returns HUGE_VAL.

Special Behavior for IEEE

The ceil() functions are always successful.

Example

CELEBC04

/* CELEBC04

 This example sets y to the smallest integer greater than

 1.05, and then to the smallest integer greater than −1.05.

 The results are 2.0 and −1.0, respectively.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double y, z;

ceil, ceilf, ceill

Chapter 3. Part 3. Library Functions 251

||||

|
|
|
|
|
|
|

||

|

y = ceil(1.05); /* y = 2.0 */

 z = ceil(−1.05); /* z = −1.0 */

 printf("y = %f\n z = %f\n", y, z);

}

Related Information

v “math.h” on page 60

v “floor(), floorf(), floorl() — Round Down to Integral Value” on page 609

ceil, ceilf, ceill

252 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ceild32(), ceild64(), ceild128() — Round Up to Integral Value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 ceild32(_Decimal32 x);

_Decimal64 ceild64(_Decimal64 x);

_Decimal128 ceild128(_Decimal128 x);

_Decimal32 ceil(_Decimal32 x); /* C++ only */

_Decimal64 ceil(_Decimal64 x); /* C++ only */

_Decimal128 ceil(_Decimal128 x); /* C++ only */

General Description

Computes the smallest integer that is greater than or equal to x.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

These functions are always successful.

Example

/* CELEBC50

 This example illustrates the ceild32() function.

 This example sets y to the smallest integer greater than

 1.05, and then to the smallest integer greater than −1.05.

 The results are 2.0 and −1.0, respectively.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal32 y, z;

 y = ceild32(+1.05DF); /* y = +2.0 */

 z = ceild32(−1.05DF); /* z = −1.0 */

 printf("ceild32(+1.05) = % Hf\n"

 "ceild32(−1.05) = % Hf\n", y, z);

}

ceild32, ceild64, ceild128

Chapter 3. Part 3. Library Functions 253

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “math.h” on page 60

v “floord32(), floord64(), floord128() — Round Down to Integral Value” on page 611

ceild32, ceild64, ceild128

254 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

__certificate() — Register/Deregister/Authenticate a Digital Certificate

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R7

Format

#define _OPEN_SYS

#include <unistd.h>

int __certificate(int function_code,

 int certificate_length,

 char *certificate,...);

General Description

The __certificate() function allows the user to register or deregister a digital

certificate with or from the userid that is associated with the current security

environment, or to authenticate a security environment using a digital certificate in

lieu of a userid/password combination.

The function takes at least the following arguments:

function_code Specifies one of the following functions:

__CERTIFICATE_REGISTER

Register the passed certificate to the user. No new

security environment is created, and no

authentication of the user is done.

__CERTIFICATE_DEREGISTER

Deregister the passed certificate from the user.

Certificate must have been previously registered to

the user.

__CERTIFICATE_AUTHENTICATE

As of z/OS V1R4, authenticate the passed

certificate for this caller. The certificate must have

already been registered.

certificate_length

The length of the digital certificate. A zero length will cause −1

return value with errno set to EINVAL.

certificate The certificate must be a single BER encoded X.509 certificate.

PKCS7, PEM, or Base64 encoded certificates are allowed.

Note: Only a single BER encoded X.509 certificate is supported for

the authenticate function.

As of z/OS V1R4, the __CERTIFICATE_AUTHENTICATE function code requires the

following additional parameters to be specified o nthe function call:

buflen (size_t)

Specifies the size of the buffer pointed to by buf. Up to buflen bytes

of userid (including the null terminator) will be copied into the buffer.

Note that truncation may occur if the buffer is too small. The buffer

__certificate

Chapter 3. Part 3. Library Functions 255

size should be large enough for any userid on the system. A value

less than 1 will cause −1 return value with errno set to EINVAL.

buf (char *) Pointer to character buffer where _certificate() will place the userid

associated with the digital certificate. A value of NULL will cause −1

return value with errno set to EINVAL.

Usage Notes

1. The _certificate function is intended for servers that support the automatic

registration of certificates for clients they are supporting (on the World Wide

Web for example).

2. The __CERTIFICATE_REGISTER function code will associate the passed

certificate with whatever user identity is present. If the task level identity is

present the certificate is associated with the task. Task level security can be

created by pthread_security_np(), __login() or by any other means of creating a

task level ACEE. If no task level identity (ACEE) is present, the certificate will be

associated with the address space identity.

3. The __certificate() function calls the z/OS z/OS UNIX System Services

BPX1SEC service. For a more detailed description of the BPX1SEC service,

see z/OS UNIX System Services Programming: Assembler Callable Services

Reference.

Restrictions

A security manager supporting digital certificate registration and deregistration must

be installed and operational.

Returned Value

If successful, __certificate() returns 0.

If unsuccessful, __certificate() returns −1 and sets errno to one of the following

values:

Error Code Description

EACCES Permission is denied.

EINVAL A parameter is not valid.

EMVSERR An MVS environmental error or internal error occurred.

EMVSSAF2ERR

An error occurred in the security product. Certificate is already

defined for another process or certificate is not valid or certificate

does not meet required format. Also, realized when an internal error

has occurred.

ENOSYS The function is not implemented or installed.

EPERM The operation was not permitted. Calling process may not be

authorized in BPX.DAEMON facility class.

Use __errno2() to obtain a more detailed reason code (in most cases) when

__certificate() fails.

Related Information

v “unistd.h” on page 96

v “__login() — Create a New Security Environment for Process” on page 1134

v “pthread_security_np() — Create or Delete Thread-level Security” on page 1539

__certificate

256 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cexp(), cexpf(), cexpl() — Calculate the Complex Exponential

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex cexp(double complex z);

float complex cexpf(float complex z);

long double complex cexpl(long double complex z);

General Description

The cexp() family of functions compute the complex base-e exponential of z.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

cexp X X

cexpf X X

cexpl X X

Returned Value

The cexp() family of functions return the complex base-e exponential value.

Example

/*

 * This example illustrates the complex exponential

 * function

 */

#include <complex.h>

#include <stdio.h>

void main()

{

 double complex z=6.0146 + I*(-2.41958),

 res;

 res = cexp(z);

 printf("cexp(%f + (%f)*I) = %f + (%f)*I\n",creal(z), cimag(z),creal(res),cimag(res));

}

Output:

cexp(6.014600 + (-2.419580)*I) = -307.216850 + (-270.545937)*I

Related Information

v “complex.h” on page 36

v “clog(), clogf(), clogl() — Calculate the Complex Natural Logarithm” on page 298

cexp, cexpf, cexpl

Chapter 3. Part 3. Library Functions 257

||||

|
|
||
|
|
|

cfgetispeed() — Determine the Input Baud Rate

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <termios.h>

speed_t cfgetispeed(const struct termios *termptr);

General Description

Extracts the input baud rate from the termios structure indicated by *termptr. The

termios structure contains information about a terminal. A program should first use

tcgetattr() to get the termios structure, and then use cfgetispeed() to extract the

speed from the structure. The program can then use cfgetispeed() to set a new

baud rate in the structure and tcsetattr() to pass the changed value to the system.

Although in a z/OS UNIX application valid speeds can be set with cfsetispeed() and

passed to the system with tcsetattr(), the speed has no effect on the operation of a

pseudoterminal. However, the operation will have an effect if issued for an OCS

remote terminal.

Returned Value

cfgetispeed() returns a code indicating the baud rate; see Table 22. These codes

are defined in the termios.h header file and have an unsigned integer type.

There are no documented errno values.

 Table 22. Baud Rate Codes

B0 Hang up

B50 50 baud

B75 75 baud

B110 110 baud

B134 134.5 baud

B150 150 baud

B200 200 baud

B300 300 baud

B600 600 baud

B1200 1200 baud

B1800 1800 baud

B2400 2400 baud

B4800 4800 baud

B9600 9600 baud

cfgetispeed

258 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

Table 22. Baud Rate Codes (continued)

B19200 19,200 baud

B38400 38,400 baud

Example

CELEBC05

/* CELEBC05

 This example determines the speed of stdin.

 */

#define _POSIX_SOURCE

#include <termios.h>

#include <stdio.h>

char *see_speed(speed_t speed) {

 static char SPEED[20];

 switch (speed) {

 case B0: strcpy(SPEED, "B0");

 break;

 case B50: strcpy(SPEED, "B50");

 break;

 case B75: strcpy(SPEED, "B75");

 break;

 case B110: strcpy(SPEED, "B110");

 break;

 case B134: strcpy(SPEED, "B134");

 break;

 case B150: strcpy(SPEED, "B150");

 break;

 case B200: strcpy(SPEED, "B200");

 break;

 case B300: strcpy(SPEED, "B300");

 break;

 case B600: strcpy(SPEED, "B600");

 break;

 case B1200: strcpy(SPEED, "B1200");

 break;

 case B1800: strcpy(SPEED, "B1800");

 break;

 case B2400: strcpy(SPEED, "B2400");

 break;

 case B4800: strcpy(SPEED, "B4800");

 break;

 case B9600: strcpy(SPEED, "B9600");

 break;

 case B19200: strcpy(SPEED, "B19200");

 break;

 case B38400: strcpy(SPEED, "B38400");

 break;

 default: sprintf(SPEED, "unknown (%d)", (int) speed);

 }

 return SPEED;

}

main() {

 struct termios term;

 speed_t speed;

 if (tcgetattr(0, &term) != 0)

 perror("tcgetattr() error");

 else {

 speed = cfgetispeed(&term);

cfgetispeed

Chapter 3. Part 3. Library Functions 259

printf("cfgetispeed() says the speed of stdin is %s\n",

 see_speed(speed));

 }

}

Output

cfgetispeed() says the speed of stdin is B0

Related Information

v “termios.h” on page 92

v “cfgetospeed() — Determine the Output Baud Rate” on page 261

v “cfsetispeed() — Set the Input Baud Rate in the Termios” on page 263

v “cfsetospeed() — Set the Output Baud Rate in the Termios” on page 265

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

cfgetispeed

260 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cfgetospeed() — Determine the Output Baud Rate

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <termios.h>

speed_t cfgetospeed(const struct termios *termptr);

General Description

Extracts the output baud rate from the termios structure indicated by *termptr. The

termios structure contains information about a terminal. A program should first use

tcgetattr() to get the termios structure, and then use cfgetospeed() to extract the

speed from the structure. The program can then use cfgetospeed() to set a new

baud rate in the structure and tcsetattr() to pass the changed value to the system.

Although in a z/OS UNIX application valid speeds can be set with cfsetospeed()

and passed to the system with tcsetattr(), the speed has no effect on the operation

a pseudoterminal. However, the operation will have an effect if issued for an OCS

remote terminal.

Returned Value

cfgetospeed() returns a code indicating the baud rate. The codes are defined in the

termios.h header file and have an unsigned integer type. Table 22 on page 258

shows the codes to set the baud rate.

There are no documented errno values.

Example

CELEBC06

/* CELEBC06

 This example determines the speed of stdout.

 */

#define _POSIX_SOURCE

#include <termios.h>

#include <stdio.h>

char *see_speed(speed_t speed) {

 static char SPEED[20];

 switch (speed) {

 case B0: strcpy(SPEED, "B0");

 break;

 case B50: strcpy(SPEED, "B50");

 break;

 case B75: strcpy(SPEED, "B75");

 break;

 case B110: strcpy(SPEED, "B110");

cfgetospeed

Chapter 3. Part 3. Library Functions 261

||||

|
|
|
|

||

|

break;

 case B134: strcpy(SPEED, "B134");

 break;

 case B150: strcpy(SPEED, "B150");

 break;

 case B200: strcpy(SPEED, "B200");

 break;

 case B300: strcpy(SPEED, "B300");

 break;

 case B600: strcpy(SPEED, "B600");

 break;

 case B1200: strcpy(SPEED, "B1200");

 break;

 case B1800: strcpy(SPEED, "B1800");

 break;

 case B2400: strcpy(SPEED, "B2400");

 break;

 case B4800: strcpy(SPEED, "B4800");

 break;

 case B9600: strcpy(SPEED, "B9600");

 break;

 case B19200: strcpy(SPEED, "B19200");

 break;

 case B38400: strcpy(SPEED, "B38400");

 break;

 default: sprintf(SPEED, "unknown (%d)", (int) speed);

 }

 return SPEED;

}

main() {

 struct termios term;

 speed_t speed;

 if (tcgetattr(1, &term) != 0)

 perror("tcgetattr() error");

 else {

 speed = cfgetospeed(&term);

 printf("cfgetospeed() says the speed of stdout is %s\n",

 see_speed(speed));

 }

}

Output

cfgetospeed() says the speed of stdout is B0

Related Information

v “termios.h” on page 92

v “cfgetispeed() — Determine the Input Baud Rate” on page 258

v “cfsetispeed() — Set the Input Baud Rate in the Termios” on page 263

v “cfsetospeed() — Set the Output Baud Rate in the Termios” on page 265

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

cfgetospeed

262 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cfsetispeed() — Set the Input Baud Rate in the Termios

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <termios.h>

int cfsetispeed(struct termios *termptr, speed_t speed);

General Description

Specifies a new input baud rate for the termios control structure, *termptr.

cfsetispeed() records this new baud rate in the control structure but does not

actually change the terminal device file. The program must call tcsetattr() to modify

the terminal device file to reflect the settings in the termios structure.

A program should first use tcgetattr() to get the termios structure. Then it should

use cfsetispeed() to set the speed in termios and tcsetattr() to pass the modified

termios structure to the system.

Although in a z/OS UNIX application valid speeds can be set with cfsetispeed() and

passed to the system with tcsetattr(), the speed has no effect on the operation of a

pseudoterminal. However, the operation will have an effect if issued for an OCS

remote terminal.

The speed argument indicates the new baud rate with one of the following codes,

defined in the termios.h header file. The codes have an unsigned integer type.

Table 22 on page 258 shows the codes to set the baud rate.

Returned Value

If successful, cfsetispeed() sets the baud rate in the control structure and returns 0.

If unsuccessful, cfsetispeed() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL An unsupported value for speed

Example

CELEBC07

/* CELEBC07

 This example specifies a new input baud rate.

 */

#define _POSIX_SOURCE

#include <termios.h>

#include <stdio.h>

cfsetispeed

Chapter 3. Part 3. Library Functions 263

||||

|
|
|
|

||

|

main() {

 struct termios term;

 if (tcgetattr(0, &term) != 0)

 perror("tcgetattr() error");

 else if (cfsetispeed(&term, B0) != 0)

 perror("cfsetispeed() error");

 else if (tcsetattr(0, TCSANOW, &term) != 0)

 perror("tcsetattr() error");

}

Related Information

v “termios.h” on page 92

v “cfgetispeed() — Determine the Input Baud Rate” on page 258

v “cfgetospeed() — Determine the Output Baud Rate” on page 261

v “cfsetospeed() — Set the Output Baud Rate in the Termios” on page 265

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

cfsetispeed

264 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cfsetospeed() — Set the Output Baud Rate in the Termios

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <termios.h>

int cfsetospeed(struct termios *termptr, speed_t speed);

General Description

Specifies a new output baud rate for the termios control structure, *termptr.

cfsetospeed() records this new baud rate in the control structure, but does not

actually change the terminal device file. The program must call tcsetattr() to modify

the terminal device file to reflect the settings in the termios structure.

A program should first use tcgetattr() to get the termios structure. It should then use

cfsetospeed() to set the speed in termios and tcsetattr() to pass the modified

termios structure to the system.

Although in a z/OS UNIX application valid speeds can be set with cfsetospeed()

and passed to the system with tcsetattr(), the speed has no effect on the operation

of a pseudoterminal. However, the operation will have an effect if issued for an

OCS remote terminal.

The speed argument should be a code indicating the new baud rate. These codes

are defined in the termios.h header file and have an unsigned integer type. Table 22

on page 258 shows the codes to set the baud rate.

Returned Value

If successful, cfsetospeed() sets the baud rate for the structure and returns 0.

If unsuccessful, cfsetospeed() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL The value speed is not supported by the hardware or software.

Example

CELEBC08

/* CELEBC08

 This example specifies a new output baud rate.

 */

#define _POSIX_SOURCE

#include <termios.h>

#include <stdio.h>

cfsetospeed

Chapter 3. Part 3. Library Functions 265

||||

|
|
|
|

||

|

main() {

 struct termios term;

 if (tcgetattr(1, &term) != 0)

 perror("tcgetattr() error");

 else if (cfsetospeed(&term, B38400) != 0)

 perror("cfsetospeed() error");

 else if (tcsetattr(1, TCSANOW, &term) != 0)

 perror("tcsetattr() error");

}

Related Information

v “termios.h” on page 92

v “cfgetispeed() — Determine the Input Baud Rate” on page 258

v “cfgetospeed() — Determine the Output Baud Rate” on page 261

v “cfsetispeed() — Set the Input Baud Rate in the Termios” on page 263

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

cfsetospeed

266 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__chattr() — Change the Attributes of a File or Directory

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R2

Format

#define _OPEN_SYS_FILE_EXT 1

#include <sys/stat.h>

int __chattr(char* pathname, attrib_t *attributes, int attributes_len);

General Description

The __chattr() function modifies the attributes that are associated with a file. It can

be used to change the mode, owner, access time, modification time, change time,

reference time, audit flags, general attribute flags, file tag, and file format and size.

The file to be impacted is defined by the pathname argument.

The attributes argument is the address of an attrib_t structure which is used to

identify the attributes to be modified and the new values desired. The attrib_t type is

an f_attributes structure as defined in <sys/stat.h> for use with the __chattr()

function. For proper behavior the user should ensure that this structure has been

initialized to zeros before it is populated. Available elements of the f_attributes

structure are defined in Table 23:

 Table 23. Struct f_attributes Element Descriptions

Element Data Type General Description

Bit Flags Indicating Which Attributes to Change

att_modechg:1 int 1=Change to mode indicated

att_ownerchg:1 int 1=Change to Owner indicated

att_setgen:1 int 1=Set General Attributes

att_trunc:1 int 1=Truncate Size

att_atimechg:1 int 1=Change the Atime

att_atimetod:1 int 1=Change Atime to Cur.Time

att_mtimechg:1 int 1=Change the Mtime

att_mtimetod:1 int 1=Change Mtime to Cur.Time

att_maaudit:1 int 1=Modify auditor audit info

att_muaudit:1 int 1=Modify user audit info

att_ctimechg:1 int 1=Change the Ctime

att_ctimetod:1 int 1=Change Ctime to Cur.Time

att_reftimechg:1 int 1=Change the RefTime

att_reftimetod:1 int 1=Change RefTime to Cur.Time

att_filefmtchg:1 int 1=Change File Format

att_filetagchg:1 int 1=Change File Tag

att_seclabelchg:1 int 1=Change Seclabel

Modified Values for Indicated Attributes to Change

__chattr

Chapter 3. Part 3. Library Functions 267

Table 23. Struct f_attributes Element Descriptions (continued)

Element Data Type General Description

att_mode mode_t File Mode

att_uid int User ID of the owner of the file

att_gid int Group ID of the Group of the file

att_sharelibmask:1 int 1=Shared Library Mask

att_noshareasmask:1 int 1=No Shareas Flag Mask

att_apfauthmask:1 int 1=APF Authorized Flag Mask

att_progctlmask:1 int 1=Prog. Controlled Flag Mask

att_sharelib:1 int 1=Shared Library Flag

att_noshareas:1 int 1=No Shareas Flag

att_apfauth:1 int 1=APF Authorized Flag

att_progctl:1 int 1=Program Controlled Flag

att_size off_t File size

att_atime time_t Time of last access

att_mtime time_t Time of last data modification

att_auditoraudit int Area for auditor audit info

att_useraudit int Area for user audit info

att_ctime time_t Time of last file status change

att_reftime time_t Reference Time

att_filefmt char File Format

att_filetag struct file_tag File Tag

att_seclabel char Security Label

Note: If you set att_nodelfilesmask, att_sharelibmask, att_nodelfiles, att_sharelib,

att_noshareasmask, att_apfauthmask, att_progctlmask, att_noshareas,

att_apfauth or att_progctl, then att_setgen must also be set. The att_setgen

flag is a required indicator when setting ″general″ attributes.

Returned Value

If successful, __chattr() returns 0.

If unsuccessful, __chattr() returns -1 and sets errno to one of the following values:

Error Code Description

EACCES The calling process did not have appropriate permissions. Possible

reasons include:

v The calling process was attempting to set access time or

modification time to current time, and the effective UID of the

calling process does not match the owner of the file; the process

does not have write permission for the file; or the process does

not have appropriate privileges.

v The calling process was attempting to truncate the file, and it

does not have write permission for the file.

ECICS An attempt was made to change file tag attributes under non-OTE

CICS and file tagging is not supported in that environment.

__chattr

268 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EFBIG The calling process was attempting to change the size of a file, but

the specified length is greater than the maximum file size limit for

the process.

EINVAL The attributes structure containing the requested changes is not

valid.

ELOOP A loop exists in symbolic links that were encountered during

resolution of the pathname argument. This error is issued if more

than 24 symbolic links are detected in the resolution of pathname.

ENAMETOOLONG

pathname is longer than 1023 characters, or a component of the

pathname is longer than 255 characters. (Filename truncation is not

supported.)

ENOENT No file named pathname was found.

ENOTDIR Some component of pathname is not a directory.

EPERM The operation is not permitted for one of the following reasons:

v The calling process was attempting to change the mode or the

file format but the effective UID of the calling process does not

match the owner of the file, and the calling process does not

have appropriate privileges.

v The calling process was attempting to change the owner but it

does not have appropriate privileges.

v The calling process was attempting to change the general

attribute bits but it does not have write permission for the file.

v The calling process was attempting to set a time value (not

current time) but the effective UID does not match the owner of

the file, and it does not have appropriate privileges.

v The calling process was attempting to set the change time or

reference time to current time but it does not have write

permission for the file.

v The calling process was attempting to change auditing flags but

the effective UID of the calling process does not match the owner

of the file and the calling process does not have appropriate

privileges.

v The calling process was attempting to change the Security

Auditor’s auditing flags but the user does not have auditor

authority.

EROFS pathname specifies a file that is on a read-only file system.

Example

#define _POSIX_SOURCE 1

#define _OPEN_SYS_FILE_EXT 1

#include <stdio.h>

#include <fcntl.h>

#include <sys/stat.h>

int main(int argc, char *argv[]) {

 int fd;

 attrib_t myAtt;

 struct stat attr;

 char filename[] = "chattr.testfile";

__chattr

Chapter 3. Part 3. Library Functions 269

/* Create an empty file */

 if ((fd = creat(filename, S_IRWXU | S_IRGRP | S_IROTH)) < 0) {

 perror("Failed to create testfile");

 exit(1);

 }

 close(fd);

 /* Clear myAtt structure */

 memset(&myAtt, 0, sizeof(myAtt));

 /* Update myAtt to request file tag change and set file tag values */

 myAtt.att_filetagchg = 1;

 myAtt.att_filetag.ft_ccsid = 12345;

 myAtt.att_filetag.ft_txtflag = 1;

 /* Change Attributes */

 if (__chattr(filename, &myAtt, sizeof(myAtt)) != 0) {

 perror("Failed to change attributes for testfile");

 exit(2);

 }

 /* Verify Change */

 if (stat(filename,&attr) !=0) {

 perror("Failed to acquire statistics for testfile");

 exit(3);

 }

 if ((attr.st_tag.ft_ccsid == 12345)

 && (attr.st_tag.ft_txtflag == 1)) {

 printf("File attributes changed successfully\n");

 }

}

Output

Related Information

v “sys/stat.h” on page 89

v “__fchattr() — Change the Attributes of a File or Directory by File Descriptor” on

page 516

v “__lchattr() — Change the Attributes of a File or Directory when they point to a

symbolic or external link.” on page 1061

__chattr

270 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

chaudit() — Change Audit Flags for a File by Path

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS 1

#include <sys/stat.h>

int chaudit(const char *pathname, unsigned int flags,

 unsigned int option);

General Description

Changes the audit flags for a file to indicate the type of requests the security

product should audit. chaudit() can change user audit flags or security auditor audit

flags, depending on the option specified.

pathname is the name of the file for which the audit flags are to be changed.

flags is the setting for the audit flags:

AUDTREADFAIL Audit the failing read requests.

AUDTREADSUCC Audit the successful read requests.

AUDTWRITEFAIL Audit the failing write requests.

AUDTWRITESUCC Audit the successful write requests.

AUDTEXECFAIL Audit the failing execute or search requests.

AUDTEXECSUCC Audit the successful execute or search requests.

The bitwise inclusive-OR of any or all of these can

be used to set more than one type of auditing.

option indicates whether the user audit flags or the security-auditor audit flags are

to be changed:

AUDT_USER (0) Change user flags. The user must be the file owner

or have appropriate authority to change the user

audit flags for a file.

AUDT_AUDITOR (1) Change security auditor audit flags. The user must

have security-auditor authority to modify the

security auditor audit flags for a file.

Returned Value

If successful, chaudit() returns 0.

If unsuccessful, chaudit() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The calling process does not have permission to search some

component of pathname.

EINVAL option is not AUDT_USER or AUDT_AUDITOR.

chaudit

Chapter 3. Part 3. Library Functions 271

ELOOP A loop exists in symbolic links. This error is issued if the number of

symbolic links detected in the resolution of pathname is greater

than POSIX_SYMLOOP (a value defined in the limits.h header file).

ENAMETOOLONG

pathname is longer than PATH_MAX characters or a component of

pathname is longer than NAME_MAX characters while

_POSIX_NO_TRUNC is in effect. For symbolic links, the length of

the pathname string substituted for a symbolic link exceeds

PATH_MAX. The PATH_MAX and NAME_MAX values are

determined using pathconf().

ENOENT There is no file named pathname, or pathname is an empty string.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID (UID) of the calling process does not match

the owner of the file, and the calling process does not have

appropriate privileges.

EROFS pathname specifies a file that is on a read-only file system.

Example

CELEBC09

/* CELEBC09

 This example changes the audit flags.

 */

#define _OPEN_SYS

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _OPEN_SYS

#include <stdio.h>

main() {

 int fd;

 char fn[]="chaudit.file";

 if ((fd = creat(fn, S_IRUSR|S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(fd);

 if (chaudit(fn, AUDTREADFAIL, AUDT_USER) != 0)

 perror("chaudit() error");

 unlink(fn);

 }

}

Related Information

v “sys/stat.h” on page 89

v “access() — Determine Whether a File Can be Accessed” on page 127

v “chmod() — Change the Mode of a File or Directory” on page 280

v “chown() — Change the Owner or Group of a File or Directory” on page 283

v “fchaudit() — Change Audit Flags for a File by Descriptor” on page 518

v “stat() — Get File Information” on page 2008

chaudit

272 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

chdir() — Change the Working Directory

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int chdir(const char *pathname);

General Description

Makes pathname your new working directory.

Returned Value

If successful, chdir() changes the working directory and returns 0.

If unsuccessful, chdir() does not change the working directory, returns −1, and sets

errno to one of the following values:

Error Code Description

EACCES The process does not have search permission on one of the

components of pathname.

ELOOP A loop exists in symbolic links. This error is issued if the number of

symbolic links detected in the resolution of pathname is greater

than POSIX_SYMLOOP (a value defined in the limits.h header file).

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values are

determined using pathconf().

ENOENT pathname is an empty string, or the specified directory does not

exist.

ENOTDIR Some component of pathname is not a directory.

Example

CELEBC10

/* CELEBC10 */

#define _POSIX_SOURCE

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 if (chdir("/tmp") != 0)

chdir

Chapter 3. Part 3. Library Functions 273

||||

|
|
|
|

||

|

perror("chdir() to /tmp failed");

 if (chdir("/chdir/error") != 0)

 perror("chdir() to /chdir/error failed");

}

Output

chdir() to /chdir/error failed: No such file or directory

Related Information

v “limits.h” on page 55

v “unistd.h” on page 96

v “closedir() — Close a Directory” on page 302

v “getcwd() — Get Pathname of the Working Directory” on page 754

v “mkdir() — Make a Directory” on page 1217

v “opendir() — Open a Directory” on page 1319

v “readdir() — Read an Entry from a Directory” on page 1608

v “rewinddir() — Reposition a Directory Stream to the Beginning” on page 1683

chdir

274 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__check_resource_auth_np() — Determine Access to MVS Resources

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <unistd.h>

int __check_resource_auth_np(char *principal_uuid,

 char *cell_uuid,

 char *userid,

 char *security_class,

 char *entity_name,

 int access_type);

General Description

The __check_resource_auth_np() function is used to check the access a user has

to an MVS resource.

For authorization to use this function, the caller must have read permission to the

BPX.SERVER Facility class, or if BPX.SERVER is not defined, the caller must be a

superuser (UID=0).

The user identity can be specified in several forms. The identities are scanned in

the order below, and the access check will be made with the first identity that is

found:

v userid

v principal UUID and if known, a cell UUID

v caller’s thread-level (task) security context, if one exists

v caller’s process-level (address space) security context

Note:

v When no identity is specified by the caller and the caller’s task has an

ACEE created with pthread_security_np()for a SURROGATE

(non-password) client, both the task and address space level ACEEs are

used in determining the type of access permitted to a resource.

v The __check_resource_auth_np() function supports the general resources

only. In particular, the security_class parameter can not specify DATASET.

For system using RACF, the class name specified must be in the RACF

class descriptor table.

The parameters supported are:

principal_uuid Specifies a 36-byte principal UUID. A value of NULL indicates that

no principal UUID is specified.

cell_uuid Specifies a 36-byte cell UUID. A value of NULL indicates that no

cell UUID is specified.

userid Specifies a user ID. A value of NULL indicates that no user ID is

specified. The userid must be 1-8 characters in length.

__check_resource_auth_np

Chapter 3. Part 3. Library Functions 275

security_class Specifies the name of a class of resources. The access check will

be made on a resource in this security class. The security_class

must be 1-8 characters in length.

entity_name Specifies the name of a resource profile name. The access check

will be made on the resource specified by the resource profile

name. The entity_name must be 1-246 characters in length.

access Specifies a numeric value that identifies the type of access to check

for. Possible access values are:

__READ_RESOURCE

check if the specified user has read access to the

resource.

__UPDATE_RESOURCE

check if the specified user has update access to the

resource.

__CONTROL_RESOURCE

check if the specified user has control access to the

resource.

__ALTER_RESOURCE

check if the specified user has alter access to the

resource.

Returned Value

If successful, __check_resource_auth_np() returns 0.

If unsuccessful, __check_resource_auth_np() returns -1 and sets errno to one of

the following values:

Error Code Description

EINVAL One of the following errors was detected:

v Aaccess_type specified is undefined.

v Userid was not 1 to 8 characters in length.

v Security_class was not 1 to 8 characters in length.

v Eentity_name was not 1 to 246 characters in length.

EMVSERR An MVS internal or environmental error occurred.

EMVSSAF2ERR

One of the following errors was detected:

v Received an unexpected return code for the security product.

v The security product detected an error in the input parameters.

v An internal error occurred in the security product.

ENOSYS One of the following errors was detected:

v No security product is installed on the system.

v The security product does not have support for this function.

EPERM One of the following errors was detected:

v The caller is not permitted to use this service.

v Do not have the access_type specified to the resource.

v Not permitted in address spaces where a load from an

unauthorized library has been performed.

ESRCH One of the following errors was detected:

v No mapping exists between a UUID and Userid.

v The resource specified is not defined to the security product.

__check_resource_auth_np

276 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v The DCEUUIDS class is not active.

v The userid is not defined to the security product.

Related Information

v “unistd.h” on page 96

__check_resource_auth_np

Chapter 3. Part 3. Library Functions 277

CheckSchEnv() — Check WLM Scheduling Environment

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

int CheckSchEnv(const char *sched_env,

 const char *system_name);

General Description

The CheckSchEnv() function provides the ability for an application to connect to

check the WLM scheduling environment.

*sched_env Points to a 16 byte character string that represents the WLM

scheduling environment to be queried. If the environment name is

less than 16 characters, the name should be right padded with

blanks.

*sys_name Points to a 8 bytes character string that represents the system

name to be queried. If the system name is less than 8 characters,

the name should be right padded with blanks.

Returned Value

If successful, CheckSchEnv() returns 0.

If unsuccessful, CheckSchEnv() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained an incorrect value.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

The WLM check scheduling environment failed. Use __errno2() to

obtain the WLM service reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class if it is defined.

If BPX.WLMSERVER is not defined, the calling process is not

defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “ConnectServer() — Connect to WLM as a Server Manager” on page 332

v “ConnectWorkMgr() — Connect to WLM as a Work Manager” on page 334

v “ContinueWorkUnit() — Continue WLM Work Unit” on page 343

CheckSchEnv

278 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “CreateWorkUnit() — Create WLM Work Unit” on page 369

v “DeleteWorkUnit() — Delete a WLM Work Unit” on page 415

v “DisconnectServer() — Disconnect from WLM Server” on page 421

v “JoinWorkUnit() — Join a WLM Work Unit” on page 1049

v “LeaveWorkUnit() — Leave a WLM Work Unit” on page 1073

v “QueryMetrics() — Query WLM System Information” on page 1589

v “QuerySchEnv() — Query WLM Scheduling Environment” on page 1591

CheckSchEnv

Chapter 3. Part 3. Library Functions 279

chmod() — Change the Mode of a File or Directory

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/stat.h>

int chmod(const char *pathname, mode_t mode);

General Description

Changes the mode of the file or directory specified in pathname.

The mode argument is created with one of the following symbols defined in the

sys/stat.h header file.

Any mode flags that are not defined will be turned off, and the function will be

allowed to proceed.

S_IRGRP Read permission for the file’s group.

S_IROTH Read permission for users other than the file owner.

S_IRUSR Read permission for the file owner.

S_IRWXG Read, write, and search or execute permission for the file’s group.

S_IRWXG is the bitwise inclusive-OR of S_IRGRP, S_IWGRP, and

S_IXGRP.

S_IRWXO Read, write, and search or execute permission for users other than

the file owner. S_IRWXO is the bitwise inclusive-OR of S_IROTH,

S_IWOTH, and S_IXOTH.

S_IRWXU Read, write, and search, or execute, for the file owner; S_IRWXG is

the bitwise inclusive-OR of S_IRUSR, S_IWUSR, and S_IXUSR.

S_ISGID Privilege to set group ID (GID) for execution. When this file is run

through an exec function, the effective group ID of the process is

set to the group ID of the file. The process then has the same

authority as the file owner, rather than the authority of the actual

invoker.

S_ISUID Privilege to set the user ID (UID) for execution. When this file is run

through an exec function, the effective user ID of the process is set

to the owner of the file. The process then has the same authority as

the file owner, rather than the authority of the actual invoker.

S_ISVTX The sticky bit indicating shared text. Keep loaded as an executable

file in storage.

S_IWGRP Write permission for the file’s group.

S_IWOTH Write permission for users other than the file owner.

chmod

280 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

S_IWUSR Write permission for the file owner.

S_IXGRP Search permission (for a directory) or execute permission (for a file)

for the file’s group.

S_IXOTH Search permission for a directory, or execute permission for a file,

for users other than the file owner.

S_IXUSR Search permission (for a directory) or execute permission (for a file)

for the file owner.

Special Behavior for XPG4.2

If a directory is writable and the mode bit S_ISVTX is set on the directory, a

process may remove or rename files within that directory only if one or more of the

following is true:

v The effective user ID of the process is the same as that of the owner ID of the

file.

v The effective user ID of the process is the same as that of the owner ID of the

directory.

v The process has appropriate privileges.

A process can set mode bits only if the effective user ID of the process is the same

as the file’s owner or if the process has appropriate privileges (superuser authority).

chmod() automatically clears the S_ISGID bit in the file’s mode bits if all these

conditions are true:

v The calling process does not have appropriate privileges, that is, superuser

authority (UID=0).

v The group ID of the file does not match the group ID or supplementary group IDs

of the calling process.

v One or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are

set to 1.

Returned Value

If successful, chmod() marks for update the st_ctime field of the file and returns 0.

If unsuccessful, chmod() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The process does not have search permission on some component

of the pathname prefix.

ELOOP A loop exists in symbolic links. This error is issued if the number of

symbolic links detected in the resolution of pathname is greater

than POSIX_SYMLOOP (a value defined in the limits.h header file).

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values are

determined using pathconf().

ENOENT There is no file named pathname, or the pathname argument is an

empty string.

chmod

Chapter 3. Part 3. Library Functions 281

ENOTDIR Some component of the pathname prefix is not a directory.

EPERM The effective user ID (UID) of the calling process does not match

the owner of the file, and the calling process does not have

appropriate privileges (superuser authority).

EROFS pathname is on a read-only file system.

Example

CELEBC11

/* CELEBC11

 This example changes the permission from the file owner to the file's

 group.

 */

#define _POSIX_SOURCE

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 char fn[]="./temp.file";

 FILE *stream;

 struct stat info;

 if ((stream = fopen(fn, "w")) == NULL)

 perror("fopen() error");

 else {

 fclose(stream);

 stat(fn, &info);

 printf("original permissions were: %08x\n", info.st_mode);

 if (chmod(fn, S_IRWXU|S_IRWXG) != 0)

 perror("chmod() error");

 else {

 stat(fn, &info);

 printf("after chmod(), permissions are: %08x\n", info.st_mode);

 }

 unlink(fn);

 }

}

Output

original permissions were: 030001b6

after chmod(), permissions are: 030001f8

Related Information

v “sys/stat.h” on page 89

v “sys/types.h” on page 90

v “chown() — Change the Owner or Group of a File or Directory” on page 283

v “fchmod() — Change the Mode of a File or Directory by Descriptor” on page 521

v “mkdir() — Make a Directory” on page 1217

v “mkfifo() — Make a FIFO Special File” on page 1220

v “open() — Open a File” on page 1313

v “stat() — Get File Information” on page 2008

chmod

282 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

chown() — Change the Owner or Group of a File or Directory

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int chown(const char *pathname, uid_t owner, gid_t group);

General Description

Changes the owner or group (or both) of a file. pathname is the name of the file

whose owner or group you want to change. owner is the user ID (UID) of the new

owner of the file. group is the group ID (GID) of the new group for the file.

If _POSIX_CHOWN_RESTRICTED is defined in the unistd.h header file, a process

can change the group of a file only if one of these is true:

1. The process has appropriate privileges.

2. Or all of the following are true:

a. The effective user ID of the process is equal to the user ID of the file owner.

b. The owner argument is equal to the user ID of the file owner or (uid_t)−1,

c. The group argument is either the effective group ID or a supplementary

group ID of the calling process.

If pathname is a regular file and one or more of the S_IXUSR, S_IXGRP, or

S_IXOTH bits of the file mode are set, chown() clears the set-user-ID (S_ISUID)

and set-group-ID (S_ISGID) bits of the file mode and returns successfully.

If pathname is not a regular file and one or more of the S_IXUSR, S_IXGRP, or

S_IXOTH bits of the file mode are set, chown() clears the set-user-ID (S_ISUID)

and set-group-ID (S_ISGID) bits of the file.

When chown() completes successfully, it marks the st_ctime field of the file to be

updated.

Special Behavior for XPG4.2

If owner or group is specified as (uid_t)−1 or (gid_t)−1 respectively, the

corresponding ID of the file is unchanged.

Returned Value

If successful, chown() updates the owner, group, and change time for the file and

returns 0.

If unsuccessful, chown() returns −1 and sets errno to one of the following values:

Error Code Description

chown

Chapter 3. Part 3. Library Functions 283

||||

|
|
|
|

||

|

EACCES The process does not have search permission on some component

of the pathname prefix.

EINTR Added for XPG4.2: The chown() function was interrupted by a

signal which was caught.

EINVAL owner or group is not a valid user ID (UID) or group ID (GID).

EIO Added for XPG4.2: An I/O error occurred while reading or writing

to the file system.

ELOOP A loop exists in symbolic links. This error is issued if the number of

symbolic links detected in the resolution of pathname is greater

than POSIX_SYMLOOP (a value defined in the limits.h header file).

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined using pathconf().

ENOENT There is no file named pathname, or the pathname argument is an

empty string.

ENOTDIR Some component of the pathname prefix is not a directory.

EPERM The effective user ID of the calling process does not match the

owner of the file, or the calling process does not have appropriate

privileges, that is, superuser authority (UID=0).

EROFS pathname is on a read-only file system.

Example

CELEBC12

/* CELEBC12

 This example changes the owner and group of a file.

 */

#define _POSIX_SOURCE

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 char fn[]="./temp.file";

 FILE *stream;

 struct stat info;

 if ((stream = fopen(fn, "w")) == NULL)

 perror("fopen() error");

 else {

 fclose(stream);

 stat(fn, &info);

 printf("original owner was %d and group was %d\n", info.st_uid,

 info.st_gid);

 if (chown(fn, 25, 0) != 0)

 perror("chown() error");

 else {

 stat(fn, &info);

chown

284 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

printf("after chown(), owner is %d and group is %d\n",

 info.st_uid, info.st_gid);

 }

 unlink(fn);

 }

}

Output

original owner was 0 and group was 0

after chown(), owner is 25 and group is 0

Related Information

v “limits.h” on page 55

v “unistd.h” on page 96

v “chmod() — Change the Mode of a File or Directory” on page 280

v “fchown() — Change the Owner or Group by File Descriptor” on page 523

v “fstat() — Get Status Information about a File” on page 704

v “lstat() — Get Status of File or Symbolic Link” on page 1163

v “stat() — Get File Information” on page 2008

chown

Chapter 3. Part 3. Library Functions 285

chpriority() — Change the Scheduling Priority of a Process

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SOURCE 2

#include <sys/resource.h>

int chpriority(int which, id_t who, int prioritytype, int priority);

General Description

The chpriority() function changes the scheduling priority of a process, process group

or user.

Processes are specified by the values of the which and who arguments. The which

argument may be one of the following values: PRIO_PROCESS, PRIO_PGRP, or

PRIO_USER, indicating that the who argument is to be interpreted as a process ID,

a process group ID, or a user ID, respectively. A 0 (zero) value for the who

argument specifies the current process, process group or user ID.

If more than one process is specified, the chpriority() function changes the priorities

of all of the specified processes.

The default priority is 0; negative priorities cause more favorable scheduling. The

range of legal priority values is -20 to 19. If the CPRIO_ABSOLUTE value is

specified for the prioritytype argument and the priority value specified to chpriority()

is less than the system’s lowest supported priority value, the system’s lowest

supported value is used; if it is greater than the system’s highest supported value,

the system’s highest supported value is used. If the CPRIO_RELATIVE value is

specified on the prioritytype argument, request for values above or below the legal

limits result in the priority value being set to the corresponding limit.

The changing of a process’s scheduling priority value has the equivalent effect of a

process’s nice value, since they both represent the process’s relative CPU priority.

For example, changing one’s scheduling priority value using the chpriority() function

to its maximum value (19) has the equivalent effect of increasing one’s nice value

to its maximum value 2*{NZERO}-1, and will be reflected on the nice(), getpriority(),

chpriority(), and setpriority() functions.

Only a process with appropriate privilege can lower its priority. In addition to

lowering the priority value, a process with appropriate privilege has the ability to

change the priority of any process regardless of the process’s saved set-user-ID

value.

Returned Value

If successful, chpriority() returns 0.

If unsuccessful, chpriority() returns -1 and sets errno to one of the following values:

Error Code Description

chpriority

286 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EACCES The priority is being changed to a lower value and the current

process does not have the appropriate privilege.

EINVAL The value of the which argument was not recognized, or the value

of the who argument is not a valid process ID, process group ID or

user ID, or the value of the prioritytype argument was not

recognized.

ENOSYS The system does not support this function.

EPERM A process was located, but the save set-user-ID of the executing

process does not match the saved set-user-ID of the process

whose priority is to be changed.

ESRCH No process could be located using the which and who argument

values specified.

Related Information

v “sys/resource.h” on page 88

v “getpriority() — Get Process Scheduling Priority” on page 831

v “nice() — Change Priority of a Process” on page 1304

v “setpriority() — Set Process Scheduling Priority” on page 1829

chpriority

Chapter 3. Part 3. Library Functions 287

chroot() — Change Root Directory

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

both

Format

#define _XOPEN_SOURCE

#include <unistd.h>

int chroot(const char *path);

General Description

The path argument points to a pathname naming a directory. The chroot() function

causes the named directory to become the root directory, that is the starting point

for path searches for pathnames beginning with /. The process’s working directory

is unaffected by chroot(). Only a superuser can request chroot().

The dot-dot entry in the root directory is interpreted to mean the root directory.

Thus, dot-dot cannot be used to access files outside the subtree rooted at the root

directory.

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3.

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If successful, chroot() changes the root directory, and returns 0.

If unsuccessful, chroot() returns -1 and sets errno to one of the following values:

Error Code Description

EACCES Search permission is denied for a component of path

ELOOP A loop exists in symbolic links. This error is issued if the number of

symbolic links detected in the resolution of pathname is greater

than POSIX_SYMLOOP (a value defined in the limits.h header file).

ENAMETOOLONG

Pathname is longer that PATH_MAX characters, or some

component of pathname is longer that NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

chroot

288 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

|
|
|
|
|

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values are

determined using pathconf().

ENOENT A component of path does not name an existing directory or path is

an empty string.

ENOTDIR A component of the path name is not a directory.

EPERM The effective user ID does not have appropriate privileges.

Related Information

v “unistd.h” on page 96

v “chdir() — Change the Working Directory” on page 273

v “closedir() — Close a Directory” on page 302

v “mkdir() — Make a Directory” on page 1217

v “opendir() — Open a Directory” on page 1319

chroot

Chapter 3. Part 3. Library Functions 289

cimag(), cimagf(), cimagl() — Calculate the Complex Imaginary Part

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double cimag(double complex z);

float cimagf(float complex z);

long double cimagl(long double complex z);

General Description

The cimag() family of functions compute the imaginary part of z.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

cimag X X

cimagf X X

cimagl X X

Returned Value

The cimag() family of functions return the imaginary part value (as a real).

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “carg(), cargf(), cargl() — Calculate the Argument” on page 232

v “conj(), conjf(), conjl() — Calculate the Complex Conjugate” on page 323

v “cproj(), cprojf(), cprojl() — Calculate the Projection” on page 363

v “creal(), crealf(), creall() — Calculate the Complex Real Part” on page 365

cimag, cimagf, cimagl

290 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|
|

clearenv() — Clear Environment Variables

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

Language Environment

both

Format

POSIX - C only

#define _POSIX1_SOURCE 2

#include <env.h>

int clearenv(void);

Non-POSIX

#include <stdlib.h>

int clearenv(void);

General Description

Clears all environment variables from the environment table and frees the

associated storage.

clearenv() also resets all behavior modified by z/OS XL C/C++ specific environment

variables back to their defaults. For example, if a binary file was opened, then it

would support seeking by byte offsets, regardless of record format. If the file is a

Variable Record format MVS DASD file, then clearing the environment variable

causes seeking by encoded values the next time it is opened.

To avoid infringing on the user’s name space, the non-POSIX version of this

function has two names. One name is prefixed with two underscore characters, and

one name is not. The name without the prefix underscore characters is exposed

only when you use LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

For details about environment variables, see “Using Environment Variables” in z/OS

XL C/C++ Programming Guide.

Special Behavior for POSIX C

clearenv() can change the value of the pointer environ. Therefore, a copy of that

pointer made before a call to clearenv() may no longer be valid after the call to

clearenv(). See “z/OS XL C/C++ applications with z/OS UNIX System Services C

functions” on page 13 for more information about using POSIX support.

Returned Value

If successful, clearenv() returns 0.

clearenv

Chapter 3. Part 3. Library Functions 291

If unsuccessful, clearenv() returns nonzero and sets errno to one of the following

values:

Error Code Description

ENOMEM The process requires more space than is available.

Example

CELEBC13

/* CELEBC13

 This C/MVS example needs to be run with POSIX(ON).

 It clears the process environment variable list.

 */

#define _POSIX_SOURCE 1

#include <env.h>

#include <stdio.h>

extern char **environ;

int count_env() {

 int num;

 for (num=0; environ[num] != NULL; num++);

 return num;

}

main() {

 printf("before clearenv(), there are %d environment variables\n",

 count_env());

 if (clearenv() != 0)

 perror("clearenv() error");

 else {

 printf("after clearenv(), there are %d environment variables\n",

 count_env());

 setenv("var1", "value1", 1);

 setenv("var−two", "Value Two", 1);

 printf("after setenv()'s, there are %d environment variables\n",

 count_env());

 if (clearenv() != 0)

 perror("clearenv() error");

 else

 printf("after clearenv(), there are %d environment variables\n",

 count_env());

 }

}

Output

before clearenv(), there are 9 environment variables

after clearenv(), there are 0 environment variables

after setenv()’s, there are 2 environment variables

after clearenv(), there are 0 environment variables

CELEBC14

/* CELEBC14

 This example is for a non−POSIX environment, and thus will work under

 C++/MVS.

 */

#include <stdio.h>

#include <stdlib.h>

clearenv

292 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

int main(void)

{

 char *x;

 /* set 3 environment variables to "Y" */

 setenv("_EDC_ANSI_OPEN_DEFAULT","Y",1);

 setenv("_EDC_BYTE_SEEK","Y",1);

 setenv("_EDC_COMPAT","3",1);

 /* query the setting of _EDC_BYTE_SEEK */

 x = getenv("_EDC_BYTE_SEEK");

 if (x != NULL)

 printf("_EDC_BYTE_SEEK = %s\n",x);

 else

 printf("_EDC_BYTE_SEEK is undefined\n");

/* clear the environment variable table */

 clearenv();

 /* query the setting of _EDC_BYTE_SEEK */

 x = getenv("_EDC_BYTE_SEEK");

 if (x != NULL)

 printf("_EDC_BYTE_SEEK = %s\n",x);

 else

 printf("_EDC_BYTE_SEEK is undefined\n");

}

Output

 _EDC_BYTE_SEEK = Y

 _EDC_BYTE_SEEK is undefined

Related Information

v “Using Environmental Variables” in z/OS XL C/C++ Programming Guide

v “env.h” on page 41

v “stdlib.h” on page 85

v “getenv() — Get Value of Environment Variables” on page 761

v “__getenv() — Get an Environment Variable” on page 763

v “putenv() — Change or Add an Environment Variable” on page 1569

v “setenv() — Add, Delete, and Change Environment Variables” on page 1783

clearenv

Chapter 3. Part 3. Library Functions 293

clearerr() — Reset Error and End of File (EOF)

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

void clearerr(FILE *stream);

General Description

Resets the error indicator and EOF indicator for the stream that stream points to.

Generally, the indicators for a stream remain set until your program calls clearerr()

or rewind().

Returned Value

clearerr() returns no values.

Example

CELEBC15

/* CELEBC15

 This example reads a data stream and then checks that a read

 error has not occurred.

 */

#include <stdio.h>

int main(void)

{

 char string[100];

 FILE *stream;

 int eofvalue;

 stream = fopen("myfile.dat", "r");

 /* scan an input stream until an end−of−file character is read */

 while (!feof(stream))

 fscanf(stream,"%s",&string[0]);

 /* print EOF value: will be nonzero */

 eofvalue=feof(stream);

 printf("feof value=%i\n",eofvalue);

 /* print EOF value−after clearerr, will be equal to zero */

 clearerr(stream);

 eofvalue=feof(stream);

 printf("feof value=%i\n",eofvalue);

}

clearerr

294 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Related Information

v “stdio.h” on page 82

v “feof() — Test End Of File (EOF) Indicator” on page 556

v “ferror() — Test for Read/Write Errors” on page 559

v “fseek() — Change File Position” on page 693

v “rewind() — Set File Position to Beginning of File” on page 1681

clearerr

Chapter 3. Part 3. Library Functions 295

clock() — Determine Processor Time

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <time.h>

clock_t clock(void);

General Description

Approximates the processor time used by the program, since the beginning of an

implementation-defined time period that is related to the program invocation. To

measure the time spent in a program, call the clock() function at the start of the

program, and subtract its returned value from the value returned by subsequent

calls to clock(). Then, to obtain the time in seconds, divide the value returned by

clock() by CLOCKS_PER_SEC.

If you use the system() function in your program, do not rely on clock() for program

timing, because calls to system() may reset the clock.

In a multithread POSIX C application, if you are creating threads with a function that

is based on a POSIX.4a draft standard, the clock() function is thread-scoped.

Returned Value

If the time is available and can be represented, clock() returns the calculated time.

If unsuccessful, clock() returns (clock_t)−1. clock() may return −1 when running with

STIMER REAL TQE present on MVS/ESA Version 3 Release 1 Modification 2 (or

earlier) system.

Special Behavior for XPG4

If _XOPEN_SOURCE or _XOPEN_SOURCE_EXTENDED are defined when your

application is compiled, CLOCKS_PER_SEC is defined as 1000000. Also, in this

case, the following C/370 pragma in the <time.h> header is used to compile your

application:

#pragma map (clock(), "@@OCLCK")

Because of this pragma, when your application executes, it will attempt to access

an XPG4 version of clock() which returns a clock_t value in units of 1000000

CLOCKS_PER_SEC. The XPG4 version of clock() is only available if POSIX(ON) is

specified for execution of your application.

clock

296 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

If _XOPEN_SOURCE or _XOPEN_SOURCE_EXTENDED are defined when you

compile your program AND your application is run with POSIX(OFF), clock() will

return (clock_t)-1.

If neither _XOPEN_SOURCE or _XOPEN_SOURCE_EXTENDED are defined when

you compile your application, the historical C/370 value of CLOCKS_PER_SEC will

be used and clock() calls in your application will be mapped to the historical C/370

version of clock() which returns a clock_t value in historical C/370

CLOCKS_PER_SEC units whether your application executes with POSIX(ON) or

POSIX(OFF).

Example

/* This example prints the time elapsed since the program was invoked. */

#include <time.h>

#include <stdio.h>

double time1, timedif; /* use doubles to show small values */

int main(void)

{

 time1 = (double) clock(); /* get initial time */

 time1 = time1 / CLOCKS_PER_SEC; /* in seconds */ ...
 /* call clock a second time */

 timedif = (((double) clock()) / CLOCKS_PER_SEC) - time1;

 printf("The elapsed time is %f seconds\n", timedif);

}

Related Information

v “time.h” on page 93

v “time() — Determine current UTC time” on page 2204

clock

Chapter 3. Part 3. Library Functions 297

clog(), clogf(), clogl() — Calculate the Complex Natural Logarithm

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex clog(double complex z);

float complex clogf(float complex z);

long double complex clogl(long double complex z);

General Description

The clog() family of functions compute the complex natural (base-e) logarithm of z,

with a branch cut along the negative real axis.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

clog X X

clogf X X

clogl X X

Returned Value

The clog() family of functions return the complex natural logarithm value, in the

range of a strip, mathematically unbounded along the real axis and in the interval [-i

π, +i π] along the imaginary axis.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “cexp(), cexpf(), cexpl() — Calculate the Complex Exponential” on page 257

clog, clogf, clogl

298 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|
|

close() — Close a File

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int close(int fildes);

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int close(int socket);

Berkeley Sockets

#define _OE_SOCKETS

#include <unistd.h>

int close(int socket);

General Description

Closes a file descriptor, fildes. This frees the file descriptor to be returned by future

open() calls and other calls that create file descriptors. The fildes argument must

represent a hierarchical file system (HFS) file.

When the last open file descriptor for a file is closed, the file itself is closed. If the

file’s link count is 0 at that time, its space is freed and the file becomes

inaccessible.

When the last open file descriptor for a pipe or FIFO file is closed, any data

remaining in the pipe or FIFO file is discarded. See “z/OS XL C/C++ applications

with z/OS UNIX System Services C functions” on page 13 for more information

about using POSIX support.

close() unlocks (removes) all outstanding record locks that a process has on the

associated file.

Behavior for Sockets

close() call shuts down the socket associated with the socket descriptor socket, and

frees resources allocated to the socket. If socket refers to an open TCP connection,

the connection is closed. If a stream socket is closed when there is input data

queued, the TCP connection is reset rather than being cleanly closed.

Parameter Description

socket The descriptor of the socket to be closed.

close

Chapter 3. Part 3. Library Functions 299

||||

|
|
|
|

||

|

Note: All sockets should be closed before the end of your process. You should

issue a shutdown() call before you issue a close() call for a socket.

For AF_INET and AF_INET6 stream sockets (SOCK_STREAM) using SO_LINGER

socket option, the socket does not immediately end if data is still present when a

close is issued. The following structure is used to set or unset this option, and it can

be found in sys/socket.h.

struct linger {

 int l_onoff; /* zero=off, nonzero=on */

 int l_linger; /* time is seconds to linger */

};

If the l_onoff switch is nonzero, the system attempts to deliver any unsent

messages. If a linger time is specified, the system waits for n seconds before

flushing the data and terminating the socket.

For AF_UNIX, when closing sockets that were bound, you should also use unlink()

to delete the file created at bind() time.

Special Behavior for XPG4.2

If a STREAMS-based fildes is closed and the calling process was previously

registered to receive a SIGPOLL signal for events associated with that STREAM,

the calling process will be unregistered for events associated with the STREAM.

The last close() for a STREAM causes the STREAM associated with fildes to be

dismantled. If O_NONBLOCK is not set and there have been no signals posted for

the STREAM, and if there is data on the module’s write queue, close() waits for an

unspecified time (for each module and driver) for any output to drain before

dismantling the STREAM. The time delay can be changed using an I_SETCLTIME

ioctl() request. If the O_NONBLOCK flag is set, or if there are any pending signals,

close() does not wait for output to drain, and dismantles the STREAM immediately.

Note: z/OS UNIX services do not supply any STREAMS devices or pseudodevices.

See “open() — Open a File” on page 1313 for more information.

If fildes refers to the master side of a pseudoterminal, a SIGHUP signal is sent to

the process group, if any, for which the slave side of the pseudoterminal is the

controlling terminal.

If fildes refers to the slave side of a pseudoterminal, a zero-length message will be

sent to the master.

If fildes refers to a socket, close() causes the socket to be destroyed. If the socket

is connection-oriented and the SO_LINGER option is set for the socket and the

socket has untransmitted data, then close() will block for up to the current linger

interval until all data is transmitted.

Returned Value

If successful, close() returns 0.

If unsuccessful, close() returns −1 and sets errno to one of the following values:

Error Code Description

EAGAIN The call did not complete because the specified socket descriptor is

currently being used by another thread in the same process.

close

300 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

For example, in a multithreaded environment, close() fails and

returns EAGAIN when the following sequence of events occurs (1)

thread is blocked in a read() or select() call on a given file or socket

descriptor and (2) another thread issues a simultaneous close() call

for the same descriptor.

EBADF fildes is not a valid open file descriptor, or the socket parameter is

not a valid socket descriptor.

EBUSY The file cannot be closed because it is blocked.

EINTR close() was interrupted by a signal. The file may or may not be

closed.

EIO Added for XPG4.2: An I/O error occurred while reading from or

writing to the file system.

ENXIO fildes does not exist. The minor number for the file is incorrect.

Example

#define _POSIX_SOURCE

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <string.h>

main() {

 int fd;

 char out[20]="Test string";

 if ((fd = creat("./myfile", S_IRUSR | S_IWUSR)) < 0)

 perror("creat error");

 else {

 if (write(fd, out, strlen(out)+1) == -1)

 perror("write() error");

 if (fd = 0) perror("write() error");

 close(fd);

 }

}

Related Information

v “unistd.h” on page 96

v “accept() — Accept a New Connection on a Socket” on page 120

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup() — Duplicate an Open File Descriptor” on page 449

v “exec Functions” on page 486

v “fclose() — Close File” on page 525

v “fcntl() — Control Open File Descriptors” on page 527

v “fork() — Create a New Process” on page 632

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

v “setsockopt() — Set Options Associated with a Socket” on page 1843

v “socket() — Create a Socket” on page 1970

v “shutdown() — Shut Down All or Part of a Duplex Connection” on page 1873

v “unlink() — Remove a Directory Entry” on page 2312

close

Chapter 3. Part 3. Library Functions 301

closedir() — Close a Directory

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <dirent.h>

int closedir(DIR *dir);

General Description

Closes the directory indicated by dir. It frees the buffer that readdir() uses when

reading the directory stream.

Returned Value

If successful, closedir() returns 0.

If unsuccessful, closedir() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF dir does not refer to an open directory stream.

EINTR closedir() was interrupted by a signal. The directory may or may not

be closed.

Example

CELEBC18

/* CELEBC18

 This example closes a directory.

 */

#define _POSIX_SOURCE

#include <dirent.h>

#include <sys/types.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 DIR *dir;

 struct dirent *entry;

 int count;

 if ((dir = opendir("/")) == NULL)

 perror("opendir() error");

 else {

 count = 0;

 while ((entry = readdir(dir)) != NULL) {

 printf("directory entry %03d: %s\n", ++count, entry−>d_name);

closedir

302 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

}

 closedir(dir);

 }

}

Output

directory entry 001: .

directory entry 002: ..

directory entry 003: bin

directory entry 004: dev

directory entry 005: etc

directory entry 006: lib

directory entry 007: tmp

directory entry 008: u

directory entry 009: usr

Related Information

v “dirent.h” on page 40

v “stdio.h” on page 82

v “sys/types.h” on page 90

v “opendir() — Open a Directory” on page 1319

v “readdir() — Read an Entry from a Directory” on page 1608

v “rewinddir() — Reposition a Directory Stream to the Beginning” on page 1683

v “seekdir() — Set Position of Directory Stream” on page 1714

v “telldir() — Current Location of Directory Stream” on page 2189

closedir

Chapter 3. Part 3. Library Functions 303

closelog() — Close the Control Log

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <syslog.h>

void closelog(void);

General Description

The closelog() function closes the log file.

Returned Value

closelog() neither accepts an input nor returns a result. The system control log is

closed for this process.

No errors are defined.

Related Information

v “syslog.h” on page 87

v “openlog() — Open the System Control Log” on page 1324

v “setlogmask() — Set the Mask for the Control Log” on page 1821

v “syslog() — Send a Message to the Control Log” on page 2116

closelog()

304 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

clrmemf() — Clear Memory Files

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <stdio.h>

int clrmemf(int level);

General Description

Removes memory files created by the current program and any program that was

called using a non-POSIX system() call. clrmemf() can remove memory files

regardless of whether they are open or not.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

The argument level indicates which memory files are to be removed. The level can

be one of the following:

__LOWER Removes memory files that were created in other programs and

called from this program using system().

__CURRENT Removes only the memory files created at the current level.

__CURRENT_LOWER

Removes all the memory files created by the current program and

by all the programs called at the current level.

Special Behavior for Multiple Shared PICI C Environments

Only files created by the C environment from which the clrmemf() function is called

will be cleared.

Returned Value

If successful, clrmemf() returns 0.

If unsuccessful, clrmemf() returns nonzero.

Example

/*

 In this example, when Program2 calls clrmemf()(__CURRENT) only

 A3.FILE and A4.FILE will be removed.

 */

clrmemf

Chapter 3. Part 3. Library Functions 305

/***** Program1 *****/ ...
 fp1 = fopen ("A1.FILE", "w,type=memory(hiperspace)");

 fp2 = fopen ("A2.FILE", "w,type=memory(hiperspace)");

 system("Program2"); ...
/***** Program2 *****/ ...
 fp3 = fopen("A3.FILE","w,type=memory");

 fp4 = fopen("A4.FILE","w,type=memory");

 system("Program3"); ...
 clrmemf(__CURRENT); ...
/***** Program3 *****/ ...
 fp5 = fopen("A5.FILE","w,type=memory");

 fp6 = fopen("A6.FILE","w,type=memory"); ...

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

v “system() — Execute a Command” on page 2118

clrmemf

306 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__cnvblk() — Convert Block

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _XOPEN_SOURCE

#include <unistd.h>

void __cnvblk(char bits[8], char bytes[64], int flag);

General Description

The __cnvblk() function maps an 8 character array, bits, of bits to or from a 64

character array, bytes, of bytes depending on the value of flag.

If the value of flag is 0, __cnvblk() sets all bytes in the bytes array to 0x00 for which

the corresponding bits in the bits array have value 0, and it sets all bytes in the

bytes array to 0x01 for which the corresponding bits in the bits array have value 1.

If the value of flag is not 0, __cnvblk() sets all bits in the bits array to 0 for which

corresponding bytes in the bytes array have value 0x00, and it sets all bits in the

bits array to 1 for which the corresponding bytes in the bytes array have value

0x01.

This function may be used to prepare input to setkey() or encrypt() functions and to

map results back to 8 bit characters.

Returned Value

If the value of flag is zero, __cnvblk() functions without error checking.

If the value of flag is nonzero, __cnvblk() checks for errors, and if found, sets errno

to one of the following values:

Error Code Description

EINVAL The value of a byte in the array bytes is not 0x00 or 0x01.

Note: Because __cnvblk() returns no values, applications wishing to check for

errors should set errno to 0, call __cnvblk(), then test errno and, if it is

nonzero, assume an error has occurred.

Related Information

v “unistd.h” on page 96

v “encrypt() — Encoding Function” on page 466

v “setkey() — Set Encoding Key” on page 1809

__cnvblk

Chapter 3. Part 3. Library Functions 307

collequiv() — Return a List of Equivalent Collating Elements

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <collate.h>

int collequiv(collel_t c, collel_t **list);

General Description

Finds all the collating elements whose primary weight is the same as the primary

weight of c. It then updates the list to point to the first element of the array in which

all the found elements are stored. The list of elements is valid until the next call to

setlocale(), with categories LC_ALL, LC_COLLATE, or LC_CTYPE.

Another call to collequiv() may override the current list.

For information about the effect of setlocale() and locale.h, see “Internationalization:

Locales and Character Sets” in z/OS XL C/C++ Programming Guide.

Returned Value

If successful, collequiv() returns the number of collating elements found.

If the value of c is not in the valid range of collating elements in the current locale,

collequiv() returns −1.

Notes:

v If the collating element passed is specified with the weight of IGNORE in the

LC_COLLATE category, the list returned will contain all the characters specified

as IGNORE.

v The list will only contain characters defined in the charmap file in the current

locale.

Example

CELEBC22

/* CELEBC22

 This example prints the collating elements that have an

 equivalent weight as the collating element passed in

 argv[1].

 */

#include "stdio.h"

#include "locale.h"

#include "collate.h"

#include "stdlib.h"

#include "wctype.h"

#include "wchar.h"

main(int argc, char *argv[]) {

 collel_t e, *rp;

collequiv

308 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

int i;

 setlocale(LC_ALL, "");

 if ((e = strtocoll(argv[1])) == (collel_t)−1) {

 printf("'%s' collating element not defined\n", argv[1]);

 exit(1);

 }

 if ((i = collequiv(e, &rp)) == −1) {

 printf("Invalid collating element '%s'\n", argv[1]);

 exit(1);

 }

 for (; i−− > 0; rp++) {

 if (ismccollel(*rp))

 printf("'%s' ", colltostr(*rp));

 else if (iswprint(*rp))

 printf("'%lc' ", *rp);

 else

 printf("'%x' ", *rp);

 }

}

Related Information

v “collate.h” on page 36

v “cclass() — Return Characters in a Character Class” on page 243

v “collorder() — Return List of Collating Elements” on page 310

v “collrange() — Calculate the Range List of Collating Elements” on page 312

v “colltostr() — Return a String for a Collating Element” on page 314

v “getmccoll() — Get Next Collating Element from String” on page 804

v “getwmccoll() — Get Next Collating Element from Wide String” on page 893

v “ismccollel() — Identify a Multicharacter Collating Element” on page 1030

v “maxcoll() — Return Maximum Collating Element” on page 1181

v “strtocoll() — Return Collating Element for String” on page 2064

collequiv

Chapter 3. Part 3. Library Functions 309

collorder() — Return List of Collating Elements

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <collate.h>

int collorder(collel_t **list);

General Description

Finds the number of collating elements in the collate order list and sets a pointer to

the list. The list returned is valid until another call to setlocale().

Notes:

v Collating elements specified with the weight of IGNORE in the LC_COLLATE

category are defined as having the lowest weight.

v The list will only contain characters defined in the charmap file in the current

locale.

Example

CELEBC23

/* CELEBC23

 This example creates a list of all the collating elements using

 the &collo. function.

 */

#include <stdio.h>

#include <locale.h>

#include <collate.h>

#include <wchar.h>

#include <wctype.h>

main(int argc, char *argv[]) {

 collel_t e, *rp;

 int i;

 setlocale(LC_ALL, "TEXAN.IBM−1024");

 i = collorder(&rp);

 for (; i−− > 0; rp++) {

 if (ismccollel(*rp))

 printf("'%s' ", colltostr(*rp));

 else if (iswprint(*rp))

 printf("'%lc' ", *rp);

 else

 printf("'%x' ", *rp);

 }

}

Related Information

v “collate.h” on page 36

v “cclass() — Return Characters in a Character Class” on page 243

v “collequiv() — Return a List of Equivalent Collating Elements” on page 308

collorder

310 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “collrange() — Calculate the Range List of Collating Elements” on page 312

v “colltostr() — Return a String for a Collating Element” on page 314

v “getmccoll() — Get Next Collating Element from String” on page 804

v “getwmccoll() — Get Next Collating Element from Wide String” on page 893

v “ismccollel() — Identify a Multicharacter Collating Element” on page 1030

v “maxcoll() — Return Maximum Collating Element” on page 1181

v “strtocoll() — Return Collating Element for String” on page 2064

collorder

Chapter 3. Part 3. Library Functions 311

collrange() — Calculate the Range List of Collating Elements

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <collate.h>

int collrange(collel_t start, collel_t end, collel_t **list);

General Description

Finds a list of collating elements whose primary weights are between the start and

end points, inclusive. The number returned is the number of elements in the list,

whose pointer is returned.

This value will be zero if the end point collates earlier than the start point. The list

returned is valid until the next call to setlocale().

Returned Value

If successful, collrange() returns the number of elements in the list, whose pointer is

returned.

If either start or end are out of range, collrange() returns -1.

Notes:

v Collating elements specified with the weight of IGNORE in the LC_COLLATE

category are defined having the lowest weight. Therefore, such elements can

only be specified as the starting collating element.

v The list will only contain characters defined in the charmap file in the current

locale.

Example

CELEBC24

/* CELEBC24

 This example prints the collating elements in the range

 between the start and end points passed in

 argv[1] and argv[2], using the

 &collrap. function.

 */

#include <stdio.h>

#include <locale.h>

#include <collate.h>

#include <stdlib.h>

#include <wctype.h>

#include <wchar.h>

main(int argc, char *argv[]) {

 collel_t s, e, *rp;

 int i;

 setlocale(LC_ALL, "TEXAN.IBM−1024");

collrange

312 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

if ((s = strtocoll(argv[1])) == (collel_t)−1) {

 printf("'%s' collating element not defined\n", argv[1]);

 exit(1);

 }

 if ((e = strtocoll(argv[2])) == (collel_t)−1) {

 printf("'%s' collating element not defined\n", argv[2]);

 exit(1);

 }

 if ((i = collrange(s, e, &rp)) == −1) {

 printf("Invalid range for '%s' to '%s'\n", argv[1], argv[2]);

 exit(1);

 }

 for (; i−− > 0; rp++) {

 if (ismccollel(*rp))

 printf("'%s' ", colltostr(*rp));

 else if (iswprint(*rp))

 printf("'%lc' ", *rp);

 else

 printf("'%x' ", *rp);

 }

}

Related Information

v “collate.h” on page 36

v “cclass() — Return Characters in a Character Class” on page 243

v “collequiv() — Return a List of Equivalent Collating Elements” on page 308

v “collorder() — Return List of Collating Elements” on page 310

v “colltostr() — Return a String for a Collating Element” on page 314

v “getmccoll() — Get Next Collating Element from String” on page 804

v “getwmccoll() — Get Next Collating Element from Wide String” on page 893

v “ismccollel() — Identify a Multicharacter Collating Element” on page 1030

v “maxcoll() — Return Maximum Collating Element” on page 1181

v “strtocoll() — Return Collating Element for String” on page 2064

collrange

Chapter 3. Part 3. Library Functions 313

colltostr() — Return a String for a Collating Element

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <collate.h>

char *colltostr(collel_t c);

General Description

Converts c to the string of the collating element. The colltostr() function is the

inverse of strtocoll().

An application program can use the returned array from collrange() or collequiv(),

calling ismccollel() on each element, only calling colltostr() if ismccollel() is true for

the element. The string returned is valid until another call to setlocale().

Returned Value

If a value is passed representing a single character or a value that is not in range,

colltostr() returns NULL.

Example

CELEBC25

/* CELEBC25

 This example prints all the collating elements in the

 collating sequence, using the &colltop. function to get the

 string for the multi−character collating elements.

 */

#include <collate.h>

#include <locale.h>

#include <stdio.h>

#include <wchar.h>

#include <wctype.h>

main(int argc, char *argv[]) {

 collel_t e, *rp;

 int i;

 setlocale(LC_ALL, "");

 i = collorder(&rp);

 for (; i−− > 0; rp++) {

 if (ismccollel(*rp))

 printf("'%s' ", colltostr(*rp));

 else if (iswprint(*rp))

 printf("'%lc' ", *rp);

 else

 printf("'%x' ", *rp);

 }

}

colltostr

314 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “collate.h” on page 36

v “cclass() — Return Characters in a Character Class” on page 243

v “collequiv() — Return a List of Equivalent Collating Elements” on page 308

v “collorder() — Return List of Collating Elements” on page 310

v “collrange() — Calculate the Range List of Collating Elements” on page 312

v “getmccoll() — Get Next Collating Element from String” on page 804

v “getwmccoll() — Get Next Collating Element from Wide String” on page 893

v “ismccollel() — Identify a Multicharacter Collating Element” on page 1030

v “maxcoll() — Return Maximum Collating Element” on page 1181

v “strtocoll() — Return Collating Element for String” on page 2064

colltostr

Chapter 3. Part 3. Library Functions 315

compile() — Compile Regular Expression

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

both

Format

#define INIT declarations

#define GETC() getc_code

#define PEEK() peek_code

#define UNGETC() ungetc_code

#define RETURN(ptr) return_code

#define ERROR(val) error_code

#define _XOPEN_SOURCE

#include <regexp.h>

char *compile(char *instring, char *expbuf, const char *endbuf, int eof);

General Description

Restriction: This function is not supported in AMODE 64.

The compile() function takes as input a simple regular expression and produces a

compiled expression that can be used with the step() and advance() functions.

The first parameter instring is never used explicitly by compile(). It is a pointer to a

character string defining a source regular expression. It is useful for programs that

pass down different pointers to input characters. Programs which invoke functions

to input characters or have characters in an external array can pass down (char *)0

for this parameter.

expbuf is a pointer to the place where the compiled regular expression will be

placed.

endbuf points to one more than the highest address where the compiled regular

expression may be placed. If the compiled expression cannot fit in (endbuf-expbuf)

bytes, a call to ERROR(50) is made. (See “Returned Value” below.)

eof is the character which marks the end of the regular expression.

The z/OS UNIX services implementation of the compile() function does not accept

internationalized simple expressions as input. Internationalized simple expressions

(for example, [[=c=]] (an equivalence class)) may yield unpredictable results.

Programs must have the following five macros declared before the #include

<regexp.h> statement. The macros GETC(), PEEKC() and UNGETC() operate on

the regular expression given as input to compile().

GETC() This macro returns the value of the next character (byte) in the

regular expression pattern. Successive calls to GETC() should

return successive characters of the regular expression.

PEEK() This macro returns the next character (byte) in the regular

compile

316 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

expression pattern. Immediate successive calls to PEEK() should

return the same byte, which should also be the next character

returned by GETC().

UNGETC(c) This macro causes the argument c to be returned by the next call

to GETC(). No more than one character is ever needed and this

character is guaranteed to be the last character read by GETC().

The value of the macro UNGETC() is always ignored.

RETURN(ptr) This macro is used on normal exit of the compile() function. The

value of the argument ptr is a pointer to the character after the last

character of the compiled regular expression.

ERROR(val) This macro is the abnormal return from compile(). The argument val

is an error number. (See “Returned Value” below for meanings.)

This call should never return.

Notes:

1. z/OS UNIX services do not provide any default macros if the above user macros

are not provided.

2. Each program that includes the <regexp.h> must have a #define statement for

INIT. It is used for dependent declarations and initializations. For example, it can

be used to set a variable to point to the beginning of the regular expression so

that this variable can be used in the declarations for GETC(), PEEK(), and

UNGETC().

3. The external variables cirf, sed, and nbra are reserved.

4. The application must provide the proper serialization for the compile(), step(),

and advance() functions if they are run under a multithreaded environment.

Simple Regular Expressions

A Simple Regular Expression (SRE) specifies a set of character strings. The

simplest form of regular expression is a string of characters with no special

meaning. A small set of special characters, known as metacharacters, do have

special meaning when encountered in patterns.

Expression Meaning

c The character c where c is not a special character.

\c The character c where c is any special character. For example,

a\.e is equivalent to a.e.

 ̂ The beginning of the string being compared

$ The dollar symbol matches the end of the string.

. The period symbol matches any one character.

[string] A string within square brackets specifies any of the characters in

string. Thus, [abc], if compared to other strings, would match any

which contained a, b, or c.

 The] (right bracket) can be used alone within a pair of brackets,

but only if it immediately follows either the opening left bracket or if

it immediately follows [^.

 Ranges may be specified as c–c. The hyphen symbol, within

square brackets, means ″through″. It fills in the intervening

characters according to the collating sequence. For example, [a–z]

is equivalent to [abc...xyz]. If the end character in the range is lower

in collating sequence to the start character, then only the range

compile

Chapter 3. Part 3. Library Functions 317

start and range end characters are accepted in the search pattern.

For example, [9–1] is equivalent to [91]. Note that ranges in Simple

Regular Expressions are only valid if the LC_COLLATE category is

set to the C locale.

 The – (hyphen) can be used by itself, but only if it is the first or last

character in the expression. For example, the expression []a−f]

matches either the] or one of the characters a through f.

[^string] The caret symbol, when inside square brackets, negates the

characters within the square brackets. Thus, [^abc], if compared to

other strings, would fail to match any which contains even one a, b,

or c.

Note: Characters ., *, [, and \ (period, asterisk, left square bracket,

and backslash, respectively) have special meaning, except

when they appear within square brackets ([]), or are

preceded by \.

* The asterisk symbol indicates 0 or more of any preceding

characters. For example, (a*e) will match any of the following: e,

ae, aae, aaae, The longest leftmost match is chosen.

rx The occurrence of regular expression r followed by the occurrence

of regular expression x.

\{m\} \{m,\} \{m,u\}

Integer values enclosed in \{\} indicate the number of times to apply

the preceding regular expression. m is the minimum number and u

is the maximum number. u must be less than 256. If you specify

only m, it indicates the exact number of times to apply the regular

expression.

 \{m,\} is equivalent to \{m,255\}. They both match m or more

occurrences of the expression. The * (asterisk) operation is

equivalent to \{0,\}.

 The maximum number of occurrences is matched.

\(r\) The regular expression r. The \(and \) sequences are ignored.

\n When \n (where 1 <= n <= 9) appears in a concatenated regular

expression, it stands for the regular expression x, where x is the nth

regular expression enclosed in \(and \) sequences that appeared

earlier in the concatenated regular expression. For example, in the

pattern \(c\)onc\(ate\)n\2, the \2 is equivalent to ate, giving

concatenate.

The character ̂ at the beginning of an expression permits a successful match only

immediately after a newline or at the beginning of each of the string to which a

match is to be applied. The character $ at the end of an expression requires a

trailing newline.

Note: The compile() function is physically embedded in the regexp.h header. This

header will be protected from multiple invocations just like other c headers.

Note:

The compile(), step(), and advance() functions are provided for historical

reasons. These functions were part of the Legacy Feature in Single UNIX

compile

318 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

Specification, Version 2. They have been withdrawn and are not supported

as part of Single UNIX Specification, Version 3. New applications should use

the newer functions fnmatch(), glob(), regcomp() and regexec(), which

provide full internationalized regular expression functionality compatible with

IEEE Std 1003.1-2001.

Returned Value

If successful, compile() exits using the user-provided macro RETURN(ptr). The

value of the argument ptr is a pointer to the character after the last character of the

compiled regular expression.

If unsuccessful, compile() exits using the user-provided macro ERROR(val). The

argument val is an error number identifying the error. The following error numbers

are defined:

Errcode Description String

11 Range endpoint too large

16 Bad number

25 \digit out of range

36 Illegal or missing delimiter

41 No remembered search string

42 \(\) imbalance

43 Too many \(

44 More than two numbers given in \{ \}

45 } expected after \

46 First number exceeds second in \{ \}

49 [] imbalance

50 Regular expression overflow

Related Information

v “regexp.h” on page 76

v “advance() — Pattern Match Given a Compiled Regular Expression” on page 163

v “fnmatch() — Match Filename or Pathname” on page 624

v “glob() — Generate Pathnames Matching a Pattern” on page 898

v “regcomp() — Compile Regular Expression” on page 1646

v “regexec() — Execute Compiled Regular Expression” on page 1653

v “step() — Pattern Match with Regular Expression” on page 2015

compile

Chapter 3. Part 3. Library Functions 319

|
|
|
|
|

confstr() — Get Configurable Variables

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <unistd.h>

size_t confstr(int name, char *buf, size_t len);

General Description

The confstr() function provides a method for applications to get

configuration-defined string values. Its use and purpose are similar to the sysconf()

function, but it is used where string values rather than numeric values are returned.

The name argument represents the system variable to be queried. It may be any

one of the following symbolic constants, defined in <unistd.h>:

_CS_PATH Request the value of the PATH environment variable that will find

all standard utilities.

_CS_POSIX_V6_ILP32_OFF32_CFLAGS

Request the value of the set of initial options to be given to the c99

utility to build an application using a programming model with 32-bit

types.

_CS_POSIX_V6_ILP32_OFF32_LDFLAGS

Request the value of the set of final options to be given to the c99

utility to build an application using a programming model with 32-bit

types.

_CS_POSIX_V6_ILP32_OFF32_LIBS

Request the value of the set of libraries to be given to the c99 utility

to build an application using a programming model with 32-bit int,

long, pointer, and off_t types.

_CS_POSIX_V6_ILP32_OFFBIG_CFLAGS

Request the value of the set of initial options to be given to the c99

utility to build an application using a programming model with 32-bit

int, long, and pointer types, and an off_t type using at least 64 bits.

_CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS

Request the value of the set of final options to be given to the c99

utility to build an application using a programming model with 32-bit

int, long, and pointer types, and an off_t type using at least 64 bits.

CS_POSIX_V6_ILP32_OFFBIG_LIBS

Request the value of the set of libraries to be given to the c99 utility

to build an application using a programming model with 32-bit int,

long, and pointer types, and an off_t type using at least 64 bits.

_CS_POSIX_V6_LP64_OFF64_CFLAGS

Request the value of the set of initial options to be given to the c99

confstr

320 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

utility to build an application using a programming model with 32-bit

int and 64-bit long, pointer, and off_t types.

_CS_POSIX_V6_LP64_OFF64_LDFLAGS

Request the value of the set of final options to be given to the c99

utility to build an application using a programming model with 32-bit

int and 64-bit long, pointer, and off_t types.

_CS_POSIX_V6_LP64_OFF64_LIBS

Request the value of the set of libraries to be given to the c99 utility

to build an application using a programming model with 32-bit int

and 64-bit long, pointer, and off_t types.

_CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS

Request the value of the set of initial options to be given to the c99

utility to build an application using a programming model with an int

type using at least 32 bits and long, pointer, and off_t types using at

least 64 bits.

_CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS

Request the value of the set of final options to be given to the c99

utility to build an application using a programming model with an int

type using at least 32 bits and long, pointer, and off_t types using at

least 64 bits.

_CS_POSIX_V6_LPBIG_OFFBIG_LIBS

Request the value of the set of libraries to be given to the c99 utility

to build an application using a programming model with an int type

using at least 32 bits and long, pointer, and off_t types using at

least 64 bits.

_CS_POSIX_V6_WIDTH_RESTRICTED_ENVS

Request the list of names of programming environments supported

by the implementation in which the widths of the blksize_t, cc_t,

mode_t, nfds_t, pid_t, ptrdiff_t, size_t, speed_t, ssize_t,

suseconds_t, tcflag_t, useconds_t, wchar_t, and wint_t types are no

greater than the width of type long.

z/OS UNIX services use the following constant:

_CS_SHELL Request the fully qualified name of the default shell.

If the len argument is not zero, and if the name argument has a

configuration-defined value, confstr() copies that value into the buffer pointed to by

the buf argument. If the value to be returned is longer than len bytes, including the .

terminating NULL, then confstr() truncates the string to len-1 bytes and

NULL-terminates the results. The application can detect that the string was

truncated by comparing the value returned by confstr() with len.

If the len argument is zero, and the buf argument is a NULL pointer, then confstr()

still returns the integer value defined below, but does not return a string. If the len

argument is zero, but the buf argument is not a NULL pointer the results are

unspecified.

Returned Value

If name has a configuration-defined value, confstr() returns the size of the buffer

that would be needed to hold the entire configuration-defined string value. If this

return value is greater than len, the string returned in buf is truncated.

confstr

Chapter 3. Part 3. Library Functions 321

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

If name does not have a configuration-defined value, confstr() returns 0 and leaves

errno unchanged.

If name is not valid, confstr() returns 0 and sets errno to one of the following values:

Error Code Description

EINVAL The value of the name argument is not valid.

Related Information

v “unistd.h” on page 96

v “fpathconf() — Determine Configurable Pathname Variables” on page 638

v “pathconf() — Determine Configurable Pathname Variables” on page 1337

v “sysconf() — Determine System Configuration Options” on page 2111

confstr

322 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

conj(), conjf(), conjl() — Calculate the Complex Conjugate

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex conj(double complex z);

float complex conjf(float complex z);

long double complex conjl(long double complex z);

General Description

The conj() family of functions compute the complex conjugate of z by reversing the

sign of its imaginary part.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

conj X X

conjf X X

conjl X X

Returned Value

If successful, they return the complex conjugate value.

Example

/*

 * This example illustrates the complex conjugate function

 */

#include <complex.h>

#include <stdio.h>

void main()

{

 long double complex z = -2.99 - I*3.99, zres;

 zres = conjl(z);

 printf("The complex conjugate of %Lf + %Lf*I is %Lf + %Lf*I\n",creall(z), cimagl(z), zres);

}

Output

The complex conjugate of -2.990000 + -3.990000*I is -2.990000 + 3.990000*I

Related Information

v “complex.h” on page 36

v “carg(), cargf(), cargl() — Calculate the Argument” on page 232

v “cimag(), cimagf(), cimagl() — Calculate the Complex Imaginary Part” on page

290

v “cproj(), cprojf(), cprojl() — Calculate the Projection” on page 363

conj, conjf, conjl

Chapter 3. Part 3. Library Functions 323

||||

|
|
||
|
|
|

v “creal(), crealf(), creall() — Calculate the Complex Real Part” on page 365

conj, conjf, conjl

324 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

connect() — Connect a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address, socklen_t address_len);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

int connect(int socket, struct sockaddr *address, int address_len);

General Description

For stream sockets, the connect() call attempts to establish a connection between

two sockets. For datagram sockets, the connect() call specifies the peer for a

socket. The socket parameter is the socket used to originate the connection

request. The connect() call performs two tasks when called for a stream socket.

First, it completes the binding necessary for a stream socket (in case it has not

been previously bound using the bind() call). Second, it attempts to make a

connection to another socket.

Note: For the X/Open socket function, the socket description applies to socket,

address to address, and address_len to address_len. const is added to

struct sockaddr.

Parameter Description

socket The socket descriptor.

address The pointer to a socket address structure containing the address of

the socket to which a connection will be attempted.

address_len The size of the socket address pointed to by address in bytes.

 The connect() call on a stream socket is used by the client application to establish a

connection to a server. The server must have a passive open pending. A server that

is using sockets must successfully call bind() and listen() before a connection can

be accepted by the server with accept(). Otherwise, connect() returns −1 and the

error code is set to ECONNREFUSED.

If socket is in blocking mode, the connect() call blocks the caller until the connection

is set up, or until an error is received. The caller can test the completion of the

connection setup by calling select() and testing for the ability to write to the socket.

When called for a datagram socket, connect() specifies the peer with which this

socket is associated. This gives the application the ability to use data transfer calls

connect

Chapter 3. Part 3. Library Functions 325

||||

|
|
||

|

reserved for sockets that are in the connected state. In this case, read(), write(),

readv(), writev(), send(), and recv() calls are then available in addition to sendto(),

recvfrom(), sendmsg(), and recvmsg() calls. Stream sockets can call connect() only

once, but datagram sockets can call connect() multiple times to change their

association. Datagram sockets can dissolve their association by connecting to an

incorrect address, such as the NULL address (all fields zeroed).

The address parameter is a pointer to a buffer containing the name of the peer to

which the application needs to connect. The address_len parameter is the size, in

bytes, of the buffer pointed to by address.

Servers in the AF_INET Domain

If the server is in the AF_INET domain, the format of the name buffer is expected to

be sockaddr_in, as defined in the include file netinet/in.h.

struct in_addr

{

 ip_addr_t s_addr;

};

 struct sockaddr_in {

 unsigned char sin_len;

 unsigned char sin_family;

 unsigned short sin_port;

 struct in_addr sin_addr;

 unsigned char sin_zero[8];

};

The sin_family field must be set to AF_INET. The sin_port field is set to the port to

which the server is bound. It must be specified in network byte order. The sin_zero

field is not used and must be set to all zeros.

Servers in the AF_INET6 Domain

If the server is in the AF_INET6 domain, the format of the name buffer is expected

to be sockaddr_in6, as defined in the netinet/in.h:

 struct sockaddr_in6 {

 uint8_t char sin6_len;

 sa_family_t sin6_family;

 in_port_t sin6_port;

 uint32_t sin6_flowinfo;

 struct in6_addr sin6_addr;

 uint32_t sin6_scope_id;

];

The sin6_family must be set to AF_INET6.

Servers in the AF_UNIX Domain

If the server is in the AF_UNIX domain, the format of the name buffer is expected to

be sockaddr_un, as defined in the include file un.h.

 struct sockaddr_un {

 unsigned char sun_len;

 unsigned char sun_family;

 char sun_path[108]; /* pathname */

};

connect

326 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The sun_family field is set to AF_UNIX. The sun_path field contains the

NULL-terminated pathname, and sun_len contains the length of the pathname.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The connect() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, connect() returns 0.

If unsuccessful, connect() returns −1 and sets errno to one of the following values:

Error Code Description

EADDRNOTAVAIL

The specified address is not available from the local machine.

EAFNOSUPPORT

The address family is not supported.

EALREADY The socket descriptor socket is marked nonblocking, and a previous

connection attempt has not completed.

EBADF The socket parameter is not a valid socket descriptor.

ECONNREFUSED

The connection request was rejected by the destination host.

EFAULT Using address and address_len would result in an attempt to copy

the address into a portion of the caller’s address space to which

data cannot be written.

EINTR The attempt to establish a connection was interrupted by delivery of

a signal that was caught. The connection will be established

asynchronously.

EINVAL The address_len parameter is not a valid length.

EIO There has been a network or a transport failure.

EISCONN The socket descriptor socket is already connected.

ENETUNREACH

The network cannot be reached from this host.

ENOTSOCK The descriptor refers to a file, not a socket.

EOPNOTSUPP

The socket parameter is not of type SOCK_STREAM.

EPERM connect() caller was attempting to extract a user’s identity and the

caller’s process was not verified to be a server. To be

server-verified, the caller’s process must have permission to the

BPX.SERVER profile (or superuser and BPX.SERVER is undefined)

and have called either the __passwd() or pthread_security_np()

services before calling connect() to propagate identity.

EPROTOTYPE

The protocol is the wrong type for this socket.

connect

Chapter 3. Part 3. Library Functions 327

ETIMEDOUT The connection establishment timed out before a connection was

made.

The following are for AF_UNIX only:

Error Code Description

EACCES Search permission is denied for a component of the path prefix, or

write access to the named socket is denied.

EIO An I/O error occurred while reading from or writing to the file

system.

ELOOP Too many symbolic links were encountered in translating the

pathname in address.

ENAMETOOLONG

A component of a pathname exceeded NAME_MAX characters, or

an entire pathname exceeded PATH_MAX characters.

ENOENT A component of the pathname does not name an existing file or the

pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname in address is not a

directory.

Example

The following are examples of the connect() call. The Internet address and port

must be in network byte order. To put the port into network byte order, the htons()

utility routine is called to convert a short integer from host byte order to network

byte order. The address field is set using another utility routine, inet_addr(), which

takes a character string representing the dotted-decimal address of an interface and

returns the binary Internet address representation in network byte order. Finally, it is

a good idea to zero the structure before using it to ensure that the name requested

does not set any reserved fields. These examples could be used to connect to the

servers shown in the examples listed with the call, “bind() — Bind a Name to a

Socket” on page 211.

int s;

struct sockaddr_in inet_server;

struct sockaddr_un unix_server;

int rc;

int connect(int s, struct sockaddr *name, int namelen);

/* Connect to server bound to a specific interface in the Internet domain */

/* make sure the sin_zero field is cleared */

memset(&inet_server, 0, sizeof(inet_server));

inet_server.sin_family = AF_INET;

inet_server.sin_addr = inet_addr("129.5.24.1"); /* specific interface */

inet_server.sin_port = htons(1024); ...
rc = connect(s, (struct sockaddr *) &inet_server, sizeof(inet_server));

/* Connect to a server bound to a name in the UNIX domain */

/* make sure the sunix_addr, sunix_port, sunix_nodeid fields are cleared

*/

memset(&unix_server, 0, sizeof(unix_server));

unix_server.sun_family = AF_UNIX;

strncpy(unix_server.sun_path, "mysocket");

unix_server.sun_len = sizeof(unix_server.sun_len);

strncpy(mvsservername.sunix_name, "APPL ", 8); ...
rc = connect(s, (struct sockaddr *) &unix_server, sizeof(unix_server));

connect

328 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “sys/socket.h” on page 89

v “accept() — Accept a New Connection on a Socket” on page 120

v “bind() — Bind a Name to a Socket” on page 211

v “htons() — Translate an Unsigned Short Integer into Network Byte Order” on

page 914

v “inet_addr() — Translate an Internet Address into Network Byte Order” on page

960

v “listen() — Prepare the Server for Incoming Client Requests” on page 1104

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “socket() — Create a Socket” on page 1970

connect

Chapter 3. Part 3. Library Functions 329

ConnectExportImport() — WLM Connect for Export or Import Use

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both OS/390 V2R9

Format

#include <sys/__wlm.h>

unsigned long ConnextExportImport(const char *subsystype,

 const char *subsysname);

AMODE 64

#include <sys/__wlm.h>

unsigned int ConnextExportImport(const char *subsystype,

 const char *subsysname);

General Description

Provides the ability for an application to connect to WLM to use the

ExportWorkUnit(), UndoExportWorkUnit(), ImportWorkUnit(), and

UndoImportWorkUnit() functions.

Note that if you need to use the CreateWorkUnit() function, you should use

ConnectWorkMgr() instead.

The ConnectExportImport() function uses the following parameters:

*subsystype Points to a NULL-terminated character string containing the

subsystem type by which to identify the connector. The export and

import functions do not use the string. A meaningful string should

be used since it can appear in WLMDATA IPCS reports. The

character string can be up to 4 bytes in length.

*subsysname Points to a NULL-terminated character string containing the

subsystem name by which to identify the connector. The export and

import functions do not use the string. A meaningful string should

be used since it can appear in WLMDATA IPCS reports. The

character string can be up to 8 bytes in length.

Returned Value

If successful, ConnectExportImport() returns 0.

If unsuccessful, ConnectExportImport() returns −1 and sets errno to one of the

following values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained a value that is not correct.

ConnectExportImport

330 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EMVSWLMERROR

A WLM service failed. Use __errno2() to obtain the WLM service

reason code for the failure.

Related Information

v “sys/__wlm.h” on page 91

v “ExportWorkUnit() — WLM Export Service” on page 503

v “ImportWorkUnit() — WLM Import Service” on page 939

v “QueryWorkUnitClassification() — WLM Query Enclave Classification Service” on

page 1593

v “UnDoExportWorkUnit() — WLM Undo Export Service” on page 2301

v “UnDoImportWorkUnit() — WLM Undo Import Service” on page 2303

v For more information, see z/OS MVS Programming: Workload Management

Services, SA22-7619.

ConnectExportImport

Chapter 3. Part 3. Library Functions 331

ConnectServer() — Connect to WLM as a Server Manager

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

unsigned long ConnectServer(const char *subsystype,

 const char *subsysname,

 const char *applenv,

 int *paralleleu);

AMODE 64

#include <sys/__wlm.h>

unsigned int ConnectServer(const char *subsystype,

 const char *subsysname,

 const char *applenv,

 int *paralleleu);

General Description

The ConnectServer function provides the ability for an application to connect to

WLM as a WLM server manager to perform WLM server manager functions.

*subsystype Points to a NULL-terminated character string containing the generic

subsystem type (CICS, IMS, WEB, etc.). This is the primary

category under which WLM classification rules are grouped. The

character string can be up to 4 bytes in length.

*subsysname Points to a NULL-terminated character string containing the

subsystem name used for classifying work requests. The character

string can be up to 8 bytes in length.

*applenv Points to a NULL-terminated character string that contains the

name of the application environment under which work requests are

processed. The character string can be up to 32 bytes in length.

*paralleleu Points to an integer which contains the maximum number of tasks

within the address space which will be created to process

concurrent work requests.

Returned Value

If successful, ConnectServer() returns a nonzero value representing a WLM connect

token.

If unsuccessful, ConnectServer() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained an incorrect value.

ConnectServer

332 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

The WLM connect failed. Use __errno2() to obtain the WLM service

reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class if it is defined.

If BPX.WLMSERVER is not defined, the calling process is not

defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “CheckSchEnv() — Check WLM Scheduling Environment” on page 278

v “ConnectWorkMgr() — Connect to WLM as a Work Manager” on page 334

v “ContinueWorkUnit() — Continue WLM Work Unit” on page 343

v “CreateWorkUnit() — Create WLM Work Unit” on page 369

v “DeleteWorkUnit() — Delete a WLM Work Unit” on page 415

v “DisconnectServer() — Disconnect from WLM Server” on page 421

v “JoinWorkUnit() — Join a WLM Work Unit” on page 1049

v “LeaveWorkUnit() — Leave a WLM Work Unit” on page 1073

v “QueryMetrics() — Query WLM System Information” on page 1589

v “QuerySchEnv() — Query WLM Scheduling Environment” on page 1591

ConnectServer

Chapter 3. Part 3. Library Functions 333

ConnectWorkMgr() — Connect to WLM as a Work Manager

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

unsigned long ConnectWorkMgr(const char *subsystype,

 const char *subsysname);

AMODE 64

#include <sys/__wlm.h>

unsigned int ConnectWorkMgr(const char *subsystype,

 const char *subsysname);

General Description

The ConnectServer function provides the ability for an application to connect to

WLM as a WLM work manager to perform WLM work manager functions.

*subsystype Points to a NULL-terminated character string containing the generic

subsystem type (CICS, IMS, WEB, etc.). This is the primary

category under which WLM classification rules are grouped. The

character string can be up to 4 bytes in length.

*subsysname Points to a NULL-terminated character string containing the

subsystem name used for classifying work requests. The character

string can be up to 8 bytes in length.

Returned Value

If successful, ConnectServer() returns a nonzero value representing a WLM connect

token.

If unsuccessful, ConnectServer() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained an incorrect value.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

The WLM connect failed. Use __errno2() to obtain the WLM service

reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

ConnectWorkMgr

334 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

be permitted to the BPX.WLMSERVER Facility class if it is defined.

If BPX.WLMSERVER is not defined, the calling process is not

defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “CheckSchEnv() — Check WLM Scheduling Environment” on page 278

v “ConnectServer() — Connect to WLM as a Server Manager” on page 332

v “ContinueWorkUnit() — Continue WLM Work Unit” on page 343

v “CreateWorkUnit() — Create WLM Work Unit” on page 369

v “DeleteWorkUnit() — Delete a WLM Work Unit” on page 415

v “DisconnectServer() — Disconnect from WLM Server” on page 421

v “JoinWorkUnit() — Join a WLM Work Unit” on page 1049

v “LeaveWorkUnit() — Leave a WLM Work Unit” on page 1073

v “QueryMetrics() — Query WLM System Information” on page 1589

v “QuerySchEnv() — Query WLM Scheduling Environment” on page 1591

ConnectWorkMgr

Chapter 3. Part 3. Library Functions 335

__console() — Console Communication Services

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <sys/__messag.h>

int __console(struct __cons_msg *cons, char *modstr, int *concmd);

General Description

The __console() function is used to communicate with the operator’s console. The

__console() function allows users to send messages to the operator’s console and

to wait on a modify/stop request from the console.

The parameters supported are:

cons If the argument is not NULL, it points to a structure specifying the

message that is to be sent to the operator’s console. If the

argument is NULL then no message is sent.

modstr Specifies the string where __console() returns the data entered at

the operator’s console. If modstr is not NULL the invoker will wait

until an operator MODIFY’s the invoking job and specifies ’APPL=’

parameter. See z/OS MVS System Commands for more information

on the MODIFY console command. If the argument is NULL then

the __console() function will not wait on operator console

commands.

concmd If a console command was issued against the invoking job, the

__console() function will set the command type. Valid types are,

_CC_modify (function received a modify request) and _CC_stop

(function received a stop request).

The cons structure is defined in the <sys/__messag.h> header and has the

following format.

 struct __cons_msg {

 short __reserved0;

 char __reserved1[2];

 union {

 struct {

 int __msg_length;

 char *__msg;

 char __reserved2[8];

 } __f1;

 } __format;

 };

__reserved0 Reserved for future use.

__reserved1[2] Reserved for future use.

__format.__f1.__msg_length Length of message, not including the NULL

terminator.

__console

336 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__format.__f1.__msg A character string containing the message to be

sent to the operator console.

__format.__f1.__reserved2[8] Reserved for future use.

Note: The length of the message must be between 1 and 17850 characters for

invokers with appropriate privileges, and between 1 and 17780 for invokers

without appropriate privileges. The number of lines written to the console is

limited to 255. In the case of an unprivileged user, one of those lines is used

for the message ID and the invoker’s login name. If the message length is

exceeded, no lines are written and the service returns an EINVAL. If the

number of lines is exceeded, the service returns an EINVAL, but the first 255

lines are written to the console.

Returned Value

If successful, __console() returns 0.

If unsuccessful, __console() returns -1 and sets errno to one of the following values:

Error Code Description

EFAULT One of the following errors was detected:

v All or part of the cons structure is not addressable by the caller.

v All or part of the modstr string is not addressable by the caller.

EINTR __console() was interrupted by a signal.

EINVAL The cons structure contains errors.

EMVSERR z/OS environmental or internal error has occurred.

Example

CELEBC41

/* CELEBC41

 This example prints a simple message to the console using the

 __console() function.

 */

#include <sys/__messag.h>

#include <errno.h>

#include <string.h>

#include <stdio.h>

int main(int argc, char** argv) {

 struct __cons_msg cmsg;

 char buf[256] = "A message on the console";

 int rc;

 int cmsg_cmd = 0;

 /* fill in the __cons_msg structure */

 cmsg.__format.__f1.__msg = buf;

 cmsg.__format.__f1.__msg_length = strlen(buf);

 rc = __console(&cmsg,NULL,&cmsg_cmd);

 if(rc == −1) {

 printf("__console() failed\n");

 printf("%s\n",strerror(errno));

 }

 else {

 printf("__console() successful. Check console for message.\n");

__console

Chapter 3. Part 3. Library Functions 337

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

 return 0;

}

Related Information

v “sys/__messag.h” on page 88

v “__console2() — Enhanced Console Communication Services” on page 339

__console

338 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|

|

__console2() — Enhanced Console Communication Services

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R10

Format

#include <sys/__messag.h>

int __console2(struct __cons_msg2 *cons, char *modstr, int *concmd);

General Description

Used to communicate with the operator’s console. The __console2() function allows

users to send messages to the operator’s console with the ability to specify routing

codes and message descriptor codes, wait on a modify/stop request from the

console, and to delete messages from operator console using either message IDs

or tokens.

The parameters to the __console2() function are as follows:

cons Specifies the address of the structure containing the console

communication information. The mapping of the structure is

provided below. If this parameter is NULL, then no message is sent

to the operator’s console and/or no messages are deleted from the

console.

modstr The address of a 128-byte buffer that is to be used to receive a

string of EBCDIC data from the console MODIFY command. All

characters that appear to the right of the ’APPL=’ are placed into

this buffer, left justified. The data returned is folded to uppercase. If

this parameter is NULL, the __console2() function does not wait on

operator console commands.

concmd Address of a 32-bit integer where __console2() returns the type of

command that was issued on the console. The types are:

_CC_modify function received a modify request

_CC_stop function received a stop request

Note: If this parameter is set to NULL, the __console2() function

will fail with EFAULT.

The console communication information is specified in structure pointed to by the

cons parameter. The structure contains the following elements:

__cm2_format Must be set to one of the following:

__CONSOLE_FORMAT_2 Used to indicate format 2.

__cm2_msglength

The length of the message to be written to the console. A value of

zero indicates that no message is to be sent to the operator’s

console.

__console2

Chapter 3. Part 3. Library Functions 339

Note: The length of the message must be between 1 and 17850

characters for invokers with appropriate privileges, and

between 1 and 17780 for invokers without appropriate

privileges. The number of lines written to the console is

limited to 255. In the case of an unprivileged user, one of

those lines is used for the message ID and the invoker’s

login name. If the message length is exceeded, no lines are

written and the service returns an EINVAL. If the number of

lines is exceeded, the service returns an EINVAL, but the

first 255 lines are written to the console.

__cm2_msg Pointer to a NULL terminated string containing the message to be

written to the console. A value of NULL indicates no message is to

be sent to the operator’s console.

__cm2_routcde

Pointer to an unsigned int array containing the routing code or

codes to be assigned to the message. The array is terminated by a

zero value. Allowable routing codes are 1-28 for unauthorized

users, and 1-128 for authorized users. See z/OS MVS

Programming: Authorized Assembler Services Reference SET-WTO

for more information on routing codes.

Note: An authorized user is one with appropriate privileges, as

described in z/OS UNIX System Services Programming:

Assembler Callable Services Reference, SA22-7803 in the

chapter on Authorization.

__cm2_descr Pointer to an unsigned int array containing the message descriptor

code or codes to be assigned to the message. The array is

terminated by a zero value. Allowable descriptor codes are 1-13.

Descriptor codes 1 through 6, 11, and 12 are mutually exclusive.

Codes 7 through 10, and 13 can be assigned in combination with

any other code. See z/OS MVS Programming: Authorized

Assembler Services Reference SET-WTO for more information on

descriptor codes.

__cm2_mcsflag

Specifies one or more of the following flags:

__CONSOLE_HRDCPY Queue the message for hard copy

only. The message will not be

displayed on the console.

__cm2_token Specifies a 4-byte token to be associated with this message. This

field is used to identify a group of messages which can be deleted

using the DOM feature of the __console2() function. The token

must be unique within an address space and can be any value. A

token value of zero indicates no token is specified and the message

issued will not be associated with any token.

__cm2_msgid An unsigned int (32-bit) field where the __console2() function will

place the message ID associated with the message last sent to the

console. This message ID can be used to delete a message when it

is no longer needed by specifying it using the DOM feature of the

__console2() function. A value of NULL indicates that the message

ID is not to be returned.

__console2

340 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Note: The value returned in __cm2_msgid is an internal message

identifier associated with the message written to the console.

The value is not text and it should not be confused with any

textual part of a message that might otherwise be

considered a message ID.

__cm2_dom_token

Specifies a 4-byte token which represents a message or group of

messages to be deleted from the console. All messages previously

issued with this token will be deleted from the console. This field is

mutually exclusive with __cm2_dom_msgid. A value of zero

indicates that no token is specified.

__cm2_dom_msgid

Pointer to an unsigned int array containing message IDs to be

deleted from the console. A maximum of 60 message IDs may be in

the array. The array is terminated by a zero value. The array

terminator is not part of the 60 message IDs. This field is mutually

exclusive with __cm2_dom_token. A value of NULL indicates that

no message IDs are specified. \

Note: All operations can be done in a single request. The order of operation is to

issue messages, delete messages, and then wait for a modify/stop

command.

Returned Value

If successful, __console2() returns 0.

If unsuccessful, __console2() returns −1 and sets errno to one of the following

values:

Error Code Description

EFAULT The __console2() function was unable to address all or part of the

cons structure, all of part of the routing codes array, all or part of

the descriptor codes array, all or part of the array of DOM message

IDs, all or part of the modstr, or the concmd parameter was NULL.

 Another possible cause is that __cm2_msgid points to storage

which is not accessible.

EINTR The __console2() function was interrupted by a signal.

EINVAL The structure pointed to by cons contains errors.

 For example, mutually exclusive parameters were specified, a

non-valid routing code was specified, a non-valid descriptor code or

mutually exclusive descriptor codes were specified, or there were

more than 60 entries in the array of DOM message IDs.

EMVSERR z/OS environmental or internal error has occurred. Use __errno2()

to obtain more diagnostic information that will help to determine the

cause of the problem.

EPERM An unauthorized caller specified a routing code in the range 29-128.

Only authorized (superuser) callers (UID=0) can specify routing

codes in that range.

Example

CELEBC42

__console2

Chapter 3. Part 3. Library Functions 341

|

|

/* CELEBC42

 This example prints a simple message to the console using the

 __console2() function. A routing and descriptor code are also

 assigned to the message.

 */

#include <sys/__messag.h>

#include <errno.h>

#include <string.h>

#include <stdio.h>

int main(int argc, char** argv) {

 struct __cons_msg2 cmsg;

 char buf[256] = "A message on the console";

 int rc;

 int cmsg_cmd;

 unsigned int cmsg_rout[2] = {1,0};

 unsigned int cmsg_desc[2] = {12,0};

 /* Fill in the __cons_msg2 struct */

 cmsg.__cm2_format = __CONSOLE_FORMAT_2;

 cmsg.__cm2_msg = buf;

 cmsg.__cm2_msglength = strlen(buf);

 cmsg.__cm2_routcde = cmsg_rout;

 cmsg.__cm2_descr = cmsg_desc;

 cmsg.__cm2_token = 0;

 cmsg.__cm2_msgid = NULL;

 cmsg.__cm2_dom_token = 0;

 rc = __console2(&cmsg,NULL,&cmsg_cmd);

 if(rc == −1) {

 printf("__console2() failed\n");

 printf("%s\n",strerror(errno));

 }

 else {

 printf("__console2() successful. Check console for message\n");

 }

 return 0;

}

Related Information

v “sys/__messag.h” on page 88

v “__console() — Console Communication Services” on page 336

__console2

342 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

ContinueWorkUnit() — Continue WLM Work Unit

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

int ContinueWorkUnit(wlmetok_t *enclavetoken);

General Description

The ContinueWorkUnit function provides the ability for an application to create a

WLM work unit that represents a continuation of the work unit associated with the

current home address space.

*enclavetoken Points to a data field of type wlmetok_t where the

ContinueWorkUnit() function is to return the WLM work unit enclave

token.

Returned Value

If successful, ContinueWorkUnit() returns 0.

If unsuccessful, ContinueWorkUnit() returns -1 and sets errno to one of the

following values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained an incorrect value.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

The WLM create enclave failed. Use __errno2() to obtain the WLM

service reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class if it is defined.

If BPX.WLMSERVER is not defined, the calling process is not

defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “CheckSchEnv() — Check WLM Scheduling Environment” on page 278

v “ConnectServer() — Connect to WLM as a Server Manager” on page 332

v “ConnectWorkMgr() — Connect to WLM as a Work Manager” on page 334

v “CreateWorkUnit() — Create WLM Work Unit” on page 369

v “DeleteWorkUnit() — Delete a WLM Work Unit” on page 415

v “DisconnectServer() — Disconnect from WLM Server” on page 421

v “ExtractWorkUnit() — Extract Enclave Service” on page 508

ContinueWorkUnit

Chapter 3. Part 3. Library Functions 343

v “JoinWorkUnit() — Join a WLM Work Unit” on page 1049

v “LeaveWorkUnit() — Leave a WLM Work Unit” on page 1073

v “QueryMetrics() — Query WLM System Information” on page 1589

v “QuerySchEnv() — Query WLM Scheduling Environment” on page 1591

ContinueWorkUnit

344 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__convert_id_np() — Convert Between DCE UUID and Userid

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <unistd.h>

int __convert_id_np(int function_code,

 char *principal_uuid,

 char *cell_uuid,

 char *userid);

General Description

The __convert_id_np() function is used to retrieve the DCE UUID associated with a

userid or the userid associated with a DCE UUID.

This function is intended for DCE servers which process requests from multiple

clients. For example, DCE RPC requests from clients are identified by a DCE UUID

only. This function enables servers to extract the userid of the requester.

The parameters supported are:

function_code Identifies whether extracting a userid or UUID. Possible function

codes are:

__GET_USERID

Return the userid associated with the specified

UUIDs.

__GET_UUID Return the UUIDs associated with the specified

userid.

principal_uuid When __GET_USERID is specified, principal_uuid contains the

UUID of the user for the specified userid. When __GET_UUID is

specified, principal_uuid returns the extracted UUID for the userid

specified. The caller must provide a 36-byte field for the returned

principal_uuid.

cell_uuid When _GET_USERID is specified, cell_uuid should contain the cell

UUID if known. If not known, cell_uuid must be NULL. When

__GET_UUID is specified, cell_uuid will return the extracted cell

UUID, if it is defined for the specified userid. The caller must

provide a 36-byte field for the returned cell_uuid.

userid When _GET_USERID is specified, userid will return the extracted

userid for the specified UUID. The caller must provide a 9 byte field

for the returned userid. When __GET_UUID is specified, userid

contains the userid for whom the UUID should be extracted. The

userid must be 1 to 8 characters in length.

Returned Value

If successful, __convert_id_np() returns 0.

__convert_id_np

Chapter 3. Part 3. Library Functions 345

If unsuccessful, __convert_id_np() returns -1 and sets errno to one of the following

values:

Error Code Description

EINVAL One of the following errors was detected:

v function_code specified is undefined.

v __GET_UUID was specified and userid is not in the range 1 to 8

characters long.

v __GET_USERID was specified and userid was not 9 character

long

EMVSERR An MVS environmental or internal error occurred.

EMVSSAF2ERR

One of the following errors was detected:

v Received an unexpected return code for the security product.

v The security product detected an error in the input parameters.

v An internal error occurred in the security product.

ENOSYS One of the following errors was detected:

v No security product is installed on the system.

v The security product does not have support for this function.

ESRCH One of the following errors was detected:

v No mapping exists between a UUID and Userid.

v No mapping exists between a Userid and UUID.

v The DCEUUIDS class is not active.

v __GET_UUID was specified and no cell UUID is defined for the

userid.

v The userid is not defined to the security product.

Related Information

v “unistd.h” on page 96

__convert_id_np

346 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

copysign(), copysignf(), copysignl() — Copy the Sign from one

floating-point number to another

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment

C99

Single UNIX Specification, Version 3

both OS/390 V2R6

Format

#define _AIX_COMPATIBILITY

#include <math.h>

#include <float.h>

double copysign(double x, double y);

C99

#define _ISOC99_SOURCE

#include <math.h>

#include <float.h>

float copysignf(float x, float y);

long double copysignl(long double x, long double y);

General Description

The copysign functions produce a value with the magnitude of x and the sign of y.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

copysign X X

copysignf X X

copysignl X X

Returned Value

The copysign functions return a value with the magnitude of x and the sign of y.

Related Information

v “float.h” on page 46

v “math.h” on page 60

v “ilogb(), ilogbf(), ilogbl() — Integer Unbiased Exponent” on page 933

v “logb(), logbf(), logbl() — Unbiased Exponent” on page 1128

v “nextafter(), nextafterf(), nextafterl() — Next Representable Double Float” on

page 1292

v “scalb() — Load Exponent” on page 1705

copysign

Chapter 3. Part 3. Library Functions 347

||||

|
|
|

||

|

copysignd32(), copysignd64(), copysignd128() — Copy the Sign from

one floating-point number to another

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 copysignd32(_Decimal32 x, _Decimal32 y);

_Decimal64 copysignd64(_Decimal64 x, _Decimal64 y);

_Decimal128 copysignd128(_Decimal128 x, _Decimal128 y);

_Decimal32 copysign(_Decimal32 x, _Decimal32 y); /C++ only */

_Decimal64 copysign(_Decimal64 x, _Decimal64 y); /C++ only */

_Decimal128 copysign(_Decimal128 x, _Decimal128 y); /C++ only */

General Description

The copysign functions produce a value with the magnitude of x and the sign of y.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The copysign functions return a value with the magnitude of x and the sign of y.

Example

/* CELEBC47

 This example illustrates the copysignd64() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal64 x = 1.2DD, y = −1.0DD , z;

 z = copysignd64(x, y);

 printf("The result of copysignd64(%Df,%Df) is %Df\n",x,y,z);

}

Related Information

v “math.h” on page 60

v “copysign(), copysignf(), copysignl() — Copy the Sign from one floating-point

number to another” on page 347

copysignd32,copysignd64, copysignd128

348 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

v “ilogbd32(), ilogbd64(), ilogbd128() — Integer Unbiased Exponent” on page 935

v “logbd32(), logbd64(), logbd128() — Unbiased Exponent” on page 1130

v “nextafterd32(), nextafterd64(), nextafterd128() — Next Representable Decimal

Floating-Point Value” on page 1294

copysignd32,copysignd64, copysignd128

Chapter 3. Part 3. Library Functions 349

|
|
|
|

cos(), cosf(), cosl() — Calculate Cosine

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double cos(double x);

float cos(float x); /* C++ only */

long double cos(long double x); /* C++ only */

float cosf(float x);

long double cosl(long double x);

General Description

Calculates the cosine of x. The value x is expressed in radians.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Returns the calculated value.

If x is outside prescribed limits, the value is not calculated. Instead, the function

returns 0 and sets the errno to ERANGE. If the correct value would cause an

underflow, zero is returned and the value ERANGE is stored in errno.

Special Behavior for XPG4.2

The following error is added:

Error Code Description

EDOM The argument exceeded an internal limit for the function

(approximately 250).

Example

CELEBC26

/* CELEBC26

 This example calculates y to be the cosine of

 x.

 */

#include <math.h>

#include <stdio.h>

cos, cosf, cosl

350 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|
|

||

|

int main(void)

{

 double x, y;

 x = 7.2;

 y = cos(x);

 printf("cos(%lf) = %lf\n", x, y);

}

Output

cos(7.200000) = 0.608351

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

cos, cosf, cosl

Chapter 3. Part 3. Library Functions 351

cosd32(), cosd64(), cosd128() — Calculate Cosine

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 cosd32(_Decimal32 x);

_Decimal64 cosd64(_Decimal64 x);

_Decimal128 cosd128(_Decimal128 x);

_Decimal32 cos(_Decimal32 x); /* C++ only */

_Decimal64 cos(_Decimal64 x); /* C++ only */

_Decimal128 cos(_Decimal128 x); /* C++ only */

General Description

Calculates the cosine of x. The value x is expressed in radians.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

Returns the calculated value.

If x is outside prescribed limits, the value is not calculated. Instead, the function

returns 0 and sets errno to EDOM.

Example

/* CELEBC48

 This example illustrates the cosd128() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal128 x, y;

 x = 7.2DL;

 y = cosd128(x);

 printf("cosd128(%DDf) = %DDf\n", x, y);

}

cosd32, cosd64, cosd128

352 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “math.h” on page 60

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “sind32(), sind64(), sind128() — Calculate Sine” on page 1953

cosd32, cosd64, cosd128

Chapter 3. Part 3. Library Functions 353

|
|
|
|

cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double cosh(double x);

float cosh(float x); /* C++ only */

long double cosh(long double x); /* C++ only */

float coshf(float x);

long double coshl(long double x);

General Description

Calculates the hyperbolic cosine of x. The value x is expressed in radians.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

If the result overflows, the function returns HUGE_VAL and sets errno to ERANGE.

Example

CELEBC27

/* CELEBC27

 This example calculates y to be the hyperbolic cosine of x.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x,y;

 x = 7.2;

 y = cosh(x);

 printf("cosh(%lf) = %lf\n", x, y);

}

Output

cosh(7.200000) = 669.715755

cosh, coshf, coshl

354 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|
|

||

|

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

cosh, coshf, coshl

Chapter 3. Part 3. Library Functions 355

__cospid32(), __cospid64(), __cospid128() — Calculate Cosine of pi *x

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 __cospid32(_Decimal32 x);

_Decimal64 __cospid64(_Decimal64 x);

_Decimal128 __cospid128(_Decimal128 x);

General Description

Calculates the cosine of pi * x. The value x is expressed in radians.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

Returns the calculated value.

If x is outside the prescribed limits, the value is not calculated. Instead, the function

either returns 1, or returns 0 and sets errno to ERANGE.

Example

/* CELEBC49

 This example illustrates the __cospid32() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal32 x, y;

 x = 1.0DF;

 y = __cospid32(x);

 printf("__cospid32(%Hf) = %Hf\n", x, y);

}

Related Information

v “math.h” on page 60

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

cosd32, cosd64, cosd128

356 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

v “__sinpid32(), __sinpid64(), __sinpid128() — Calculate Sine of pi * x” on page

1957

cosd32, cosd64, cosd128

Chapter 3. Part 3. Library Functions 357

|
|

__cotan(), __cotanf(), __cotanl() — Calculate Cotangent

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both z/OS V1R5

Format

#include <math.h>

double __cotan(double x);

float __cotanf(float x);

long double __cotanl(long double x);

General Description

The __cotan functions compute the cotangent of x.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

__cotan X X

__cotanf X X

__cotanl X X

Returned Value

The __cotan functions return the cotangent of x.

Related Information

v “math.h” on page 60

__cotan

358 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__cpl() — CPL Interface Service

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both OS/390 V2R9

Format

#include <sys/__cpl.h>

int __cpl(int functioncode, int bufferlen, char *buffer);

General Description

__cpl() is currently called by the CFSizer (Coupling Facility structure sizer) tool. An

IBM customer answers a minimum set of questions from an IBM web page, about

one or more IBM products and then clicks the submit button. The submit invokes a

C cgi program that parses the data, calls __cpl() to Query the Coupling Facility or

size one or more Coupling Facility structures and then display the results back to

the web client browser.

functioncode A value that specifies what function BPX1CPL will perform. The

following function codes are defined.

 CPL_QUERY (equates to value of 1)

 CPL_CFSIZER (equates to a value of 2)

 CPL_CFSIZER_W_LVL (equates to a value of 3)

CFlevel8 or higher is required to use the computesize function. To

provide a consistent result, the code must loop through all online

CFs and find the one at the highest CF level. Issuing computesize

against CFs at different levels gives different sizes back to the user

resulting in inconsistent results when multiple requests are issued.

bufferlen The length of the input/output storage area (buffer) for BPX1CPL

buffer Storage area for input/output for BPX1CPL

__cpl() is an interface to the BPX1CPL Assembler Callable Service. For more

information on parameters and behavior of BPX1CPL, please refer to z/OS UNIX

System Services Programming: Assembler Callable Services Reference,

SA22-7803.

Returned Value

If successful, __cpl() returns 0.

If unsuccessful, __cpl() returns -1 and sets errno to one of the following values:

Error Code Description

EFAULT One of the parameters contained an address that was not

accessible to the caller.

EINVAL The functioncode parameter contains a value that is not correct.

EMVSCPLERROR

A __cpl() service failed.

__cpl

Chapter 3. Part 3. Library Functions 359

ENOSYS The __cpl() service failed because the system is not at the correct

level.

EPERM The calling thread’s address space is not permitted.

Usage Note

Access to __cpl() is controlled using a new RACF class profile BPX.CF. For any of

these cases to run, a BPX.CF class profile must be created and access level

provided.

__cpl() is only valid on a Parallel Sysplex enabled system with a CFlevel 8 or

higher Coupling Facility. Most installations run with two or more Coupling Facilities

for availability and recoverability reasons. As such, the code was designed to

provide the flexibility of allowing the caller to specify a CF or if not specified, MVS

will select the first CF at CFlevel 8 it finds.

Related Information

v “sys/__cpl.h” on page 87

__cpl

360 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cpow(), cpowf(), cpowl() — Calculate the Complex Power

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex cpow(double complex x, double complex y);

float complex cpowf(float complex x, float complex y);

long double complex cpowl(long double complex x, long double complex y);

General Description

The cpow() family of functions computes the complex value of x to the power of y,

with a branch cut for the first parameter along the negative real axis.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

cpow X X

cpowf X X

cpowl X X

Returned Value

The cpow() family of functions return the complex power value.

Example

/*

 * This example illustrates the complex power of complex number ’z’

 */

#include <complex.h>

#include <stdio.h>

void main()

{

 long double complex zl=-0.5 + I*0.5, zpowl=(long double complex)3.0;

 double complex zd=(double complex)zl, zpowd=(double complex)zpowl;

 float complex zf=(float complex)zd, zpowf=(float complex)zpowl;

 long double resl;

 double resd;

 float resf;

 printf("Illustrates the cpow function. Expected result is 0.25 in all cases\n");

 resd = cpow(zd,zpowd);

 resf = cpowf(zf,zpowf);

 resl = cpowl(zl,zpowl);

 printf("\tcpow(%f + I*%f,%f + I*%f) = %f\n",creal(zd), cimag(zd),

 creal(zpowd), cimag(zpowd), resd);

cpow, cpowf, cpowl

Chapter 3. Part 3. Library Functions 361

||||

|
|
||
|
|
|

printf("\tcpowf(%f + I*%f,%f + I*%f) = %f\n",crealf(zd), cimagf(zd),

 crealf(zpowf), cimagf(zpowf), resf);

 printf("\tcpowl(%Lf + I*%Lf,%Lf + I*%Lf) = %Lf\n",creall(zl), cimagl(zl),

 creall(zpowl), cimagl(zpowl), resl);

}

Output

Illustrates the cpow function. Expected result is 0.25

 cpow(-0.500000 + I*0.500000,3.000000 + I*0.000000) = 0.250000

 cpowf(-0.500000 + I*0.500000,3.000000 + I*0.000000) = 0.250000

 cpowl(-0.500000 + I*0.500000,3.000000 + I*0.000000) = 0.250000

Related Information

v “complex.h” on page 36

v “cabs(), cabsf(), cabsl() — Calculate the Complex Absolute Value” on page 225

cpow, cpowf, cpowl

362 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cproj(), cprojf(), cprojl() — Calculate the Projection

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex cproj(double complex z);

float complex cprojf(float complex z);

long double complex cprojl(long double complex z);

General Description

The cproj() family of functions compute a projection of z onto the Riemann sphere:

z projects to z except that all complex infinities (even those with one infinite part

and one NaN part) project to positive infinity on the real axis. If z has an infinite

part, then cproj(z) is equivalent to:

INFINITY +I * copysign(0.0, cimag(z))

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

cproj X X

cprojf X X

cprojl X X

Returned Value

The cproj() family of functions return the value of the projection onto the Riemann

sphere.

For a variable z of complex type, z == creal(z) + cimag(z)*I.

Special behavior for hex

On hexadecimal floating point mode, cproj(z) family of functions always returns z .

Example

#include <complex.h>

#include <stdio.h>

/*

 * Illustrates complex function cproj().

 *

 * NOTE: When compiled in HEX(FLOAT), cproj(z) should

 * always return z

cproj, cprojf, cprojl

Chapter 3. Part 3. Library Functions 363

||||

|
|
||
|
|
|

*/

#define INFINITEL 1.0L/0.0L /* An infinite number */

void InitReal (long double complex *z, long double RealPart)

{

 union LongDoubleComplexMap {

 long double complex w;

 long double ldarray[2];

 }z1;

 z1.w = *z;

 z1.ldarray[0] = RealPart;

 *z = z1.w;

}

main() {

 long double complex z,w;

 z = 2.5 + I*(-3.999);

 printf("Ilustrates function cproj() ");

 #ifdef _BFP_

 printf ("(IEEE mode)");

 #else

 printf ("(HFP mode)");

 #endif

 printf("\n\n z = %Lf + I*%Lf\n\n",creall(z), cimagl(z));

 w = cprojl(z);

 printf(" cproj(z) = %Lf + I*%Lf\n",creall(w), cimagl(w));

 printf(" Initializing z(real) with infinity ...\n");

 InitReal(z,INFINITEL);

 printf(" z = %Lf + %Lf*I\n",creall(z),cimagl(z));

 w = cprojl(z);

 printf(" cproj(z) = %Lf + %Lf*I\n",creall(w),cimagl(w));

}

Output

Ilustrates function cproj() (IEEE mode)

 z = 2.500000 + I*-3.999000

 cproj(z) = 2.500000 + I*-3.999000

 Initializing z(real) with infinity ...

 z = INF + -3.999000*I

 cproj(z) = INF + -0.000000*I

Related Information

v “complex.h” on page 36

v “carg(), cargf(), cargl() — Calculate the Argument” on page 232

v “cimag(), cimagf(), cimagl() — Calculate the Complex Imaginary Part” on page

290

v “conj(), conjf(), conjl() — Calculate the Complex Conjugate” on page 323

v “creal(), crealf(), creall() — Calculate the Complex Real Part” on page 365

cproj, cprojf, cprojl

364 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

creal(), crealf(), creall() — Calculate the Complex Real Part

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double creal(double complex z);

float crealf(float complex z);

long double creall(long double complex z);

General Description

The creal() family of functions compute the real part of z.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

creal X X

crealf X X

creall X X

Returned Value

The creal() family of functions return the real part value (as a real).

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “carg(), cargf(), cargl() — Calculate the Argument” on page 232

v “cimag(), cimagf(), cimagl() — Calculate the Complex Imaginary Part” on page

290

v “conj(), conjf(), conjl() — Calculate the Complex Conjugate” on page 323

v “cproj(), cprojf(), cprojl() — Calculate the Projection” on page 363

creal, crealf, creall

Chapter 3. Part 3. Library Functions 365

||||

|
|
||
|
|
|

creat() — Create a New File or Rewrite an Existing One

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <fcntl.h>

int creat(const char *pathname, mode_t mode);

General Description

The function call: creat(pathname,mode) is equivalent to the call:

open(pathname, O_CREAT|O_WRONLY|O_TRUNC, mode);

Thus the file named by pathname is created, unless it already exists. The file is

then opened for writing only, and is truncated to zero length. See “open() — Open a

File” on page 1313 for further information.

The mode argument specifies the file permission bits to be used in creating the file.

Here is a list of symbols that can be used for a mode:

S_IRGRP Read permission for the file’s group.

S_IROTH Read permission for users other than the file owner.

S_IRUSR Read permission for the file owner.

S_IRWXG Read, write, and search, or execute permission for the file’s group.

S_IRWXG is the bitwise inclusive-OR of S_IRGRP, S_IWGRP, and

S_IXGRP.

S_IRWXO Read, write, and search, or execute permission for users other than

the file owner. S_IRWXO is the bitwise inclusive-OR of S_IROTH,

S_IWOTH, and S_IXOTH.

S_IRWXU Read, write, and search, or execute, for the file owner; S_IRWXG is

the bitwise inclusive-OR of S_IRUSR, S_IWUSR, and S_IXUSR.

S_ISGID Privilege to set group ID (GID) for execution. When this file is run

through an exec function, the effective group ID of the process is

set to the group ID of the file, so that the process has the same

authority as the file owner rather than the authority of the actual

invoker.

S_ISUID Privilege to set the user ID (UID) for execution. When this file is run

through an exec function, the effective user ID of the process is set

to the owner of the file, so that the process has the same authority

as the file owner rather than the authority of the actual invoker.

S_ISVTX Indicates shared text. Keep loaded as an executable file in storage.

S_IWGRP Write permission for the file’s group.

creat

366 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

S_IWOTH Write permission for users other than the file owner.

S_IWUSR Write permission for the file owner.

S_IXGRP Search permission (for a directory) or execute permission (for a file)

for the file’s group.

S_IXOTH Search permission for a directory, or execute permission for a file,

for users other than the file owner.

S_IXUSR Search permission (for a directory) or execute permission (for a file)

for the file owner.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications.
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM. The

function call: creat(pathname,mode) is equivalent to the call: open(pathname,

O_CREAT|O_WRONLY|O_TRUNC|O_LARGEFILE, mode);

Returned Value

If successful, creat() returns a file descriptor for the open file.

If unsuccessful, creat() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES One of the following error conditions exists:

v The process did not have search permission on a component in

pathname.

v The file exists but the process did not have appropriate

permissions to open the file in the way specified by the flags.

v The file does not exist, and the process does not have write

permission on the directory where the file is to be created.

v O_TRUNC was specified, but the process does not have write

permission on the file.

EINTR open() was interrupted by a signal.

EISDIR pathname is a directory, and options specifies write or read/write

access.

ELOOP A loop exists in symbolic links. This error is issued if the number of

symbolic links detected in the resolution of pathname is greater

than POSIX_SYMLOOP.

EMFILE The process has reached the maximum number of file descriptors it

can have open.

ENAMETOOLONG

pathname is longer than PATH_MAX characters or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, this error

occurs if the length of a pathname string substituted for a symbolic

creat

Chapter 3. Part 3. Library Functions 367

link in the pathname argument exceeds PATH_MAX. The

PATH_MAX and NAME_MAX values can be determined with

pathconf().

ENFILE The system has reached the maximum number of file descriptors it

can have open.

ENOENT O_CREAT is specified, and either the path prefix does not exist or

the pathname argument is an empty string.

ENOSPC The directory or file system intended to hold a new file has

insufficient space.

ENOTDIR A component of pathname is not a directory.

EOVERFLOW The named file is a regular file and the size of the file cannot be

represented correctly in an object of type off_t

EROFS pathname is on a read-only file system.

Example

CELEBC28

/* CELEBC28

 This example creates a file.

 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 char fn[]="creat.file", text[]="This is a test";

 int fd;

 if ((fd = creat(fn, S_IRUSR | S_IWUSR)) < 0)

 perror("creat() error");

 else {

 write(fd, text, strlen(text));

 close(fd);

 unlink(fn);

 }

return(fd);

}

Related Information

v “fcntl.h” on page 45

v “sys/stat.h” on page 89

v “sys/types.h” on page 90

v “close() — Close a File” on page 299

v “open() — Open a File” on page 1313

v “unlink() — Remove a Directory Entry” on page 2312

creat

368 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

CreateWorkUnit() — Create WLM Work Unit

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

int CreateWorkUnit(wlmetok_t *enclavetoken,

 server_classify_t classify,

 char *arrival_time,

 char *func_name);

General Description

The CreateWorkUnit function provides the ability for an application to create a WLM

work unit.

*enclavetoken Points to a data field of type wlmetok_t where the CreateWorkUnit()

function is to return the WLM work unit enclave token.

*classify Points to a server_classify_t structure that contains the

classification information for the work request macro.

*arrival_time Points to a NULL-terminated character string that represents the

arrival time in STICK format of the associated work request.

*func_name Points to a NULL-terminated character string that represents the

descriptive function name of the associated work request.

Returned Value

If successful, CreateWorkUnit() returns a pointer to work unit enclave token of type

wlmetok_t.

If unsuccessful, CreateWorkUnit() returns −1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained an incorrect value.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

The WLM create failed. Use __errno2() to obtain the WLM service

reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class if it is defined.

If BPX.WLMSERVER is not defined, the calling process is not

defined as a superuser (UID=0).

CreateWorkUnit

Chapter 3. Part 3. Library Functions 369

Related Information

v “sys/__wlm.h” on page 91

v “CheckSchEnv() — Check WLM Scheduling Environment” on page 278

v “ConnectServer() — Connect to WLM as a Server Manager” on page 332

v “ConnectWorkMgr() — Connect to WLM as a Work Manager” on page 334

v “ContinueWorkUnit() — Continue WLM Work Unit” on page 343

v “DeleteWorkUnit() — Delete a WLM Work Unit” on page 415

v “DisconnectServer() — Disconnect from WLM Server” on page 421

v “ExtractWorkUnit() — Extract Enclave Service” on page 508

v “JoinWorkUnit() — Join a WLM Work Unit” on page 1049

v “LeaveWorkUnit() — Leave a WLM Work Unit” on page 1073

v “QueryMetrics() — Query WLM System Information” on page 1589

v “QuerySchEnv() — Query WLM Scheduling Environment” on page 1591

CreateWorkUnit

370 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

crypt() — String Encoding Function

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <unistd.h>

char *crypt(const char *key, const char *salt);

General Description

The crypt() function encodes the string pointed to by the key argument. It perturbs

the Data Encryption Standard (DES) encryption algorithm with the first two

characters in the string pointed to by the salt argument to perform this encoding.

The first two salt characters must be chosen from the set:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 . /

This function can be called from any thread.

Returned Value

If successful, crypt() returns a pointer to a thread specific encoded string. The first

two characters of the returned value are those of the salt argument.

Notes:

1. The return value of crypt() points to a thread-specific buffer which is overwritten

each time crypt() is called from the same thread.

2. The values returned by crypt() are not portable to other X/Open-conforming

systems.

If unsuccessful, crypt() returns a NULL pointer and sets errno to indicate the error.

Special Behavior for z/OS UNIX Services

The crypt() function will fail if:

Error Code Description

EINVAL First two characters of salt argument are not from the salt set.

ENOMEM Storage for crypt() output buffer is not available for thread from

which crypt() has been invoked.

Related Information

v “unistd.h” on page 96

v “encrypt() — Encoding Function” on page 466

v “setkey() — Set Encoding Key” on page 1809

crypt

Chapter 3. Part 3. Library Functions 371

||||

|
|
|

||

|

cs() — Compare and Swap

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <stdlib.h>

int cs(cs_t *oldptr, cs_t *curptr, cs_t newword);

General Description

The cs() built-in function compares the 4-byte value pointed to by oldptr to the

4-byte value pointed to by curptr. If they are equal, the 4-byte value, newword, is

copied into the location pointed to by curptr. If they are unequal, the value pointed

to by curptr is copied into the location pointed to by oldptr.

If this function is used in a multi-threading environment, then it is the users

responsibility to protect the oldptr variable. The user can create a local variable per

thread to contain this value or provide locking code to protect the global variable

used. The oldptr variable may not reflect the curptr variable if the curptr variable

changes via another thread before the user has a chance to examine oldptr.

To avoid infringing on the user’s name space, this nonstandard function is exposed

only when you use the compiler option LANGLVL(EXTENDED). When you use

LANGLVL(EXTENDED) any relevant information in the header is also exposed.

The function uses the COMPARE SWAP (CS) instructions, which can be used in

multiprogramming or multiprocessing environments to serialize access to counters,

flags, control words, and other common storage areas. For a detailed description,

refer to the appendixes in the z/Architecture Principles of Operation on number

representation and instruction.

Returned Value

cs() returns 0 if the 4-byte value pointed to by oldptr is equal to the 4-byte value

pointed to by curptr.

If the value is not equal, cs() returns 1.

Related Information

v z/Architecture Principles of Operation

v “stdlib.h” on page 85

v “cds() — Compare Double and Swap” on page 248

cs

372 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

csid() — Character Set ID for Multibyte Character

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <stdlib.h>

int csid(const char *c)

External Entry Point

@@CSID, __csid;

General Description

Determines the character set identifier for the specified multibyte character pointed

to by c, that begins in the initial shift state.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

Returned Value

If successful, csid() returns the character-set identifier for the multibyte character.

If the character is not valid, csid() returns −1.

Note: The multibyte character passed must begin in the initial shift state.

Example

CELEBC29

/* CELEBC29

 This example checks character set ID for a character.

 */

#include "locale.h"

#include "stdio.h"

#include "stdlib.h"

main() {

 char *string = "A";

 int rc;

 rc = csid(string);

 printf("character '%s' is in character set id %i\n", string, rc);

}

csid

Chapter 3. Part 3. Library Functions 373

Output

character ’A’ is in character set id 0

Related Information

v “stdlib.h” on page 85

csid

374 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

csin(), csinf(), csinl() — Calculate the Complex Sine

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex csin(double complex z);

float complex csinf(float complex z);

long double complex csinl(long double complex z);

General Description

The csin() family of functions compute the complex sine of z.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

csin X X

csinf X X

csinl X X

Returned Value

The csin() family of functions return the complex sine value.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine” on page 376

v “casinh(), casinhf(), casinhl() — Calculate the Complex Arc Hyperbolic Sine” on

page 234

v “casin(), casinf(), casinl() — Calculate the Complex Arc Sine” on page 233

v “ccos(), ccosf(), ccosl() — Calculate the Complex Cosine” on page 245

v “ccosh(), ccoshf(), ccoshl() — Calculate the Complex Hyperbolic Cosine” on page

246

csin, csinf, csinl

Chapter 3. Part 3. Library Functions 375

||||

|
|
||
|
|
|

csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex csinh(double complex z);

float complex csinhf(float complex z);

long double complex csinhl(long double complex z);

General Description

The csinh() family functions compute the complex hyperbolic sine of z.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

csinh X X

csinhf X X

csinhl X X

Returned Value

The csinh() family functions return the complex hyperbolic sine value.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “csin(), csinf(), csinl() — Calculate the Complex Sine” on page 375

v “casinh(), casinhf(), casinhl() — Calculate the Complex Arc Hyperbolic Sine” on

page 234

v “casin(), casinf(), casinl() — Calculate the Complex Arc Sine” on page 233

v “ccos(), ccosf(), ccosl() — Calculate the Complex Cosine” on page 245

v “ccosh(), ccoshf(), ccoshl() — Calculate the Complex Hyperbolic Cosine” on page

246

v “cacos(), cacosf(), cacosl() — Calculate the Complex Arc Cosine” on page 227

v “cacosh(), cacoshf(), cacoshl() — Calculate the Complex Arc Hyperbolic Cosine”

on page 229

csinh, csinhf, csinhl

376 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|
|

__CSNameType() — Return Codeset Name Type (ASCII/EBCDIC)

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R2

Format

#include <_Ccsid.h>

__csType __CSNameType(char *codesetName);

General Description

The __CSNameType() function returns a __csType value which indicates whether

the codesetName codeset name is ASCII or EBCDIC.

Returned Value

If codesetName is valid, __CSNameType() returns a __csType value of

_CSTYPE_EBCDIC or _CSTYPE_ASCII, indicating whether the codeset name

refers to an EBCDIC or ASCII codeset.

If codesetName is not valid, __CSNameType() returns _CSTYPE_INVALID.

Related Information

v “_Ccsid.h” on page 35

v “__CcsidType() — Return Coded Character Set ID Type (ASCII/EBCDIC)” on

page 247

v “__toCcsid() — Convert Codeset Name to Coded Character Set ID” on page

2226

v “__toCSName() — Convert Coded Character Set ID to Codeset Name” on page

2227

__CSNameType

Chapter 3. Part 3. Library Functions 377

csnap() — Request a Condensed Dump

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <ctest.h>

int csnap(char *dumptitle);

General Description

Creates a display of the activation stack, including the Dynamic Storage Area

(DSA), for each presently active function. Other environmental control blocks that

may be required by IBM Service are also displayed. Under Language Environment,

these consist of the Common Anchor Area (CAA) and the z/OS XL C/C++ CAA

information. The output is identified with dumptitle. See the CEE3DMP Language

Environment callable service in z/OS Language Environment Programming Guide,

SA22-7561, to determine where the output is written to.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

Returned Value

If successful, csnap() returns 0.

If unsuccessful, csnap() returns nonzero.

Example

#include <ctest.h>

int main(void) {

 int rc;

 rc = csnap("Sample csnap output");

}

Related Information

v IBM Language Environment Programming Guide

v “ctest.h” on page 38

v “cdump() — Request a Main Storage Dump” on page 249

v “ctrace() — Request a Traceback” on page 393

csnap

378 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__csplist — Retrieve CSP Parameters

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment C only

Format

#include <csp.h>

__csplist;

General Description

Restriction: This function is not supported in AMODE 64.

__csplist is a macro intended to be used to access the parameter list passed from

Cross System Product (CSP) to your C Library program. The macro evaluates to

the address of the first element of the parameter list. You can use array indexing to

extract the subsequent parameters, casting each parameter to the expected type,

as shown in the example below. If no parameters are passed, __csplist[0] equals

NULL.

You must include the #pragma runopts(plist(ims)) directive if CSP is used to

invoke a z/OS XL C program.

argc will always be 1. See z/OS XL C/C++ User’s Guide for information about the

PLIST compiler option.

If you are expecting an integer and then a structure of type s_type, you should

have the statements:

int_var = (int *) __csplist[0];

s_var = (s_type *) __csplist[1];

Related Information

v “csp.h” on page 37

__csplist

Chapter 3. Part 3. Library Functions 379

csqrt(), csqrtf(), csqrtl() — Calculate the Complex Square Root

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

##include <complex.h>

double complex csqrt(double complex z);

float complex csqrtf(float complex z);

long double complex csqrtl(long double complex z);

General Description

The csqrt() family of functions compute the complex square root of z, with a branch

cut along the negative real axis.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

csqrt X X

csqrtf X X

csqrtl X X

Returned Value

The csqrt() family of functions return the complex square root value, in the range of

the right half-plane (including the imaginary axis).

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “cabs(), cabsf(), cabsl() — Calculate the Complex Absolute Value” on page 225

v “cpow(), cpowf(), cpowl() — Calculate the Complex Power” on page 361

csqrt, csqrtf, csqrtl

380 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|
|

ctan(), ctanf(), ctanl()— Calculate the Complex Tangent

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex ctan(double complex z);

float complex ctanf(float complex z);

long double complex ctanl(long double complex z);

General Description

The ctan() family of functions compute the complex tangent of z.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

ctan X X

ctanf X X

ctanl X X

Returned Value

The ctan() family of functions return the complex tangent value.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “ctanh(), ctanhf(), ctanhl() — Calculate the Complex Hyperbolic Tangent” on page

382

v “catanh(), catanhf(), catanhl() — Calculate the Complex Arc Hyperbolic Tangent”

on page 236

v “catan(), catanf(), catanl() — Calculate the Complex Arc Tangent” on page 235

v “csin(), csinf(), csinl() — Calculate the Complex Sine” on page 375

v “csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine” on page 376

ctan, ctanf, ctanl

Chapter 3. Part 3. Library Functions 381

||||

|
|
||
|
|
|

ctanh(), ctanhf(), ctanhl() — Calculate the Complex Hyperbolic Tangent

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

a compiler that is designed

to support C99

Format

#include <complex.h>

double complex ctanh(double complex z);

float complex ctanhf(float complex z);

long double complex ctanhl(long double complex z);

General Description

The ctanh() family of functions compute the complex hyperbolic tangent of z.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

ctanh X X

ctanhf X X

ctanhl X X

Returned Value

The ctanh() family of functions return the complex hyperbolic tangent value.

Example

For an example of a similar function see cacos(), cexp() or cpow().

Related Information

v “complex.h” on page 36

v “ctan(), ctanf(), ctanl()— Calculate the Complex Tangent” on page 381

v “catan(), catanf(), catanl() — Calculate the Complex Arc Tangent” on page 235

v “catanh(), catanhf(), catanhl() — Calculate the Complex Arc Hyperbolic Tangent”

on page 236

v “casinh(), casinhf(), casinhl() — Calculate the Complex Arc Hyperbolic Sine” on

page 234

v “casin(), casinf(), casinl() — Calculate the Complex Arc Sine” on page 233

v “csin(), csinf(), csinl() — Calculate the Complex Sine” on page 375

v “csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine” on page 376

v “ccos(), ccosf(), ccosl() — Calculate the Complex Cosine” on page 245

v “ccosh(), ccoshf(), ccoshl() — Calculate the Complex Hyperbolic Cosine” on page

246

v “cacos(), cacosf(), cacosl() — Calculate the Complex Arc Cosine” on page 227

v “cacosh(), cacoshf(), cacoshl() — Calculate the Complex Arc Hyperbolic Cosine”

on page 229

ctanh, ctanhf, ctanhl

382 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|
|

ctdli() — Call to DL/I

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

C only:

#pragma runopts(env(IMS),plist(OS))

#include <ims.h> /* or #include <cics.h> */

#define _CTDLI_PARMCOUNT /* First arg is an explicit parameter count */

int ctdli(int parmcount, const char *function, ...);

or

#define _CTDLI_NOPARMCOUNT /*Parameter count is implicit in varargs */

int ctdli(const char *function,...);

C++:

#include <ims.h> /* or #include <cics.h> */

int ctdli(int parmcount, const char *function, ...);

General Description

Restriction: This function is not supported in AMODE 64.

Invokes DL/I facilities. The first argument parmcount is optional for C, but is

mandatory for C++ applications. The parmcount value specifies the number of

arguments in the variable argument list for the ctdli() call to function.

In C, when specifying a parmcount, use the _CTDLI_PARMCOUNT feature test

macro. Otherwise, define _CTDLI_NOPARMCOUNT and make function the first

argument. If the compile unit contains both types of call (sometimes passing

parmcount and sometimes not), then define _CTDLI_NOPARMCOUNT and always

cast the first argument to (const char *) if you want to avoid messages when

compiling with the checkout option.

The function argument specifies the DL/I function you want to perform. Because the

format of the ctdli() call depends on the function selected, all of the variations are

not given here. For complete details on the available functions, refer to the COBOL

publications.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

ctdli

Chapter 3. Part 3. Library Functions 383

To invoke ctdli() from an IMS transaction, you need either the #pragma

runopts(env(ims),plist(os)), or you need to specify the compiler options

TARGET(IMS) and PLIST(OS).

Returned Value

The Program Control Block (PCB) status field (2 bytes) is stored as an unsigned

int and used as the returned value for ctdli().

If the PCB status field contains blanks (hex ’4040’), ctdli() returns 0.

Example

/* The following program demonstrates the use of the ctdli() function.

 It is a skeleton of a message processing program that calls ctdli()

 to retrieve messages and data.

 Do use the TARGET(IMS) and PLIST(IMS) compile options for C++

 applications.

 */

#ifndef __cplusplus

#pragma runopts(env(ims),plist(os))

#endif

#include <stdlib.h>

#include <ims.h>

#define n 20 /* I/O area size - Application dependent */

typedef struct {PCB_STRUCT(10)} PCB_10_TYPE;

int main(void)

{

 /* Function codes for ctdli */

 static const char func_GU[4] = "GU ";

 static const char func_ISRT[4] = "ISRT";

 char ssa_name[] = "ORDER (ORDERKEY = 666666)";

 int rc;

 char msg_seg_io_area[n];

 char db_seg_io_area[n];

 char alt_msg_seg_out[n];

 PCB_STRUCT_8_TYPE *alt_pcb;

 PCB_10_TYPE *db_pcb;

 IO_PCB_TYPE *io_pcb;

 io_pcb = (IO_PCB_TYPE *)(__pcblist)[0];

 alt_pcb = __pcblist[1];

 db_pcb = (PCB_10_TYPE *) __pcblist[2]; ...
 /* Get first message segment from message region */

 rc = ctdli(func_GU, io_pcb, msg_seg_io_area); ...
 /* Get the data from the database having the specified key value */

 rc = ctdli(func_GU, db_pcb, db_seg_io_area, ssa_name); ...
 /* Build output message in program’s I/O area */

 rc = ctdli(func_ISRT, alt_pcb, alt_msg_seg_out); ...
}

Related Information

v “ims.h” on page 49

ctdli

384 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ctermid() — Generate Pathname for Controlling Terminal

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

char *ctermid(char *string);

General Description

string points to a memory location where the ctermid() function stores the name of

the current controlling terminal. The memory location must be able to hold at least

L_ctermid characters, where L_ctermid is a symbol defined in the stdio.h header

file.

ctermid() returns a string that can be used as a pathname to refer to the controlling

terminal for the current process. If string is not NULL, ctermid() stores the pathname

in the specified location and returns the value of string. Otherwise, ctermid() uses a

location of its own and returns a pointer to that location.

The pathname returned can be used to access the controlling terminal, if the

process has a controlling terminal.

Returned Value

ctermid() is always successful; it returns a string that can be used as a pathname to

refer to the controlling terminal for the current process.

There are no documented errno values.

Example

CELEBC32

/* CELEBC32

 This example refers to the controlling terminal for

 the current process.

 */

#define _POSIX_SOURCE

#include <unistd.h>

#include <stdio.h>

main() {

 char termid[1025];

 if (ctermid(termid) == NULL)

ctermid

Chapter 3. Part 3. Library Functions 385

||||

|
|
|
|

||

|

perror("ctermid() error");

 else

 printf("The control terminal is %s\n", termid);

}

Output

The control terminal is /dev/tty

Related Information

v “stdio.h” on page 82

v “unistd.h” on page 96

v “ttyname() — Get the Name of a Terminal” on page 2272

ctermid

386 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ctest() — Start Debug Tool

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <ctest.h>

int ctest(char *command);

General Description

Invokes the Debug Tool from your application program. The parameter command is

a character pointer to a list of valid Debug Tool commands, that ctest() uses to

invoke Debug Tool.

If you choose not to compile your program with hooks, you can use well-placed

ctest() function calls instead. (A hook is a conditional exit that transfers control to

the debugger, when the code is run under the debugger.) You would create a hook

when you compile with the TEST option, causing the exit to be in your generated

code waiting to run. A hook has minimal effect on a program that is running without

the debugger.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

For more information on the Debug Tool, refer to .

Returned Value

If successful, ctest() returns 0.

If unsuccessful, ctest() returns nonzero.

Examples

To let the debug tool gain control of your program, issue the command:

ctest(NULL).

To display the call chain from within a program and then let the program continue

execution, issue the function call: ctest("list calls; go;"). To set a breakpoint

from within a ctest() call, try:

 char *cmd = "at line 17 list my_struct; go;";

 ctest(cmd);

ctest

Chapter 3. Part 3. Library Functions 387

Related Information

v “ctest.h” on page 38

ctest

388 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ctime() — Convert Time to Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <time.h>

char *ctime(const time_t *timer);

General Description

Converts the calendar time pointed to by timer to local time in the form of a

character string. A value for timer is usually obtained by a call to the time() function.

The ctime() function is equivalent to the function call: asctime(localtime(timer))

Returned Value

If successful, ctime() returns a pointer to a date and time string. The string returned

by ctime() contains exactly 26 characters and has the format:

 "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n"

For example: Mon Jul 16 02:03:55 1987\n\0

If an error occurs, ctime() returns no value.

Notes:

v Under AMODE 64, if timeval value causes actual time to go beyond 23:59:59

Dec. 31st, 9999, 00:00:00 Jan. 1st, 0 is used to indicate timeval value too big.

For detailed description, read the notes under “localtime() — Convert Time and

Correct for Local Time” on page 1119.

v This function is sensitive to time zone information which is provided by:

– The TZ environmental variable when POSIX(ON) and TZ is correctly defined,

or by the _TZ environmental variable when POSIX(OFF) and _TZ is correctly

defined.

– The LC_TOD category of the current locale if POSIX(OFF) or TZ is not

defined.

The time zone external variables tzname, timezone, and daylight declarations

remain feature test protected in time.h.

v The calendar time returned by a call to the time() function begins at epoch, which

was at 00:00:00 Coordinated Universal Time (UTC), January 1, 1970.

v The ctime() function uses a 24-hour clock format.

v The days are abbreviated to: Sun, Mon, Tue, Wed, Thu, Fri, and Sat.

v The months are abbreviated to: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,

Nov, and Dec.

ctime

Chapter 3. Part 3. Library Functions 389

||||

|
|
|
|
|
|

||

|

v All fields have a constant width.

v Dates with only one digit are preceded either with a 0 or a blank space.

v The newline character (\n) and the NULL character (\0) occupy the last two

positions of the string.

v The asctime(), ctime(), and other time functions may use a common, statically

allocated buffer for holding the return string. Each call to one of these functions

may destroy the result of the previous call.

Special Behavior for POSIX C

v Under C Library POSIX applications only, this function is sensitive to time zone

information, which is provided by:

– The TZ environment variable if time() is called from a POSIX program and TZ

is defined. The names of the time zones are parsed out of TZ and placed in

the tzname array.

– The LC_TOD locale category, either time() is called from a non-POSIX

program, or if TZ is not defined.

See “z/OS XL C/C++ applications with z/OS UNIX System Services C functions”

on page 13 for more information about using POSIX support.

Example

CELEBC33

/* CELEBC33

 This example polls the system clock by using the library

 function &ttime..

 It then prints a message giving the current date and time.

 */

#include <time.h>

#include <stdio.h>

int main(void)

{

 time_t ltime;

 time(<ime);

 printf("the time is %s", ctime(<ime));

}

Output

the time is Fri Jun 16 16:03:38 2001

Related Information

v “locale.h” on page 57

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

ctime

390 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “time() — Determine current UTC time” on page 2204

v “tzset() — Set the Time Zone” on page 2279

ctime

Chapter 3. Part 3. Library Functions 391

ctime_r() — Convert Time Value to Date and Time Character String

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <time.h>

char *ctime_r(const time_t *clock, char *buf);

General Description

The ctime_r() function converts the calendar time pointed to by clock to local time in

exactly the same form as ctime() and puts the string into the array pointed to by

buf. (which contains at least 26 bytes) and returns buf.

Unlike ctime(), the thread-safe version ctime_r() is not required to set tzname.

Returned Value

If successful, ctime_r() returns a pointer to the string pointed to by buf.

If unsuccessful, ctime_r() returns a NULL pointer.

There are no documented errno values.

Related Information

v “locale.h” on page 57

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime() — Convert Time to Character String” on page 389

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

v “tzset() — Set the Time Zone” on page 2279

ctime_r

392 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

ctrace() — Request a Traceback

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <ctest.h>

int ctrace(char *dumptitle);

General Description

Requests a traceback. The output is identified with dumptitle. ctrace() invokes the

CEE3DMP Language Environment callable service with the following options:

TRACEBACK, NOFILE, NOBLOCK, NOVARIABLE, NOSTORAGE, STACKFRAME(ALL), NOCOND,

NOENTRY. See the CEE3DMP Language Environment callable service in z/OS

Language Environment Programming Guide, SA22-7561. to determine where the

output is written to.

If you compile the code using the GONUMBER option, this function will display, along

with the traceback, the statement numbers and the offset information.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

Note: The offsets displayed by ctrace() are from the beginning of the functions,

whereas by default, compiler listings show offsets from the beginning of the

source file. You can override the displayed offsets with the OFFSET

compile-time option.

Returned Value

If successful, ctrace() returns 0.

If unsuccessful, ctrace() returns nonzero.

Example

CELEBC34

/* CELEBC34

 This example shows how ctrace() is used and the output produced.

 */

#include <ctest.h>

int main(void) {

ctrace

Chapter 3. Part 3. Library Functions 393

int rc;

 rc = ctrace("Sample ctrace output");

}

Output for C++

CEE3DMP: Sample ctrace output Language Environment for MVS

06/16/95 6:13:31 PMPage: 1

Information for enclave ????????

Information for thread 8000000000000000

Traceback:

DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Status

00065280 05337708 +0000011C __ctrace 05337708 +0000011C Call

000651E0 052005A8 +0000006C main 052005A8 +0000006C Call

000650C8 0533FA26 +000000B4 @@MNINV 0533FA26 +000000B4 Call

00065018 CEEBBEXT 000079D8 +0000013C CEEBBEXT 000079D8 +0000013C Call

Output for C

CEE3DMP: Sample ctrace output Language Environment for MVS

06/16/95 6:12:47 PMPage: 1

Information for enclave ????????

Information for thread 8000000000000000

Traceback:

 DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Status

 00065268 05337708 +0000011C __ctrace 05337708 +0000011C Call

 000651E0 052006B8 +0000005E main 052006B8 +0000005E Call

 000650C8 0533FA26 +000000B4 @@MNINV 0533FA26 +000000B4 Call

 00065018 CEEBBEXT 000079D8 +0000013C CEEBBEXT 000079D8 +0000013C Call

Related Information

v z/OS Language Environment Programming Guide, SA22-7561

v “ctest.h” on page 38

v “cdump() — Request a Main Storage Dump” on page 249

v “csnap() — Request a Condensed Dump” on page 378

ctrace

394 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

cuserid() — Return Character Login of the User

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

both

Format

#define _XOPEN_SOURCE

#include <stdio.h>

char *cuserid(char *s);

General Description

The cuserid() function generates a character representation of the name associated

with the real or effective user ID of the process.

If s is a NULL pointer, this representation is generated in an area that may be

overwritten by subsequent calls to cuserid(). A pointer to the area is returned. If s is

not a NULL pointer, s is assumed to point to an array of at least {L_cuserid} bytes;

the representation is deposited in this array. The symbolic constant {L_cuserid} is

defined in <stdio.h> and has a value greater than 0.

Note:

This function and constant L_cuserid are kept for historical reasons. They

were part of the Legacy Feature in Single UNIX Specification, Version 2, but

have been withdrawn and are not supported as part of Single UNIX

Specification, Version 3. New applications should use getpwuid() instead of

cuserid().

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If s is not a NULL pointer, cuserid() returns s.

If s is not a NULL pointer and the login name cannot be found, the NULL byte ’\0’

will be placed at *s.

If s is a NULL pointer and the login name cannot be found, cuserid() returns a

NULL pointer.

If s is a NULL pointer and the login name can be found, cuserid() returns the

address of a buffer local to the calling thread containing the login name.

Related Information

v “stdio.h” on page 82

v “geteuid() — Get the Effective User ID” on page 765

cuserid

Chapter 3. Part 3. Library Functions 395

|
|
|
|
|

|
|
|
|
|

v “getlogin() — Get the User Login Name” on page 799

v “getpwnam() — Access the User Database by User Name” on page 840

v “getpwuid() — Access the User Database by User ID” on page 843

v “getuid() — Get the Real User ID” on page 878

cuserid

396 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dbm_clearerr() — Clear Database Error Indicator

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ndbm.h>

int dbm_clearerr(DBM *db);

General Description

The dbm_clearerr() function clears the error condition of the database. The

argument db is a handle to a database previously obtained by dbm_open(). Note

that this does not correct any problems with the database due to previous failures.

It simply allows dbm_ operations to proceed. The database may be in an

inconsistent or damaged state.

Special Behavior for z/OS UNIX Services

In a multithreaded environment, the database error indicator is global to all threads

using the database handle. Thus, clearing the error indicator affects all threads

using the database handle.

Returned Value

The return value is unspecified by X/Open.

If successful, dbm_clearerr() returns 0.

If unsuccessful, dbm_clearerr() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL Non-valid database descriptor specified.

Related Information

v “ndbm.h” on page 64

v “dbm_close() — Close a Database” on page 398

v “dbm_delete() — Delete Database Record” on page 399

v “dbm_error() — Check Database Error Indicator” on page 401

v “dbm_fetch() — Get Database Content” on page 402

v “dbm_firstkey() — Get First Key in Database” on page 403

v “dbm_nextkey() — Get Next Key in Database” on page 405

v “dbm_open() — Open a Database” on page 407

v “dbm_store() — Store Database Record” on page 409

dbm_clearerr

Chapter 3. Part 3. Library Functions 397

||||

|
|
||

|

dbm_close() — Close a Database

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ndbm.h>

void dbm_close(DBM *db);

General Description

The dbm_close() function closes a database. The db argument is the database

handle returned by a previous call to dbm_open().

Special Behavior for z/OS UNIX Services

A dbm_close() function call removes access to the specified database handle to all

threads within the process.

Returned Value

dbm_close() returns no values.

Related Information

v “ndbm.h” on page 64

v “dbm_clearerr() — Clear Database Error Indicator” on page 397

v “dbm_delete() — Delete Database Record” on page 399

v “dbm_error() — Check Database Error Indicator” on page 401

v “dbm_fetch() — Get Database Content” on page 402

v “dbm_firstkey() — Get First Key in Database” on page 403

v “dbm_nextkey() — Get Next Key in Database” on page 405

v “dbm_open() — Open a Database” on page 407

v “dbm_store() — Store Database Record” on page 409

dbm_close

398 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

dbm_delete() — Delete Database Record

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ndbm.h>

int dbm_delete(DBM *db, datum key);

General Description

The dbm_delete() function deletes a record and its key from the database. The db

argument specifies the database handle returned by a previous call to dbm_open().

The key argument identifies the record the program is deleting. The key datum

must contain a dptr pointer to the key, and the key length in dsize.

After calling dbm_delete(), during a pass through the keys by dbm_firstkey() and

dbm_nextkey(), the application positioning must be reset by calling dbm_firstkey(). If

not, unpredictable results may occur including retrieval of the same key multiple

times, or not at all.

File space is not physically reclaimed by a dbm_delete() operation. That is, the file

size is not reduced. However, the space is available for reuse, subject to hashing.

Special Behavior for z/OS UNIX Services

In a multithreaded environment, changes made to the database by a dbm_delete()

operation affect all threads using the database handle. Thus, all other threads must

also reset their positioning by using the dbm_firstkey() function before using

dbm_nextkey(). A previously executed dbm_fetch() operation by another thread for

the same key still has correct buffer pointers to the previous data. The dbm_delete()

operation does not affect this. All other operations on other threads, such as

dbm_fetch() to this (now) deleted key will fail.

Returned Value

If successful, dbm_delete() returns 0.

If unsuccessful, dbm_delete() returns −1 and sets the error value in errno. Also, the

database error indicator may be set.

Related Information

v “ndbm.h” on page 64

v “dbm_clearerr() — Clear Database Error Indicator” on page 397

v “dbm_close() — Close a Database” on page 398

v “dbm_error() — Check Database Error Indicator” on page 401

v “dbm_fetch() — Get Database Content” on page 402

v “dbm_firstkey() — Get First Key in Database” on page 403

v “dbm_nextkey() — Get Next Key in Database” on page 405

v “dbm_open() — Open a Database” on page 407

dbm_delete

Chapter 3. Part 3. Library Functions 399

||||

|
|
||

|

v “dbm_store() — Store Database Record” on page 409

dbm_delete

400 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dbm_error() — Check Database Error Indicator

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ndbm.h>

int dbm_error(DBM *db);

General Description

The dbm_error() function returns the error condition of the database. The argument

db is a handle to a database previously obtained by dbm_open().

Special Behavior for z/OS UNIX Services

In a multithreaded environment, the database error indicator is global to all threads

using the database handle. Thus, the database error indicator may be set as a

result of a database operation by another thread.

Returned Value

dbm_error() returns 0 if the error condition is not set.

dbm_error() returns nonzero if the error condition is set.

Related Information

v “ndbm.h” on page 64

v “dbm_clearerr() — Clear Database Error Indicator” on page 397

v “dbm_close() — Close a Database” on page 398

v “dbm_delete() — Delete Database Record” on page 399

v “dbm_fetch() — Get Database Content” on page 402

v “dbm_firstkey() — Get First Key in Database” on page 403

v “dbm_nextkey() — Get Next Key in Database” on page 405

v “dbm_open() — Open a Database” on page 407

v “dbm_store() — Store Database Record” on page 409

dbm_error

Chapter 3. Part 3. Library Functions 401

||||

|
|
||

|

dbm_fetch() — Get Database Content

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ndbm.h>

datum dbm_fetch(DBM *db, datum key);

General Description

The dbm_fetch() function reads a record from the database. The argument db is a

handle to a database previously obtained by dbm_open(). The argument key is a

datum that has been initialized by the application program to the value of the key

that matches the key of the record the program is fetching. A datum is a structure

that consists of two members, dptr and dsize. The member dptr is a char pointer

to an array of data that is dsize bytes in length. (Note: The data is arbitrary binary

data and is not NULL-terminated.)

The dptr is valid only until the next dbm_ operation by this thread.

Special Behavior for z/OS UNIX Services

In a multithreaded environment, the dbm_fetch() function returns a dptr in the

datum structure to a data area that is thread-specific. This data area is not affected

by other threads operations on the database, with the exception of a dbm_close()

operation, which invalidates the datum.

Returned Value

If successful, dbm_fetch() returns the datum containing a pointer to the data content

dptr, and the data length dsize.

If unsuccessful, dbm_fetch() returns a NULL pointer in dptr and returns the error

value in errno. Also, the database error indicator may be set.

Related Information

v “ndbm.h” on page 64

v “dbm_clearerr() — Clear Database Error Indicator” on page 397

v “dbm_close() — Close a Database” on page 398

v “dbm_delete() — Delete Database Record” on page 399

v “dbm_error() — Check Database Error Indicator” on page 401

v “dbm_firstkey() — Get First Key in Database” on page 403

v “dbm_nextkey() — Get Next Key in Database” on page 405

v “dbm_open() — Open a Database” on page 407

v “dbm_store() — Store Database Record” on page 409

dbm_fetch

402 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

dbm_firstkey() — Get First Key in Database

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ndbm.h>

datum dbm_firstkey(DBM *db);

General Description

The dbm_firstkey() function returns the first key in the database. The argument db

is a handle to a database previously obtained by dbm_open(). Since the keys are

arbitrary binary data, the order of key return by dbm_firstkey() and dbm_nextkey()

does not reflect any lexical ordering. In addition, the return order does not reflect

record insertion ordering. All keys can be retrieved from the database by executing

a loop such as:

for (key = dbm_firstkey(db); key.dptr !=NULL; key = dbm_nextkey(db))

That is, establish positioning to the beginning by use of the dbm_firstkey() function,

then loop doing dbm_nextkey() function calls until a NULL dptr is returned in the

datum.

The returned dptr is valid only until the next dbm_ operation by this thread.

Special Behavior for z/OS UNIX Services

In a multithreaded environment, the dbm_firstkey() function returns a pointer to data

that is thread-specific. In addition, each thread maintains its own positioning

information for dbm_nextkey() operations. However, other threads making

modifications to the database, for example using dbm_store() or dbm_delete() can

cause unpredictable results for threads executing dbm_nextkey(), including keys

retrieved multiple times or not at all. The application must reset positioning to the

beginning using dbm_firstkey() if another thread has done a modification to the

database.

Returned Value

If successful, dbm_firstkey() returns the datum containing a pointer to the key dptr,

and the key length dsize.

If unsuccessful, dbm_firstkey() returns a NULL pointer in dptr and returns the error

value in errno. Also, the database error indicator may be set.

Related Information

v “ndbm.h” on page 64

v “dbm_clearerr() — Clear Database Error Indicator” on page 397

v “dbm_close() — Close a Database” on page 398

v “dbm_delete() — Delete Database Record” on page 399

v “dbm_error() — Check Database Error Indicator” on page 401

dbm_firstkey

Chapter 3. Part 3. Library Functions 403

||||

|
|
||

|

v “dbm_fetch() — Get Database Content” on page 402

v “dbm_nextkey() — Get Next Key in Database” on page 405

v “dbm_open() — Open a Database” on page 407

v “dbm_store() — Store Database Record” on page 409

dbm_firstkey

404 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dbm_nextkey() — Get Next Key in Database

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ndbm.h>

datum dbm_nextkey(DBM * db);

General Description

The dbm_nextkey() function returns the next key in the database. The argument db

is a handle to a database previously obtained by dbm_open(). Since the keys are

arbitrary binary data, the order of key return by dbm_firstkey() and dbm_nextkey()

does not reflect any lexical ordering. In addition, the return order does not reflect

record insertion ordering. All keys can be retrieved from the database by executing

a loop such as:

for (key = dbm_firstkey(db); key.dptr !=NULL; key = dbm_nextkey(db))

That is, establish positioning to the beginning by use of the dbm_firstkey() function,

then loop doing dbm_nextkey() function calls until a NULL dptr is returned in

datum.

The returned dptr is valid only until the next dbm_ operation by this thread.

Special Behavior for z/OS UNIX Services

In a multithreaded environment, the dbm_nextkey() function returns a pointer to

data that is thread-specific. In addition, each thread maintains its own positioning

information for dbm_nextkey() operations. However, other threads making

modifications to the database, for example using dbm_store() or dbm_delete() can

cause unpredictable results for threads executing dbm_nextkey(), including keys

retrieved multiple times or not at all. The application must reset positioning to the

beginning using dbm_firstkey() if another thread has done a modification to the

database.

Returned Value

If successful, dbm_nextkey() returns the datum containing a pointer to the key dptr,

and the key length dsize.

If unsuccessful, dbm_nextkey() returns a NULL pointer in dptr and returns the error

value in errno. Also, the database error indicator may be set.

Related Information

v “ndbm.h” on page 64

v “dbm_clearerr() — Clear Database Error Indicator” on page 397

v “dbm_close() — Close a Database” on page 398

v “dbm_delete() — Delete Database Record” on page 399

v “dbm_error() — Check Database Error Indicator” on page 401

dbm_nextkey

Chapter 3. Part 3. Library Functions 405

||||

|
|
||

|

v “dbm_fetch() — Get Database Content” on page 402

v “dbm_firstkey() — Get First Key in Database” on page 403

v “dbm_open() — Open a Database” on page 407

v “dbm_store() — Store Database Record” on page 409

dbm_nextkey

406 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dbm_open() — Open a Database

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ndbm.h>

DBM *dbm_open(const char *file, int open_flags, mode_t file_mode);

General Description

The dbm_open() function opens a database. The file argument is the pathname of

the database, not including the filename suffix (the part after the .). The database is

stored in two files. One file is a directory containing a bit map of blocks in use and

has .dir as its suffix. The second file contains all the data and has .pag as its suffix.

The open_flags argument has the same meaning as the flags argument of open()

except that a database opened for write-only access opens the files for read and

write access. The file_mode argument has the same meaning as the third argument

of open().

The number of records that can be stored in the database is limited by the file

space available for the .dir and .pag files, and by the underlying key hashing. If

multiple keys hash to the same 32 bit hash value, the number of keys for that hash

value is limited to the amount of data (key sizes plus content sizes plus overhead)

that can be stored in a single logical block of 1024 bytes.

Special Behavior for z/OS UNIX Services

In a multithreaded environment, the dbm_ functions have both POSIX process wide

and thread-specific characteristics. z/OS UNIX services provide the following

multithreaded behavior:

1. A database handle returned by the dbm_open() function is a process wide

resource. This means that multiple threads within the process can access the

database using the same database handle.

2. Each thread using a given database handle has its own positioning information

for dbm_firstkey() and dbm_nextkey() operations. This means that multiple

threads can each be executing a dbm_nextkey() loop.

3. Each thread using a given database handle has its own buffering for

dbm_fetch() operations. This means that a pointer to a keys content (as

returned by dbm_fetch()) remains valid, even if other threads modify the

database.

4. Database modifications are automatically reflected to all of the threads using the

same database handle. For example, if a thread adds a key/data pair using

dbm_store(), a dbm_fetch() of that key by another thread will be successful.

5. Operations which modify the database, such as dbm_store() and dbm_delete(),

can cause unpredictable results to threads executing dbm_nextkey(). If a

database modification is done, all threads should reset positioning using a

dbm_firstkey() call before executing dbm_nextkey().

dbm_open

Chapter 3. Part 3. Library Functions 407

||||

|
|
||

|

6. A dbm_close() operation removes access to the database for all threads that

use the database handle.

7. Multiple dbm_open() operations, whether by a single thread, multiple threads

within a process, or by multiple processes are permitted, but for read access

only. No protection is provided for database modification, and modification can

result in unpredictable results, including database destruction.

Returned Value

If successful, dbm_open() returns a pointer to the database descriptor.

If unsuccessful, dbm_open() returns a NULL pointer and stores the error value in

errno.

Related Information

v “ndbm.h” on page 64

v “dbm_clearerr() — Clear Database Error Indicator” on page 397

v “dbm_close() — Close a Database” on page 398

v “dbm_delete() — Delete Database Record” on page 399

v “dbm_error() — Check Database Error Indicator” on page 401

v “dbm_fetch() — Get Database Content” on page 402

v “dbm_firstkey() — Get First Key in Database” on page 403

v “dbm_nextkey() — Get Next Key in Database” on page 405

v “dbm_store() — Store Database Record” on page 409

v “open() — Open a File” on page 1313

dbm_open

408 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dbm_store() — Store Database Record

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ndbm.h>

int dbm_store(DBM *db, datum key, datum content, int store_mode);

General Description

The dbm_store() function writes a record to a database. The db argument specifies

the database handle returned by a previous call to dbm_open(). The key argument

identifies the record the program is deleting. The key datum must contain a dptr

pointer to the key, and the key length in dsize. The argument content is a datum.

that describes the data record being stored. record the program is writing. The

content datum. contains a dptr pointer to the data, and the data length in dsize.

The argument store_mode controls whether dbm_store() replaces a already existing

record that has the same key. The store_mode argument may be any one of the

following set of symbols defined in the <ndbm.h> include file:

DBM_INSERT Do not add the key and content pair if the key already exists in the

database. If the key doesn’t already exist, add the new key and

content pair.

DBM_REPLACE

Replace the key and content pair in the database with the new pair

if the key already exists. If the key doesn’t already exist, add the

new key and content pair.

After calling dbm_store(), during a pass through the keys by dbm_firstkey() and

dbm_nextkey(), the application positioning must be reset by calling dbm_firstkey(). If

not, unpredictable results may occur including retrieval of the same key multiple

times, or not at all.

The number of records that can be stored in the database is limited by the file

space available for the .dir and .pag files, and by the underlying key hashing. If

multiple keys hash to the same 32 bit hash value, the number of keys for that hash

value is limited to the amount of data (key sizes plus content sizes plus overhead)

that can be stored in a single logical block of 1024 bytes.

Special Behavior for z/OS UNIX Services

In a multithreaded environment, changes made to the database by a dbm_store()

operation affect all threads using the database handle. Thus, all other threads must

also reset their positioning by using the dbm_firstkey() function before using

dbm_nextkey(). A previously executed dbm_fetch() operation by another thread for

the same key still has correct buffer pointers to the previous data. The dbm_store()

operation does not affect this. All other operations, such as dbm_fetch() or

dbm_delete(), will automatically have access to the new key and content pair.

dbm_store

Chapter 3. Part 3. Library Functions 409

||||

|
|
||

|

Returned Value

If successful, dbm_store() returns 0. If DBM_INSERT is specified, and the key already

exists, dbm_store() returns 1.

If unsuccessful, dbm_store() returns −1 and sets errno to one of the following

values. Also, the database error indicator may be set.

Error Code Description

EFBIG Seek/Write operation failed attempting to write new block. This

errno is not part of the errno set described by X/Open for this

function. You may be able to store other key and content pairs

when the key hashes to a different value.

ENOSPC key plus content plus block overhead does not fit into a block. This

errno is not part of the errno set described by X/Open for this

function. The key plus content underlying data lengths need be less

or equal to 1012 bytes in length.

Related Information

v “ndbm.h” on page 64

v “dbm_clearerr() — Clear Database Error Indicator” on page 397

v “dbm_close() — Close a Database” on page 398

v “dbm_delete() — Delete Database Record” on page 399

v “dbm_error() — Check Database Error Indicator” on page 401

v “dbm_fetch() — Get Database Content” on page 402

v “dbm_firstkey() — Get First Key in Database” on page 403

v “dbm_nextkey() — Get Next Key in Database” on page 405

v “dbm_open() — Open a Database” on page 407

dbm_store

410 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

decabs() — Decimal Absolute Value

Standards

 Standards / Extensions C or C++ Dependencies

C Library C only

Format

#include <decimal.h>

decimal(n,p) decabs(decimal(n,p) pdec);

General Description

The built-in function decabs() accepts a decimal type expression as an argument

and returns the absolute value of the decimal argument, in the same decimal type

as the argument. The function does not change the content of the argument.

The parameter n can be any integral value between 1 and DEC_DIG. The

parameter p can be any integral value between 0 and DEC_PRECISION, although

it must be less than or equal to n. DEC_DIG and DEC_PRECISION are defined

inside decimal.h.

If the content of the given argument is not in native packed decimal format,

behavior is undefined.

Example

CELEBD01

/* CELEBD01 */

#include <decimal.h>

decimal(10,2) p1, p2;

int main(void) {

 p2 = −1234.56d;

 p1 = decabs(p2);

 printf("p1 = %D(10,2), p2 = %D(10,2)\n", p1, p2);

 return(0);

}

Output

p1 = 1234.56, p2 = -1234.56

Related Information

v “decimal.h” on page 39

v “decchk() — Check for Valid Decimal Types” on page 412

v “decfix() — Fix Up a Nonpreferred Sign Variable” on page 414

decabs

Chapter 3. Part 3. Library Functions 411

decchk() — Check for Valid Decimal Types

Standards

 Standards / Extensions C or C++ Dependencies

C Library C only

Format

#include <decimal.h>

int decchk(decimal(n,p) pdec);

General Description

The built-in function decchk() accepts a decimal type expression as an argument

and returns a status value of type int.

The status can be interpreted as follows:

DEC_VALUE_OK A valid decimal representation value (including the

less-preferred but valid sign, A-F).

DEC_BAD_NIBBLE The leftmost half-byte is not 0 in a decimal type

number that has an even number of digits. For

example, 123 is stored in decimal(2,0). If such a

number is packed, then it is used.

DEC_BAD_DIGIT Digits not allowed (not 0-9). If such a number is

packed, then it is used.

DEC_BAD_SIGN Sign not allowed (not A-F). If such a number is

packed, then it is used.

The function return status can be masked to return multiple status.

The parameter n can be any integral value between 1 and DEC_DIG. The

parameter p can be any integral value between 0 and DEC_PRECISION, although

it must be less than or equal to n. DEC_DIG and DEC_PRECISION are defined

inside decimal.h.

If the content of the given argument is not in native packed decimal format, the

behavior is undefined.

Example

#include <decimal.h>

decimal(10,2) p1;

char mem2[3] = { 0x12, 0x34, 0x5c }; /* bad half-byte */

char mem3[3] = { 0x02, 0xa4, 0x5c }; /* bad digit */

char mem4[3] = { 0x02, 0x34, 0x56 }; /* bad sign */

char mem5[3] = { 0x12, 0xa4, 0x56 }; /* bad half-byte, digit and sign */

decimal(4,0) *pp2;

decimal(4,0) *pp3;

decimal(4,0) *pp4;

decimal(4,0) *pp5;

int main(void) {

 p1 = 123456.78d;

 pp2 = (decimal(4,0) *) mem2;

decchk

412 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pp3 = (decimal(4,0) *) mem3;

 pp4 = (decimal(4,0) *) mem4;

 pp5 = (decimal(4,0) *) mem5;

 if (decchk(p1) == DEC_VALUE_OK) {

 printf("p1 is a valid decimal representation value.\n");

 }

 if (decchk(*pp2) == DEC_BAD_NIBBLE) {

 printf("pp2 points to a bad half-byte value!\n");

 }

 if (decchk(*pp3) == DEC_BAD_DIGIT) {

 printf("pp3 points to an illegal digit!\n");

 }

 if (decchk(*pp4) == DEC_BAD_SIGN) {

 printf("pp4 points to an illegal sign!\n");

 }

 /* The wrong way ----- */

 if (decchk(*pp5) == DEC_BAD_SIGN) {

 printf("YOU SHOULD NOT GET THIS!!!!!\n");

 }

 /* The right way ----- */

 if ((decchk(*pp5) & DEC_BAD_SIGN) == DEC_BAD_SIGN) {

 printf("pp5 points to an illegal sign!\n");

 }

 return(0);

}

Output

p1 is a valid decimal representation value.

pp2 points to a bad half-byte value!

pp3 points to an illegal digit!

pp4 points to an illegal sign!

pp5 points to an illegal sign!

Related Information

v “decimal.h” on page 39

v “decabs() — Decimal Absolute Value” on page 411

v “decfix() — Fix Up a Nonpreferred Sign Variable” on page 414

decchk

Chapter 3. Part 3. Library Functions 413

decfix() — Fix Up a Nonpreferred Sign Variable

Standards

 Standards / Extensions C or C++ Dependencies

C Library C only

Format

#include <decimal.h>

decimal(n,p) decfix(decimal(n,p) pdec);

General Description

The built-in function decfix() accepts a decimal type expression as an argument and

returns a decimal value that has the same type and same value as the argument

with the correct preferred sign. The function does not change the content of the

argument.

The parameter n can be any integral value between 1 and DEC_DIG. The

parameter p can be any integral value between 0 and DEC_PRECISION, though it

must be less than or equal to n. DEC_DIG and DEC_PRECISION are defined

inside decimal.h.

If the content of the given argument is not in native packed decimal format,

behavior is undefined.

Example

#include <decimal.h>

char *ptr;

char mem[3] = { 0x01, 0x23, 0x4A };

decimal(4,0) *pp;

decimal(4,0) p;

int main(void) {

 pp = (decimal(4,0) *) mem;

 p = decfix(*pp);

 ptr = (char *) p;

 printf("Before decfix : %X%X%X\n", mem[0], mem[1], mem[2]);

 printf("After decfix : %X%X%X\n", ptr[0], ptr[1], ptr[2]);

 return(0);

}

Output

Before decfix : 1234A

After decfix : 1234C

Related Information

v “decimal.h” on page 39

v “decabs() — Decimal Absolute Value” on page 411

v “decchk() — Check for Valid Decimal Types” on page 412

decfix

414 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

DeleteWorkUnit() — Delete a WLM Work Unit

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

int DeleteWorkUnit(wlmetok_t *enclavetoken);

General Description

The DeleteWorkUnit() function provides the ability for an application to delete a

WLM work unit.

*enclavetoken Points to a work unit enclave token that was returned from a call to

CreateWorkUnit() or ContinueWorkUnit().

Returned Value

If successful, DeleteWorkUnit() returns 0.

If unsuccessful, DeleteWorkUnit() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained an incorrect value.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

The WLM delete enclave failed. Use __errno2() to obtain the WLM

service reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class if it is defined.

If BPX.WLMSERVER is not defined, the calling process is not

defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “CheckSchEnv() — Check WLM Scheduling Environment” on page 278

v “ConnectServer() — Connect to WLM as a Server Manager” on page 332

v “ConnectWorkMgr() — Connect to WLM as a Work Manager” on page 334

v “ContinueWorkUnit() — Continue WLM Work Unit” on page 343

v “DisconnectServer() — Disconnect from WLM Server” on page 421

v “ExtractWorkUnit() — Extract Enclave Service” on page 508

v “JoinWorkUnit() — Join a WLM Work Unit” on page 1049

v “LeaveWorkUnit() — Leave a WLM Work Unit” on page 1073

v “QueryMetrics() — Query WLM System Information” on page 1589

DeleteWorkUnit

Chapter 3. Part 3. Library Functions 415

v “QuerySchEnv() — Query WLM Scheduling Environment” on page 1591

DeleteWorkUnit

416 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

difftime() — Compute Time Difference

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <time.h>

double difftime(time_t time2, time_t time1);

General Description

Computes the difference in seconds between time2 and time1, which are calendar

times returned by time().

The difftime() function returns the difference between two calendar times as a

double. The return value is hexadecimal floating-point or IEEE Binary Floating-Point

format depending on the floating-point mode of the thread invoking difftime(). The

difftime() function uses __isBFP() to determine which floating-point format

(hexadecimal floating-point or IEEE Binary Floating-Point) to return on the invoking

thread.

Returned Value

Returns the elapsed time in seconds from time1 to time2 as a double.

Example

CELEBD04

/* CELEBD04

 This example shows a timing application using &diff..

 The example calculates how long, on average, it takes a

 user to input some data to the program.

 */

#include <time.h>

#include <stdio.h>

int main(void)

{

 time_t start, finish;

 int i, n, num;

 int answer;

 printf("11 x 55 = ? Enter your answer below\n");

 time(&start);

 scanf("%d",&answer);

 time(&finish);

 printf("You answered %s in %.0f seconds.\n",

 answer == 605 ? "correctly" : "incorrectly",

 difftime(finish,start));

}

difftime

Chapter 3. Part 3. Library Functions 417

||||

|
|
|
|
|

||

|

Output

 11 x 55 = ? Enter your answer below

 605

 You answered correctly in 20 seconds

Related Information

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

difftime

418 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dirname() — Report the Parent Directory of a Pathname

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <libgen.h>

char *dirname(char *path);

General Description

The dirname() function takes a pointer to a character string that contains a

pathname, and returns a pointer to a string that is a pathname of the parent

directory of that file. Trailing ’/’ characters in the path are not counted as part of the

path.

If path does not contain a ’/’ then dirname() returns a pointer to the string ″.″. If path

is a NULL pointer or points to an empty string, dirname() returns a pointer to the

string ″.″.

The dirname() function may modify the string pointed to by path.

Examples:

Input String Output String

"/usr/lib" "/usr"

"/usr/" "/"

"usr" "."

"/" "/"

"." "."

".." "."

Returned Value

If successful, dirname() returns a pointer to a string that is the parent directory of

path.

If path is a NULL pointer or points to an empty string, dirname() returns a pointer to

a string ″.″.

There are no errno values defined.

Related Information

v “libgen.h” on page 55

v “basename() — Return the Last Component of a Pathname” on page 208

dirname

Chapter 3. Part 3. Library Functions 419

||||

|
|
||

|

__discarddata() — Release Pages Backing Virtual Storage

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both OS/390 V2R10

Format

#include <stdlib.h>

int __discarddata(void *addr, size_t size);

General Description

The __discarddata() function is used to release segments of real storage backing

virtual storage. Segments backing virtual storage are released beginning at location

addr for a length of size. For AMODE 31, the addr must begin on a page (4K)

boundary and size must be a multiple of 4K. For AMODE 64, the addr must begin

on a segment (1 MB) boundary and size must be a multiple of 1 MB.

Returned Value

If successful, __discarddata() returns 0.

If unsuccessful, because addr does not begin on a page (4K) boundary or size is

not a multiple of 4K, __discarddata() returns -1.

There are no errno values defined.

Related Information

v “stdlib.h” on page 85

__discarddata

420 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

DisconnectServer() — Disconnect from WLM Server

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

int DisconnectServer(unsigned long *conn_tkn);

AMODE 64

#include <sys/__wlm.h>

int DisconnectServer(unsigned int *conn_tkn);

General Description

The DisconnectServer function provides the ability for an application to disconnect

from WLM.

*conn_tkn Specifies the connect token that represents the WLM connection

that is to be disconnected.

Returned Value

If successful, DisconnectServer() returns 0.

If unsuccessful, DisconnectServer() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained an incorrect value.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

The WLM disconnect failed. Use __errno2() to obtain the WLM

service reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class if it is defined.

If BPX.WLMSERVER is not defined, the calling process is not

defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “CheckSchEnv() — Check WLM Scheduling Environment” on page 278

v “ConnectServer() — Connect to WLM as a Server Manager” on page 332

v “ConnectWorkMgr() — Connect to WLM as a Work Manager” on page 334

v “ContinueWorkUnit() — Continue WLM Work Unit” on page 343

DisconnectServer

Chapter 3. Part 3. Library Functions 421

v “CreateWorkUnit() — Create WLM Work Unit” on page 369

v “DeleteWorkUnit() — Delete a WLM Work Unit” on page 415

v “ExtractWorkUnit() — Extract Enclave Service” on page 508

v “JoinWorkUnit() — Join a WLM Work Unit” on page 1049

v “LeaveWorkUnit() — Leave a WLM Work Unit” on page 1073

v “QueryMetrics() — Query WLM System Information” on page 1589

v “QuerySchEnv() — Query WLM Scheduling Environment” on page 1591

DisconnectServer

422 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

div() — Calculate Quotient and Remainder

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

div_t div(int numerator, int denominator);

div_t div(long numerator, long denominator); /* C++ only */

General Description

Calculates the quotient and remainder of the division of numerator by denominator.

Special Behavior for C++:

For C++ applications, div() is also overloaded for the type long.

Returned Value

Returns a structure of type div_t, containing both the quotient int quot and the

remainder int rem. This structure is defined in stdlib.h. If the returned value cannot

be represented, the behavior of div() is undefined. If denominator is 0, the same

exception will be raised as if you divided by 0. That is, you get the error CEE3209S

(Fixed-point divide exception).

Related Information

v “stdlib.h” on page 85

v “ldiv() — Compute Quotient and Remainder of Integral Division” on page 1071

div

Chapter 3. Part 3. Library Functions 423

||||

|
|
|
|
|
|

||

|

dlclose() — Close a dlopen() object

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R6

Format

#define _UNIX03_SOURCE

#include <dlfcn.h>

void dlclose(void *handle);

General Description

Informs the system that the Dynamic Link Library (DLL) referenced by a handle

returned from a previous dlopen() invocation is no longer needed by the application.

Once a DLL has been closed, an application should assume that its symbols and

the symbols of any dependent DLLs are no longer available to dlsym().

Returned Value

NULL is returned if the referenced DLL was successfully closed. If the DLL could

not be closed, or if handle does not refer to an open DLL, a non-zero value will be

returned.

Application Usage

1. A conforming application should use a handle returned from a dlopen()

invocation only within a given scope, bracketed by the dlopen() and dlclose()

operations. The value of a handle must be treated as an opaque object by the

application, used only in calls to dlsym() and dlclose().

2. DLLs that are loaded explicitly, that is with dlopen(), and are not freed with a

corresponding call to dlclose(), are freed automatically at enclave termination in

LIFO sequence.

3. Non-local C++ static destructors defined in a DLL are executed only once, when

the DLL program object is deleted from memory.

4. More detailed diagnostic information is available through dlerror() ,the

_EDC_DLL_DIAG environment variable, and the Language Environment DLL

Failure control block (CEEDLLF) chain.

5. This function is not available under SPC, MTF and CSP environments.

Example

The following example illustrates use of dlopen() and dlclose():

...

/* Open a dynamic library and then close it ... */

#include <dlfcn.h>

void *mylib;

int eret;

mylib = dlopen("mylib.so", RTLD_LOCAL | RTLD_LAZY);

...

eret = dlclose(mylib);

...

dlclose

424 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|||
|

|
|
|

Related Information

v “dlerror() — Get diagnostic information” on page 426

v “dlopen() — Gain access to a Dynamic Link Library (DLL)” on page 427

v “dlsym() — Obtain the address of a symbol from a dlopen() object” on page 430

v “dlfcn.h” on page 40

dlclose

Chapter 3. Part 3. Library Functions 425

dlerror() — Get diagnostic information

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R6

Format

#define _UNIX03_SOURCE

#include <dlfcn.h>

void dlerror(void);

General Description

Returns a null-terminated character string (with no trailing <newline>) that describes

the last error that occurred while processing a DLL by dlopen(), dlsym(), or

dlclose(). NULL is returned if no errors have occurred since the last invocation of

dlerror().

Note: dlerror() is thread safe, so the information returned describes the last error

that occurred on that thread

Returned Value

A null-terminated character string is returned if successful, otherwise NULL is

returned.

Application Usage

1. Messages returned by dlerror() reside in a static buffer that is overwritten on

each new call to dlerror() on that thread.

2. Application code should not write to this buffer.

3. Programs wishing to preserve an error message should make their own copies

of that message.

4. This function is not available under SPC, MTF and CSP environments.

Example

The following example prints out the last dynamic linking error:

...

#include <dlfcn.h>

char *errstr;

errstr = dlerror();

if (errstr != NULL)

printf ("A dynamic linking error occurred: (%s)\n", errstr);

...

Related Information

v “dlclose() — Close a dlopen() object” on page 424

v “dlopen() — Gain access to a Dynamic Link Library (DLL)” on page 427

v “dlsym() — Obtain the address of a symbol from a dlopen() object” on page 430

v “dlfcn.h” on page 40

dlerror

426 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|||
|

dlopen() — Gain access to a Dynamic Link Library (DLL)

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R6

Format

#define _UNIX03_SOURCE

#include <dlfcn.h>

void *dlopen(const char *file, int mode);

General Description

Makes the Dynamic Link Library (DLL) specified by file available to the calling

program.

If the file argument contains a single slash (″/″), it is used as the UNIX file system

pathname for the DLL. If the environment variable LIBPATH is set, each directory

listed will be searched for the DLL. Otherwise, the current directory will be

searched.

Note: Searching for a DLL in the UNIX file system is case-sensitive.

If the file argument begins with two slashes (″//″), then an attempt is made to load

the DLL from the caller’s MVS load library search order (in order: STEPLIB/JOBLIB,

LPA, Link List). The DLL name must be eight characters or less, and is converted to

uppercase.

If the file argument doesn’t begin with one or two slashes (″/″ or ″//″), and doesn’t

contain a single slash (″/″) anywhere in the name, then it is ambiguous as to where

the DLL resides.

v If the POSIX(ON) run-time option is specified, then the UNIX file system is

searched first for the DLL, and if not found, the MVS load library is searched.

v If the POSIX(OFF) run-time option is specified, then the MVS load library is

searched first for the DLL, and if not found, the UNIX file system is searched.

Under the CICS environment, the search sequence for DLL load modules is the

same as that used for dynamically loaded CICS modules. Loading DLLs from the

UNIX file system is not supported under CICS.

More details on how DLLs are located can be found in section ″Loading DLLs″ of

the z/OS Language Environment Programming Guide.

A successful call returns a handle which the caller may use on subsequent calls to

dlsym() and dlclose(). The value of this handle should not be interpreted in any way

by the caller.

Only a single copy of a DLL is brought into the address space, even if invoked

multiple times for the same DLL, and even if different values of the file parameter

are used to reference the same DLL.

dlopen

Chapter 3. Part 3. Library Functions 427

||||

|||
|

The mode parameter describes how dlopen() operates on a file with respect to the

processing of dependent DLLs and the scope of visibility of the symbols provided

within file. If a file is specified in multiple invocations, mode is interpreted at each

invocation. The mode is a bitwise-OR of the values specified.

Mode Values

When a DLL is loaded, it may contain implicit references to symbols in another

″dependent″ DLL, whose addresses are not known until that DLL is loaded. These

implicit references must be relocated before the symbols can be accessed, which

means loading the DLL containing the references. The mode parameter governs

when these relocations (and loads) take place and may have the following values:

Value Description

RTLD_LAZY When possible, the loading of dependent DLLs, and resolution of

symbols contained therein, may be deferred until the first reference

to one of those symbols. This is the default behavior.

Note: Once RTLD_NOW has been specified, all relocations will

have been completed causing additional RTLD_NOW

operations to be redundant and any further RTLD_LAZY

operations irrelevant.

RTLD_NOW Load all dependent DLLs for the DLL being loaded and resolve all

symbols before returning. This may include zero or more levels of

nested dependent DLLs, all of which are loaded at this time.

RTLD_GLOBAL

Allows symbols in the DLL being loaded to be visible when

resolving symbols through the global symbol object that was

opened with dlopen(NULL,0). All dependent DLLs are always

implicitly loaded as if RTLD_GLOBAL had been specified. This is

the default behavior.

RTLD_LOCAL Prevents symbols in the DLL being loaded to be visible when

resolving symbols through the global symbol object that was

opened with dlopen(NULL,0). All dependent DLLs of this DLL

continue to be implicitly loaded as if RTLD_GLOBAL had been

specified.

 If a subsequent call is made for this same DLL with a mode of

RTLD_GLOBAL, then the DLL will maintain the RTLD_GLOBAL

status regardless of any previous or future specification of

RTLD_LOCAL, as long as the DLL remains loaded (see dlclose()).

If the value of file is NULL, dlopen() returns a ″global symbol object″ handle. This

object will provide access (via dlsym()) to the symbols exported from:

v The main application, and dependent DLLs for the main application that were

loaded at program start-up, and

v The set of DLLs loaded using dlopen() with the RTLD_GLOBAL flag. This set of

DLLs can change dynamically as other DLLs are opened and closed.

Symbols introduced by the call to dlopen() for a DLL, and available through dlsym(),

are those which are exported by the DLL. Typically such symbols will be those

identified by a #pragma export in C, or with the EXPORTALL compile option. For

dlopen

428 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

details on how to specify exported data and functions, for C/C++ as well as other

languages, refer to section ″Building a Simple DLL″ in the z/OS Language

Environment Programming Guide.

Returned Value

NULL is returned if:

v file cannot be found or opened for reading

v file is not in correct DLL executable format

v an error occurred during the process of loading file, or relocating its symbolic

references

v

Application Usage

1. For details on how to create and use DLLs, refer to Chapter 4 of the z/OS

Language Environment Programming Guide.

2. The AMODE of the application must be the same as the AMODE of the DLL.

3. Non-local C++ static constructors defined in a DLL are executed only once,

when the DLL program object is physically loaded into memory.

4. More detailed diagnostic information is available through dlerror(), the

_EDC_DLL_DIAG environment variable, and the Language Environment DLL

Failure control block (CEEDLLF) chain.

5. This function is not available under SPC, MTF and CSP environments.

Example

The following example illustrates use of dlopen() and dlclose():

...

/* Open a dynamic library and then close it ... */

#include <dlfcn.h>

void *mylib;

int eret;

mylib = dlopen("mylib.so", RTLD_LOCAL | RTLD_LAZY);

...

eret = dlclose(mylib);

...

Related Information

v “dlclose() — Close a dlopen() object” on page 424

v “dlerror() — Get diagnostic information” on page 426

v “dlsym() — Obtain the address of a symbol from a dlopen() object” on page 430

v “dlfcn.h” on page 40

dlopen

Chapter 3. Part 3. Library Functions 429

|
|
|

dlsym() — Obtain the address of a symbol from a dlopen() object

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R6

Format

#define _UNIX03_SOURCE

#include <dlfcn.h>

void *dlsym(void *__restrict__ handle, const char *__restrict__ name);

General Description

Obtains the address of a symbol defined within a Dynamic Link Library (DLL) made

accessible through a dlopen() call. The handle argument is the value returned from

a call to dlopen() (which has not been released by a call to dlclose()), and name is

the symbol’s name as a character string.

The DLL that was loaded by dlopen() will be searched for the named symbol. If the

symbol is not found in that DLL, then the dependent DLLs of that DLL will be

searched, followed by any dependents of those, and continuing in a breadth-first

manner until the named symbol is found or all dependent DLLs have been

searched. This search order determines how duplicate symbols in different DLLs will

be found, although the order in which dependent DLLs at the same level are

searched is indeterminate.

Also note that a search of dependent DLLs by dlsym() will not result in unloaded

dependent DLLs being loaded. Only the dependent DLLs loaded as part of the call

to dlopen() will be searched. If the full set of dependent DLLs need to be available

to subsequent calls to dlsym(), make sure the DLL is opened with the RTLD_NOW

load flag. It is indeterminate which dependent DLLs are loaded when RTLD_LAZY

is specified

The only exception to this is the global symbol object obtained via a

dlopen(NULL,0) call, in which case all DLLs (excluding those opened with

RTLD_LOCAL) are searched in the order in which they were loaded.

Notes:

v The named symbol can be either an exported data item or function.

v DLLs are enclave level resources. See z/OS XL C/C++ Programming Guide for

more information about the use of DLLs in a multi-threaded environment.

Returned Value

NULL is returned:

v If handle does not refer to a valid DLL opened by dlopen(),

v or the named symbol (name) cannot be found within any of the DLLs associated

with handle.

dlsym

430 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|||
|

Application Usage

1. C++ symbol names should be passed to dlsym() in mangled form; dlsym() does

not perform any name mangling on behalf of the calling application.

2. More detailed diagnostic information is available through dlerror(), the

_EDC_DLL_DIAG environment variable, and the Language Environment DLL

Failure control block (CEEDLLF) chain.

3. This function is not available under SPC, MTF and CSP environments.

Example

The following example shows how dlopen() and dlsym() can be used to access

either function or data objects. For simplicity, error checking has been omitted.

void *handle;

int *iptr, (*fptr)(int);

/* open the needed object */

handle = dlopen("/usr/home/me/libfoo.so", RTLD_LOCAL | RTLD_LAZY);

/* find the address of function and data objects */

fptr = (int (*)(int))dlsym(handle, "my_function");

iptr = (int *)dlsym(handle, "my_object");

/* invoke function, passing value of integer as a parameter */

(*fptr)(*iptr);

Related Information

v “dlclose() — Close a dlopen() object” on page 424

v “dlerror() — Get diagnostic information” on page 426

v “dlopen() — Gain access to a Dynamic Link Library (DLL)” on page 427

v “dlfcn.h” on page 40

dlsym

Chapter 3. Part 3. Library Functions 431

|
|
|

dllfree() — Free the Supplied DLL

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <dll.h>

int dllfree(dllhandle *dllHandle);

General Description

Frees the supplied DLL. It also deletes the DLL from memory if the handle was the

last handle accessing the DLL.

Notes:

v This function is deprecated; use dlclose() instead.

v This function is not available under SPC, MTF and CSP environments.

v If a DLL is loaded implicitly, it cannot be deleted with dllfree(). For more

information on the implicit use of DLLs, see z/OS XL C/C++ Programming Guide.

v DLLs that are loaded explicitly, that is with dllload(), and are not freed with a

corresponding call to dllfree(), are freed automatically at enclave termination in

LIFO sequence.

v C++ destructors are executed only once, when the DLL load module is physically

deleted.

Returned Value

dllfree() returns one of the following values and set errno if the return code is not 0:

Value Meaning

0 Successful

1 The dllHandle supplied is NULL or dllhandle is inactive.

2 There are no DLLs to be deleted.

3 DLL is not physically deleted because there is another dllHandle

for this DLL or there is an implicit reference to the DLL.

4 Delete of DLL failed.

5 No match is found for input dllHandle.

6 Not supported under this environment.

7 C++ destructors are currently running for this DLL. A dllfree() is

already in progress.

8 The handle passed to dllfree() was obtained from dlopen().

dllfree

432 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

Application Usage

1. More detailed diagnostic information is available through the _EDC_DLL_DIAG

environment variable, and the Language Environment DLL Failure control block

(CEEDLLF) chain. The default action is to issue an error message to the

Language Environment message file.

Example

CELEBDL4

/* CELEBDL4

 The following example shows how to use dllfree() to free the

 dllhandle for the DLL stream.

 */

#include <stdio.h>

#include <dll.h>

#include <stdlib.h>

int main() {

 dllhandle *handle;

 char *name="stream";

 int (*fptr1)(int);

 int (*fptr)(int);

 int *ptr_var1;

 int *ptr_var;

 int rc=0;

 handle = dllload(name); /* call to stream DLL */

 if (handle == NULL) {

 perror("failed on call to stream DLL");

 exit(−1);

 }

 fptr1 = (int (*)(int)) dllqueryfn(handle,"f1");

 /* retrieving f1 function */

 if (fptr == NULL) {

 perror("failed on retrieving f1 function");

 exit(−2);

 }

 ptr_var = dllqueryvar(handle,"var1");

 /* retrieving var1 variable */

 if (ptr_var1 == NULL) {

 perror("failed on retrieving var1 variable");

 exit(−3);

 }

 rc = fptr(*ptr_var1); /* execute DLL function f1 */

 ptr_var++; / increment value of var1 */

 rc = dllfree(handle); /* freeing handle to stream DLL */

 if (rc != 0) {

 perror("failed on dllfree call");

 }

 return (0);

}

Related Information

v “dll.h” on page 40

v “dlclose() — Close a dlopen() object” on page 424

v “dllload() — Load the DLL and Connect it to the Application” on page 435

v “dllqueryfn() — Obtain a Pointer to a DLL Function” on page 438

dllfree

Chapter 3. Part 3. Library Functions 433

|
|
|
|

v “dllqueryvar() — Obtain a Pointer to a DLL Variable” on page 440

dllfree

434 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dllload() — Load the DLL and Connect it to the Application

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <dll.h>

dllhandle *dllload(const char *dllName);

General Description

Note: This function is deprecated; use dlopen() instead.

Loads the Dynamic Link Library (DLL) into memory (if it has not been previously

loaded) and connects it to the application. The function that called the DLL receives

a handle that uniquely identifies the requested DLL for subsequent explicit requests

for that DLL.

A different handle is returned for each successful call to dllload(). A DLL is

physically loaded only once, even though there may be many calls to dllload(). C++

constructors are run only once.

The dllName identifies the DLL load module to be loaded. It must be a character

string terminated with the NULL character. The DLL module must be a member of a

PDS or an alias to it.

Note: The AMODE of the application must be the same as the AMODE of the DLL load

module.

This function is not available under SPC, MTF and CSP environments.

The dllName identifies the DLL load to be loaded. It must be a character string,

terminated with the NULL character. The DLL module must be a member of a PDS

or an alias to it.

If the file argument contains a single slash (’/’), it is used as the UNIX file system

pathname for the DLL. If the environment variable LIBPATH is set, each directory

listed will be searched for the DLL. Otherwise, the current directory will be

searched.

Note: Searching for a DLL in the UNIX file system is case-sensitive.

If the file argument begins with two slashes (’//’), then an attempt is made to load

the DLL from the caller’s MVS load library search order (in order: STEPLIB/JOBLIB,

LPA, Link List). The DLL name must be eight characters or less, and is converted to

uppercase. Note that qualified DLL names are not supported and the MVS load

library search order is used (for example, update or use STEPLIB to specify any

number of qualifiers to be included in the search).

dllload

Chapter 3. Part 3. Library Functions 435

If the file argument doesn’t begin with one or two slashes (’/’ or //″), and doesn’t

contain a single slash (’/’) anywhere in the name, then it is ambiguous as to where

the DLL resides.

v If the POSIX(ON) run-time option is specified, then the UNIX file system is

searched first for the DLL, and if not found, the MVS load library is searched.

v If the POSIX(OFF) run-time option is specified, then the MVS load library is

searched first for the DLL, and if not found, the UNIX file system is searched.

Under CICS environment, the search sequence for DLL load modules is the same

as that used for dynamically loaded CICS modules. Loading DLLs from the UNIX

file system is not supported under CICS.

For a description of how a DLL is loaded and the search sequence used, refer to

the section Loading DLLs in z/OS Language Environment Programming Guide.

Returned Value

If successful, dllload() returns a unique handle that identifies the DLL.

If unsuccessful, dllload() returns NULL and may set errno to one of the following

values:

Error Code Description

ELEFENCE The DLL contains a member language not supported on this

version of the operating system.

ENOEXEC The new process image file has the appropriate access permission

but is not in the proper format.

Note: Reason codes further qualify the errno. For most of the

reason codes, see z/OS UNIX System Services Messages

and Codes.

For ENOEXEC, the reason codes are:

 Reason Code Explanation

X'xxxx0C27' The target UNIX file system file is not in the

correct format to be an executable file.

X'xxxx0C31' The target UNIX file system file is built at a level

that is higher than that supported by the running

system.

Application Usage

1. More detailed diagnostic information is available through the _EDC_DLL_DIAG

environment variable, and the Language Environment DLL Failure control block

(CEEDLLF) chain.

Example

CELEBDL1

/* CELEBDL1

 The following example shows how to invoke dllload() functions

 from a simple C application.

 */

#include <stdio.h>

dllload

436 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

#include <dll.h>

main() {

 dllhandle *handle;

 char *name="stream";

 handle = dllload(name);

 if (handle == NULL) {

 perror("failed on dllload of stream DLL");

 exit(−1);

 }

}

Related Information

v “dll.h” on page 40

v “dlopen() — Gain access to a Dynamic Link Library (DLL)” on page 427

v “dllfree() — Free the Supplied DLL” on page 432

v “dllqueryfn() — Obtain a Pointer to a DLL Function” on page 438

v “dllqueryvar() — Obtain a Pointer to a DLL Variable” on page 440

dllload

Chapter 3. Part 3. Library Functions 437

dllqueryfn() — Obtain a Pointer to a DLL Function

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <dll.h>

void (*dllqueryfn(dllhandle *dllHandle, const char *funcName))();

General Description

Note: This function is deprecated; use dlsym() instead.

Obtains a pointer to a DLL function (funcName). It uses the dllHandle returned from

a previous successful call to dllload() for input. funcName represents the name of an

exported function from the DLL. It must be a character string terminated with the

NULL character.

This function is not available under the SPC, MTF, and CSP environments.

Returned Value

If successful, dllqueryfn() returns a pointer to a function, funcName, that can be

used to invoke the desired function in a DLL.

If unsuccessful, dllqueryfn() returns NULL and sets errno.

Application Usage

1. More detailed diagnostic information is available through the _EDC_DLL_DIAG

environment variable, and the Language Environment DLL Failure control block

(CEEDLLF) chain.

Example

CELEBDL2

/* CELEBDL2

 The following example shows how to use dllqueryfn() to obtain

 a pointer to a function, f1 that is in DLL load module stream.

 */

#include <stdio.h>

#include <dll.h>

main() {

 dllhandle *handle;

 char *name="stream";

 int (*fptr1)();

 handle = dllload(name);

 if (handle == NULL) {

 perror("failed on dllload of stream DLL");

 exit(−1);

 }

dllqueryfn

438 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

fptr1 = (int (*)()) dllqueryfn(handle,"f1");

 if (fptr1 == NULL) {

 perror("failed on retrieving f1 function");

 exit (−2);

 }

}

Related Information

v “dll.h” on page 40

v “dllfree() — Free the Supplied DLL” on page 432

v “dllload() — Load the DLL and Connect it to the Application” on page 435

v “dllqueryvar() — Obtain a Pointer to a DLL Variable” on page 440

dllqueryfn

Chapter 3. Part 3. Library Functions 439

dllqueryvar() — Obtain a Pointer to a DLL Variable

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <dll.h>

void* dllqueryvar(dllhandle *dllHandle, const char *varName);

General Description

Obtains a pointer to a DLL variable (varName). It uses the dllHandle returned from

a previous successful call to dllload() for input. varName represents the name of an

exported variable from the DLL. It must be a character string terminated with the

NULL character.

This function is not available under SPC, MTF and CSP environments.

Returned Value

If successful, dllqueryvar() returns a pointer to a variable in the storage of the DLL.

If unsuccessful, dllqueryvar() returns NULL and sets errno.

Application Usage

1. More detailed diagnostic information is available through the _EDC_DLL_DIAG

environment variable, and the Language Environment DLL Failure control block

(CEEDLLF) chain.

Example

CELEBDL3

/* CELEBDL3

 The following example shows how to use dllqueryvar() to obtain a

 pointer to a variable, var1, that is in DLL load module stream.

 */

#include <stdio.h>

#include <dll.h>

int main() {

 dllhandle *handle;

 char *name="stream";

 int (*fptr1)(int);

 int *ptr_var1;

 int rc=0;

 handle = dllload(name);

 if (handle == NULL) {

 perror("failed on dllload of stream DLL");

 exit(−1);

 }

 fptr1 = (int (*)(int)) dllqueryfn(handle,"f1");

dllqueryvar

440 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

/* retrieving f1 function */

 if (fptr1 == NULL) {

 perror("failed on retrieving f1 function");

 exit(−2);

 }

 ptr_var1 = dllqueryvar(handle,"var1");

 if (ptr_var1 == NULL) {

 perror("failed on retrieving var1 variable");

 exit(−3);

 }

}

Related Information

v “dll.h” on page 40

v “dllfree() — Free the Supplied DLL” on page 432

v “dllload() — Load the DLL and Connect it to the Application” on page 435

v “dllqueryfn() — Obtain a Pointer to a DLL Function” on page 438

dllqueryvar

Chapter 3. Part 3. Library Functions 441

dn_comp() — Resolver Domain Name Compression

Standards

 Standards / Extensions C or C++ Dependencies

BSD 4.3 both OS/390 V2R8

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int dn_comp(const char *exp_dn, u_char *comp_dn, int length,

 u_char **dnptrs, u_char **lastdnptr);

General Description

The dn_comp() function compresses the domain name exp_dn and stores it in

comp_dn. The size of the compressed name is returned or -1 if there were errors.

The size of the array pointed to by comp_dn is given by length. The compression

uses an array of pointers dnptrs to previously-compressed names in the current

message. The first pointer points to the beginning of the message and the list ends

with NULL. The limit to the array is specified by lastdnptr.

A side effect of dn_comp() is to update the list of pointers for labels inserted into the

message as the name is compressed. If dnptr is NULL, names are not compressed.

If lastdnptr is NULL, the list of labels is not updated.

Note: The dn_comp() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, dn_comp() returns the size of the compressed name.

If unsuccessful, dn_comp() returns -1 to report the error, when the name to be

compressed was not found before the end of the buffer was reached.

There are no documented errno values.

Related Information

v “arpa/nameser.h” on page 34

v “netinet/in.h” on page 68

v “resolv.h” on page 76

v “sys/types.h” on page 90

v “dn_expand() — Resolver Domain Name Expansion” on page 444

v “dn_find() — Resolver Domain Name Find” on page 445

v “dn_skipname() — Resolver Domain Name Skipping” on page 446

v “res_init() — Domain Name Resolver Initialization” on page 1669

v “res_mkquery() — Make Resolver Query for Domain Name Servers (DNS)” on

page 1672

v “res_query() — Resolver Query for Domain Name Servers (DNS)” on page 1673

v “res_querydomain() — Build Domain Name and Resolver Query” on page 1675

dn_comp

442 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “res_search() — Resolver Query for Domain Name Servers (DNS)” on page

1677

v “res_send() — Send Resolver Query for Domain Name Servers (DNS)” on page

1679

dn_comp

Chapter 3. Part 3. Library Functions 443

dn_expand() — Resolver Domain Name Expansion

Standards

 Standards / Extensions C or C++ Dependencies

BSD 4.3 both OS/390 V2R8

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int dn_expand(const u_char *msg, const u_char *eomorig,

 const u_char *comp_dn, char *exp_dn, int length);

General Description

The dn_expand() function expands the compressed domain name comp_dn to a full

domain name. The compressed name is contained in a query or reply message;

msg is a pointer to the beginning of the message. The expanded name is placed in

the buffer indicated by exp_dn which is of size length. The size of the expanded

name is returned or -1 if there was an error.

Note: The dn_expand() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, dn_expand() returns the size of the expanded name.

If unsuccessful, dn_expand() returns -1 to report the error, when the name to be

expanded was not found before the end of the buffer was reached.

There are no documented errno values.

Related Information

v “arpa/nameser.h” on page 34

v “netinet/in.h” on page 68

v “resolv.h” on page 76

v “sys/types.h” on page 90

v “dn_comp() — Resolver Domain Name Compression” on page 442

v “dn_find() — Resolver Domain Name Find” on page 445

v “dn_skipname() — Resolver Domain Name Skipping” on page 446

v “res_init() — Domain Name Resolver Initialization” on page 1669

v “res_mkquery() — Make Resolver Query for Domain Name Servers (DNS)” on

page 1672

v “res_query() — Resolver Query for Domain Name Servers (DNS)” on page 1673

v “res_querydomain() — Build Domain Name and Resolver Query” on page 1675

v “res_search() — Resolver Query for Domain Name Servers (DNS)” on page

1677

v “res_send() — Send Resolver Query for Domain Name Servers (DNS)” on page

1679

dn_expand

444 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dn_find() — Resolver Domain Name Find

Standards

 Standards / Extensions C or C++ Dependencies

BSD 4.3 both OS/390 V2R8

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int dn_find(u_char *exp_dn, u_char *msg, u_char **dnptrs, u_char **lastdnptr);

General Description

The dn_find() function will search for the expanded name exp_dn in the list of

previously compressed names dnptrs.

dnptrs is the pointer to the first name in the list, not the pointer to the start of the

message. The limit to the array is specified by lastdnptr.

Note: The dn_find() function has a dependency on the level of the Enhanced ASCII

Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, dn_find() returns the offset of the expanded name exp_dn found in the

message.

If unsuccessful, dn_find() returns -1 to report the error, when the name was not

found before the end of the list was reached.

There are no documented errno values.

Related Information

v “arpa/nameser.h” on page 34

v “netinet/in.h” on page 68

v “resolv.h” on page 76

v “sys/types.h” on page 90

v “dn_comp() — Resolver Domain Name Compression” on page 442

v “dn_expand() — Resolver Domain Name Expansion” on page 444

v “dn_skipname() — Resolver Domain Name Skipping” on page 446

v “res_init() — Domain Name Resolver Initialization” on page 1669

v “res_mkquery() — Make Resolver Query for Domain Name Servers (DNS)” on

page 1672

v “res_query() — Resolver Query for Domain Name Servers (DNS)” on page 1673

v “res_querydomain() — Build Domain Name and Resolver Query” on page 1675

v “res_search() — Resolver Query for Domain Name Servers (DNS)” on page

1677

v “res_send() — Send Resolver Query for Domain Name Servers (DNS)” on page

1679

dn_find

Chapter 3. Part 3. Library Functions 445

dn_skipname() — Resolver Domain Name Skipping

Standards

 Standards / Extensions C or C++ Dependencies

BSD 4.3 both OS/390 V2R8

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int dn_skipname(const u_char *comp_dn, u_char *eom);

General Description

The dn_skipname() function skips the compressed domain name comp_dn and

returns the position in the answer buffer that follows the comp_dn compressed

domain name. If the information supplied in comp_dn is not a compressed domain

name, -1 is returned to report the error.

Note: The dn_skipname() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, dn_skipname() returns the position in the answer buffer that follows

the comp_dn compressed domain name.

If unsuccessful, dn_skipname() returns -1 to report the error, when the name to be

skipped was not found before the end of the buffer was reached.

There are no documented errno values.

Related Information

v “arpa/nameser.h” on page 34

v “netinet/in.h” on page 68

v “resolv.h” on page 76

v “sys/types.h” on page 90

v “dn_comp() — Resolver Domain Name Compression” on page 442

v “dn_expand() — Resolver Domain Name Expansion” on page 444

v “dn_find() — Resolver Domain Name Find” on page 445

v “res_init() — Domain Name Resolver Initialization” on page 1669

v “res_mkquery() — Make Resolver Query for Domain Name Servers (DNS)” on

page 1672

v “res_query() — Resolver Query for Domain Name Servers (DNS)” on page 1673

v “res_querydomain() — Build Domain Name and Resolver Query” on page 1675

v “res_search() — Resolver Query for Domain Name Servers (DNS)” on page

1677

v “res_send() — Send Resolver Query for Domain Name Servers (DNS)” on page

1679

dn_skipname

446 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

drand48() — Pseudo-Random Number Generator

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

double drand48(void);

General Description

The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions

generate uniformly distributed pseudo-random numbers using a linear congruential

algorithm and 48-bit integer arithmetic.

The functions drand48() and erand48() return nonnegative, double-precision,

floating-point values, uniformly distributed over the interval [0.0,1.0). These

functions have been extended so that the returned value will be in the proper

floating-point format (hexadecimal or IEEE) based on the floating-point mode of the

invoking thread.

The functions lrand48() and nrand48() return nonnegative, long integers, uniformly

distributed over the interval [0,2**31).

The functions mrand48() and jrand48() return signed long integers, uniformly

distributed over the interval [-2**31,2**31).

The drand48() function generates the next 48-bit integer value in a sequence of

48-bit integer values, X(i), according to the linear congruential formula:

X(n+1) = (aX(n) + c)mod(2**48) n>=0

The initial values of X, a, and c are:

X(0) = 1

a = 5deece66d (base 16)

c = b (base 16)

C/370 provides storage to save the most recent 48-bit integer value of the

sequence, X(i). This storage is shared by the drand48(), lrand48() and mrand48()

functions. The value, X(n), in this storage may be reinitialized by calling the

lcong48(), seed48() or srand48() function. Likewise, the values of a and c, may be

changed by calling the lcong48() function. Thereafter, whenever the seed48() or

srand48() function is called to change X(n), the initial values of a and c are also

reestablished.

Special Behavior for z/OS UNIX Services

You can make the drand48() function and other functions in the drand48 family

thread-specific by setting the environment variable _RAND48 to the value THREAD

before calling any function in the drand48 family.

drand48

Chapter 3. Part 3. Library Functions 447

||||

|
|
|

||

|

If you do not request thread-specific behavior for the drand48 family, C/370

serializes access to the storage for X(n), a and c by functions in the drand48 family

when they are called by a multithreaded application.

If thread-specific behavior is requested, and the drand48() function is called from

thread t, the drand48() function generates the next 48-bit integer value in a

sequence of 48-bit integer values, X(t,i), for the thread t. The sequence of values

for a thread is generated according to the linear congruential formula:

 X(t,n+1) = (a(t)X(t,n) + c(t))mod(2**48) n>=0

The initial values of X(t), a(t) and c(t) for the thread t are:

 X(t,0) = 1

 a(t) = 5deece66d (base 16)

 c(t) = b (base 16)

C/370 provides storage which is specific to the thread t to save the most recent

48-bit integer value of the sequence, X(t,i), generated by the drand48(), lrand48() or

mrand48() function. The value, X(t,n), in this storage may be reinitialized by calling

the lcong48(), seed48() or srand48() function from the thread t. Likewise, the

values of a(t) and c(t) for thread t may be changed by calling the lcong48() function

from the thread. Thereafter, whenever the seed48() or srand48() function is called

from the thread t to change X(t,n), the initial values of a(t) and c(t) are also

reestablished.

Returned Value

drand48() transforms the generated 48-bit value, X(n+1), to a double-precision,

floating-point value on the interval [0.0,1.0) and returns this transformed value.

Special Behavior for z/OS UNIX Services

If thread-specific behavior is requested for the drand48 family and rand48() is called

on thread t, drand48() transforms the generated 48-bit value, X(t,n+1), to a

double-precision, floating-point value on the interval [0.0,1.0) and returns this

transformed value.

Related Information

v “stdlib.h” on page 85

v “erand48() — Pseudo-Random Number Generator” on page 476

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “jrand48() — Pseudo-Random Number Generator” on page 1051

v “lcong48() — Pseudo-Random Number Initializer” on page 1065

v “lrand48() — Pseudo-Random Number Generator” on page 1150

v “mrand48() — Pseudo-Random Number Generator” on page 1251

v “nrand48() — Pseudo-Random Number Generator” on page 1307

v “seed48() — Pseudo-Random Number Initializer” on page 1712

v “srand48() — Pseudo-Random Number Initializer” on page 2005

drand48

448 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dup() — Duplicate an Open File Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int dup(int fildes);

General Description

Returns a new file descriptor that is the lowest numbered available descriptor. The

new file descriptor refers to the same open file as fildes and shares any locks that

may be associated with fildes.

The following operations are equivalent:

fd = dup(fildes);

fd = fcntl(fildes,F_DUPFD,0);

For further information, see “fcntl() — Control Open File Descriptors” on page 527.

Note: When fildes is an XTI endpoint, the lowest numbered available file descriptor

must not exceed 65535.

Returned Value

If successful, dup() returns a new file descriptor.

If unsuccessful, dup() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EMFILE The process has already reached its maximum number of open file

descriptors.

Example

CELEBD05

/* CELEBD05

 This example duplicates an open file descriptor, using dup().

 */

#define _POSIX_SOURCE

#include <errno.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

dup

Chapter 3. Part 3. Library Functions 449

||||

|
|
|
|

||

|

void print_inode(int fd) {

 struct stat info;

 if (fstat(fd, &info) != 0)

 fprintf(stderr,"fstat() error for fd %d: %s\n",fd,strerror(errno));

 else

 printf("The inode of fd %d is %d\n", fd, (int) info.st_ino);

}

main() {

 int fd;

 if ((fd = dup(0)) < 0)

 perror("&dupf error");

 else {

 print_inode(0);

 print_inode(fd);

 puts("The file descriptors are different but");

 puts("they point to the same file.");

 close(fd);

 }

}

Output

The inode of fd 0 is 30

The inode of fd 3 is 30

The file descriptors are different but

they point to the same file.

Related Information

v “unistd.h” on page 96

v “close() — Close a File” on page 299

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup2() — Duplicate an Open File Descriptor to Another” on page 451

v “exec Functions” on page 486

v “fcntl() — Control Open File Descriptors” on page 527

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

dup

450 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dup2() — Duplicate an Open File Descriptor to Another

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int dup2(int fd1, int fd2);

General Description

Returns a file descriptor with the value fd2. fd2 now refers to the same file as fd1,

and the file that was previously referred to by fd2 is closed. The following conditions

apply:

v If fd2 is less than 0 or greater than OPEN_MAX, dup2() returns −1 and sets

errno to EBADF.

v If fd1 is a valid file descriptor and is equal to fd2, dup2() returns fd2 without

closing it.

v If fd1 is not a valid file descriptor, dup2() fails and does not close fd2.

v If a file descriptor does not already exist, dup2() can be used to create one, a

duplicate of fd1.

Note: If fd1 is an XTI endpoint, fd2 must not exceed 65535.

Returned Value

If successful, dup2() returns fd2.

If unsuccessful, dup2() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fd1 is not a valid file descriptor, or fd2 is less than 0 or greater than

OPEN_MAX.

EINTR dup2() was interrupted by a signal.

Example

CELEBD06

/* CELEBD06

 This example duplicates an open file descriptor, using dup2().

 */

#define _POSIX_SOURCE

#include <errno.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

dup2

Chapter 3. Part 3. Library Functions 451

||||

|
|
||

|

#include <stdio.h>

void print_inode(int fd) {

 struct stat info;

 if (fstat(fd, &info) != 0)

 fprintf(stderr,"fstat() error for fd %d: %s\n",fd,strerror(errno));

 else

 printf("The inode of fd %d is %d\n", fd, (int) info.st_ino);

}

main() {

 int fd;

 char fn[]="dup2.file";

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 print_inode(fd);

 if ((fd = dup2(0, fd)) < 0)

 perror("dup2() error");

 else {

 puts("After dup2()...");

 print_inode(0);

 print_inode(fd);

 puts("The file descriptors are different but they");

 puts("point to the same file which is different than");

 puts("the file that the second fd originally pointed to.");

 close(fd);

 }

 unlink(fn);

 }

}

Output

The inode of fd 3 is 3031

After dup2()...

The inode of fd 0 is 30

The inode of fd 3 is 30

The file descriptors are different but they

point to the same file which is different than

the file that the second fd originally pointed to.

Related Information

v “unistd.h” on page 96

v “close() — Close a File” on page 299

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup() — Duplicate an Open File Descriptor” on page 449

v “exec Functions” on page 486

v “fcntl() — Control Open File Descriptors” on page 527

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

dup2

452 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

dynalloc() — Allocate a Data Set

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <dynit.h>

int dynalloc(__dyn_t *dyn_parms);

General Description

Dynamically allocates a data set using the SVC 99 service on MVS, by building an

SVC 99 parameter list based on parameters specified in dyn_parms. dynalloc()

corresponds to verb code 1 for SVC 99.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED).. When you use LANGLVL(EXTENDED). any

relevant information in the header is also exposed.

For a description of the __dyn_t structure, see Table 24 on page 454. For more

information on SVC 99, the SVC 99 extension block, and the text unit keys and

values, refer to z/OS MVS Programming: Authorized Assembler Services Guide,

SA22-7608.

The Request Block Extension and the Error Message Parameter list can be used to

process the messages returned by SVC99 when an error occurs. To use this

feature you must allocate and initialize these structures using the processes

described in the MVS manuals . You must also inform the dynalloc() function that

they are present by assigning their addresses to __rbx or __emsgparmlist.

Because additional fields have been added to the __dyn_t structure, you should

recompile existing source code with the latest dynit.h header file to access the new

fields.

Some values, such as ddname and dsname, will be converted to uppercase internally

when they are used by the dynalloc() function.

To dynamically allocate a data set on MVS, you should:

v Invoke dyninit() with a variable of type __dyn_t.

v Assign values to the appropriate fields in the variable that will satisfy the svc99()

request.

v Invoke dynalloc() with this variable.

__dyn_t Data Structure Elements

dynalloc

Chapter 3. Part 3. Library Functions 453

Table 24. Description of __dyn_t Data Structure Elements

Element Text Unit Key Text Unit Value Type Description

__ddname DALDDNAM 0001 char * ddname (maximum length of 8)1. If 8

question marks (????????) are

specified, it means that the request

expects a system-generated ddname

returned.

__dsname DALDSNAM 0002 char * Fully qualified data-set name (maximum

length of 44)1.

__sysout DALSYSOU 0018 char The class of the system output data set

(for example, SYSOUT=A). Values are:

alphabetic character,, or the macro

__DEF_CLASS, to specify the default

class.

__sysoutname DALSPGNM 0019 char * Program name for sysout. The

__sysout field must be specified with

this field (maximum length of 44)1.

__member DALMEMBR 0003 char * Member of a partitioned data set to be

allocated (maximum length of 8)1.

__status DALSTATS 0004 char Data set status. Values are:

__DISP_OLD, __DISP_NEW,

__DISP_MOD, and __DISP_SHR,

which are defined in dynit.h.

__normdisp DALNDISP 0005 char Specifies the normal disposition of a

data set. Values are: __DISP_CATLG,

__DISP_UNCATLG, __DISP_DELETE,

and __DISP_KEEP, which are defined

in dynit.h.

__conddisp DALCDISP 0006 char Specifies the conditional disposition of

a data set. Values are:

__DISP_CATLG, __DISP_UNCATLG,

__DISP_DELETE, and __DISP_KEEP,

which are defined in dynit.h.

__unit DALUNIT 0015 char * Unit name of the device that the data

set will (or does, if it already exists)

reside on (maximum length of 8)1.

__volser DALVLSER 0010 char * Volume serial number of the device a

data set will (or does, if it already

exists) reside on (maximum length of

6)1.

__dsorg DALDSORG 003C char Data-set organization of a data set.

Values are:

__DSORG_unknown

Unknown

__DSORG_VSAM VSAM

__DSORG_GS Graphics

__DSORG_PO Partitioned

organization

__DSORG_POU Partitioned

organization

unmovable

__DSORG_DA Direct access

__DSORG_DAU Direct access

unmovable

__DSORG_PS Physical sequential

__DSORG_PSU Physical sequential

unmovable.

dynalloc

454 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 24. Description of __dyn_t Data Structure Elements (continued)

Element Text Unit Key Text Unit Value Type Description

__alcunit DALCYL, DALTRK 0008, 0007 char Unit of space allocation for a data set.

Values are: __CYL and __TRK. To

specify allocation units in blocks, use

the field __avgblk.

__primary DALPRIME 000A int Primary space allocation for a data set.

__secondary DALSECND 000B int Secondary space allocation for a data

set.

__dirblk DALDIR 000C int Number of directory blocks for a

partitioned data set.

__avgblk DALBLKLN 0009 int Specifies the unit of space allocation to

be blocks and sets the average block

length.

__recfm 0049 short Record format of a data set. The

following macros in dynit.h can be

added together to determine the

__recfm value:

M Machine-code printer-control

characters

A ASA printer-control characters

S Standard fixed, spanned

variable

B Blocked

D Variable ASCII records

V Variable

F Fixed

U Undefined

FB Fixed blocked

VB Variable blocked

FBS Fixed blocked standard

VBS Variable blocked standard.

for example, to specify a recfm of FBA,

set: _recfm = _FB_ + _A_

__blksize DALBLKSZ 0030 short Block size of a data set.

__lrecl DALLRECL 0042 unsigned short Record length of a data set.

__volrefds DALLVLRDS 0014 char * Fully qualified name of a cataloged

data set to be used as a model for

obtaining volume serial information

(maximum length of 44)1.

__dcbrefds DALDCBDS 002C char * Fully qualified name of a cataloged

data set to be used as a model for

obtaining DCB information (maximum

length of 44)1.

__dcbrefdd DALLDCBDD 002D char * ddname of a data set to be used as a

model for obtaining DCB information

(maximum length of 9)1.

__misc_flags unsigned char Specifies the attributes. See example

CELEBD07 for instructions on how to

specify the flags shown below using a

logical | (OR).

 __CLOSE DALCLOSE 001C unsigned char A flag: deallocate data set when file is

closed.

dynalloc

Chapter 3. Part 3. Library Functions 455

Table 24. Description of __dyn_t Data Structure Elements (continued)

Element Text Unit Key Text Unit Value Type Description

 __RELEASE DALRLSE 000D unsigned char A flag: release unused space when file

is closed.

 __CONTIG DALSPRFRM 000E unsigned char A flag: allocate space contiguiously.

 __ROUND DALROUND 000F unsigned char A flag: allocate space in whole cylinders

when blocks are requested.

 __TERM DALTERM 0028 unsigned char A flag: time-sharing terminal is to be

used as I/O device.

 __DUMMY_DSN DALDUMMY 0024 unsigned char A flag: dummy data set is to be

allocated.

 __HOLDQ DALSHOLD 0059 unsigned char A flag: hold queue routing for sysout

data set.

 __PERM DALPERMA 0052 unsigned char A flag: set permanent allocation

attribute.

__password DALPASSW 0050 char * Password for a password-protected

data set. The dsname field must be

specified with this field (maximum

length of 8)1.

__miscitems char * __ptr32 *

__ptr32

For all other text unit keys not available

in __dyn_t, this pointer will let you

specify an array of text unit strings. If

you specify this field, you must turn the

high bit on the last item (as in svc99()).

Use the bitwise inclusive-OR (|)

operand with the last item and the

hexadecimal value 0x80000000.

__infocode short Returns the information code returned

by the MVS dynamic allocation

functions. For more information, refer to

z/OS MVS Programming: Authorized

Assembler Services Guide, SA22-7608.

__errcode short Returns the error code returned by the

MVS dynamic allocation functions. For

more information, refer to z/OS MVS

Programming: Authorized Assembler

Services Guide, SA22-7608.

__storclass DALSTCL 8004 char * Specifies the storage class of system

managed storage.

__mgntclass DALMGCL 8005 char * Specifies the management class of a

data set.

__dataclass DALDACL 8006 char * Specifies the data class of a data set.

__recorg DALRECO 800B char Specifies the record organization of a

VSAM data set. Values are: __KS,

__ES, __RR, __LS.

__keyoffset DALKEYO 800C short Specifies the key offset. The position of

the first byte of the key in records of

the specified VSAM data set.

__keylength DALKYLEN 0040 short Specifies the length in bytes of the keys

used in the data set.

__refdd DALREFD 800D char * Specifies the name of the JCL DD

statement from which the attributes are

to be copied.

__like DALLIKE 800F char * Specifies the name of the model data

set from which the attributes are to be

copied.

dynalloc

456 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 24. Description of __dyn_t Data Structure Elements (continued)

Element Text Unit Key Text Unit Value Type Description

__dsntype DALDSNT 8012 char Specifies the type attributes of a data

set. Valid types include __DSNT_HFS,

__DSNT_LIBRARY, __DSNT_PDS, and

__DSNT_PIPE.

__pathname DALPATH 8017 char * Pathname (maximum length is 255)1.

See z/OS UNIX System Services

User’s Guide, SA22-7801 for pathname

format.

__pathopts DALPOPT 8018 int Specifies file options for the HFS file.

Values are: __PATH_OCREAT,

__PATH_OAPPEND, __PATH_OEXCL,

__PATH_ONOCTTY,

__PATH_OTRUNC,

__PATH_ONONBLOCK,

__PATH_ORDONLY,

__PATH_OWRONLY,

__PATH_ORDWR. For information on

the file options, refer to z/OS MVS JCL

Reference, SA22-7597. For information

on DYNALLOC, refer to z/OS MVS

Programming: Authorized Assembler

Services Guide, SA22-7608.

__pathmode DALPMDE 8019 int Specifies the file access attributes for

the HFS file. Values are:

__PATH_SIRUSR, __PATH_SIWUSR,

__PATH_SIXUSR, __PATH_SIRWXU,

__PATH_SIRGRP, __PATH_SIWGRP,

__PATH_SIXGRP, __PATH_SIRWXG,

__PATH_SIROTH, __PATH_SIWOTH,

__PATH_SIXOTH, __PATH_SIRWXO,

__PATH_SISUID, __PATH_SISGID. For

information on the file attributes, refer

to z/OS MVS JCL Reference,

SA22-7597. For information on

DYNALLOC, refer to z/OS MVS

Programming: Authorized Assembler

Services Guide, SA22-7608.

__pathndisp DALPNDS 801A char Specifies the normal HFS file

disposition desired. It is either

__DISP_KEEP or __DISP_DELETE

__pathcdisp DALPCDS 801B char Specifies the abnormal HFS file

disposition desired. It is either

__DISP_KEEP or __DISP_DELETE

__rbx __S99rbx_t *

__ptr32

For users who make use of the

Request Block Extension.

__emsgparmlist __S99emparms_t *

__ptr32

For users who want to process

associated messages with the dynamic

allocation.

__rls DALRLS 801C char Specifies the type of record level

sharing (RLS) being done for a specific

data set. The valid values are

__RLS_NRI, __RLS_CR and

__RLS_CRE. Refer to z/OS XL C/C++

Programming Guide and z/OS DFSMS

Using Data Sets, SC26-7410 for a

description of these VSAM RLS/TVS

access modes.

[1] If an element exceeds its maximum allowable length, it is truncated to that

length.

dynalloc

Chapter 3. Part 3. Library Functions 457

Special Behavior for POSIX C

For POSIX C programs, allocations established by dynalloc() persist neither after an

exec nor in the child process after fork(). See “z/OS XL C/C++ applications with

z/OS UNIX System Services C functions” on page 13 for more information about

using POSIX support.

Special Behavior for Enhanced ASCII

When compiled ASCII, there is one input element in the __dyn_t structure that must

contain EBCDIC text strings and there is a consideration to note with respect to

retrieval of error messages related to a dynamic allocation failure. On input, any

character data provided in __miscitems must be specified in the EBCDIC codeset.

The __dynalloc() function does not decode the text units and convert the character

data. The text units are passed directly to the system. When __emsgparmlist is

specified, indicating intent to retrieve error messages using the IEFDB476 service, it

should be noted that all error messages returned by the service will be in the

EBCDIC codeset.

Note: The dynalloc() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Special behavior for AMODE 64

The __dyn_t structure’s definition is changed to require three of its pointer elements

to be 32 bits wide. This is because the system services that work with these control

structures require 31-bit addressable storage. The __miscitems are additional text

units that are not already supported by elements of the __dyn_t structure. These

are propagated by dynalloc() directly to into an SVC 99 call. The __rbx is

propagated by dynalloc() directly into an SVC 99 call. The __emsgparmlist address

is designed to be passed as a parameter to the IEFDB476 service, which is an

AMODE 31 service, to retrieve messages associated with a dynamic allocation

failure. The __dyn_t structure itself can be in 64-bit addressable storage. The

__dyn_t structure must be initialized using dyninit() macro defined in<dyninit.h> to

ensure the proper ″hidden″ version indicator is used. Improper initialization of the

__dyn_t structure will result in undefined behavior.

Returned Value

If successful under MVS, dynalloc() returns 0.

If SVC 99 is not supported on your system, or if a text string passed to SVC 99

cannot be built from a field in the dyn_parms structure, a negative value is returned.

The value −1 is returned if there is not sufficient storage to process all the text

units. Otherwise, the return code is the value returned from SVC 99, and the error

and information codes are found in those fields of the dyn_parms structure.

For example, if you pass NULL to dynalloc(), the return code is nonzero.

For more information on return codes, refer to z/OS MVS Programming: Authorized

Assembler Services Guide, SA22-7608.

Example

CELEBD07

dynalloc

458 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

/* CELEBD07

 This example dynamically allocates a data set.

 */

#include <dynit.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define ZERO 0

int main () {

 __dyn_t ip;

 dyninit(&ip);

 ip.__ddname = "mydd"; /* MYDD DD */

 ip.__dsname = "PLIXXX.MY.DATASET"; /* DSN='PLIXXX.MY.DATASET' */

 ip.__status = __DISP_NEW; /* DISP=(NEW,CATLG) */

 ip.__normdisp = __DISP_CATLG;

 ip.__alcunit = __CYL; /* SPACE=(CYL,(2,1)), */

 ip.__primary = 2;

 ip.__secondary = 1;

 ip.__dirblk = 1;

 ip.__misc_flags = __RELEASE & __CONTIG; /* RLSE,CONTIG) */

 ip.__dsorg = __DSORG_PO; /* DCB=(DSORG=PO, */

 ip.__recfm = _F_ + _B_ + _A_; /* RECFM=FBA, */

 ip.__lrecl = 121; /* LRECL=121, */

 ip.__blksize = 12100; /* BLKSIZE=12100) */

 if (dynalloc(&ip) != ZERO)

 {

 printf("Dynalloc failed with error code %d, info code %d\n",

 ip.__errcode, ip.__infocode);

 }

}

Related Information

v “dynit.h” on page 41

v “dynfree() — Deallocate a Data Set” on page 460

v “dyninit() — Initialize __dyn_t Structure” on page 462

v “svc99() — Access Supervisor Call” on page 2096

dynalloc

Chapter 3. Part 3. Library Functions 459

dynfree() — Deallocate a Data Set

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <dynit.h>

int dynfree(__dyn_t *dyn_parms);

General Description

Dynamically deallocates an z/OS data set in accordance with the attributes defined

in dyn_parms.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

The only fields in __dyn_t that are used by dynfree() are:

 char *__ddname

 char *__dsname

 char *__member

 char *__pathname

 char __normdisp

 char __pathndisp

 char **__miscitems

If any other fields are specified, they will be ignored. For more information on the

__dyn_t structure, see Table 24 on page 454

To dynamically deallocate a data set on z/OS, you should:

v Invoke dyninit() with a variable of type __dyn_t

v Assign values to the appropriate fields that will satisfy the svc99() request

v Invoke dynfree() with this variable.

Note: The dynfree() function has a dependency on the level of the Enhanced ASCII

Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful under z/OS, dynfree() returns 0.

If unsuccessful, dynfree() returns nonzero. dynfree() returns −1 if there is not

sufficient storage to process all the text units.

dynfree

460 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Example

/*

 This example dynamically deallocates a data set.

 */

#include <dynit.h>

int main(void) { ...
 __dyn_t ip; ...
 dyninit(ip);

 ip.__ddname = "mydd"; ...
 dynfree(&ip);

}

Related Information

v “dynit.h” on page 41

v “dynalloc() — Allocate a Data Set” on page 453

v “dyninit() — Initialize __dyn_t Structure” on page 462

v “svc99() — Access Supervisor Call” on page 2096

dynfree

Chapter 3. Part 3. Library Functions 461

dyninit() — Initialize __dyn_t Structure

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <dynit.h>

int dyninit(__dyn_t *dyn_parms);

General Description

Initializes the __dyn_t structure that is used to build the parameter lists that are

passed to the dynalloc() function and the dynfree() function. If you do not initialize

the __dyn_t structure using dyninit(), undefined behavior may result.

The __dyn_t structure is defined in the dynit.h header file. A description of the

elements is found in “dynalloc() — Allocate a Data Set” on page 453.

Returned Value

If successful under MVS, dyninit() returns 0.

If unsuccessful, dyninit() returns nonzero.

Example

CELEBD09

/* CELEBD09

 This example initializes a __dyn_t

 structure, called ip.

 */

#include <stdio.h>

#include <string.h>

#include <dynit.h>

main() {

 char dsn[]="USER.TEST.DATASET";

 __dyn_t ip;

 int ret;

 dyninit(&ip);

 ip.__ddname = "TEST";

 ip.__dsname = dsn;

 ip.__status = __DISP_NEW;

 ip.__normdisp = __DISP_DELETE;

 ip.__alcunit = __TRK;

 ip.__primary = 1;

 ip.__unit = "SYSDA ";

 if ((ret = dynalloc(&ip)) != 0)

 printf("dynalloc() ret=%d, error code %04x, info code %04x\n",

 ret, ip.__errcode, ip.__infocode);

 else {

 dyninit(&ip);

dyninit

462 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ip.__ddname = "TEST";

 if ((ret = dynfree(&ip)) != 0)

 printf("dynfree() ret=%d, error code %04x, info code %04x\n",

 ret, ip.__errcode, ip.__infocode);

 else puts("success!");

 }

}

Related Information

v “dynit.h” on page 41

v “dynalloc() — Allocate a Data Set” on page 453

v “dynfree() — Deallocate a Data Set” on page 460

v “svc99() — Access Supervisor Call” on page 2096

dyninit

Chapter 3. Part 3. Library Functions 463

ecvt() — Convert Double to String

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

char *ecvt(double x, int ndigit, int *__restrict__ decpt, int *__restrict__ sign);

General Description

The ecvt() function converts double floating-point argument values to floating-point

output strings. The ecvt() function has been extended to determine the floating-point

format (hexadecimal floating-point or IEEE Binary Floating-Point) of double

argument values by using __isBFP().

z/OS XL C/C++ formatted output functions, including the ecvt() function, convert

IEEE Binary Floating-Point infinity and NaN argument values to special infinity and

NaN floating-point number output sequences. See “fprintf Family of Formatted

Output Functions” on page 655 for a description of the special infinity and NaN

output sequences.

The ecvt() function converts x to a NULL-terminated string of ndigit digits (where

ndigit is reduced to an unspecified limit determined by the precision of a double)

and returns a pointer to the string. The high-order digit is nonzero, unless the value

is 0. The low-order digit is rounded. The position of the radix character relative to

the beginning of the string is stored in the integer pointed to by decpt (negative

means left of the returned digits). The radix character is not included in the returned

string. If the sign of the result is negative, the integer pointed to by sign is nonzero,

otherwise it is 0.

The function returns a pointer to a buffer used only by the calling thread which may

be overwritten by subsequent calls to ecvt(), “fcvt() — Convert Double to String” on

page 538 and “gcvt() — Convert Double to String” on page 737.

If the converted value is out of range or is not representable, the function returns

NULL.

Note: This function has been moved to the Legacy Option group in Single UNIX

Specification, Version 3 and may be withdrawn in a future version. The

sprintf() function is preferred for portability.

Returned Value

If successful, ecvt() returns the character equivalent of x as specified above.

If unable to allocate the return buffer, or the conversion fails, ecvt() returns NULL.

ecvt

464 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

|
|
|

Related Information

v “stdlib.h” on page 85

v “fcvt() — Convert Double to String” on page 538

v “gcvt() — Convert Double to String” on page 737

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

ecvt

Chapter 3. Part 3. Library Functions 465

encrypt() — Encoding Function

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <unistd.h>

void encrypt(char block[64], int edflag);

General Description

The encrypt() function uses an array of 16 48-bit keys produced by the setkey()

function to encode bytes specified by the block argument according to the Data

Encryption Standard (DES) encryption algorithm or to decode argument bytes

according to the DES decryption algorithm.

The block argument of encrypt() is an array of length 64 bytes containing only the

bytes with numerical value of 0 and 1. The array is modified in place using keys

produced by setkey(). If edflag is 0, the argument is encoded using the DES

encryption algorithm. If edflag is 1 the argument is decoded using the DES

decryption algorithm.

Special Behavior for z/OS UNIX Services

The encrypt() function is thread-specific. Thus, for each thread from which the

encrypt() function is called by a threaded application, the setkey() function must first

be called from the thread to establish a DES key array for the thread.

Returned Value

encrypt() returns no values.

Special Behavior for z/OS UNIX Services

encrypt() will set errno to one of the following values:

Error Code Description

EINVAL 64 byte input array contains bytes with values other than 0x00 or

0x01.

ENOMEM If setkey() has not been called or failed to produce a DES key array

for the thread from which encrypt() is called.

ENOSYS If DES key array exists for thread from which encrypt() is called to

decode data.

Note: Because encrypt() returns no values, applications wishing to check for errors

should set errno to 0, call encrypt(), then test errno and, if it is nonzero,

assume an error has occurred.

encrypt

466 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

Related Information

v “unistd.h” on page 96

v “__cnvblk() — Convert Block” on page 307

v “crypt() — String Encoding Function” on page 371

v “setkey() — Set Encoding Key” on page 1809

encrypt

Chapter 3. Part 3. Library Functions 467

endgrent() — Group Database Entry Functions

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <grp.h>

void endgrent(void),

struct group *getgrent (void);

void setgrent(void);

General Description

The getgrent() function returns a pointer to the broken-out fields of a line in the

group database, mapped by the group structure defined in the <grp.h> header file.

Repeated calls to getgrent() return a pointer to the next group structure in the

database, until End Of File (EOF), at which point a NULL pointer is returned.

setgrent() interrupts this sequential search and rewinds the user database to the

beginning, such that the next getgrent() returns a pointer to the first group

structure. Use of setgrent() is optional after an End Of File (EOF), as the next

getgrent() after end of file again returns a pointer to the first group structure.

endgrent() is optionally used to close the user database when searching is

complete.

The setgrent() function effectively rewinds the group database to allow repeated

searches.

The endgrent() function may be called to close the group database when

processing is complete.

Returned Value

When first called, getgrent() returns a pointer to the next group structure in the

group database. Upon subsequent calls it returns a pointer to a group structure, or

it returns a NULL pointer on either End Of File (EOF) or an error. The return value

may point to static data that is overwritten by each call.

There are no documented errno values.

Related Information

v “grp.h” on page 48

v “getgrgid() — Access the Group Database by ID” on page 769

v “getgrgid_r() — Get Group Database Entry for a Group ID” on page 771

v “getgrnam() — Access the Group Database by Name” on page 772

v “getgrnam_r() — Search Group Database for a Name” on page 774

v “getlogin() — Get the User Login Name” on page 799

v “getlogin_r() — Get Login Name” on page 801

v “getpwent() — Get User Database Entry” on page 839

v “getpwnam() — Access the User Database by User Name” on page 840

v “getpwnam_r() — Search User Database for a Name” on page 842

endgrent

468 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

v “getpwuid() — Access the User Database by User ID” on page 843

v “getpwuid_r() — Search User Database for a User ID” on page 845

endgrent

Chapter 3. Part 3. Library Functions 469

endhostent() — Close the Host Information Data Set

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

void endhostent(void);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

void endhostent();

General Description

The endhostent() function closes the local host tables, which contains information

about known hosts.

You can use the X_SITE environment variable to specify different local host tables

and override those supplied by the z/OS global resolver during initialization. For

more information on these local host tables or the environment variables, see z/OS

Communications Server: IP Configuration Guide.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Related Information

v “netdb.h” on page 64

v “gethostbyaddr() — Get a Host Entry by Address” on page 779

v “gethostbyname() — Get a Host Entry by Name” on page 782

v “gethostent() — Get the Next Host Entry” on page 785

v “sethostent() — Open the Host Information Data Set” on page 1793

endhostent

470 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

endnetent() — Close Network Information Data Sets

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

void endnetent(void);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

void endnetent();

General Description

The endnetent() function closes the tcpip.HOSTS.ADDRINFO data set. The

tcpip.HOSTS.ADDRINFO data set contains information about known networks.

You can use the X_ADDR environment variable to specify a data set other than

tcpip.HOSTS.ADDRINFO. For more information on these data sets and

environment variables, see z/OS Communications Server: IP Configuration Guide,

SC31-8775.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Related Information

v “netdb.h” on page 64

v “getnetbyaddr() — Get a Network Entry by Address” on page 811

v “getnetbyname() — Get a Network Entry by Name” on page 813

v “getnetent() — Get the Next Network Entry” on page 815

v “setnetent() — Open the Network Information Data Set” on page 1822

endnetent

Chapter 3. Part 3. Library Functions 471

||||

|
|
||

|

endprotoent() — Work with a Protocol Entry

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

void endprotoent(void);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

void endprotoent();

General Description

The endprotoent() function closes the /etc/protocol or the tcpip.ETC.PROTO data

set, which contains information about the networking protocols (IP, ICMP, TCP, and

UDP).

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Related Information

v “netdb.h” on page 64

v “getprotobyname() — Get a Protocol Entry by Name” on page 833

v “getprotoent() — Get the Next Protocol Entry” on page 837

v “setprotoent() — Open the Protocol Information Data Set” on page 1831

endprotoent

472 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

endpwent() — User Database Functions

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <pwd.h>

void endpwent(void),

struct passwd *getpwent(void);

void setpwent(void);

General Description

The getpwent() function returns a pointer to the broken-out fields of a line in the

user database, mapped by the passwd structure defined in the <pwd.h> header file.

Repeated calls to getpwent() return a pointer to the next passwd structure in the

database, until End Of File (EOF), at which point a NULL pointer is returned.

setpwent() interrupts this sequential search and rewinds the user database to the

beginning, such that the next getpwent() returns a pointer to the first passwd

structure. Use of setpwent() is optional after an End Of File (EOF), as the next

getpwent() after end of file again returns a pointer to the first passwd structure.

endpwent() is optionally used to close the user database when searching is

complete.

The setpwent() function effectively rewinds the user database to allow repeated

searches.

The endpwent() function may be called to close the user database when processing

is complete.

Returned Value

When first called, getpwent() returns a pointer to the next passwd structure in the

user database. Upon subsequent calls it returns a pointer to a passwd structure, or

it returns a NULL pointer on either End Of File (EOF) or an error. The return value

may point to static data that is overwritten by each call.

There are no documented errno values.

Related Information

v “pwd.h” on page 75

v “getgrent() — Get Group Database Entry” on page 768

v “getgrgid() — Access the Group Database by ID” on page 769

v “getgrnam() — Access the Group Database by Name” on page 772

v “getlogin() — Get the User Login Name” on page 799

v “getpwent() — Get User Database Entry” on page 839

v “getpwnam() — Access the User Database by User Name” on page 840

v “getpwuid() — Access the User Database by User ID” on page 843

endpwent

Chapter 3. Part 3. Library Functions 473

||||

|
|
||

|

endservent() — Close Network Services Information Data Sets

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

void endservent(void);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

void endservent();

General Description

The endservent() function closes the /etc/services or the tcpip.ETC.SERVICES data

set, which contains information about network services. Example services are name

server, File Transfer Protocol (FTP), and telnet.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Related Information

v “netdb.h” on page 64

v “getservbyname() — Get a Server Entry by Name” on page 852

v “getservbyport() — Get a Service Entry by Port” on page 854

v “getservent() — Get the Next Service Entry” on page 856

v “setservent() — Open the Network Services Information Data Set” on page 1840

endservent

474 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

endutxent() — Close the utmpx Database

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <utmpx.h>

void endutxent(void);

General Description

The endutxent() function closes the utmpx database for the current thread. The

database may be opened by getutxent(), getutxid(), getutxline(), or pututxline().

Because the endutxent() function processes thread-specific data the endutxent()

function can be used safely from a multithreaded application. If multiple threads in

the same process open the database, then each thread opens the database with a

different file descriptor. The thread’s database file descriptor is closed when the

calling thread terminates or the endutxent() function is called by the calling thread.

Programs must not reference the data passed back by getutxline(), getutxid(),

getutxent(), or pututxline() after endutxent() has been called (the storage has been

freed.)

After getuxline(), getutxent(), getutxid(), or pututxline(), the utmpx database is open.

No other process can do pututxline() to this utmpx database until this process

issues endutxent() or __utmpxname() to close the utmpx database, or this process

ends. You can cause all z/OS UNIX user logins/logouts to hang if you fail to exit() or

issue endutxent() or __utmpxname(), and you have the main /etc/utmpx database

open in your process. endutxent() resets the name of the next utmpx file to open

back to the default. If you want to do additional utmpx operations using a

nonstandard utmpx file name, you must reissue __utmpxname() after closing the

utmpx database with endutxent().

Returned Value

endutxent() returns no values.

Related Information

v “utmpx.h” on page 98

v “getutxent() — Read Next Entry in utmpx Database” on page 881

v “getutxid() — Search by ID utmpx Database” on page 883

v “getutxline() — Search by Line utmpx Database” on page 885

v “pututxline() — Write Entry to utmpx Database” on page 1576

v “setutxent() — Reset to Start of utmpx Database” on page 1861

v “__utmpxname() — Change the utmpx Database Name” on page 2322

endutxent

Chapter 3. Part 3. Library Functions 475

||||

|
|
||

|

erand48() — Pseudo-Random Number Generator

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

double erand48(unsigned short int x16v[3]);

General Description

The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions

generate uniformly distributed pseudo-random numbers using a linear congruential

algorithm and 48-bit integer arithmetic.

The functions drand48() and erand48() return nonnegative, double-precision,

floating-point values, uniformly distributed over the interval [0.0,1.0). These

functions have been extended so that the returned value will be in the proper

floating-point format (hexadecimal or IEEE) based on the floating-point mode of the

invoking thread.

The functions lrand48() and nrand48() return nonnegative, long integers, uniformly

distributed over the interval [0,2**31).

The functions mrand48() and jrand48() return signed long integers, uniformly

distributed over the interval [-2**31,2**31).

The erand48() function generates the next 48-bit integer value in a sequence of

48-bit integer values, X(i), according to the linear congruential formula:

X(n+1) = (aX(n) + c)mod(2**48) n>=0

The erand48() function uses storage provided by the argument array, x16v[3], to

save the most recent 48-bit integer value in the sequence, X(i). The erand48()

function uses x16v[0] for the low-order (rightmost) 16 bits, x16v[1] for the

middle-order 16 bits, and x16v[2] for the high-order 16 bits of this value.

The initial values of a, and c are:

a = 5deece66d (base 16)

c = b (base 16)

The values a and c, may be changed by calling the lcong48() function. The initial

values of a and c are restored if either the seed48() or srand48() function is called.

Special Behavior for z/OS UNIX Services

You can make the erand48() function and other functions in the drand48 family

thread-specific by setting the environment variable _RAND48 to the value THREAD

before calling any function in the drand48 family.

erand48

476 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

If you do not request thread-specific behavior for the drand48 family, C/370

serializes access to the storage for X(n), a and c by functions in the drand48 family

when they are called by a multithreaded application.

If thread-specific behavior is requested and the erand48() function is called from

thread t, the erand48() function generates the next 48-bit integer value in a

sequence of 48-bit integer values, X(t,i), for the thread according to the linear

congruential formula:

X(t,n+1) = (a(t)X(t,n) + c(t))mod(2**48) n>=0

The erand48() function uses storage provided by the argument array, x16v[3], to

save the most recent 48-bit integer value in the sequence, X(t,i). The erand48()

function uses x16v[0] for the low-order (rightmost) 16 bits, x16v[1] for the

middle-order 16 bits, and x16v[2] for the high-order 16 bits of this value.

The initial values of a(t) and c(t) on the thread t are:

a(t) = 5deece66d (base 16)

c(t) = b (base 16)

The values a(t) and c(t) may be changed by calling the lcong48() function from the

thread t. The initial values of a(t) and c(t) are restored if either the seed48() or

srand48() function is called from the thread.

Returned Value

erand48() saves the generated 48-bit value, X(n+1), in storage provided by the

argument array, x16v[3]. erand48() transforms the generated 48-bit value to a

double-precision, floating-point value on the interval [0.0,1.0) and returns this

transformed value.

Special Behavior for z/OS UNIX Services

If thread-specific behavior is requested for the drand48 family and erand48() is

called on thread t, erand48() saves the generated 48-bit value, X(t,n+1), in storage

provided by the argument array, x16v[3]. erand48() transforms the generated 48-bit

value to a double-precision, floating-point value on the interval [0.0,1.0) and returns

this transformed value.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “jrand48() — Pseudo-Random Number Generator” on page 1051

v “lcong48() — Pseudo-Random Number Initializer” on page 1065

v “lrand48() — Pseudo-Random Number Generator” on page 1150

v “mrand48() — Pseudo-Random Number Generator” on page 1251

v “nrand48() — Pseudo-Random Number Generator” on page 1307

v “seed48() — Pseudo-Random Number Initializer” on page 1712

v “srand48() — Pseudo-Random Number Initializer” on page 2005

erand48

Chapter 3. Part 3. Library Functions 477

erf(), erfc(), erff(), erfl(), erfcf(), erfcl() — Calculate Error and

Complementary Error Functions

Standards

 Standards / Extensions C or C++ Dependencies

SAA

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

SAA

Compiler Option LANGLVL(EXTENDED), LANGLVL(SAA), or LANGLVL(SAA2)

#include <math.h>

double erf(double x);

double erfc(double x);

XPG4

#define _XOPEN_SOURCE

#include <math.h>

double erf(double x);

double erfc(double x);

C99

#define _ISOC99_SOURCE

#include <math.h>

float erff(float x);

long double erfl(long double x);

float erfcf(float x);

long double erfcl(long double x)

General Description

Calculates the error and complementary error functions:

 Because the erfc() function calculates the value of 1.0 - erf(x), it is used in place

of erf() for large values of x.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

2�
−1/2 �

0

x

e−t2dt

erf, erfc, erff, erfl, erfcf, erfcl

478 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

Function SPC Hex IEEE

erf X X X

erff X X

erfl X X

erfc X X X

erfcf X X

erfcl X X

Returned Value

Both erf() and erfc() return the calculated value.

If the correct value would cause underflow, 0 is returned and the value of the macro

ERANGE is stored in errno. A range error is returned if x is too large.

Special Behavior for IEEE

erf() and erfc() are always successful.

Requirements

This function is exposed by specifying on the compile step either the specific option

LANGLVL(LONGLONG) or the general option LANGLVL(EXTENDED).

Example

CELEBE01

/* CELEBE01

 This example uses &erf. and &erfc. to compute the error

 function of two numbers.

 */

#include <stdio.h>

#include <math.h>

double smallx, largex, value;

int main(void)

{

 smallx = 0.1;

 largex = 10.0;

 value = erf(smallx); /* value = 0.112463 */

 printf("Error value for 0.1: %f\n", value);

 value = erfc(largex); /* value = 2.088488e−45 */

 printf("Error value for 10.0: %e\n", value);

}

Output

Error value for 0.1: 0.112463

Error value for 10.0: 2.088488e-45

Related Information

v “math.h” on page 60

v “gamma() — Calculate Gamma Function” on page 736

erf, erfc, erff, erfl, erfcf, erfcl

Chapter 3. Part 3. Library Functions 479

v “j0(), j1(), jn() — Bessel Functions of the First Kind” on page 1053

v “y0(), y1(), yn() — Bessel Functions of the Second Kind” on page 2480

erf, erfc, erff, erfl, erfcf, erfcl

480 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__err2ad() — Return Address of Reason Code of Last Failure

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

int *__err2ad(void);

General Description

The __err2ad() function returns the address of the errno2. The errno2 may be set

by the z/OS XL C/C++ run-time library, z/OS UNIX callable services or other

callable services.

__err2ad() provides assistance in diagnosing problems by allowing an application to

reset the errno2 value prior to calling a function.

For more information about __errno2(), see z/OS XL C/C++ Run-Time Library

Reference.

Returned Value

__err2ad() is always successful.

Related Information

v “__errno2() — Return Reason Code Information” on page 482

__err2ad

Chapter 3. Part 3. Library Functions 481

|

|
|
|

|
|

|
|

|

|

__errno2() — Return Reason Code Information

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

int __errno2(void);

General Description

The __errno2() function can be used when diagnosing application problems. This

function enables z/OS XL C/C++ application programs to access additional

diagnostic information, errno2 (errnojr), associated with errno. The errno2 may be

set by the z/OS XL C/C++ run-time library, z/OS UNIX callable services or other

callable services. The errno2 is intended for diagnostic display purposes only and it

is not a programming interface. The __errno2() function is not portable.

Note: Not all functions set errno2 when errno is set. In the cases where errno2 is

not set, the __errno2() function may return a residual value. You may use the

__err2ad() function to clear errno2 to reduce the possibility of a residual

value being returned.

Returned Value

The __errno2() function is always successful. The returned value is intended for

diagnostic display purposes only.

The returned value may input to the BPXMTEXT utility to produce detailed

information about the reported error if available.

For more information about the return value, see the z/OS UNIX System Services

Command Reference, z/OS UNIX System Services Programming: Assembler

Callable Services Reference, SA22-7803, and z/OS Language Environment

Debugging Guide.

Example

CELEBE02

/* CELEBE02

 The following example's output only occurs

 if the buffer is flushed.

 */

#include <errno.h>

#include <stdio.h>

FILE *myfopen(const char *fn, const char *mode) {

 FILE *f;

 f = fopen(fn,mode);

 if (f==NULL) {

 perror("fopen() failed");

 printf("__errno2 = %08x\n", __errno2());

 }

 return(f);

}

__errno2

482 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Sample output of routine using __errno2(), CELEBE02:

fopen() failed: EDC5129I No such file or directory. __errno2 = 05620062

CELEBE08

#pragma runopts(posix(on))

#define _EXT

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

int main(void){

 FILE *fp;

 /* add errno2 to perror message */

 setenv("_EDC_ADD_ERRNO2", "1", 1);

 fp = fopen("testfile.dat", "r");

 if (fp == NULL)

 perror("fopen() failed");

 return 0;

}

Sample output of routine using _EDC_ADD_ERRNO2, CELEBE08:

fopen() failed: EDC5129I No such file or directory. (errno2=0x05620062)

CELEBE09

#pragma runopts(posix(on))

#define _EXT

#include <stdio.h>

#include <errno.h>

int main(void){

 FILE *f;

 f = fopen("testfile.dat", "r");

 if (f == NULL){

 perror("fopen() failed");

 printf("__errno2 = %08x\n", __errno2());

 }

 /* reset errno2 to zero */

 *__err2ad() = 0x0;

 printf("__errno2 = %08x\n", __errno2());

 f = fopen("testfile.dat", "r");

 if (f == NULL){

 perror("fopen() failed");

 printf("__errno2 = %08x\n", __errno2());

 }

 return 0;

}

For more information about _EDC_ADD_ERRNO2 , see z/OS XL C/C++

Programming Guide. For more information about __err2ad() , see z/OS XL C/C++

Run-Time Library Reference.

Related Information

v “errno.h” on page 41

v “__err2ad() — Return Address of Reason Code of Last Failure” on page 481

__errno2

Chapter 3. Part 3. Library Functions 483

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

__etoa() — EBCDIC to ISO8859-1 String Conversion

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <unistd.h>

int __etoa(char *string);

General Description

The __etoa() function converts an EBCDIC character string string to its ISO8859-1

equivalent. The conversion is performed using the codeset page associated with the

current locale. The input character string up to, but not including, the NULL

character is changed from the current locale to an ISO8859-1 representation.

The argument string points to the EBCDIC character string to be converted to its

ISO8859-1 equivalent.

Returned Value

If successful, __etoa() converts the input EBCDIC string to its equivalent ISO8859-1

value, and returns the length of the converted string.

If unsuccessful, __etoa() returns −1 and sets errno to one of the following values.

(This function internally may call iconv_open() and iconv(). The errnos returned by

these functions are propagated without modification.)

Error Code Description

EINVAL The current locale does not describe a single-byte character set.

ENOMEM There is insufficient storage to complete the conversion process.

Related Information

v “sys/msg.h” on page 88

v “unistd.h” on page 96

v “iconv() — Code Conversion” on page 920

v “iconv_open() — Allocate Code Conversion Descriptor” on page 925

__etoa

484 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__etoa_l() — EBCDIC to ISO8859-1 Conversion Operation

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <unistd.h>

int __etoa_l(char *bufferptr, int leng);

General Description

The __etoa_l() function converts leng EBCDIC bytes in the buffer pointed to by

bufferptr to their ISO8859-1 equivalent. The conversion is performed using the

codeset page associated with the current locale.

The argument bufferptr points to a buffer containing the EBCDIC bytes to be

converted to their ISO8859-1 equivalent. The input buffer is treated as a sequence

of bytes, and all bytes in the input buffer are converted, including any imbedded

NULLs.

Returned Value

If successful, __etoa_l() converts the input EBCDIC bytes to their equivalent

ISO8859-1 value, and returns the number of bytes converted.

If unsuccessful, __etoa_l() returns −1 and sets errno to one of the following values.

(This function may internally call iconv_open() and iconv(). The errnos returned by

these functions are propagated without modification.)

Error Code

Description

EINVAL

The current locale does not describe a single-byte character set.

ENOMEM

There is insufficient storage to complete the conversion process.

Related Information

v “sys/msg.h” on page 88

v “unistd.h” on page 96

v “iconv() — Code Conversion” on page 920

v “iconv_open() — Allocate Code Conversion Descriptor” on page 925

__etoa_l

Chapter 3. Part 3. Library Functions 485

exec Functions

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ..., NULL);

int execle(const char *path, const char *arg, ..., NULL, char *const envp[]);

int execlp(const char *file, const char *arg, ..., NULL);

int execv(const char *path, char *const argv[]);

int execve(const char *path, char *const argv[], char *const envp[]);

int execvp(const char *file, char *const argv[]);

Note: Although POSIX.1 does not require that the unistd.h include file be included,

it is recommended that you include it for portability.

General Description

All exec functions run a new program by replacing the current process image with a

new process image obtained from a file in the HFS (hierarchical file system).

For information on specifying names for MVS data sets and HFS files, see z/OS XL

C/C++ Programming Guide.

A successful exec function never returns control because the calling process is

overwritten with the new process.

The argument path is a string giving the absolute or relative pathname of a file. This

file contains the image of the process to be run.

file is a string that is used in determining the pathname of the file containing the

image of the process to be run. If file contains a slash character (/), it is assumed to

be the absolute or relative pathname of the file. If file does not contain a slash, the

system searches for the given file name under the list of directories given by the

PATH environment variable. The system checks under directories in the order they

appear in the PATH variable, and executes the first file whose name matches the file

string. The file must reside in the HFS.

The exec functions use the following environment variables:

STEPLIB Supports the creation and propagation of a STEPLIB environment

to the new process image. The following are the accepted values

for the STEPLIB environment variable and the actions taken for

each value:

v STEPLIB=NONE. No Steplib DD is to be created for the new

process image.

exec

486 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

v STEPLIB=CURRENT. The TASKLIB, STEPLIB or JOBLIB DD

data set allocations that are active for the calling task at the time

of the call to exec() are propagated to the new process image, if

they are found to be cataloged. Uncataloged data sets are not

propagated to the new process image.

v STEPLIB=Dsn1:Dsn2:,...DsnN. The specified data sets,

Dsn1:Dsn2:...DsnN, are built into a STEPLIB DD in the new

process image.

Note: The actual name of the DD is not STEPLIB, but is a

system-generated name that has the same effect as a

STEPLIB DD. The data sets are concatenated in the order

specified. The specified data sets must follow standard

MVS data set naming conventions. Data sets found to be

in violation of this standard are ignored. If the data sets do

follow the standard, but:

– The caller does not have the proper security access to

a data set

– A data set is uncataloged or is not in load library

format

then the data set is ignored. Because the data sets in

error are ignored, the executable file may run without the

proper STEPLIB environment. If a data set is in error due

to improper security access, a X'913' abend is generated.

The dump for this abend can be suppressed by your

installation.

If the STEPLIB environment variable is not specified, the exec()

default behavior is the same as if STEPLIB=CURRENT were

specified.

 If the program to be invoked is a set-user-ID or set-group-ID file

and the user-ID or group-ID of the file is different from that of the

current process image, the data sets to be built into the STEPLIB

environment for the new process image must be found in the

system sanction list for set-user-id and set-group-id programs. Only

those data sets that are found in the sanction list are built into the

STEPLIB environment for the new process image. For detailed

information regarding the sanction list, and for information on

STEPLIB performance considerations, see z/OS UNIX System

Services Planning, GA22-7800.

_BPX_JOBNAME

Used to change the jobname of the new process image. The

jobname change is allowed only if the invoker has appropriate

privileges and is running in an address space created by fork. If

these conditions are not met, the environment variable is ignored.

Accepted values are strings of 1–8 alphanumeric characters.

Incorrect specifications are ignored.

_BPX_ACCT_DATA

Used to change the account data of the new process image. Rules

for specifying account data:

v Up to 142 actual account data characters are allowed, including

any commas

v Sub-parameters must be separated by commas.

v There is no restriction on the character set.

exec

Chapter 3. Part 3. Library Functions 487

v If the account data is greater than 142 characters, the data is

ignored.

_BPXK_JOBLOG

The _BPXK_JOBLOG environment variable can be used to specify

that WTO messages are to be written to an open HFS job log file.

The following are the allowable values:

Value Description

nn Job log messages are to be written to open file

descriptor nn.

STDERR Job log messages are to be written to the standard

error file descriptor, 2.

None Job log messages are not to be written. This is the

default.

The file that is used to capture messages can be changed at any

time by calling the oe_env_np service (BPX1ENV) and specifying

_BPXK_JOBLOG with a different file descriptor.

 Message capturing is turned off if the specified file descriptor is

marked for close on a fork or exec.

 Message capturing is process-related. All threads under a given

process share the same job log file. Message capturing may be

initiated by any thread under that process.

 Multiple processes in a single address space can each have

different files active as the JOBLOG file; some or all of them can

share the same file; and some processes can have message

capturing active while others do not.

 Only files that can be represented by file descriptors may be used

as job log files; MVS data sets are not supported.

 Message capturing will be propagated on a fork() or spawn(). In the

case where a file descriptor was specified, the physical file must be

the same for message capturing to continue in the forked or

spawned process. If STDERR was specified, the file descriptor may

be re-mapped to a different physical file.

 Message capturing may be overridden on exec() or spawn() by

specifying the _BPXK_JOBLOG environment variable as a

parameter to the exec() or spawn().

 Message capturing will only work in forked (BPXAS) address

spaces.

Note: This is not true joblog support, messages that would

normally go to the JESYSMSG data set are captured, but

messages that go to JESMSGLG are not captured.

Special Behavior for XPG4

If this file is not a valid executable object, the execlp() and execvp() functions

invoke /bin/sh with the invoker’s pathname and the rest of the input arguments. It is

similar to invoking:

execl("/bin/sh",

 "sh",

 "--",

exec

488 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fully_expanded_pathname,

 arg1, arg2, ..., argn,

 NULL

);

where arg1, arg2, ..., argn are the caller’s arguments to execlp() or execvp(), and

fully_expanded_pathname is the pathname of the shell script found by searching

the directories in the current PATH.

arg, ..., NULL is a series of pointers to NULL-terminated character strings specifying

arguments for the process being invoked. If the new process is a main(), these

strings are stored in an array, and a pointer to the array is passed in the argv

parameter. The first argument is required, and it should point to a string containing

the name of the file that is associated with the process that exec is starting. A NULL

pointer must follow the last argument string pointer.

argv[] is a pointer to an array of pointers to NULL-terminated character strings.

There must be a NULL pointer after the last character string to mark the end of the

array. These strings are used as arguments for the process being invoked. argv[0]

should point to a string containing the name of a file associated with the process

being started by exec. envp[] is a pointer to an array of pointers to NULL-terminated

character strings. There must be a NULL pointer after the last character string to

mark the end of the array. The strings of envp provide the environment variables for

the new process.

All the forms of exec functions provide a way to locate the file containing the new

process you want to run and a collection of arguments that should be passed to the

new process. Each form of exec has its own method for specifying this information.

Some exec calls explicitly pass an environment using an envp argument. In

versions where an environment is not passed explicitly—execl(), execlp(), execv(),

and execvp()—the system uses the entire environment of the caller. The caller’s

environment is assumed to be the environment variables that the external variable

**environ points to.

The variable ARG_MAX, obtained from z/OS UNIX services by an invocation of

sysconf(_SC_ARG_MAX), specifies the maximum number of bytes that can be used

for arguments and environment variables passed to the process being invoked. The

number of bytes includes the NULL terminator on each string.

A process started by an exec function has all of the open file descriptors that were

present in the caller, except for those files opened with the close-on-exec flag

FD_CLOEXEC. See “fcntl() — Control Open File Descriptors” on page 527 for more

information about this flag. In file descriptors that remain open, all attributes remain

unchanged (including file locks).

Directory streams that are open in the calling process image are closed in the new

process image.

The state of conversion descriptors and message catalog descriptors is undefined.

Signals set to be ignored in the caller, SIG_IGN, are set to be ignored in the new

process image. Be careful to take care of signals that are being ignored. Although

sigaction() specifying a handler is not passed by, SIG_IGN is. Blocking of signals is

also passed by. All other signals are set to the default action, SIG_DFL, in the new

process image, no matter how the caller handled such signals.

exec

Chapter 3. Part 3. Library Functions 489

The real user ID (UID), real group ID (GID), and supplementary group IDs of the

new process are the same as those of the caller. If the set-user-ID mode bit of the

program file is on, the effective user ID of the new process is set to the file’s owner.

Similarly, if the set-group-ID mode bit of the program file is on, the effective group

ID of the new process is set to the file’s group. The effective user ID of the new

process image is saved as the saved set-user-ID, and the effective group ID of the

new process image is saved as the saved set-group-ID.

Any shared memory segments attached to the calling process image will not be

attached to the new process image, see “shmat() — Shared Memory Attach

Operation” on page 1864. Any shared memory segments attached to the calling

process image will be detached (that is, the value of shm_nattch decremented by

one). If this is the last thread attached to the shared memory segment and a

shmctl() RMID has been issued, the segment will be removed from the system.

Special Behavior for XPG4.2

Interval timers are preserved across an exec.

The new process also inherits the following from the caller:

v Controlling terminal (XPG4.2)

v Nice value (see “nice() — Change Priority of a Process” on page 1304) (XPG4)

v semadj values (see “semop() — Semaphore Operations” on page 1734) (XPG4)

v Process ID

v Parent process ID

v Process group ID

v Resource limits (see “setrlimit() — Control Maximum Resource Consumption” on

page 1837 and “ulimit() — Get/Set Process File Size Limits” on page 2287)

(XPG4.2)

v Session membership

v Time left until an alarm clock signal

v Working directory

v Root directory

v File mode creation mask

v File size limit (see “ulimit() — Get/Set Process File Size Limits” on page 2287)

(XPG4)

v Process signal mask

v Pending signals

v tms_utime, tms_stime, tms_cutime, and tms_cstime. See “times() — Get Process

and Child Process Times” on page 2206 for more about these qualities.

A successful exec function automatically opens the specified program file, and

updates the access time st_atime for that file. The program file is closed

automatically after the program has been read from the file. The precise time of this

close operation is undefined.

Special Behavior for z/OS UNIX Services

Notes:

1. A prior loaded copy of an HFS program in the same address space is reused

under the same circumstances that apply to the reuse of a prior loaded MVS

unauthorized program from an unauthorized library by the MVS XCTL service

with the following exceptions:

v If the calling process is in Ptrace debug mode, a prior loaded copy is not

reused.

exec

490 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v If the calling process is not in Ptrace debug mode, but the only prior loaded

usable copy found of the HFS program is in storage modifiable by the caller,

the prior copy is not reused.

2. If the specified file name represents an external link or a sticky bit file, the

program is loaded from the caller’s MVS load library search order. For an

external link, the external name is only used if the name is eight characters or

less, otherwise the caller receives an error from the loadhfs service. For a sticky

bit program, the file name is used if it is eight characters or less. Otherwise, the

program is loaded from the HFS.

3. If the calling task is in a WLM enclave, the resulting task in the new process

image is joined to the same WLM enclave. This allows WLM to manage the old

and new process images as one ‘business unit of work’ entity for system

accounting and management purposes.

Note: If you are expecting this function to take advantage of the z/OS UNIX magic

number support, the Language Environment run-time option to POSIX(ON)

must have been set when the process was initialized. Attempting to use

magic number support with a process initialized with POSIX(OFF) may

produce undesirable effects. See z/OS UNIX System Services Planning,

GA22-7800 and z/OS UNIX System Services User’s Guide, SA22-7801 for

details and uses of the z/OS UNIX magic number.

Returned Value

If successful, an exec function never returns control because the calling process is

overwritten with the new process.

If unsuccessful, an exec function returns −1 and sets errno to one of the following

values:

Error Code Description

E2BIG The combined argument list and environment list of the new

process has more bytes than the system-defined length. See

“sysconf() — Determine System Configuration Options” on page

2111 for information about the system-defined length.

EACCES The process did not have appropriate permissions to run the

specified file, for one of these reasons:

v The process did not have permission to search a directory

named in your path.

v The process did not have execute permission for the file to be

run.

v The system cannot run files of this type.

EFAULT A bad address was received as an argument of the call, or the user

exit program checked.

 Consult Reason Code to determine the exact reason the error

occurred. The following reason code can accompany the return

code: JRExecParmErr and JRExitRtnError.

EINVAL The new process image file has the appropriate permission and has

a recognized format, but the system does not support execution of

a file with this format.

ELOOP A loop exists in symbolic links. This error is issued if the number of

exec

Chapter 3. Part 3. Library Functions 491

symbolic links detected in the resolution of the path or file argument

is greater than POSIX_SYMLOOP (a value defined in the limits.h

header file)

EMVSSAF2ERR

The executable file is a set-user-ID or set-group-ID file, and the file

owner’s UID or GID is not defined to RACF.

ENAMETOOLONG

All or part of the file name is too long. This can happen if:

v A path or file argument exceeds the value of PATH_MAX, or an

element of your path exceeds PATH_MAX.

v Any pathname component is greater than NAME_MAX, and

_POSIX_NO_TRUNC is in effect.

v The length of a pathname string substituted for a symbolic link in

the path argument exceeds PATH_MAX.

The PATH_MAX and NAME_MAX values are determined with

pathconf().

ENOENT One or more pathname components in path or file does not exist.

This error is also issued if path or file is a NULL string.

ENOEXEC The new process image file has the appropriate access permission

but has an unrecognized format. This errno can be returned from

any one of the exec family of functions, except for execlp() and

execvp().

Note: Reason codes further qualify the errno. For most of the

reason codes, see z/OS UNIX System Services Messages

and Codes.

For ENOEXEC, the reason codes are:

 Reason Code Explanation

X'xxxx0C27' The target HFS file is not in the correct format to

be an executable file.

X'xxxx0C31' The target HFS file is built at a level that is higher

than that supported by the running system.

ENOMEM The new process requires more memory than is permitted by the

operating system.

ENOTDIR A directory component of path or file is not really a directory.

Example

CELEBE03

/* CELEBE03

 This example runs a program, using the execl() function.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <sys/wait.h> /*FIX: used be <wait.h>*/

#include <sys/types.h>

#include <unistd.h>

main() {

exec

492 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pid_t pid;

 int status;

 if ((pid = fork()) == 0) {

 execl("/bin/false", NULL);

 perror("The execl() call must have failed");

 exit(255);

 }

 else {

 wait(&status);

 if (WIFEXITED(status))

 printf("child exited with status of %d\n", WEXITSTATUS(status));

 else

 puts("child did not exit successfully\n");

 }

}

Output

child exited with status of 1

Related Information

v “limits.h” on page 55

v “signal.h” on page 77

v “unistd.h” on page 96

v “alarm() — Set an Alarm” on page 180

v “chmod() — Change the Mode of a File or Directory” on page 280

v “_exit() — End a Process and Bypass the Cleanup” on page 496

v “fcntl() — Control Open File Descriptors” on page 527

v “fork() — Create a New Process” on page 632

v “getrlimit() — Get Current/Maximum Resource Consumption.” on page 846

v “nice() — Change Priority of a Process” on page 1304

v “putenv() — Change or Add an Environment Variable” on page 1569

v “semop() — Semaphore Operations” on page 1734

v “setuid() — Set the Effective User ID” on page 1857

v “shmat() — Shared Memory Attach Operation” on page 1864

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “stat() — Get File Information” on page 2008

v “system() — Execute a Command” on page 2118

v “times() — Get Process and Child Process Times” on page 2206

v “ulimit() — Get/Set Process File Size Limits” on page 2287

v “umask() — Set and Retrieve File Creation Mask” on page 2291

exec

Chapter 3. Part 3. Library Functions 493

exit() — End Program

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

void exit(int status);

General Description

The exit() function:

1. Calls all functions registered with the atexit() function, and destroys C++ objects

with static storage duration, all in last-in-first-out (LIFO) order. C++ objects with

static storage duration are destroyed in the reverse order of the completion of

their constructor. (Automatic objects are not destroyed as a result of calling

exit().)

Functions registered with atexit() are called in the reverse order of their

registration. A function registered with atexit(), before an object obj1 of static

storage duration is initialized, will not be called until obj1’s destruction has

completed. A function registered with atexit(), after an object obj2 of static

storage duration is initialized, will be called before obj2’s destruction starts.

2. Flushes all buffers, and closes all open files.

3. All files opened with tmpfile() are deleted.

4. Returns control to the host environment from the program.

Process termination in _exit() is equivalent to program termination in exit().

The argument status can have a value from 0 to 255 inclusive or be one of the

macros EXIT_SUCCESS or EXIT_FAILURE. The value of EXIT_SUCCESS is

defined in stdlib.h as 0; the value of EXIT_FAILURE is 8.

This function is also available to C applications in a stand-alone Systems

Programming C (SPC) Environment.

In a POSIX C program, exit() returns control to the kernel with the value of status.

The kernel then performs normal process termination. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information about using POSIX support.

POSIX-level thread cleanup routines are not executed. These includes cleanup

routines created with pthread_cleanup_push() and destructor routines created with

pthread_key_create().

Special Behavior for C++

exit

494 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

If exit() is called in a z/OS XL C++ program, the program terminates without leaving

the current block, and therefore destructors are not called for local (automatic)

variables. Destructors for initialized static objects will be called in the reverse order

of the completion of their constructors.

Functions registered with atexit() are called in the reverse order of their registration.

A function registered with atexit(), before an object obj1 of static storage duration is

initialized, will not be called until obj1’s destruction has completed. A function

registered with atexit(), after an object obj2 of static storage duration is initialized,

will be called before obj2’s destruction starts.

Returned Value

exit() returns no values.

exit() returns control to its host environment, with the returned value status.

For example, if program A invokes program B using a call to the system() function,

and program B calls the exit() function, then program B returns to its host

environment, which is program A.

Example

/* This example flushes all buffers, closes any open files, and ends the

 program if it cannot open the file myfile.

 */

#include <stdio.h>

#include <stdlib.h>

FILE *stream;

int main(void)

{ ...
 if ((stream = fopen("myfile.dat", "r")) == NULL)

 {

 printf("Could not open data file\n");

 exit(EXIT_FAILURE);

 }

}

Related Information

v “System Programming C (SPC) Facilities” in z/OS XL C/C++ Programming Guide

v “Using Run-Time User Exits” in z/OS XL C/C++ Programming Guide

v “stdlib.h” on page 85

v “abort() — Stop a Program” on page 116

v “atexit() — Register Program Termination Function” on page 196

v “_exit() — End a Process and Bypass the Cleanup” on page 496

v “_Exit() — Terminate a Process” on page 498

v “signal() — Handle Interrupts” on page 1917

v “wait() — Wait for a Child Process to End” on page 2349

v “waitpid() — Wait for a Specific Child Process to End” on page 2354

exit

Chapter 3. Part 3. Library Functions 495

_exit() — End a Process and Bypass the Cleanup

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

void _exit(int status);

General Description

Ends the current process and makes an exit status value for the process available

to the system.

The argument status specifies a return status for the process that is ending. Ending

the process has the following results:

v _exit() closes all open file descriptors and directory streams in the caller.

v If the caller’s parent is currently suspended because of wait() or waitpid(), the

low-order 8 bits of status become available to the parent. For a discussion on

accessing those 8 bits, refer to “waitpid() — Wait for a Specific Child Process to

End” on page 2354.

v If the caller’s parent is not currently suspended because of wait() or waitpid(),

_exit() saves the status value so that it can be returned to the parent if the parent

calls wait() or waitpid().

v A SIGCHILD signal is sent to the parent process.

v If the process calling _exit() is a controlling process, the SIGHUP signal is sent to

each process in the foreground process group of the controlling terminal

belonging to the caller.

v If the process calling _exit() is a controlling process, _exit() disassociates the

associated controlling terminal from the session. A new controlling process can

then acquire the terminal.

v Exiting from a process does not end its child processes directly. The SIGHUP

signal may end children in some cases. Children that survive when a process

ends are assigned a new parent process ID. The new parent process ID is

always 1, indicating the root ancestor of all processes.

v If a process ends and orphans a process group and if a member of that group is

stopped, each member of the group is sent a SIGHUP signal, followed by a

SIGCONT signal.

v All threads are ended, and their resources cleaned up. (Threads are MVS tasks

that call a z/OS UNIX callable service.) POSIX-level thread cleanup routines are

not executed. These include cleanup routines created with

pthread_cleanup_push() and destructor routines created with

pthread_key_create().

_exit

496 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

These results occur whenever a process ends. _exit() does not cause C run-time

library cleanup to be performed; therefore, stream buffers are not necessarily

flushed.

Note: If _exit() is issued from a TSO/E address space, it ends the calling task and

all its subtasks.

Special Behavior for C++

If _exit() is called in a C++ program, the program terminates without leaving the

current block, and destructors are not called for local (automatic) variables. In

addition, unlike exit(), destructors for global (static) variables are not called.

Returned Value

_exit() is always successful and returns no values.

No value is stored in errno for this function.

Example

CELEBE05

/* CELEBE05

 This example ends a process.

 */

#define _POSIX_SOURCE

#include <unistd.h>

#include <stdio.h>

main() {

 puts("Remember that stream buffers are not automatically");

 puts("flushed before _exit()!");

 fflush(NULL);

 _exit(0);

}

Output

Remember that stream buffers are not automatically

flushed before _exit()!

Related Information

v “stdlib.h” on page 85

v “unistd.h” on page 96

v “abort() — Stop a Program” on page 116

v “atexit() — Register Program Termination Function” on page 196

v “close() — Close a File” on page 299

v “exit() — End Program” on page 494

v “_Exit() — Terminate a Process” on page 498

v “fork() — Create a New Process” on page 632

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “signal() — Handle Interrupts” on page 1917

v “wait() — Wait for a Child Process to End” on page 2349

_exit

Chapter 3. Part 3. Library Functions 497

_Exit() — Terminate a Process

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <stdlib.h>

void _Exit(int status);

General Description

When running POSIX(OFF), the _Exit() function is equivalent to exit() with the

exception that it does not run atexit() registered routines or signal handlers

registered using signal().

When running POSIX(ON), the _Exit() function is equivalent to _exit().

Returned Value

The _Exit() function does not return to its caller.

Related Information

v “stdlib.h” on page 85

v “exit() — End Program” on page 494

v “_exit() — End a Process and Bypass the Cleanup” on page 496

exp(), expf(), expl() — Calculate Exponential Function

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double exp(double x);

float exp(float x); /* C++ only */

long double exp(long double x); /* C++ only */

float expf(float x);

long double expl(long double x);

_Exit

498 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

||||

|
|
|
|
|
|
|

||

|

General Description

Calculates the exponent of x, defined as e**x, where e equals 2.17128128....

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

If successful, the function returns the calculated value.

If an overflow occurs, the function returns HUGE_VAL. If an underflow occurs, it

returns 0. Both overflow and underflow set errno to ERANGE.

Example

CELEBE06

/* CELEBE06

 This example calculates y as the exponential function of x.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y;

 x = 5.0;

 y = exp(x);

 printf("exp(%f) = %f\n", x, y);

}

Output

exp(5.000000) = 148.413159

Related Information

v “math.h” on page 60

v “log(), logf(), logl() — Calculate Natural Logarithm” on page 1126

v “log10(), log10f(), log10l() — Calculate Base 10 Logarithm” on page 1138

v “pow(), powf(), powl() — Raise to Power” on page 1362

exp

Chapter 3. Part 3. Library Functions 499

expd32(), expd64(), expd128() — Calculate Exponential Function

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 expd32(_Decimal32 x);

_Decimal64 expd64(_Decimal64 x);

_Decimal128 expd128(_Decimal128 x);

_Decimal32 exp(_Decimal32 x); /* C++ only */

_Decimal64 exp(_Decimal64 x); /* C++ only */

_Decimal128 exp(_Decimal128 x); /* C++ only */

General Description

Calculates the exponent of x, defined as e**x, where e equals 2.17128128....

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See “IEEE

Binary Floating-Point ” on page 108 for more information

Returned Value

If successful, the function returns the calculated value.

If an overflow occurs, the function returns HUGE_VAL_D32, HUGE_VAL_D64, or

HUGE_VAL_D128. If an underflow occurs, it returns 0. Both overflow and underflow

set errno to ERANGE.

Example

/* CELEBE11

 This example illustrates the expd64() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal64 x, y;

 x = 5.0DD;

 y = expd64(x);

 printf("expd64(%Df) = %Df\n", x, y);

}

expd32, expd64, expd128

500 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “math.h” on page 60

v “exp(), expf(), expl() — Calculate Exponential Function” on page 498

v “logd32(), logd64(), logd128() — Calculate Natural Logarithm” on page 1132

v “log10d32(), log10d64(), log10d128() — Calculate Base 10 Logarithm” on page

1140

v “powd32(), powd64(), powd128() — Raise to Power” on page 1364

expd32, expd64, expd128

Chapter 3. Part 3. Library Functions 501

|
|
|
|
|
|
|

expm1(), expm1f(), expm1l() — Exponential Minus One

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both

z/OS V1R7

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double expm1(double x);

C99

#define _ISOC99_SOURCE

#include <math.h>

float expm1f(float x);

long double expm1l(long double x);

General Description

The expm1() functions calculate the function:

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

expm1 X X

expm1f X X

expm1l X X

Returned Value

If successful, expm1() returns the above function calculated on x.

If unsuccessful, expm1() may fail as follows:

v If x is negative and exceeds an internally defined large value, expm1() functions

will return -1.0.

v If the value of the function overflows, expm1() functions will return HUGE_VAL or

HUGE_VALF or HUGE_VALL as appropriate, and set errno to ERANGE.

Related Information

v “math.h” on page 60

v “exp(), expf(), expl() — Calculate Exponential Function” on page 498

v “ilogb(), ilogbf(), ilogbl() — Integer Unbiased Exponent” on page 933

v “log1p(), log1pf(), log1pl() — Natural Log of x + 1” on page 1136

ex -1.0

expm1

502 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||
|

|

ExportWorkUnit() — WLM Export Service

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both OS/390 V2R9

Format

#include <sys/__wlm.h>

int ExportWorkUnit(wlmetok_t *enclavetoken,

 wlmxtok_t *exporttoken,

 unsigned long *conntoken);

AMODE 64

#include <sys/__wlm.h>

int ExportWorkUnit(wlmetok_t *enclavetoken,

 wlmxtok_t *exporttoken,

 unsigned int *conntoken);

General Description

Exports an enclave to all systems in a parallel sysplex, enabling dispatchable units

on other systems to join the enclave.

The ExportWorkUnit() function uses the following parameters:

*enclavetoken Points to a work unit enclave token that was returned from a call to

CreateWorkUnit() or ContinueWorkUnit().

*exporttoken Points to a data field of type wlmxtok_t where the ExportWorkUnit()

function is to return the WLM work unit export token.

*conntoken Specifies the connect token that represents the connection to WLM.

Returned Value

If successful, ExportWorkUnit() returns 0.

If unsuccessful, ExportWorkUnit() returns −1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained a value that is not correct.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

A WLM service failed. Use __errno2() to obtain the WLM service

reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class, if the

ExportWorkUnit

Chapter 3. Part 3. Library Functions 503

BPX.WLMSERVER class is defined. If BPX.WLMSERVER is not

defined, the calling process is not defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “UnDoExportWorkUnit() — WLM Undo Export Service” on page 2301

v For more information, see z/OS MVS Programming: Workload Management

Services, SA22-7619.

ExportWorkUnit

504 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

exp2(), exp2f(), exp2l() — Calculate the base-2 exponential

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

double exp2(double x);

float exp2f(float x);

long double exp2l(long double x);

General Description

The exp2 functions compute the base-2 exponential of x.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

exp2 X X

exp2f X X

exp2l X X

Returned Value

The exp2 functions return 2 to the power x.

Related Information

v “math.h” on page 60

exp2

Chapter 3. Part 3. Library Functions 505

||||

|
|
||

|

extlink_np() — Create an External Symbolic Link

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <unistd.h>

int extlink_np(const char *ename, const char *elink);

General Description

Creates the external symbolic link file named by elink with the object specified by

ename. The ename is not resolved, and refers to an object outside the HFS

(hierarchical file system). The variable elink is the name of the external symbolic

link file created, and ename is the name of the object contained within that file.

Returned Value

If successful, extlink_np() returns 0.

If unsuccessful, extlink_np() returns −1, does not affect any file it names, and sets

errno to one of the following values:

Error Code Description

EACCES A component of the elink path prefix denies search permission.

EEXIST The file named by elink already exists.

EINVAL elink has a slash as its last component, which indicates that the

preceding component will be a directory. An external link cannot be

a directory.

ELOOP A loop exists in symbolic links. This error is issued if the number of

symbolic links encountered during resolution of the elink argument

is greater than POSIX_SYMLOOP.

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined with pathconf().

ENOTDIR A component of the path prefix of elink is not a directory.

ENOSPC The new external link cannot be created because there is no space

left on the file system to contain it.

EROFS The file named by elink cannot be created on a read-only file

system.

Example

CELEBE07

extlink_np

506 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

/* CELEBE07

 This example creates an external symbolic link.

 */

#include <stdio.h>

#include <fcntl.h>

#include <errno.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <sys/types.h>

main(argc, argv)

 int argc ;

 char *argv ;

{

 int i_rc ;

 int i_fd ;

 char ac_mvsds[] = "SYS1.LINKLIB" ;

 char ac_mvsdsextsymlnk[] = "sys1.linklib.extsymlink" ;

 i_rc = unlink(ac_mvsdsextsymlnk) ;

 if ((i_rc == −1) && (errno == ENOENT)) {

 }

 else

 {

 perror("unlink() error") ;

 return(−1) ;

 }

 printf("Before extlink_np() call ...\n") ;

 system("ls −il sys1.*") ;

 i_rc = extlink_np(ac_mvsds, ac_mvsdsextsymlnk) ;

 if (i_rc == −1)

 {

 perror("extlink_np() error") ;

 return(−1) ;

 }

 printf("After extlink_np() call ...\n") ;

 system("ls −il sys1.*") ;

 i_rc = unlink(ac_mvsdsextsymlnk) ;

}

Related Information

v “unistd.h” on page 96

v “link() — Create a Link to a File” on page 1101

v “lstat() — Get Status of File or Symbolic Link” on page 1163

v “readlink() — Read the Value of a Symbolic Link” on page 1615

v “symlink() — Create a Symbolic Link to a Pathname” on page 2107

v “unlink() — Remove a Directory Entry” on page 2312

extlink_np

Chapter 3. Part 3. Library Functions 507

ExtractWorkUnit() — Extract Enclave Service

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both OS/390 V2R8

Format

#include <sys/__wlm.h>

int ExtractWorkUnit(wlmetok_t *enclavetoken);

General Description

The ExtractWorkUnit() function will allow the task to retrieve the enclaves token for

the purpose of performance management.

The ExtractWorkUnit() function uses the following parameter:

*enclavetoken Points to a data field of type wlmetok_t where the ExtractWorkUnit()

function is to return the WLM work unit token to which the current

process is joined.

Returned Value

If successful, ExtractWorkUnit() returns 0.

If unsuccessful, ExtractWorkUnit() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this service contained an address that was not

accessible to the caller.

EINVAL The Functioncode parm contains a value that is not correct or the

function parmlist data is incorrect.

EMVSSAF2ERR

An error occurred in the security product. Consult the reason code,

which can be retrieved using the __errno2() function.

EMVSWLMERROR

A WLM service failed. Consult the reason code, which can be

retrieved using the __errno2() function.

EPERM Do not have appropriate permissions and privilege.

ESRCH A WLM_EXTRACT_WORKUNIT request was issued but the WLM

enclave token was not returned.

Related Information

v “sys/__wlm.h” on page 91

ExtractWorkUnit

508 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__e2a_l() — Convert Characters from EBCDIC to ASCII

Standards

 Standards / Extensions C or C++ Dependencies

 both z/OS V1R2

Format

#include <unistd.h>

size_t __e2a_l(char *bufptr, size_t szLen)

General Description

The __e2a_l() function converts szLen characters in bufptr between IBM-1047 and

ISO8859-1, returning the number of characters converted if successful or -1 if not.

Conversion occurs in place in the buffer. __e2a_l() is not sensitive to the locale, and

only converts between ISO8859-1 and IBM-1047.

Note: This function is valid for applications compiled XPLINK only.

Returned Value

If successful, __e2a_l() returns the number of characters converted.

If unsuccessful, __e2a_l() returns −1 and sets errno to the following value:

Error Code Description

EINVAL The pointer to bufptr is NULL or szLen is a negative value.

Related Information

v “unistd.h” on page 96

v “__a2e_l() — Convert Characters from ASCII to EBCDIC” on page 205

v “__a2e_s() — Convert String from ASCII to EBCDIC” on page 206

v “__e2a_s() — Convert String from EBCDIC to ASCII” on page 510

__e2a_l()

Chapter 3. Part 3. Library Functions 509

__e2a_s() — Convert String from EBCDIC to ASCII

Standards

 Standards / Extensions C or C++ Dependencies

 both z/OS V1R2

Format

#include <unistd.h>

size_t __e2a_s(char *string)

General Description

The __e2a_s() function converts a string between IBM-1047 and ISO8859-1,

returning the string length if successful or -1 if not. Conversion occurs in place in

the string. __e2a_s() is not sensitive to the locale, and only converts between

ISO8859-1 and IBM-1047.

Note: This function is valid for applications compiled XPLINK only.

Returned Value

If successful, __e2a_s() returns the string length.

If unsuccessful, __e2a_s() returns −1 and sets errno to the following value:

Error Code Description

EINVAL The pointer to string is NULL.

Related Information

v “unistd.h” on page 96

v “__a2e_l() — Convert Characters from ASCII to EBCDIC” on page 205

v “__a2e_s() — Convert String from ASCII to EBCDIC” on page 206

v “__e2a_l() — Convert Characters from EBCDIC to ASCII” on page 509

__e2a_s()

510 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fabs(), fabsf(), fabsl() — Calculate Floating-Point Absolute Value

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double fabs(double x);

float fabs(float x); /* C++ only */

long double fabs(long double x); /* C++ only */

float fabsf(float x);

long double fabsl(long double x);

General Description

The fabs() functions calculate the absolute value of a floating-point argument.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Returns the absolute value of the float input.

Example

/* This example calculates y as the absolute value of x. */

#include <math.h>

int main(void)

{

 double x, y;

 x = -5.6798;

 y = fabs(x);

 printf("fabs(%f) = %f\n", x, y);

}

Output

fabs(-5.679800) = 5.679800

Related Information

v “math.h” on page 60

v “abs(), absf(), absl() — Calculate Integer Absolute Value” on page 118

v “labs() — Calculate Long Absolute Value” on page 1060

fabs, fabsf, fabsl

Chapter 3. Part 3. Library Functions 511

||||

|
|
|
|
|
|
|

||

|

fabsd32(), fabsd64(), fabsd128() — Calculate Floating-Point Absolute

Value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 fabsd32(_Decimal32 x);

_Decimal64 fabsd64(_Decimal64 x);

_Decimal128 fabsd128(_Decimal128 x);

_Decimal32 fabs(_Decimal32 x); /* C++ only */

_Decimal64 fabs(_Decimal64 x); /* C++ only */

_Decimal128 fabs(_Decimal128 x); /* C++ only */

General Description

The fabs() functions calculate the absolute value of a decimal floating-point

argument.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See “IEEE

Binary Floating-Point ” on page 108 for more information

Returned Value

Returns the absolute value of the decimal floating-point input.

Example

/* CELEBF75

 This example illustrates the fabsd128() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal128 x, y;

 x = −5.6798DL;

 y = fabsd128(x);

 printf("fabsd128(%DDf) = %DDf\n", x, y);

}

fabsd32, fabsd64, fabsd128

512 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “math.h” on page 60

v “fabs(), fabsf(), fabsl() — Calculate Floating-Point Absolute Value” on page 511

fabsd32, fabsd64, fabsd128

Chapter 3. Part 3. Library Functions 513

|
|
|

fattach() — Attach a STREAMS-based File Descriptor to a File in the

File System Name Space

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stropts.h>

int fattach(int fildes, const char *path);

General Description

The fattach() function attaches a STREAMS-based file descriptor to a file,

effectively associating a pathname with fildes. The fildes argument must be a valid

open file descriptor associated with a STREAMS file. The path argument points to a

pathname of an existing file. The process must have appropriate privileges, or must

be the owner of the file named by path and have write permission. A successful call

to fattach() causes all pathnames that name the file named by path to name the

STREAMS file associated with fildes, until the STREAMS file is detached from the

file. A STREAMS file can be attached to more than one file and can have several

pathnames associated with it.

The attributes of the named STREAMS file are initialized as follows: the

permissions, user ID, group ID, and times are set to those of the file named by

path, the number of links is set to 1, and the size and device identifier are set to

those of the STREAMS file associated with fildes. If any attributes of the named

STREAMS file are subsequently changed (for example, by chmod()), neither the

attributes of the underlying file nor the attributes of the STREAMS file to which

fildes refers are affected.

File descriptors referring to the underlying file, opened before an fattach() call,

continue to refer to the underlying file.

Returned Value

If successful, fattach() returns 0.

If unsuccessful, fattach() returns -1 and sets errno to one of the following values.

Note: z/OS UNIX services do not supply any STREAMS devices or pseudodevices.

It is impossible for fattach() to attach a STREAMS-based file descriptor to a

file. It will always return -1 with errno set to indicate the failure. See “open()

— Open a File” on page 1313 for more information.

Error Code Description

EACCES Search permission is denied for a component of the path prefix, or

the process is the owner of path but does not have write

permissions on the file named by path.

EBADF The fildes argument is not a valid open file descriptor.

fattach

514 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

EBUSY The file named by path is currently a mount point or has a

STREAMS file attached to it.

EINVAL The fildes argument does not refer to a STREAMS file.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG

The size of path exceeds PATH_MAX, or a component of path is

longer than NAME_MAX, or pathname resolution of a symbolic link

produced an intermediate result whose length exceeds PATH_MAX.

ENOENT A component of path does not name an existing file or path is an

empty string.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID of the process is not the owner of the file

named by path and the process does not have appropriate

privilege.

Related Information

v “stropts.h” on page 86

v “fdetach() — Detach a Name from a STREAMS-based File Descriptor” on page

541

v “isastream() — Test a File Descriptor” on page 1012

fattach

Chapter 3. Part 3. Library Functions 515

__fchattr() — Change the Attributes of a File or Directory by File

Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R2

Format

#define _OPEN_SYS_FILE_EXT 1

#include <sys/stat.h>

int __fchattr(int filedes, attrib_t *attributes, int attributes_len);

General Description

The __fchattr() function modifies the attributes that are associated with a file. It can

be used to change the mode, owner, access time, modification time, change time,

reference time, audit flags, general attribute flags, file tag, and file format and size.

The file to be impacted is defined by its file descriptor with the filedes argument.

The attributes argument is the address of an attrib_t structure which is used to

identify the attributes to be modified and the new values desired. The attrib_t type is

an f_attributes structure as defined in <sys/stat.h> for use with the __fchattr()

function. For proper behavior, the user should ensure that this structure has been

initialized to zeros before it is populated. The f_attributes structure is defined as

indicated in Table 23 on page 267.

The f_attributes structure is defined in <sys/stat.h> for use with the __fchattr()

function.

Returned Value

If successful, __fchattr() returns 0.

If unsuccessful, __fchattr() returns -1 and sets errno to one of the following values:

Error Code Description

EACCES The calling process did not have appropriate permissions. Possible

reasons include:

v The calling process was attempting to set access time or

modification time to current time, and the effective UID of the

calling process does not match the owner of the file; the process

does not have write permission for the file; or the process does

not have appropriate privileges.

v The calling process was attempting to truncate the file, and it

does not have write permission for the file.

EBADF The filedes parameter is not a valid file descriptor.

ECICS An attempt was made to change file tag attributes under non-OTE

CICS and file tagging is not supported in that environment.

EFBIG The calling process was attempting to change the size of a file but

the specified length is greater than the maximum file size limit for

the process.

__fchattr

516 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EINVAL The attributes structure containing the requested changes is not

valid.

EPERM The operation is not permitted for one of the following reasons:

v The calling process was attempting to change the mode or the

file format but the effective UID of the calling process does not

match the owner of the file, and the calling process does not

have appropriate privileges.

v The calling process was attempting to change the owner but it

does not have appropriate privileges.

v The calling process was attempting to change the general

attribute bits but it does not have write permission for the file.

v The calling process was attempting to set a time value (not

current time) but the effective UID does not match the owner of

the file, and it does not have appropriate privileges.

v The calling process was attempting to set the change time or

reference time to current time but it does not have write

permission for the file.

v The calling process was attempting to change auditing flags but

the effective UID of the calling process does not match the owner

of the file, and the calling process does not have appropriate

privileges.

v The calling process was attempting to change the Security

Auditor’s auditing flags but the user does not have auditor

authority.

EROFS pathname specifies a file that is on a read-only file system.

Related Information

v “sys/stat.h” on page 89

v “__chattr() — Change the Attributes of a File or Directory” on page 267

v “__lchattr() — Change the Attributes of a File or Directory when they point to a

symbolic or external link.” on page 1061

__fchattr

Chapter 3. Part 3. Library Functions 517

fchaudit() — Change Audit Flags for a File by Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <sys/stat.h>

int fchaudit(int fildes, unsigned int flags, unsigned int option);

General Description

Changes the audit flags of a file. The parameter fildes is the file descriptor for the

open file whose audit flags are to be changed. flags specifies what the audit flags

should be changed to:

AUDTREADFAIL Audit failing read requests.

AUDTREADSUCC Audit successful read requests.

AUDTWRITEFAIL Audit failing write requests.

AUDTWRITESUCC Audit successful write requests.

AUDTEXECFAIL Audit failing execute or search requests.

AUDTEXECSUCC Audit successful execute or search requests. The

bitwise inclusive-OR of any or all of these can be

used to set more than one type of auditing.

The parameter option specifies whether the user audit flags or the security auditor

audit flags should be changed:

AUDT_USER (0) User audit flags are changed. The user must be the

file owner or have appropriate authority to change

the user audit flags for a file.

AUDT_AUDITOR (1) Security-auditor audit flags are changed. The user

must have security auditor authority to change the

security auditor audit flags for a file.

Returned Value

If successful, fchaudit() returns 0.

If unsuccessful, fchaudit() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINVAL option does not contain a 0 or 1.

EPERM The effective user ID (UID) of the calling process does not match

the owner of the file, and the calling process does not have

appropriate privileges.

EROFS fildes is associated with a file that is on a read-only file system.

fchaudit

518 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Example

CELEBF02

/* CELEBF02

 The following program changes the audit flags of a file.

 */

#define _OPEN_SYS

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <stdio.h>

main() {

 int fd;

 char fn[]="fchaudit.file";

 if ((fd = creat(fn, S_IRUSR|S_IWUSR)) < 0)

 perror("creat() error");

 else {

 if (fchaudit(fd, AUDTREADSUCC, AUDT_USER) != 0)

 perror("fchaudit() error");

 close(fd);

 unlink(fn);

 }

}

Related Information

v “sys/stat.h” on page 89

v “access() — Determine Whether a File Can be Accessed” on page 127

v “chaudit() — Change Audit Flags for a File by Path” on page 271

v “fchmod() — Change the Mode of a File or Directory by Descriptor” on page 521

v “fchown() — Change the Owner or Group by File Descriptor” on page 523

v “fstat() — Get Status Information about a File” on page 704

fchaudit

Chapter 3. Part 3. Library Functions 519

fchdir() — Change Working Directory

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int fchdir(int fildes);

General Description

The fchdir() function has the same effect as chdir() except that the directory that is

to be new current working directory is specified by the file descriptor fildes.

Returned Value

If successful, fchdir() changes the working directory and returns 0.

If unsuccessful, fchdir() does not change the working directory, returns -1, and sets

errno to one of the following values:

Error Code Description

EACCES Search permission is denied for the directory referenced by fildes.

EBADF The fildes arguments is not an open file descriptor.

ENOTDIR The open file descriptor fildes does not refer to a directory.

Related Information

v “unistd.h” on page 96

v “chdir() — Change the Working Directory” on page 273

v “chroot() — Change Root Directory” on page 288

fchdir

520 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

fchmod() — Change the Mode of a File or Directory by Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX1_SOURCE 2

#include <sys/stat.h>

int fchmod(int fildes, mode_t mode);

General Description

Sets the S_ISUID, S_ISGID, and file permission bits of the open file identified by

fildes, its file descriptor.

The mode argument is created with one of the symbols defined in the sys/stat.h

header file. For more information on these symbols, refer to “chmod() — Change

the Mode of a File or Directory” on page 280.

Returned Value

If successful, fchmod() marks for update the st_ctime field of the file and returns 0.

If unsuccessful, fchmod() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EPERM The effective user ID (UID) does not match the owner of the file,

and the calling process does not have appropriate privileges.

EROFS The file resides on a read-only file system.

Example

CELEBF03

/* CELEBF03

 This example changes a file permission.

 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 char fn[]="temp.file";

 int fd;

 struct stat info;

fchmod

Chapter 3. Part 3. Library Functions 521

||||

|
|
|

||

|

if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 stat(fn, &info);

 printf("original permissions were: %08x\n", info.st_mode);

 if (fchmod(fd, S_IRWXU|S_IRWXG) != 0)

 perror("fchmod() error");

 else {

 stat(fn, &info);

 printf("after fchmod(), permissions are: %08x\n", info.st_mode);

 }

 close(fd);

 unlink(fn);

 }

}

Output

original permissions were: 03000080

after fchmod(), permissions are: 030001f8

Related Information

v “sys/stat.h” on page 89

v “chmod() — Change the Mode of a File or Directory” on page 280

v “chown() — Change the Owner or Group of a File or Directory” on page 283

v “fchown() — Change the Owner or Group by File Descriptor” on page 523

v “mkdir() — Make a Directory” on page 1217

v “mkfifo() — Make a FIFO Special File” on page 1220

v “open() — Open a File” on page 1313

v “stat() — Get File Information” on page 2008

fchmod

522 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fchown() — Change the Owner or Group by File Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX1_SOURCE 2

#include <unistd.h>

int fchown(int fildes, uid_t owner, gid_t group);

General Description

Changes the owner or group (or both) of a file. fildes is the file descriptor for the

file. owner is the user ID (UID) of the new owner of the file. group is the group ID of

the new group for the file.

If _POSIX_CHOWN_RESTRICTED is defined in the unistd.h header file, a process

can change the group of a file only if one of the following conditions is true:

1. The process has appropriate privileges.

Or

2. All of the following are true:

a. The effective user ID of the process is equal to the user ID of the file owner.

b. The owner argument is equal to the user ID of the file owner or (uid_t)−1,

c. The group argument is either the effective group ID or a supplementary

group ID of the calling process.

If fildes points to a regular file and one or more of the S_IXUSR, S_IXGRP, or

S_IXOTH bits of the file mode are set when fchown() returns successfully, it clears

the set-user-ID (S_ISUID) and set-group-ID (S_ISGID) bits of the file mode.

If the file referred to by fildes is not a regular file and one or more of the S_IXUSR,

S_IXGRP, or S_IXOTH bits of the file mode are set, the set-user-ID (S_ISUID) and

set-group-ID (S_ISGID) bits of the file are cleared.

When fchown() completes successfully, it marks the st_ctime field of the file to be

updated.

Returned Value

If successful, fchown() updates the change time for the file and returns 0.

If unsuccessful, fchown() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EPERM Either the effective user ID does not match the owner of the file, or

fchown

Chapter 3. Part 3. Library Functions 523

||||

|
|
|

||

|

the calling process does not have appropriate privileges, and

POSIX_CHOWN_RESTRICTED indicates that such privilege is

required.

EROFS The file resides on a read-only system.

Example

CELEBF04

/* CELEBF04

 This example changes the owner ID and group ID.

 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 char fn[]="temp.file";

 FILE *stream;

 int fd;

 struct stat info;

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 stat(fn, &info);

 printf("original owner was %d and group was %d\n", info.st_uid,

 info.st_gid);

 if (fchown(fd, 25, 0) != 0)

 perror("fchown() error");

 else {

 stat(fn, &info);

 printf("after fchown(), owner is %d and group is %d\n",

 info.st_uid, info.st_gid);

 }

 close(fd);

 unlink(fn);

 }

}

Output

original owner was 0 and group was 500

after fchown(), owner is 25 and group is 0

Related Information

v “unistd.h” on page 96

v “chown() — Change the Owner or Group of a File or Directory” on page 283

v “chmod() — Change the Mode of a File or Directory” on page 280

v “fchmod() — Change the Mode of a File or Directory by Descriptor” on page 521

v “mkdir() — Make a Directory” on page 1217

v “mkfifo() — Make a FIFO Special File” on page 1220

v “open() — Open a File” on page 1313

v “stat() — Get File Information” on page 2008

fchown

524 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fclose() — Close File

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int fclose(FILE *stream);

General Description

Flushes a stream, and then closes the file associated with that stream. Afterwards,

the function releases any buffers associated with the stream. To flush means that

unwritten buffered data is written to the file, and unread buffered data is discarded.

A pointer to a closed file cannot be used as an input value to the freopen() function.

Note:

v The storage pointed to by the FILE pointer is freed by the fclose()

function. An attempt to use the FILE pointer to a closed file is not valid.

This restriction is true even when fclose() fails.

v If an application has locked a (FILE *) object (with flockfile() or

ftrylockfile()), it is responsible for relinquishing the locked (FILE *) object

(with funlockfile()) before calling fclose(). Failure to relinquish a locked

(FILE *) object may cause deadlock (or looping).

Returned Value

If successful closing the stream, fclose() returns 0.

If a failure occurs in flushing buffers or in outputting data, fclose() returns EOF. An

attempt will still be made to close the file.

Special Behavior for XPG4

fclose() sets errno to one of the following values:

Error Code Description

EAGAIN The O_NONBLOCK flag is set and output cannot be written

immediately.

EBADF The underlying file descriptor is not valid.

EFBIG Writing to the output file would exceed the maximum file size or the

process’s file size supported by the implementation.

EINTR The fclose() function was interrupted by a signal before it had

written any output.

fclose

Chapter 3. Part 3. Library Functions 525

||||

|
|
|
|
|
|

||

|

EIO The process is in a background process group and is attempting to

write to its controlling terminal, but TOSTOP (defined in the termio.h

include file) is set, the process is neither ignoring nor blocking

SIGTTOU signals, and the process group of the process is

orphaned.

ENOSPC There is no free space left on the output device

ENXIO A request was made of a nonexistent device, or the request was

outside the device.

EPIPE fclose() is trying to write to a pipe or FIFO that is not open for

reading by any process. This error also generates a SIGPIPE

signal.

Example

/* This example opens a file myfile.dat for reading as a stream and then

 closes the file.

 */

#include <stdio.h>

int main(void)

{

 FILE *stream;

 stream = fopen("myfile.dat", "r"); ...
 if (fclose(stream)) /* Close the stream. */

 printf("fclose error\n");

}

Related Information

v “Closing Files” and the “Opening Files” in z/OS XL C/C++ Programming Guide

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

v “freopen() — Redirect an Open File” on page 675

fclose

526 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fcntl() — Control Open File Descriptors

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <fcntl.h>

int fcntl(int fildes, int action, ...);

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int fcntl(int socket, int cmd, ...);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int fcntl(int socket, int cmd, ...);

General Description

Performs various actions on open file descriptors.

The argument fildes is a file descriptor for the file you want to manipulate. action is

a symbol indicating the action you want to perform on fildes. These symbols are

defined in the <fcntl.h> header file. If needed, “...” indicates a third argument. The

type of the third argument depends on action, and some actions do not need an

additional argument.

Behavior for Sockets

The operating characteristics of sockets can be controlled with the fcntl() call. The

operations to be controlled are determined by cmd. The arg parameter is a variable

with a meaning that depends on the value of the cmd parameter.

Parameter Description

socket The socket descriptor.

cmd The command to perform.

arg The data associated with cmd.

The action argument can be one of the following symbols:

F_CLOSFD Closes a range of file descriptors. A third int argument must be

fcntl

Chapter 3. Part 3. Library Functions 527

||||

|
|
|
|

||

|

specified to indicate the upper limit for the range of the file

descriptors to be closed, while fildes specifies the lower limit. If −1

is specified for the third argument, all file descriptors greater than or

equal to the lower limit are closed.

F_DUPFD Duplicates the file descriptor. A third int argument must be

specified. fcntl() returns the lowest file descriptor greater than or

equal to this third argument that is not already associated with an

open file. This file descriptor refers to the same file as fildes and

shares any locks. The flags FD_CLOEXEC and FD_CLOFORK are

turned off in the new file descriptor, so that the file is kept open if

an exec function is called.

Note: If fildes is an XTI endpoint, there must be at least one

available file descriptor greater than or equal to the third

argument and less than 65536.

F_DUPFD2 Duplicates the file descriptor. A third int argument must be

specified to indicate which file descriptor to use as the duplicate.

This file descriptor is closed if already open and then used as the

new file descriptor. The new file descriptor refers to the same file as

fildes and shares any locks. The flags FD_CLOEXEC and

FD_CLOFORK are turned off in the new file descriptor, so that the

file is kept open if an exec function is called.

Note: If fildes is an XTI endpoint, the third argument must not

exceed the limit of 65535.

F_GETFD Obtains the file descriptor flags for fildes. fcntl() returns these flags

as its result. For a list of supported file descriptor flags, see “File

Flags” on page 531.

F_SETFD Sets the file descriptor flags for fildes. You must specify a third int

argument, giving the new file descriptor flag settings. fcntl() returns

0 if it successfully sets the flags.

F_GETFL Obtains the file status flags and file access mode flags for fildes.

fcntl() returns these flags as its result. For a list of supported file

status and file access mode flags, see “File Flags” on page 531.

 Behavior for Sockets: This command gets the status flags of

socket descriptor socket. With the _OPEN_SYS feature test macro you

can query the FNDELAY flag. With the _XOPEN_SOURCE_EXTENDED 1

feature test macro you can query the O_NDELAY flag. The

FNDELAY and O_NDELAY flags mark socket as being in

nonblocking mode. If data is not present on calls that can block,

such as read(), readv(), and recv(), the call returns with −1, and the

error code is set to EWOULDBLOCK.

F_SETFL Sets the file status flags for fildes. You must specify a third int

argument, giving the new file descriptor flag settings. fcntl() does

not change the file access mode, and file access bits in the third

argument are ignored. fcntl() returns 0 if it successfully sets the

flags.

 Behavior for Sockets: This command sets the status flags of

socket descriptor socket. With the _OPEN_SYS feature test macro you

can set the FNDELAY flag. With the _XOPEN_SOURCE_EXTENDED 1

feature test macro you can set the O_NDELAY flag.

fcntl

528 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

F_GETLK Obtains locking information for a file. See “File Locking” on page

532

F_SETLK Sets or clears a file segment lock. See “File Locking” on page 532

F_SETLKW Sets or clears a file segment lock; but if a shared or exclusive lock

is blocked by other locks, fcntl() waits until the request can be

satisfied. See “File Locking” on page 532

F_GETOWN Behavior for Sockets: Obtains the PID for the filedes and returns

this value. The value returned will be either the process ID or the

process group ID that is associated with the socket. If it is a

positive integer, it specifies a process ID. If it is a negative integer

(other than -1), it specifies a process group ID.

F_SETOWN Behavior for Sockets: Sets either the process ID or the process

group ID that is to receive either the SIGIO or SIGURG signals for

the socket associated with filedes. The SIGURG signal is generated

as a result of receiving out-of-band data. Refer to send(), sendto(),

sendmsg(), and recv(), recvfrom() and recvmsg() for more

information on sending and receiving out-of-band data.

 You must specify a third int argument, giving the PID requested.

This value can be either a positive integer, specifying a process ID,

or a negative integer (other than -1), specifying a process group ID.

The difference between specifying a process ID or a process group

ID is that in the first case only a single process will receive the

signal, while in the second case all processes in the process group

will receive the signal.

F_SETTAG Sets the file tag for the file referred to by file descriptor fildes.

 The third argument ftag is the address of a populated file_tag

structure.

 If the ftag argument supplied to fcntl(F_SETTAG) does not have the

ft_deferred bit set ON, fcntl() will immediately set the file’s File Tag

with the provided ftag’s ft_ccsid and ft_txtflag values.

 If the ftag argument supplied to fcntl(F_SETTAG) has the

ft_deferred bit set ON, fcntl() will not set the file’s File Tag until first

write to the file. The CCSID used to tag the file will be the current

Program CCSID at the time of first write, regardless of the ftag

ft_ccsid value, however the ft_txtflag value will be used.

 If the ft_ccsid of the specified file_tag differs from the Program

CCSID, automatic file conversion will occur, provided:

v The ft_txtflag is set to ON.

v The BPXPRMxx member AUTOCVT() is ON or environment

variable _BPXK_AUTOCVT is ON.

If AUTOCVT(OFF) and _BPXK_AUTOCVT=OFF, the file will be

tagged with the specified file_tag’s ft_ccsid and ft_txtflag values, but

automatic conversion will not occur.

 If the ftag argument supplied to fcntl(F_SETTAG) has the

ft_deferred bit set ON, pipes and FIFOs are tagged from the write

end with the Program CCSID of the first writer.

F_CONTROL_CVT

Controls or queries the conversion status of the open file referred to

fcntl

Chapter 3. Part 3. Library Functions 529

by file descriptor fildes. Conversion control is generally used to

provide CCSID information for untagged files or untagged

programs.

 Character set conversion between a program and a file, pipe or

other I/O stream can be enabled or changed with

F_CONTROL_CVT. A pair of CCSID’s is specified or defaulted, one

for the program and one for the data. As the program reads and

writes data, the system will convert from one CCSID to the other.

 The third f_cnvrt argument is the required address of an f_cnvrt

structure. This structure is defined in <fcntl.h> and includes the

following members:

 Table 25. Struct f_cnvrt Element Descriptions

Element

Data

Type Description

pccsid short The Program CCSID - This is output from query and

input to setting conversion ON. A value of 0 on input

indicates to use the previously set value or the current

Program CCSID.

fccsid short The File CCSID - This is output from query and input

to setting conversion ON. A value of 0 on input

indicates to use the CCSID from the File Tag as stored

in the file, specified on mount, or set by a prior call.

fcntl

530 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 25. Struct f_cnvrt Element Descriptions (continued)

Element

Data

Type Description

cvtcmd int Conversion Control Command. The following

conversion controls are available:

v Query Conversion - Returns whether or not

conversion is in effect and the Program and File

CCSIDs being used. On input, cvtcmd is set to

QUERYCVT, and on output, it is changed to either

SETCVTON or SETCVTOFF to indicate that

conversion is currently ON or OFF respectively. The

current CCSIDs are also returned in their respective

positions in the f_cnvrt structure.

v Set Conversion OFF - Turns OFF any conversion

that may be in effect. On input, cvtcmd is set to

SETCVTOFF and the rest of the f_cnvrt is ignored.

There is no output. A program can use this to

override an automatic conversion that might be

established by the environment within which it is

invoked. If conversion is currently in effect, the

CCSIDs being used will be remembered while

conversion is turned OFF, so that the prior

conversion may be resumed without the program

having to remember what the prior CCSIDs were.

v Set Conversion ON - Turns ON conversion and

optionally specifies the CCSIDs to use in place of

the Program or File CCSIDs that are currently in

effect. A value of 0 for the Program CCSID indicates

that the current Program CCSID be used. A value of

0 for the file CCSID indicates that no change should

be made to the File CCSID. This does not affect the

stored File Tag or the current Program CCSID. It

only changes the values being used to control

conversion on this data stream.

v On input, cvtcmd is set to either SETCVTON to

unconditionally turn on conversion or to

SETAUTOCVTON to turn ON conversion only if

AUTOCVT(YES) was specified in BPXPRMxx or

_BPXK_AUTOCVT=ON.

 The call fails if a conversion table is not installed for the resulting

CCSID pair.

Warning: Flipping the autoconversion mode off and on, or

changing the CCSID values during the execution of a

program in which file conversion and/or tagging takes

place, or setting the CCSIDs to values that are not

compatible with the program or file, can be quite

unpredictable.

File Flags

There are several types of flags associated with each open file. Flags for a file are

represented by symbols defined in the <fcntl.h> header file.

The following file descriptor flags can be associated with a file:

fcntl

Chapter 3. Part 3. Library Functions 531

FD_CLOEXEC

If this flag is 1, the file descriptor is closed if the process executes

one of the exec function calls. If it is 0, the file remains open.

FD_CLOFORK

If this flag is 1 when a fork occurs, the file descriptor will be closed

for the child process. If it is 0, the file remains open for the child.

The following file status flags can be associated with a file:

O_APPEND Append mode. If this flag is 1, every write operation on the file

begins at the end of the file.

O_ASYNCSIG If this flag is 1, then asynchronous I/O will be used for the file.

O_NONBLOCK

No blocking. If this flag is 1, read and write operations on the file

return with an error status if they cannot perform their I/O

immediately. If this flag is 0, read and write operations on the file

wait (or “block”) until the file is ready for I/O. For more details, see

“read() — Read From a File or Socket” on page 1602 and “write()

— Write Data on a File or Socket” on page 2464.

O_SYNC Force synchronous update. If the flag is 1, every write() operation

on the file is written to permanent storage. That is, the file system

buffers are forced to permanent storage. (See “fsync() — Write

Changes to Direct-Access Storage” on page 709.) If this flag is 0,

update operations on the file will not be completed until the data

has been written to permanent storage. On return from a function

that performs a synchronous update, the program is assured that all

data for the file has been written to permanent storage.

The following file access mode flags can be associated with a file:

O_RDONLY The file is opened for reading only.

O_RDWR The file is opened for reading and writing.

O_WRONLY The file is opened for writing only.

Two masks can be used to extract flags:

O_ACCMODE Extracts file access mode flags.

O_GETFL Extracts file status flags and file access mode flags.

File Locking

A process can use fcntl() to lock out other processes from a part of a file, so that

the process can read or write to that part of the file without interference from others.

File locking can ensure data integrity when several processes have a file accessed

concurrently. File locking can only be performed on file descriptors that refer to

regular files. Locking is not permitted on file descriptors that refer to directories,

FIFOs, pipes, character special files, or any other type of files.

A structure that has the type struct flock (defined in the <fcntl.h> header file)

controls locking operations. This structure has the following members:

short l_type Indicates the type of lock, using one of the following symbols

(defined in the <fcntl.h> header file):

F_RDLCK Indicates a read lock, also called a shared lock.

The process can read the locked part of the file,

fcntl

532 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

and other processes cannot obtain write locks for

that part of the file in the meantime. More than one

process can have a read lock on the same part of a

file simultaneously.

 To establish a read lock, a process must have the

file accessed for reading.

F_WRLCK Indicates a write lock, also called an exclusive lock.

The process can write on the locked part of the file,

and no other process can establish a read lock or

write lock on that same part or on an overlapping

part of the file. A process cannot put a write lock on

part of a file if there is already a read lock on an

overlapping part of the file. To establish a write lock,

a process must have accessed the file for writing.

F_UNLCK Unlocks a lock that was set previously. An unlock

(F_UNLCK) request in which l_len is non-zero and

the offset of the last byte of the requested segment

is the maximum value for an object of type off_t,

when the process has an existing lock in which

l_len is 0 and which includes the last byte of the

requested segment, is treated as a request to

unlock from the start of the requested segment with

an l_len equal to 0. Otherwise, an unlock

(F_UNLCK) request attempts to unlock only the

requested segment.

short l_whence

One of three symbols used to determine the part of the file that is

affected by this lock. These symbols are defined in the <unistd.h>

header file and are the same as symbols used by lseek():

SEEK_CUR The current file offset in the file

SEEK_END The end of the file

SEEK_SET The start of the file.

off_t l_start Gives the byte offset used to identify the part of the file that is

affected by this lock. The part of the file affected by the lock begins

at this offset from the location given by l_whence. For example, if

l_whence is SEEK_SET and l_start is 10, the locked part of the

file begins at an offset of 10 bytes from the beginning of the file.

off_t l_len Gives the size of the locked part of the file in bytes. If l_len is 0,

the locked part of the file begins at the position specified by

l_whence and l_start, and extends to the end of the file. If l_len is

positive, the area affected starts at l_start and end at l_start+

l_len-1. If l_len is negative, the area affected starts at l_start+

l_len and end at l_start-1. Locks may start and extend beyond

the current end of a file, but cannot extend before the beginning of

the file. A lock can be set to extend to the largest possible value of

the file offset for that file by setting l_len to 0. If such a lock also

has l_start set to 0 and l_whence is set to SEEK_SET, the whole

file is locked.

pid_t l_pid Specifies the process ID of the process that holds the lock. This is

an output field used only with F_GETLK actions.

fcntl

Chapter 3. Part 3. Library Functions 533

|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|

You can set locks by specifying F_SETLK as the action argument for fcntl(). Such a

function call requires a third argument pointing to a struct flock structure, as in

this example:

struct flock lock_it;

lock_it.l_type = F_RDLCK;

lock_it.l_whence = SEEK_SET;

lock_it.l_start = 0;

lock_it.l_len = 100;

fcntl(fildes,F_SETLK,&lock_it);

This example sets up an flock structure describing a read lock on the first 100

bytes of a file, and then calls fcntl() to establish the lock. You can unlock this lock

by setting l_type to F_UNLCK and making the same call. If an F_SETLK operation

cannot set a lock, it returns immediately with an error saying that the lock cannot be

set.

The F_SETLKW operation is similar to F_SETLK, except that it waits until the lock

can be set. For example, if you want to establish an exclusive lock and some other

process already has a lock established on an overlapping part of the file, fcntl()

waits until the other process has removed its lock. If fcntl() is waiting in an

F_SETLKW operation when a signal is received, fcntl() is interrupted. After handling

the signal, fcntl() returns −1 and sets errno to EINTR.

F_SETLKW operations can encounter deadlocks when process A is waiting for

process B to unlock a region, and B is waiting for A to unlock a different region. If

the system detects that an F_SETLKW might cause a deadlock, fcntl() fails with

errno set to EDEADLK.

A process can determine locking information about a file by using F_GETLK as the

action argument for fcntl(). In this case, the call to fcntl() should specify a third

argument pointing to an flock structure. The structure should describe the lock

operation you want. When fcntl() returns, the structure indicated by the flock

pointer is changed to show the first lock that would prevent the proposed lock

operation from taking place. The returned structure shows the type of lock that is

set, the part of the file that is locked, and the process ID of the process that holds

the lock. In the returned structure:

v l_whence is always SEEK_SET.

v l_start gives the offset of the locked portion from the beginning of the file.

v l_len is the length of the locked portion.

If there are no locks that prevent the proposed lock operation, the returned structure

has F_UNLCK in l_type, and is otherwise unchanged.

A process can have several locks on a file simultaneously but only one type of lock

set on a given byte. Therefore, if a process puts a new lock on part of a file that it

had locked previously, the process has only one lock on that part of the file: the

type of the lock is the one specified in the most recent locking operation.

All of a process’s locks on a file are removed when the process closes any file

descriptor that refers to the locked file. Locks are not inherited by child processes

created with fork().

All locks are advisory only. Processes can use locks to inform each other that they

want to protect parts of a file, but locks do not prevent I/O on the locked parts. If a

process has appropriate permissions on a file, it can perform whatever I/O it

chooses, regardless of what locks are set. Therefore, file locking is only a

convention, and it works only when all processes respect the convention.

fcntl

534 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Usage of the F_GETFL command will return the setting of O_LARGEFILE status

flag when fcntl() has been enabled to operate on large files

Returned Value

If successful, the value fcntl() returns will depend on the action that was specified.

If unsuccessful, fcntl() returns −1 and sets errno to one of the following values:

Error Code Description

EAGAIN The process tried to set a lock with F_SETLK, but the lock is in

conflict with a lock already set by some other process on an

overlapping part of the file.

EBADF fildes is not a valid open file descriptor; or the process tried to set a

read lock on a file descriptor open for writing only; or the process

tried to set a write lock on a file descriptor open for reading only; or

the socket parameter is not a valid socket descriptor.

 In an F_DUPFD2 operation, the third argument is negative, or

greater than or equal to OPEN_MAX, which is the highest file

descriptor value allowed for the process.

EDEADLK The system detected the potential for deadlock in a F_SETLKW

operation.

EINTR fcntl() was interrupted by a signal during a F_SETLKW operation.

EINVAL In an F_DUPFD operation, the third argument is negative or greater

than or equal to OPEN_MAX, the highest file descriptor value

allowed for the process. The OPEN_MAX value can be determined

using pathconf().

 In a locking operation, fildes refers to a file with a type that does

not support locking, or the struct flock pointed to by the third

argument has an incorrect form.

 If an F_CLOSFD operation, the third argument, which specifies the

upper limit, is less than filedes but is not equal to −1.

 Behavior for Sockets: The arg parameter is not a valid flag, or the

cmd parameter is not a valid command.

EMFILE In an F_DUPFD operation, the process has already reached its

maximum number of file descriptors, or there are no available file

descriptors greater than the specified third argument.

ENOLCK In an F_SETLK or F_SETLKW operation, the specified file has

already reached the maximum number of locked regions allowed by

the system.

EOVERFLOW One of the values to be returned cannot be represented correctly.

fcntl

Chapter 3. Part 3. Library Functions 535

The cmd argument is F_GETLK, F_SETLK or F_SETLKW and the

smallest or, if l_len is nonzero, the largest offset of any byte in the

requested segment cannot be represented correctly in an object of

type off_t.

EPERM The operation was F_CLOSFD, but all the requested file descriptors

were not closed.

Examples

CELEBF06

/* CELEBF06

 This example illustrates one use of fcntl().

 The example will compile only with C/MVS.

 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <signal.h>

#include <stdio.h>

void catcher(int signum) {

 puts("inside catcher...");

}

main() {

 int p[2], flags;

 struct sigaction sact;

 char c;

 if (pipe(p) != 0)

 perror("pipe() error");

 else {

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 alarm(10);

 if (read(p[0], &c, 1) == −1)

 perror("first read() failed");

 if ((flags = fcntl(p[0], F_GETFL)) == −1)

 perror("first fcntl() failed");

 else if (fcntl(p[0], F_SETFL, flags | O_NONBLOCK) == −1)

 perror("second fcntl() failed");

 else {

 alarm(10);

 if (read(p[0], &c, 1) == −1)

 perror("second read() failed");

 alarm(0);

 }

 close(p[0]);

 close(p[1]);

 }

}

Output

fcntl

536 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

inside catcher...

first read() failed: Interrupted function call

second read() failed: Resource temporarily unavailable

Sockets example:

#define _OPEN_SYS

int s;

int rc;

int flags; ...
/* Place the socket into nonblocking mode */

rc = fcntl(s, F_SETFL, FNDELAY);

/* See if asynchronous notification is set */

flags = fcntl(s, F_GETFL, 0);

if (flags & FNDELAY)

 /* it is set */

else

 /* it is not */

Related Information

v “fcntl.h” on page 45

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “close() — Close a File” on page 299

v “dup() — Duplicate an Open File Descriptor” on page 449

v “dup2() — Duplicate an Open File Descriptor to Another” on page 451

v “exec Functions” on page 486

v “fsync() — Write Changes to Direct-Access Storage” on page 709

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “lseek() — Change the Offset of a File” on page 1161

v “open() — Open a File” on page 1313

v “setsockopt() — Set Options Associated with a Socket” on page 1843

v “socket() — Create a Socket” on page 1970

fcntl

Chapter 3. Part 3. Library Functions 537

fcvt() — Convert Double to String

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

char *fcvt(double x, int ndigit, int *__restrict__ decpt, int *__restrict__ sign);

General Description

The fcvt() function converts double floating-point argument values to floating-point

output strings. The fcvt() function has been extended to determine the floating-point

format (hexadecimal floating-point or IEEE Binary Floating-Point) of double

argument values by using __isBFP().

z/OS XL C/C++ formatted output functions, including the fcvt() function, convert

IEEE Binary Floating-Point infinity and NaN argument values to special infinity and

NaN floating-point number output sequences. See “fprintf Family of Formatted

Output Functions” on page 655 for a description of the special infinity and NaN

output sequences.

The fcvt() function converts x to a NULL-terminated string which has ndigit digits to

the right of the radix point (where the total number of digits in the output string is

restricted by the precision of a double) and returns a pointer to the string. The

function behaves identically to “ecvt() — Convert Double to String” on page 464 in

all respects other than the number of digits in the return value.

Note: This function has been moved to the Legacy Option group in Single UNIX

Specification, Version 3 and may be withdrawn in a future version. The

sprintf() function is preferred for portability.

Returned Value

If successful, fcvt() returns the character equivalent of x as specified above.

If unable to allocate the return buffer, or the conversion fails, fcvt() returns NULL.

Related Information

v “stdlib.h” on page 85

v “ecvt() — Convert Double to String” on page 464

v “gcvt() — Convert Double to String” on page 737

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

fcvt

538 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

|
|
|

fdelrec() — Delete a VSAM Record

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <stdio.h>

int fdelrec(FILE *stream);

General Description

Removes the record previously read by fread() from the VSAM file associated with

stream. The fdelrec() function can only be used after an fread() call has been

performed and before any other operation on that file pointer. For example, if you

need to acquire the file position using ftell() or fgetpos(), you can do it either before

the fread() or after the fdelrec(). An fread() after an fdelrec() will retrieve the next

record.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

The fdelrec() function can be used with key sequenced data sets (KSDS), KSDS

PATHs, and relative record data set (RRDS) opened in an update mode (that is,

rb+/r+b, wb+/w+b, or ab+/a+b), with type=record.

VSAM does not support deletions from ESDSs.

Returned Value

If successful, fdelrec() returns 0.

If unsuccessful, fdelrec() returns nonzero.

Example

/* This example shows how a VSAM record is deleted using the fdelrec()

 function.

 */

#include <stdio.h>

 FILE *stream;

 char buf[80];

 int num_read;

 int rc;

 stream = fopen("DD:MYCLUS", "rb+,type=record"); ...
 num_read = fread(buf, 1, sizeof(buf), stream);

fdelrec

Chapter 3. Part 3. Library Functions 539

rc = fdelrec(stream); ...

Related Information

v “Performing VSAM I/O Operations” in z/OS XL C/C++ Programming Guide

v “stdio.h” on page 82

v “flocate() — Locate a VSAM Record” on page 605

v “fupdate() — Update a VSAM Record” on page 725

fdelrec

540 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fdetach() — Detach a Name from a STREAMS-based File Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stropts.h>

int fdetach(const char *path);

General Description

The fdetach() function detaches a STREAMS-based file from the file to which it was

attached by a previous call to fattach(). The path argument points to the pathname

of the attached STREAMS file. The process must have appropriate privileges or be

the owner of the file. A successful call to fdetach() causes all pathnames that

named the attached STREAMS file to again name the file to which the STREAMS

file was attached. All subsequent operations on path will operate on the underlying

file and not on the STREAMS file.

All open file descriptions established while the STREAMS file was attached to the

file referenced by path, will still refer to the STREAMS file after the fdetach() has

taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a

successful call to fdetach() has the same effect as performing the last close() on the

attached file.

Returned Value

If successful, fdetach() returns 0.

If unsuccessful, fdetach() returns −1 and sets errno to one of the following values.

Note: z/OS UNIX services do not supply any STREAMS devices or pseudodevices.

It is impossible for fdetach() to detach a file from a STREAMS-based file

descriptor. See “open() — Open a File” on page 1313 for more information.

Error Code Description

EACCES Search permission is denied on a component of the

path prefix.

EINVAL The path argument names a file that is not currently

attached.

ELOOP Too many symbolic links were encountered in

resolving path.

ENAMETOOLONG The size of a pathname exceeds PATH_MAX, or a

pathname component is longer than NAME_MAX,

or pathname resolution of a symbolic link produced

an intermediate result whose length exceeds

PATH_MAX.

fdetach

Chapter 3. Part 3. Library Functions 541

||||

|
|
||

|

ENOENT A component of path does not name an existing file

or path is an empty string.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID is not the owner of path and

the process does not have appropriate privileges.

Related Information

v “stropts.h” on page 86

v “fattach() — Attach a STREAMS-based File Descriptor to a File in the File

System Name Space” on page 514

fdetach

542 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fdim(), fdimf(), fdiml() — Calculate the Positive Difference

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R5

Format

#define _ISOC99_SOURCE

#include <math.h>

double fdim(double x, double y);

float fdimf(float x, float y);

long double fdiml(long double x, long double y);

General Description

The fdim functions compute the positive difference between x and y.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fdim X X

fdimf X X

fdiml X X

Returned Value

The fdim functions return the positive difference between x and y.

Related Information

v “math.h” on page 60

fdim

Chapter 3. Part 3. Library Functions 543

||||

|
|
||

|

fdimd32(), fdimd64(), fdimd128() — Calculate the Positive Difference

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 fdimd32(_Decimal32 x, _Decimal32 y);

_Decimal64 fdimd64(_Decimal64 x, _Decimal64 y);

_Decimal128 fdimd128(_Decimal128 x, _Decimal128 y);

_Decimal32 fdim(_Decimal32 x, _Decimal32 y); /* C++ only */

_Decimal64 fdim(_Decimal64 x, _Decimal64 y); /* C++ only */

_Decimal128 fdim(_Decimal128 x, _Decimal128 y); /* C++ only */

General Description

The fdim functions compute the positive difference between x and y.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See “IEEE

Binary Floating-Point ” on page 108 for more information

Returned Value

The fdim functions return the positive difference between x and y.

Example

/* CELEBF76

 This example illustrates the fdimd32() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal32 x = 56789.70DF, y = 56790.00DF, z;

 z = fdimd32(y, x);

 printf("The result of fdim32(%Df, %Df)\n is %Df\n", y, x, z);

}

Related Information

v “math.h” on page 60

v “fdim(), fdimf(), fdiml() — Calculate the Positive Difference” on page 543

fdimd32, fdimd64, fdimd128

544 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

fdopen() — Associate a Stream with an Open File Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <stdio.h>

FILE *fdopen(int fildes, const char *options);

General Description

Associates a stream with an open file descriptor. A stream is a pointer to a FILE

structure that contains information about a file. A stream permits user-controllable

buffering and formatted input and output. For a discussion of the z/OS UNIX

services implementation of buffering, see z/OS XL C/C++ Programming Guide.

The specified options must be permitted by the current mode of the file descriptor.

For example, if the file descriptor is open-read-only (O_RDONLY), the

corresponding stream cannot be opened write-only (w).

These options are the same as for an fopen() operation:

Special Behavior for XPG4.2

The values for options are changed to include binary streams.

Mode Description

r or rb Open for reading.

w or wb Open for writing.

a or ab Open for appending.

r+ or rb+ or r+b

Open for update (reading and writing).

w+ or wb+ or w+b

Open for update (reading and writing).

a+ or ab+ or a+b

Open for update at End Of File (EOF) (reading and writing).

All these options have the same behavior as the corresponding fopen() options,

except that w, wb, w+, wb+ and w+b do not truncate the file.

The file position indicator of the new stream is the file offset associated with the file

descriptor. The error indicator and End Of File (EOF) indicator for the stream are

cleared.

Returned Value

If successful, fdopen() returns a FILE pointer to the control block for the new

stream.

fdopen

Chapter 3. Part 3. Library Functions 545

||||

|
|
|
|

||

|

If unsuccessful, fdopen() returns NULL and sets errno to one of the following

values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINVAL The specified mode is incorrect or does not match the mode of the

open file descriptor.

Example

CELEBF08

/* CELEBF08

 This example associates stream with the file descriptor fd which is

 open for the file fdopen.file.

 The association is made in write mode.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

main() {

 char fn[]="fdopen.file";

 FILE *stream;

 int fd;

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 if ((stream = fdopen(fd, "w")) == NULL) {

 perror("fdopen() error");

 close(fd);

 }

 else {

 fputs("This is a test", stream);

 fclose(stream);

 }}}

Related Information

v “stdio.h” on page 82

v “fileno() — Get the File Descriptor from an Open Stream” on page 598

v “fopen() — Open a File” on page 626

v “open() — Open a File” on page 1313

fdopen

546 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

feclearexcept() — Clear the Floating-Point Exceptions

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int feclearexcept (int excepts);

General Description

feclearexcept() clears the supported floating-point exceptions represented by

excepts.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

feclearexcept X

Returned Value

If successful, feclearexcept() returns 0 if the argument passed is 0 or if all the

exceptions are successfully cleared.

Related Information

v

feclearexcept

Chapter 3. Part 3. Library Functions 547

||||

|
|
||

|

fe_dec_getround() — Get the Current Rounding Mode

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <fenv.h>

int fe_dec_getround(void);

General Description

The fe_dec_getround function gets the current rounding mode for decimal

floating-point operations.

The following rounding modes are defined for decimal floating-point, and are

located in fenv.h:

FE_DEC_DOWNWARD

rounds towards minus infinity

FE_DEC_TONEAREST

rounds to nearest

FE_DEC_TOWARDZERO

rounds toward zero

FE_DEC_UPWARD

rounds toward plus infinity

FE_DEC_TONEARESTFROMZERO

rounds to nearest, ties away from zero

_FE_DEC_AWAYFROMZERO

rounds away from zero

_FE_DEC_TONEARESTTOWARDZERO

rounds to nearest, ties toward zero

_FE_DEC_PREPAREFORSHORTER

rounds to prepare for shorter precision

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, returns the value of the current rounding mode for decimal

floating-point operations.

If there is no such rounding mode or the current rounding mode can’t be

determined returns -1.

fe_dec_getround

548 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|

|
|

|
|

Example

/* CELEBF77

 sample program that issues fe_dec_getround()/setround()

 This program calls fe_dec_getround() to get the DFP rounding mode.

 Then it will compare the returned value with FE_DEC_TONEAREST

 rounding mode. If not the same, it will call fe_dec_setround() to

 set the rounding mode to the desired value FE_DEC_TONEAREST.

 */

#define __STDC_WANT_DEC_FP__

#include <fenv.h>

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[]){

 int r;

 if ((r = fe_dec_getround()) == −1){

 perror("fe_dec_getround");

 exit (−1);

 }

 printf("The Decimal floating point rounding mode is %d\n", r);

 if (r != FE_DEC_TONEAREST){

 printf("The DFP rounding mode is not FE_DEC_TONEAREST.\n");

 if (fe_dec_setround(FE_DEC_TONEAREST) == −1){

 perror("fe_dec_setround");

 exit (−1);

 }

 }

 printf("The DFP rounding mode has been set to FE_DEC_TONEAREST.\n");

 return 0;

}

Related Information

v “fenv.h” on page 45

v “fe_dec_setround() — Set the Current Rounding Mode” on page 550

fe_dec_getround

Chapter 3. Part 3. Library Functions 549

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

fe_dec_setround() — Set the Current Rounding Mode

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <fenv.h>

int fe_dec_setround(int round);

General Description

The fe_dec_setround function establishes the rounding mode for decimal

floating-point operations represented by its argument round. If the argument is not

equal to the value of a valid rounding mode, the rounding mode is not changed.

The following rouding modes are defined for decimal floating-point, and are located

in fenv.h:

FE_DEC_DOWNWARD

rounds towards minus infinity

FE_DEC_TONEAREST

rounds to nearest

FE_DEC_TOWARDZERO

rounds toward zero

FE_DEC_UPWARD

rounds toward plus infinity

FE_DEC_TONEARESTFROMZERO

rounds to nearest, ties away from zero

_FE_DEC_AWAYFROMZERO

rounds away from zero

_FE_DEC_TONEARESTTOWARDZERO

rounds to nearest, ties toward zero

_FE_DEC_PREPAREFORSHORTER

rounds to prepare for shorter precision

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, returns a zero value.

If the argument is not equal to a valid rounding mode, returns -1. The following

errnos are defined:

fe_dec_getround

550 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|

|

|
|

Error Code Definition

EINVAL The rounding mode specified is not a valid Decimal Floating Point

rounding mode.

EMVSERR The function was unable to set the specified rounding mode due to

an internal error.

Example

/* CELEBF77

 sample program that issues fe_dec_getround()/setround()

 This program calls fe_dec_getround() to get the DFP rounding mode.

 Then it will compare the returned value with FE_DEC_TONEAREST

 rounding mode. If not the same, it will call fe_dec_setround() to

 set the rounding mode to the desired value FE_DEC_TONEAREST.

 */

#define __STDC_WANT_DEC_FP__

#include <fenv.h>

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[]){

 int r;

 if ((r = fe_dec_getround()) == −1){

 perror("fe_dec_getround");

 exit (−1);

 }

 printf("The Decimal floating point rounding mode is %d\n", r);

 if (r != FE_DEC_TONEAREST){

 printf("The DFP rounding mode is not FE_DEC_TONEAREST.\n");

 if (fe_dec_setround(FE_DEC_TONEAREST) == −1){

 perror("fe_dec_setround");

 exit (−1);

 }

 }

 printf("The DFP rounding mode has been set to FE_DEC_TONEAREST.\n");

 return 0;

}

Related Information

v “fenv.h” on page 45

v “fe_dec_getround() — Get the Current Rounding Mode” on page 548

fe_dec_getround

Chapter 3. Part 3. Library Functions 551

||

||
|

||
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

fegetenv() — Store the Current Floating-Point Environment

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int fegetenv(fenv_t *envp);

General Description

fegetenv() stores the current floating-point environment in the object pointed to by

envp.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fegetenv X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v If the hardware has the decimal floating-point facility installed, this function

will store the decimal floating-point rounding mode.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, fegetenv() returns 0 upon completion of the store.

Related Information

v “fenv.h” on page 45

v “fesetenv() — Set the Floating-Point Environment” on page 561

v “feholdexcept() — Save the Current Floating-Point Environment” on page 555

v “feupdateenv() — Save the Currently Raised Floating-Point Exceptions” on page

582

fegetenv

552 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|

|
|

|
|

|
|
|
|
|

fegetexceptflag() — Store the States of Floating-Point Status Flags

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int fegetexceptflag(fexcept_t *flagp, int excepts);

General Description

fegetexceptflag() stores an implementation defined representation of the states of

floating-point status flags indicated by excepts in the object pointed to by flagp.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fegetexceptflag X

Returned Value

If successful, fegetexceptflag() returns 0 upon completion of the store.

Related Information

v

fegetexceptflag

Chapter 3. Part 3. Library Functions 553

||||

|
|
||

|

fegetround() — Get the Current Rounding Mode

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int fegetround(void);

General Description

fegetround() gets the current rounding mode.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fegetround X

Note: This function will not return or update decimal floating-point rounding mode

bits. The fe_dec_getround() and fe_dec_setround() functions can be used to

get and set the current rounding mode for decimal floating-point operations.

Returned Value

If successful, fegetround() returns the value of the rounding mode macro

representing the current rounding mode. Otherwise, returns a negative value if there

is no such rounding mode macro or the current rounding mode is not determinable.

Related Information

v “fe_dec_getround() — Get the Current Rounding Mode” on page 548

v “fe_dec_setround() — Set the Current Rounding Mode” on page 550

fegetround

554 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

||||

|
|
||

|

|

|
|
|

||||

|||
|

|
|
|

|
|
|

|
|
|

feholdexcept() — Save the Current Floating-Point Environment

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int feholdexcept(fenv_t *envp);

General Description

feholdexcept() saves the current floating-point environment in the object pointed to

by envp, clears the floating-point status flags, and then installs a non-stop (continue

on floating-point exceptions) mode, if available, for all floating-point exceptions.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

feholdexcept X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v If the hardware has the decimal floating-point facility installed, this function

will save the decimal floating-point rounding mode.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, feholdexcept() returns 0 when the non-stop floating-point exception

handling was successfully installed.

Related Information

v “fenv.h” on page 45

v “fegetenv() — Store the Current Floating-Point Environment” on page 552

v “fesetenv() — Set the Floating-Point Environment” on page 561

v “feupdateenv() — Save the Currently Raised Floating-Point Exceptions” on page

582

feholdexcept

Chapter 3. Part 3. Library Functions 555

||||

|
|
|

||

|

|
|

|
|

|
|

|
|
|
|
|

feof() — Test End Of File (EOF) Indicator

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int feof(FILE *stream);

General Description

Indicates whether the EOF flag is set for the given stream pointed to by stream.

The EOF flag is set when the user attempts to read past the EOF. Thus, a read of

the last character in the file does not turn the flag on. A subsequent read attempt

reaches the EOF.

For HFS files, a simultaneous reader cannot see the extensions automatically. Use

clearerr() is required to reset the EOF flag.

If the file has a simultaneous writer that extends the file, the flag can be turned on

by the reader before the file is extended. After the extension becomes visible to the

reader, a subsequent read will get the new data and set the flag appropriately (see

fflush()). For example, if the read does not read past the EOF, the flag is turned off.

If a file does not have a simultaneous writer that is extending the file, it is not

possible to read past EOF.

A successful repositioning in a file (with fsetpos(), rewind(), fseek()) or a call to

clearerr() resets the EOF flag. For a terminal file, when the EOF flag is set,

subsequent reads will continue to deliver no data until the EOF flag is cleared. This

can be accomplished by calling clearerr() or rewind().

The terminal can only read past the EOF after the rewind() function or the clearerr()

function is called. The EOF flag is cleared by calling rewind(), fsetpos(), fseek(), or

clearerr() for this stream.

Returned Value

If and only if the EOF flag is set for stream, feof() returns nonzero.

Otherwise, feof() returns 0.

Example

CELEBF09

/* CELEBF09

 This example scans the input stream until it reads an EOF character.

feof

556 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

*/

#include <stdio.h>

#include <stdlib.h>

main() {

 FILE *stream;

 int rc;

 stream = fopen("myfile.dat","r");

/* myfile.dat contains 3 characters "abc" */

 while (1) {

 rc = fgetc(stream);

 if (rc == EOF) {

 if (feof(stream)) {

 printf("at EOF\n");

 break;

 }

 else {

 printf("error\n");

 break;

 }

 }

 else

 printf("read %c\n",rc);

 }

}

Output

read a

read b

read c

at EOF

Related Information

v “stdio.h” on page 82

v “clearerr() — Reset Error and End of File (EOF)” on page 294

v “fseek() — Change File Position” on page 693

v “fsetpos() — Set File Position” on page 701

v “rewind() — Set File Position to Beginning of File” on page 1681

feof

Chapter 3. Part 3. Library Functions 557

feraiseexcept() — Raise the Supported Floating-Point Exceptions

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int feraiseexcept(int excepts);

General Description

feraiseexcept() raises the supported floating-point exceptions represented by

excepts. The order in which these floating-point exceptions are raised is

unspecified.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

feraiseexcept X

Returned Value

If successful, feraiseexcept() returns 0 if the argument passed is 0 or if all the

exceptions are successfully raised.

Related Information

v

feraiseexcept

558 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

ferror() — Test for Read/Write Errors

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int ferror(FILE *stream);

General Description

Tests for an error in reading from or writing to the specified stream. If an error

occurs, the error indicator for the stream remains set until you close the stream, call

rewind(), or call clearerr().

If a non-valid parameter is given to an I/O function, z/OS XL C/C++ does not turn

the error flag on. This case differs from one where parameters are not valid in

context with one another.

Returned Value

If successful, ferror() returns a nonzero value to indicate an error for the stream

pointed to by stream.

If unsuccessful, ferror() returns 0.

Example

CELEBF10

/* CELEBF10

 This example puts data out to a stream and then checks that

 a write error has not occurred.

 */

#include <stdio.h>

int main(void)

{

 FILE *stream;

 char *string = "Important information";

 stream = fopen("myfile.dat","w");

 fprintf(stream, "%s\n", string);

 if (ferror(stream))

 {

 printf("write error\n");

 clearerr(stream);

ferror

Chapter 3. Part 3. Library Functions 559

||||

|
|
|
|
|
|

||

|

}

 if (fclose(stream))

 printf("fclose error\n");

}

Related Information

v “stdio.h” on page 82

v “clearerr() — Reset Error and End of File (EOF)” on page 294

v “rewind() — Set File Position to Beginning of File” on page 1681

ferror

560 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fesetenv() — Set the Floating-Point Environment

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int fesetenv(const fenv_t *envp);

General Description

fesetenv() establishes the floating-point environment represented by the object

pointed to by envp. The argument envp points to an object set by a call to

fegetenv() or feholdexcept(), or equal to a floating-point environment macro.

fesetenv() merely installs the state of the floating-point status flags represented

through envp and does not raise these floating-point exceptions.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fesetenv X

Note:

v If the hardware has the decimal floating-point facility installed, this function

can be used to set the decimal floating-point rounding mode.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, fesetenv() returns 0 if the settings are restored.

If unsuccessful, fesetenv() returns -1 and sets one of the following errno values:

Error Code Description

EINVAL The rounding mode specified is not a valid Decimal Floating Point

rounding mode.

EMVSERR The function was unable to set the specified rounding mode due to

an internal error.

Related Information

v “fenv.h” on page 45

v “fegetenv() — Store the Current Floating-Point Environment” on page 552

v “feholdexcept() — Save the Current Floating-Point Environment” on page 555

fesetenv

Chapter 3. Part 3. Library Functions 561

|

|

||||

|
|
|

||

|

|

|
|
|
|

|

|
|
|
|
|

|
|
|

||||

|||
|

|

|
|

|
|

|

|

|

||

||
|

||
|

|
|
|
|

v “feupdateenv() — Save the Currently Raised Floating-Point Exceptions” on page

582

fesetenv

562 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

fesetexceptflag() — Set the Floating-Point Status Flags

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int fesetexceptflag(const fexcept_t *flagp, int excepts);

General Description

fesetexceptflag() sets the floating-point status flags indicated by excepts to the

states stored in the object pointed to by flagp. The value of flagp should be set by

fegetexceptflag(), whose second argument represents the floating-point exceptions

indicated by the argument excepts. This function does not raise floating-point

exceptions, but only sets the state of the flags.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fesetexceptflag X

Returned Value

If successful, fesetexceptflag() returns 0 if excepts is 0 or if all selected exceptions

are successfully set.

Related Information

v

fesetexceptflag

Chapter 3. Part 3. Library Functions 563

||||

|
|
||

|

fesetround() — Set the Current Rounding Mode

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int fesetround(int round);

General Description

fesetround() establishes the rounding mode represented by round. If the argument

is not equal to the value of a rounding mode macro, the rounding mode is not

changed.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fesetround X

Note: This function will not return or update decimal floating-point rounding mode

bits. The fe_dec_getround() and fe_dec_setround() functions can be used to

get and set the current rounding mode for decimal floating-point operations.

Returned Value

If successful, fesetround() returns 0 when round is set to a rounding mode.

Related Information

v “fe_dec_getround() — Get the Current Rounding Mode” on page 548

v “fe_dec_setround() — Set the Current Rounding Mode” on page 550

fesetround

564 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|

fetch() — Get a Load Module

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment C

Format

#include <stdlib.h>

void (*fetch(const char *name))();

General Description

Dynamically loads the load module specified by name into memory. The load

module can then be invoked from a z/OS XL C program. The name or the alias by

which the fetchable load module is identified in the load module library must appear

in a fetch() library function call.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name, the external entry point name, is prefixed with two underscore

characters, and the other name is not. The name without the prefix underscore

characters is exposed only when you use LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters __fetch())

or compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED),

any relevant information in the header is also exposed.

You cannot fetch a module that contains a main(). If you do, fetch() will not return a

usable pointer. Use of the pointer will result in undefined behavior. To call these

types of modules, use the system() library function. Alternatively, when creating the

module, you can reset the entry point so that the linkage is provided by z/OS XL C.

When non-reentrant modules have been fetched multiple times, you should release

them in the reverse order; otherwise the load modules may not be deleted

immediately.

You can fetch modules written in C and C++. For C modules, the source of the

fetched module must, in general, contain #pragma linkage(..., fetchable) (the

exception is described below). To fetch a C++ module, the routine must be declared

extern “C”, and must be declared in a #pragma linkage(..., fetchable) directive.

See also “fetchep() — Share Writable Static” on page 578 for more information

about the need for #pragma linkage.

Note: For C or C++ modules that are compiled with the XPLINK option and are to

be fetched, #pragma linkage(..., fetchable) is required. They cannot use the

technique of resetting the entry point. If an application tries to fetch() an

XPLINK routine that did not specify FETCHABLE, then an error will be

returned.

XPLINK programs can fetch non-XPLINK programs, and vice versa. The

function descriptor returned by fetch() will contain glue code to support a

fetch

Chapter 3. Part 3. Library Functions 565

stack swap and parameter list conversion if necessary. Calls to a fetched

routine that do not cross an XPLINK linkage boundary will not incur any glue

code overhead.

If the fetched module is compiled as a DLL it can import variables and functions

from other DLL modules, but it cannot export variables or functions.

Nested fetching is supported. That is, a fetched module can also invoke the fetch()

library function to dynamically load a separate fetchable module.

Multiple fetching is also supported. Fetching a module more than once will result in

separate fetch pointers. If the module is marked “reentrant”, multiple fetches will not

reload the module into storage. Under MVS, you can place the reentrant module

into the Extended Link Pack Area or the Link Pack Area (ELPA/LPA) to save time

on the load. Although multiple copies of the reentrant module are not brought into

storage, each fetch returns a separate pointer. If a module is not reentrant, multiple

fetches cause multiple loads into storage. Be aware that if you fetch() a

non-reentrant module multiple times, the module may not get deleted by release()

until all fetch instances have been released. Also, you should keep in mind that

multiple loads of a non-reentrant module can be costly in terms of storage.

Writable statics are, in general, process-scoped. The exception is that, when a

thread calls a fetched module, the writable statics are changed for that thread only,

that is, thread-scoped.

Under MVS, fetchable (or dynamically loaded) modules must be link-edited and

accessible using the standard system search. MVS supports fetching of

non-reentrant, serially reusable, and reentrant modules.

Under POSIX, however, the fetchable, dynamically loaded modules cannot be in the

HFS (Hierarchical File System). Note also, that the POSIX and XPG4 external

variables are propagated. Refer to z/OS XL C/C++ Programming Guide for more

information on external variables. See “z/OS XL C/C++ applications with z/OS UNIX

System Services C functions” on page 13 for more information about using POSIX

support.

Unless your program is naturally reentrant, each reentrant module has a different

copy of writable static. Follow these steps to allow the fetching of your reentrant

module that has writable static:

1. Compile the module to be fetched with the RENT compile-time option.

2. Using the object module created in step 1, generate a fetchable member. You

must specify the entry point as the function you are fetching unless you have

included a #pragma linkage(..., FETCHABLE) directive.

See Figure 3 on page 567 for the program flow of a fetchable module. (FECB refers

to a Fetch Control Block, which is a z/OS XL C internal control block used by

fetch().)

fetch

566 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

To dynamically fetch a set of functions with shared writable static, you can use the

library function fetchep(). See “fetchep() — Share Writable Static” on page 578 for

more details.

Both the module being fetched and the module invoking the fetch() library function

can be reentrant.

You can fetch modules without specifying the directive,

#pragma linkage(..., FETCHABLE), in the fetched module. If you do, then using the

fetch pointer will result in calling the entry point for that module. When you link the

module, you must reset the entry point. In addition, you cannot have any writable

static.

It follows that fetching a reentrant C module containing writable statics requires that

you use the #pragma linkage(... FETCHABLE) preprocessor directive in the fetched

module.

If the entry point linkage is not a C linkage, you must use a pragma linkage with a

function pointer defined by a typedef. The following sample excerpt would set up a

COBOL linkage for a COBOL routine.

typedef int COBOL_FUNC ();

#pragma linkage (COBOL_FUNC, COBOL) ...
COBOL_FUNC * fetch_ptr;

fetch_ptr = (COBOL_FUNC *) fetch(module); /* loads fetched module */

fetch_ptr(args); /* sets up the proper linkage for the call */

Once the module is fetched, calling the fetched function is similar to making an

interlanguage call.

fetch() also supports AMODE switching: when the function call is made, AMODE will be

switched; upon return, the AMODE will be restored. Beware of calling fetched modules

with AMODE=24 that try to access variables or the library above the line.

Notes:

MYMOD
F E C B

#pragma linkage
(x, fetchable)switch

writable
static

switch
back
writable
static

call FEP
of MYMOD

int x(inc a, int b)
{

return 25;
}

.

.

.

rc = myfunc (3, 4);

int (*myfunct) ();
myfunc = (int (*) ()) fetch ("MYMOD");

Figure 3. Program Flow of a Fetchable Module

fetch

Chapter 3. Part 3. Library Functions 567

v You cannot call functions through a function pointer that crosses load module

boundaries, except through fetchep(). (See “fetchep() — Share Writable Static”

on page 578 for more information.) For example, you cannot pass the address of

a function to a fetched routine and invoke it from the fetched routine because the

z/OS C writable static will not be swapped.

v If you need to access code that has to run in a restricted addressing mode (such

as a AMODE 24), you can package the code into a module to be fetched. The

module can then be linked using the restricted addressing mode, but fetched

from a program with an unrestricted addressing mode.

v A program that invokes fetch() many times without releasing all of the load

modules may run out of memory.

Link Considerations

When linking the function to be fetched, you must link in the necessary libraries and

specify the entry point as the function you are fetching unless you have included

this directive: #pragma linkage(..., FETCHABLE).

When linking the main() z/OS C function, you must specify the necessary libraries

to use the functions you are fetching. For example, if you are fetching a COBOL

function, specify the COBOL library. This requirement does not apply to Language

Environment.

When running main(), specify the run-time libraries you will need for main(), as well

as the functions you will fetch. This requirement does not apply to Language

Environment.

Special Behavior for C++

A z/OS XL C++ program cannot call fetch(). If you attempt to call fetch() from a

z/OS XL C++ program, the compiler will issue an error message. There are three

alternatives to fetch() under z/OS XL C++:

v You can replace fetch() with DLL (Dynamic Link Library) calls.

v You can provide a C DLL module to fetch modules, as shown at 571.

v A z/OS XL C++ program may statically call a z/OS XL C function that, in turn,

fetches another module.

Refer to “Examples of Alternatives to fetch() Under C++” on page 571 for illustration

of these points.

Returned Value

If successful, fetch() returns a pointer to a stub that will call the entry point to the

fetched load module.

If the load fails, fetch() returns NULL and may set errno to one of the following

values:

Error Code Definition

ELEFENCE The DLL contains a member language not supported on this

version of the operating system.

fetch

568 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|
|

||

||
|

Examples of Using fetch() with C

The following example demonstrates how to compile, link, and run a program that

fetches a function in another object module that contains the directive:

pragma linkage(...., FETCHABLE).

Begin with the main program.

#include <stdio.h>

#include <stdlib.h>

typedef int (*funcPtr)(); /* pointer to a function returning an int */

int main(void)

{

 int result;

 funcPtr add;

 printf("fetch module\n");

 add = (funcPtr) fetch("f1a"); /* load module F1A */

 if (add == NULL) {

 printf("ERROR: fetch failed\n");

 }

 else {

 printf("execute fetched module\n");

 result = (*add)(1,2); /* execute module F1A */

 printf("1 + 2 == %d\n", result);

 }

}

Then the fetched function:

#pragma linkage(func1, fetchable)

int func1(int a, int b)

{

 printf("in fetched module\n");

 return(a+b);

}

Next, JCL to compile, link, and run under MVS:

>

//F1A EXEC EDCC,INFILE=’userid.TEST.SOURCE(F1A)’

// OUTFILE=’userid.TEST.OBJ(F1A),DISP=SHR’,

// CPARM=’NOSEQ,NOMARGIN,RENT’

//F1B EXEC EDCPL,INFILE=’userid.TEST.OBJ(F1A)’

// OUTFILE=’userid.TEST.LOAD(F1A),DISP=SHR’

//F1 EXEC EDCCLG,INFILE=’userid.TEST.SOURCE(F1)’

//GO.STEPLIB DD

// DD DSN=userid.TEST.LOAD,DISP=SHR

This example demonstrates the use of fetch() with COBOL and how to compile, link,

and run the program.

/* cob1 */

#include <stdlib.h>

#include <stdio.h>

typedef void funcV(); /* function returning void */

#pragma linkage(funcV, COBOL) /* establish Cobol linkage */

int main(void)

{

fetch

Chapter 3. Part 3. Library Functions 569

int var1 = 1;

 int var2 = 2;

 funcV *add;

 printf("fetch module\n");

 add = (funcV *) fetch("cob1a"); /* load module COB1A */

 if (add == NULL)

 {

 printf("ERROR: fetch failed\n");

 }

 else

 {

 printf("execute fetched module\n");

 (*add)(&var1, &var2); /* execute module COB1A */

 printf("1 + 2 == %d\n", var1);

 }

}

Here is the fetched COBOL subroutine COB1A.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COB1A.

**

* This subroutine receives 2 integer parameters. *

* The first is added to the second and the result is stored *

* back into the first. *

**

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 LINKAGE SECTION.

 01 VAR1 PIC S9(9) COMP.

 01 VAR2 PIC S9(9) COMP.

**

* PROCEDURE DIVISION *

**

 PROCEDURE DIVISION USING VAR1 VAR2.

*

* ADD VAR2 TO VAR1 PLACING THE RESULT IN VAR1.

*

 COMPUTE VAR1 = VAR1 + VAR2.

 GOBACK.

Finally, compile, link, and run under MVS:

//*==

//COBCL PROC CREGSIZ=’2048K’,

// INFILE=,

// OUTFILE=’&&GSET(GO),DISP=(MOD,PASS),UNIT=VIO,SPACE=(512,(50,20,1))’

//*

//*--

//* COBOL Compile Step

//*--

//COBCOMP EXEC PGM=IGYCRCTL,REGION=&CREGSIZ;

//STEPLIB DD DSNAME=IGY.V1R3M0.SIGYCOMP,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD DSNAME=&INFILE,DISP=SHR

//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(BLKSIZE=3200)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

fetch

570 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//*

//*--

//* COBOL Link-Edit Step

//*--

//COBLINK EXEC PGM=HEWL,COND=(8,LT,COBCOMP),REGION=1024K

//SYSLIB DD DSNAME=CEE.V1R3M0.SCEELKED,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=&OUTFILE;

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

// PEND

//*

//*==

//* Compile and Link-Edit COBOL program COB1A

//*--

//COB1A EXEC COBCL,

// INFILE=’userid.TEST.SOURCE(COB1A)’,

// OUTFILE=’userid.TEST.LOAD(COB1A),DISP=SHR’

//COBLINK.SYSIN DD *

 ENTRY COB1A

/*

//*

//*--

//* Compile and Link-Edit C program COB1

//*--

//COB1 EXEC EDCCLG,

// INFILE=’userid.TEST.SOURCE(COB1)’,

// CPARM=’OPT(0) NOSEQ NOMAR’

//GO.STEPLIB DD

// DD DSNAME=userid.TEST.LOAD,DISP=SHR

Examples of Alternatives to fetch() Under C++

This example shows how to use DLL as an alternative to fetch(). Here, myfunc() is

the function to be dynamically loaded using DLL, and main() invokes DLL.

CELEBF52

// CELEBF52−part 1 of 2−other file is CELEBF53.

// This example shows how to use DLL as an alternative to fetch().

// C++ program that invokes myfunc using DLL

#include <stdlib.h>

#include <stdio.h>

#include <dll.h>

extern "C" { // needed to indicate C linkage

 typedef int (*funcPtr)(); // pointer to a function returning an int

}

int main (void)

{

 dllhandle *dllh;

 funcPtr fptr;

 if ((dllh = dllload("celebf53")) == NULL) {

 perror("failed to load celebf53");

fetch

Chapter 3. Part 3. Library Functions 571

exit(−1);

 }

 if ((fptr = (funcPtr) dllqueryfn(dllh, "myfunc")) == NULL) {

 perror("failed to retrieve myfunc");

 exit(−2);

 }

 if (fptr() != 0) {

 perror("failed to execute myfunc");

 exit(−3);

 }

 if (dllfree(dllh) != 0) {

 perror("failed to free celebf53");

 exit(−4);

 }

 return(0);

}

CELEBF53

/* CELEBF53−part 2 of 2−other file is CELEBF52.

 This example shows how to use DLL as an alternative to fetch().

 */

/*

 C function dynamically loaded using DLL

 */

#include <stdio.h>

int myfunc (void)

{

 printf("Hello world\n");

 return(0);

}

The following example shows how a C++ program can dynamically call a function in

a C DLL module, to fetch other C modules.

CELEBF54

// CELEBF54-part 1 of 3-other files are CELEBF55, CELEBF56.

// This example shows how a C++ program can dynamically call a function

// in a C DLL module, to fetch other C modules

// C++ program that dynamically calls a function in a C DLL module

#include <stdio.h>

#include <stdlib.h>

#include <dll.h>

#include <iostream.h>

extern "C" { // needed to indicate C linkage

 typedef int (*funcPtr)(); // pointer to a function returning an int

}

int main (void)

{

 dllhandle *dllh;

 funcPtr fptr;

 if ((dllh = dllload("mydll")) == NULL) {

 perror("failed to load mydll");

 exit(-1);

fetch

572 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

}

 if ((fptr = (funcPtr) dllqueryfn(dllh, "fwrap")) == NULL) {

 perror("failed to retrieve fwrap");

 exit(-2);

 }

 if (fptr() != 0) {

 perror("failed to execute fwrap");

 exit(-3);

 }

 if (dllfree(dllh) != 0) {

 perror("failed to free mydll");

 exit(-4);

 }

 return(0);

}

CELEBF55

/* CELEBF55-part 2 of 3-other files are CELEBF54, CELEBF56.

 This example shows how a C++ program can dynamically call a function

 in a C DLL module, to fetch other C modules

 fwrap function used in a DLL module-it fetches mymod, which

 contains myfunc

 */

#include <stdio.h>

#include <stdlib.h>

typedef int (*funcPtr)(); /* pointer to a function returning an int */

int fwrap (void)

{

 funcPtr fptr;

 if ((fptr = (funcPtr) fetch("mymod")) == NULL) {

 perror("failed to fetch mymod");

 return(-1);

 }

 else

 return(fptr());

}

CELEBF56

/* CELEBF56-part 3 of 3-other files are CELEBF54, CELEBF55.

 This example shows how a C++ program can dynamically call a function

 in a C DLL module, to fetch other C modules

 */

/* C function to be fetched */

#include <stdio.h>

#pragma linkage(myfunc, fetchable)

int myfunc (void)

{

 printf("in fetched module\n");

 return(0);

}

The following example shows how to statically call a C function that in turn fetches

other functions. Here, myfunc() is the function to be fetched, fetcher() is a C

function that fetches myfunc(), and main() is a function that statically calls fetcher().

CELEBF57

fetch

Chapter 3. Part 3. Library Functions 573

// CELEBF57-part 1 of 3-other files are CELEBF58, CELEBF59.

// This example shows how to statically call a C function that

// fetches other functions.

// C++ statically calling a C program that uses fetch()

#include <iostream.h>

extern "C" { // needed to indicate C linkage

 int fetcher (void);

}

int main (void)

{

 cout << "The fetcher says: ";

 fetcher();

 cout << "and returns";

 return(0);

}

CELEBF58

/* CELEBF58-part 2 of 3-other files are CELEBF57, CELEBF59.

 This example shows how to statically call a C function that fetches

 other functions.

 */

/*

 C function that fetches mymod which contains myfunc

 */

#include <stdio.h>

#include <stdlib.h>

typedef int (*funcPtr)(); /* pointer to a function returning an int */

int fetcher (void)

{

 funcPtr fptr;

 if ((fptr = (funcPtr) fetch("mymod")) == NULL) {

 perror("failed to fetch mymod");

 return(-1);

 }

 else {

 fptr(); /* invoke fetched function */

 return(0);

 }

}

CELEBF59

/* CELEBF59-part 3 of 3-other files are CELEBF57, CELEBF58.

 This example shows how to statically call a C function that fetches

 other functions.

 */

/* C function to be fetched */

#include <stdio.h>

#pragma linkage(myfunc, fetchable)

int myfunc (void)

{

 printf("Hello world ");

 return(0);

}

fetch

574 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Although fetching and using DLL are functionally comparable, there is one subtle

difference. Fresh copies of static and global variables are allocated each time a

module is fetched, but not each time a DLL load of the same module is done.

The following example shows that, when a module is fetched multiple times, fresh

copies of static and global variables are allocated.

CELEBF60

/* CELEBF60-part 1 of 2-other file is CELEBF61.

 This example shows how copies of variables are allocated when multiple

 fetches are done.

 */

/*

 C program fetching mymod multiple times--mymod contains myfunc.

 */

#include <stdio.h>

#include <stdlib.h>

typedef int (*funcPtr)(int); /*pointer to a function returning an int*/

int main (void)

{

 funcPtr fptr1, fptr2;

 if ((fptr1 = (funcPtr) fetch("mymod")) == NULL) {

 perror("failed to fetch mymod");

 return(-1);

 }

 if (fptr1(100) != 0) {

 perror("failed to execute myfunc");

 exit(-2);

 }

 if ((fptr2 = (funcPtr) fetch("mymod")) == NULL) {

 perror("failed to fetch mymod");

 return(-3);

 }

 if (fptr2(100) != 0) {

 perror("failed to execute myfunc");

 exit(-4);

 }

 return(0);

}

CELEBF61

/* CELEBF61-part 2 of 2-other file is CELEBF60.

 This example shows how copies of variables are allocated when multiple

 fetches are done.

 */

/* C module mymod */

#include <stdio.h>

#pragma linkage(myfunc, fetchable)

int globvar = 5;

int myfunc (int x)

{

 globvar += x;

 printf("%d\n", globvar);

 return(0);

}

Running this example would produce the following results:

fetch

Chapter 3. Part 3. Library Functions 575

105

105

The following example shows that fresh copies of static and global variables are not

allocated for multiple DLL loads of the same module.

CELEBF62

// CELEBF62-part 1 of 2-other file is CELEBF63.

// This example shows how copies of variables are allocated when

// multiple DLL loads are done.

// C++ program doing multiple DLL loads of the same module

#include <stdlib.h>

#include <stdio.h>

#include <dll.h>

extern "C" { //needed to indicate C linkage

 typedef int (*funcPtr)(int); //pointer to a function returning an int

}

int main (void)

{

 dllhandle *dllh1, *dllh2;

 funcPtr fptr;

 if ((dllh1 = dllload("mydll")) == NULL) {

 perror("failed to load mydll");

 exit(-1);

 }

 if ((fptr = (funcPtr) dllqueryfn(dllh1, "myfunc")) == NULL) {

 perror("failed to retrieve myfunc");

 exit(-2);

 }

 if (fptr(100) != 0) {

 perror("failed to execute myfunc");

 exit(-3);

 }

 if ((dllh2 = dllload("mydll")) == NULL) {

 perror("failed to load mydll");

 exit(-4);

 }

 if ((fptr = (funcPtr) dllqueryfn(dllh2, "myfunc")) == NULL) {

 perror("failed to retrieve myfunc");

 exit(-5);

 }

 if (fptr(100) != 0) {

 perror("failed to execute myfunc");

 exit(-6);

 }

 if (dllfree(dllh1) != 0) {

 perror("failed to free mydll");

 exit(-7);

 }

 return(0);

}

CELEBF63

/* CELEBF63-part 2 of 2-other file is CELEBF62.

 This example shows how copies of variables are allocated when multiple

 DLL loads are done.

 */

/* C function invoked using DLL */

fetch

576 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

#include <stdio.h>

#include <stdlib.h>

int globvar = 5;

int myfunc (int);

int myfunc (int x)

{

 globvar += x;

 printf("%d\n", globvar);

 return(0);

}

Running this example would produce the following results:

105

205

Related Information

v “Processing a Program with Multithreading” in z/OS XL C/C++ Programming

Guide

v “stdlib.h” on page 85

v “fetchep() — Share Writable Static” on page 578

v “release() — Delete a Load Module” on page 1657

fetch

Chapter 3. Part 3. Library Functions 577

fetchep() — Share Writable Static

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment C only

Format

#include <stdlib.h>

void (*fetchep(void (*entry_point)()))();

General Description

Dynamically fetches a set of functions with shared writable static variables.

fetchep() is used to register an entry point. It returns a pointer that may be passed

across the fetch boundary and used as if it were the original entry point. Therefore,

you can create more than one entry point from a fetched module. A call to the new

entry point will use the same writable static as the original fetch pointer uses on

each invocation.

fetchep() is called within a fetched module but not from the same level as the

fetch() call. If fetchep() is called in the root program that is not a fetched module,

fetchep() returns a fetch pointer that will use the root program’s writable static (if

any exists).

If the entry_point given as input to fetchep() is a function address external to the

current module or is an non-valid function address, use of the resulting pointer

returned from the call will result in undefined behavior.

If writable static is required, then this directive must be used:

#pragma linkage(entry_point, FETCHABLE)

In addition, the steps for fetching a reentrant module must be followed as described

in “fetch() — Get a Load Module” on page 565. If writable static is not required, the

C module using fetchep() need not contain the directive:

#pragma linkage(..., FETCHABLE).

You can release the new fetch pointer without any effect on the original or any other

fetch pointer created from the original fetch pointer. If the original fetched function is

released, however, all the fetch pointers created using the fetchep() function will

also be released. Trying to use a fetch pointer once it has been released or its

origin has been released will result in undefined behavior.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name, the external entry point name, is prefixed with two underscore

characters, and the other name is not. The name without the prefix underscore

characters is exposed only when you use LANGLVL(EXTENDED).

Note: The external entry point name for fetchep() is __ftchep(), NOT __fetchep().

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters

fetchep

578 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__ftchep(), or compile with LANGLVL(EXTENDED). When you use

LANGLVL(EXTENDED) any relevant information in the header is also exposed.

Examples

These examples and diagram demonstrate the program flow of a call to fetch() and

subsequent calls to fetchep().

/* The module that calls fetch() */

#include <stdlib.h>

typedef int (*FUNC_T)();

int main(void) {

FUNC_T (*myfunc)();

FUNC_T myfunc1;

FUNC_T myfunc2;

FUNC_T myfunc3;

myfunc = (FUNC_T (*)())fetch("MYMOD");

myfunc1 = myfunc(0);

myfunc2 = myfunc(1);

myfunc3 = myfunc(2);

}

/*

 The following code is the fetched module.

 Please see fetch() for information on how to compile and link the

 above.

 */

/* inside MYMOD */

#include <stdlib.h>

typedef int (*FUNC_T)();

int k; /* global variable to share within MYMOD */

#pragma linkage(x, fetchable)

FUNC_T x(int a)

{

 switch(a)

 {

 case 0:

 return (FUNC_T)fetchep((void(*)())func1);

 case 1:

 return (FUNC_T)fetchep((void(*)())func2);

 case 2:

 return (FUNC_T)fetchep((void(*)())func3);

 }

{

int func1(int a, int b)

{

k = 6; ...
}

int func2(int a, int b)

{

k = 4; ...
}

int func3(int a, int b)

{

k = 5; ...
}

fetchep

Chapter 3. Part 3. Library Functions 579

Related Information

v “stdlib.h” on page 85

v “fetch() — Get a Load Module” on page 565

v “release() — Delete a Load Module” on page 1657

MYMOD

#pragma linkage (x, fetchable)

FUNC_T x (int a)
{

}

.

.

.

int func2 (double a)
{

}

.

.

.

int func1 (int a, int b)
{

}

.

.

.

int func3 (char *a)
{

}

.

.

.

FECB

FECB2

FECB1

FECB3

myfunc

myfunc2

myfunc1

myfunc3

Figure 4. Program Flow of fetchep()

fetchep

580 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fetestexcept() — Test the Floating-Point Status Flags

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int fetestexcept(int excepts);

General Description

fetestexcept() determines which of a specified subset of floating-point exception

flags are currently set. excepts specifies the floating-point status flags to be queried.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fetestexcept X

Returned Value

If successful, fetestexcept() returns the value of the bitwise OR for the floating-point

exception macros corresponding to the currently set floating-point exceptions

included in excepts.

Related Information

v

fetestexcept

Chapter 3. Part 3. Library Functions 581

|

|

||||

|
|
||

|

|

|
|
|
|

|

|
|

|
|
|

||||

|||
|

|

|
|
|

|
|

feupdateenv() — Save the Currently Raised Floating-Point Exceptions

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <fenv.h>

int feupdateenv(const fenv_t *envp);

General Description

feupdateenv() saves the currently raised floating-point exceptions in its automatic

storage, installs the floating-point environment represented by the object pointed to

by envp, and then raises the saved floating-point exceptions. envp should point to

an object set by feholdexcept() or fegetenv(), or equal a floating-point environment

macro.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

feupdateenv X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v If the hardware has the decimal floating-point facility installed, this function

can update the decimal floating-point rounding mode.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, feupdateenv() returns 0 if the settings have been restored.

If unsuccessful, feupdateenv() returns -1 and sets one of the following errno values:

Error Code Description

EINVAL The rounding mode specified is not a valid Decimal Floating Point

rounding mode.

EMVSERR The function was unable to set the specified rounding mode due to

an internal error.

Related Information

v “fenv.h” on page 45

v “fegetenv() — Store the Current Floating-Point Environment” on page 552

feupdateenv

582 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|

|
|

|
|

|
|

v “fesetenv() — Set the Floating-Point Environment” on page 561

v “feholdexcept() — Save the Current Floating-Point Environment” on page 555

feupdateenv

Chapter 3. Part 3. Library Functions 583

|
|

fflush() — Write Buffer to File

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int fflush(FILE *stream);

General Description

Flushes the stream pointed to by stream. If stream is NULL, it flushes all open

streams.

The fflush() function is affected by the ungetc() and ungetwc() functions. Calling

these functions causes fflush() to back up the file position when characters are

pushed back. For details, see the ungetc() and ungetwc() functions respectively. If

desired, the _EDC_COMPAT environment variable can be set at open time such

that fflush() discards any pushed-back characters and leaves the file position where

it was when the first ungetc() or ungetwc() function call was issued.

If fflush() is used after ungetwc() has pushed a wide char on a text stream, the

position will be backed up by one wide character from the position the file was at

when the ungetwc() was issued. For a wide-oriented binary stream, the position will

be backed up based on the number of bytes used to represent the wide char in the

ungetc buffer. For this reason, attempting to use ungetwc() on a character when the

destination is a binary wide-oriented stream that was never read in the first place

results in undefined behavior for fflush(). Note that the _EDC_COMPAT environment

variable also changes the behavior of fflush() after ungetwc(), and will cause any

wide char pushed-back to be discarded and the position left at the point where the

ungetwc() was issued. For details on the _EDC_COMPAT environment variable, see

the “Environment Variables” in z/OS XL C/C++ Programming Guide.

If fflush() fails, the position is left at the point in the file where the first ungetc() or

ungetwc() function call was issued. All pushed-back characters are discarded.

Note: The system automatically flushes buffers when you close the stream or when

a program ends normally without closing the stream.

The buffering mode and the file type can have an effect on when output data is

flushed. For more information, see “Buffering of C Streams” in z/OS XL C/C++

Programming Guide.

stream remains open after the fflush() call. Because a read operation cannot

immediately follow or precede a write operation, the fflush() function can be used to

allow exchange between these two modes. The fflush() function can also be used to

refresh the buffer when working with a reader and a simultaneous writer/updater.

fflush

584 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Returned Value

If successful in flushing the buffer, fflush() returns 0.

If unsuccessful, fflush() returns EOF. When flushing all open files, a failure to flush

any of the files causes EOF to be returned. However, flushing will continue on any

other open files that can be flushed successfully.

Example

CELEBF15

/* CELEBF15

 This example flushes a stream buffer.

 It tests for the returned value of 0 to see if the flushing was

 successful.

 */

#include <stdio.h>

int retval;

int main(void)

{

 FILE *stream;

 stream = fopen("myfile.dat", "w");

 retval=fflush(stream);

 printf("return value=%i",retval);

}

Related Information

v “stdio.h” on page 82

v “setbuf() — Control Buffering” on page 1776

v “setvbuf() — Control Buffering” on page 1862

v “ungetc() — Push Character onto Input Stream” on page 2307

v “ungetwc() — Push a Wide Character onto a Stream” on page 2310

fflush

Chapter 3. Part 3. Library Functions 585

ffs() — Find First Set Bit in an Integer

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <strings.h>

int ffs(int i);

General Description

The ffs() function finds the first bit set (beginning with the least significant bit) and

returns the index of that bit. Bits are numbered starting at one (the least significant

bit).

Returned Value

If successful, ffs() returns the index of the first bit set.

If i is 0, ffs() returns 0.

There are no errno values defined.

Related Information

v “strings.h” on page 86

ffs

586 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

fgetc() — Read a Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int fgetc(FILE *stream);

General Description

Reads a single-byte unsigned character from the input stream pointed to by stream

at the current position, and increases the associated file pointer so that it points to

the next character.

The fgetc() function is not supported for files opened with type=record.

fgetc() has the same restriction as any read operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, fgetc() returns the character read as an integer.

If unsuccessful, fgetc() returns EOF to indicate an error or an EOF condition. Use

feof() or ferror() to determine whether the EOF value indicates an error or the end

of the file.

Note: EOF is only reached when an attempt is made to read “past” the last byte of

data. Reading up to and including the last byte of data does not turn on the

EOF indicator.

Example

CELEBF16

/* CELEBF16

 This example gathers a line of input from a stream.

 It tests to see if the file can be opened.

 If the file cannot be opened &perror. is called.

 */

#include <stdio.h>

#define MAX_LEN 80

int main(void)

fgetc

Chapter 3. Part 3. Library Functions 587

||||

|
|
|
|
|
|

||

|

{

 FILE *stream;

 char buffer[MAX_LEN + 1];

 int i, ch;

 if ((stream = fopen("myfile.dat","r")) != NULL) {

 for (i = 0; (i < (sizeof(buffer)−1) &&

 ((ch = fgetc(stream)) != EOF) && (ch != '\n')); i++)

 printf("character is %d\n",ch);

 buffer[i] = ch;

 buffer[i] = '\0';

 if (fclose(stream))

 perror("fclose error");

 }

 else

 perror("fopen error");

}

Related Information

v “stdio.h” on page 82

v “feof() — Test End Of File (EOF) Indicator” on page 556

v “ferror() — Test for Read/Write Errors” on page 559

v “fgetwc() — Get Next Wide Character” on page 593

v “fputc() — Write a Character” on page 662

v “getc(), getchar() — Read a Character” on page 742

fgetc

588 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fgetpos() — Get File Position

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int fgetpos(FILE * __restrict__stream, fpos_t * __restrict__pos);

General Description

Stores the current value of the file pointer associated with stream into the object

pointed to by pos. The value pointed to by pos can be used later in a call to

fsetpos() to reposition the stream pointed to by stream.

Both fgetpos() and fsetpos() functions also save state information for wide-oriented

files. The value stored in pos is unspecified, and it is usable only by fsetpos().

The position returned by fgetpos() is affected by the ungetc() and ungetwc()

functions. Each call to these functions causes the file position indicator to be

backed up from the position where the ungetc() or ungetwc() was issued. For

details on how ungetc() affects fgetpos() behavior, see “ungetc() — Push Character

onto Input Stream” on page 2307. For details on how ungetwc() affects fgetpos()

behavior for a wide-oriented stream, see “ungetwc() — Push a Wide Character onto

a Stream” on page 2310. Note that the _EDC_COMPAT environment variable can

be set at open time such that fgetpos() will ignore any pushed-back characters. For

further details on _EDC_COMPAT, see the “Environment Variables” in z/OS XL

C/C++ Programming Guide.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Multivolume Data Sets Performance

Using the fgetpos() and fsetpos() functions generally results in better repositioning

performance compared to the ftell() and fseek() functions when working with

multivolume data sets.

fgetpos

Chapter 3. Part 3. Library Functions 589

||||

|
|
|
|
|

||

|

Returned Value

If successful, fgetpos() returns 0.

If unsuccessful, fgetpos() returns nonzero and sets errno to nonzero.

Special Behavior for XPG4.2

fgetpos() returns -1 and sets errno to ESPIPE if the underlying file type for the

stream is a PIPE or a socket.

Example

CELEBF17

/* CELEBF17

 This example opens the file myfile.dat for reading.

 The current file pointer position is stored into the variable pos.

 */

#include <stdio.h>

int main(void)

{

 FILE *stream;

 int retcode;

 fpos_t pos;

 stream = fopen("myfile.dat", "rb");

 /* The value returned by fgetpos can be used by fsetpos()

 to set the file pointer if 'retcode' is 0 */

 if ((retcode = fgetpos(stream, &pos)) == 0)

 printf("Current position of file pointer found\n");

 fclose(stream);

}

Related Information

v “stdio.h” on page 82

v “fseek() — Change File Position” on page 693

v “fsetpos() — Set File Position” on page 701

v “ftell() — Get Current File Position” on page 711

v “ungetc() — Push Character onto Input Stream” on page 2307

v “ungetwc() — Push a Wide Character onto a Stream” on page 2310

fgetpos

590 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fgets() — Read a String from a Stream

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

char *fgets(char * __restrict__string, int n, FILE * __restrict__stream);

General Description

Reads bytes from a stream pointed to by stream into an array pointed to by string,

starting at the position indicated by the file position indicator. Reading continues

until the number of characters read is equal to n−1, or until a newline character

(\n), or until the end of the stream, whichever comes first. The fgets() function

stores the result in string and adds a NULL character (\0) to the end of the string.

The string includes the newline character, if read.

The fgets() function is not supported for files opened with type=record.

fgets() has the same restriction as any read operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, fgets() returns a pointer to the string buffer.

If unsuccessful, fgets() returns NULL to indicate failure.

If n is less than or equal to 0, it indicates a domain error; errno is set to EDOM to

indicate the cause of the failure.

When n equals 1, it indicates a valid result. It means that the string buffer has only

room for the NULL terminator; nothing is physically read from the file. (Such an

operation is still considered a read operation, so it cannot immediately follow a write

operation unless there is an intervening flush or reposition operation first.)

If n is greater than 1, fgets() will only fail if an I/O error occurs or if EOF is reached,

and no data is read from the file.

The ferror() and feof() functions are used to distinguish between a read error and

an EOF. Note that EOF is only reached when an attempt is made to read “past” the

last byte of data. Reading up to and including the last byte of data does not turn on

the EOF indicator.

fgets

Chapter 3. Part 3. Library Functions 591

||||

|
|
|
|
|
|

||

|

If EOF is reached after data has already been read into the string buffer, fgets()

returns a pointer to the string buffer to indicate success. A subsequent call would

result in NULL being returned since EOF would be reached without any data being

read.

Example

CELEBF18

/* CELEBF18

 This example gets a line of input from a data stream.

 It reads no more than MAX_LEN − 1 characters, or up

 to a new−line character, from the stream.

 */

#include <stdio.h>

#define MAX_LEN 100

int main(void)

{

 FILE *stream;

 char line[MAX_LEN], *result;

 stream = fopen("myfile.dat","r");

 if ((result = fgets(line,MAX_LEN,stream)) != NULL)

 printf("The string is %s\n", result);

 if (fclose(stream))

 printf("fclose error\n");

}

Related Information

v “stdio.h” on page 82

v “feof() — Test End Of File (EOF) Indicator” on page 556

v “ferror() — Test for Read/Write Errors” on page 559

v “fgetc() — Read a Character” on page 587

v “fgetws() — Get a Wide-Character String” on page 595

v “fputs() — Write a String” on page 664

v “gets() — Read a String” on page 850

v “puts() — Write a String” on page 1574

fgets

592 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fgetwc() — Get Next Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wint_t fgetwc(FILE *stream);

General Description

Obtains the next multibyte character from the input stream pointed to by stream,

converts it to a wide character, and advances the associated file position indicator

for the stream (if defined).

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Using non-wide-character functions with fgetwc() results in undefined behavior. This

happens because fgetwc() processes a whole multibyte character and does not

expect to be “within” such a character. In addition, fgetwc() expects state

information to be set already. Because functions like fgetc() and fputc() do not obey

such rules, their results fail to meet the assumptions made by fgetwc().

fgetwc() has the same restriction as any read operation for read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, fgetwc() returns the next wide character that corresponds to the

multibyte character from the input stream pointed to by stream.

If the stream is at EOF, the EOF indicator for the stream is set and fgetwc() returns

WEOF.

If a read error occurs, the error indicator for the stream is set and fgetwc() returns

WEOF. If an encoding error occurs (an error converting the multibyte character into

a wide character), the value of the macro EILSEQ (illegal sequence) is stored in

errno and WEOF is returned.

The ferror() and feof() functions are used to distinguish between a read error and

an EOF. Note that EOF is only reached when an attempt is made to read “past” the

last byte of data. Reading up to and including the last byte of data does not turn on

the EOF indicator.

fgetwc

Chapter 3. Part 3. Library Functions 593

||||

|
|
|
|
|

||

|

Example

CELEBF19

/* CELEBF19 */

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <errno.h>

int main(void)

{

 FILE *stream;

 wint_t wc;

 if ((stream = fopen("myfile.dat", "r")) == NULL) {

 printf("Unable to open file\n");

 exit(1);

 }

 errno = 0;

 while ((wc = fgetwc(stream)) != WEOF)

 printf("wc=0x%X\n", wc);

 if (errno == EILSEQ) {

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 fclose(stream);

}

Related Information

v “stdio.h” on page 82

v “wchar.h” on page 98

v “fgetc() — Read a Character” on page 587

v “fgetws() — Get a Wide-Character String” on page 595

v “fputwc() — Output a Wide-Character” on page 666

fgetwc

594 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fgetws() — Get a Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wchar_t *fgetws(wchar_t * __restrict__wcs, int n, FILE * __restrict__stream);

General Description

Reads at most one less than the number of the wide characters specified by n,

from the stream pointed to by stream, into the array pointed to by wcs. No

additional wide characters are read after a newline wide character (which is

retained) or after the EOF. A NULL wide character is written immediately after the

last wide character read into the array.

The fgetws() function advances the file position unless there is an error, when the

file position is undefined.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Using non-wide-character functions with fgetws() results in undefined behavior. This

happens because fgetws() processes a whole multibyte character and does not

expect to be “within” such a character. In addition, fgetws() expects state

information to be set already. Because functions like fgetc() and fputc() do not obey

such rules, their results fail to meet the assumptions made by fgetws().

fgetws() has the same restriction as any read operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, fgetws() returns the new value of wcs.

If EOF is encountered and no wide characters have been read into the array, the

contents of the array remain unchanged and fgetws() returns a NULL pointer.

If a read error or an encoding error occurs during the operation, the array contents

are indeterminate and fgetws() returns a NULL pointer. An encoding error is one

that occurs when a wide character is converted to a multibyte character. If it occurs,

errno is set to EILSEQ and fgetws() returns NULL.

fgetws

Chapter 3. Part 3. Library Functions 595

||||

|
|
|
|
|

||

|

If n is less than or equal to 0, it indicates a domain error; errno is set to EDOM to

indicate the cause of the failure.

When n equals 1, it indicates a valid result. It means that the string buffer has only

room for the NULL terminator; nothing is physically read from the file. (Such an

operation is still considered a read operation, so it cannot immediately follow a write

operation unless there is an intervening flush or reposition operation first.)

If n is greater than 1, fgets() will only fail if an I/O error occurs or if EOF is reached,

and no data is read from the file. To find out which error has occurred, use either

the feof() or the ferror() function. If EOF is reached after data has already been

read into the string buffer, fgetws() returns a pointer to the string buffer to indicate

success. A subsequent call would result in NULL being returned because EOF

would be reached without any data being read.

The ferror() and feof() functions are used to distinguish between a read error and

an EOF. Note that EOF is only reached when an attempt is made to read “past” the

last byte of data. Reading up to and including the last byte of data does not turn on

the EOF indicator.

Example

CELEBF20

/* CELEBF20 */

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

int main(void)

{

 FILE *stream;

 wchar_t wcs[100];

 wchar_t *ptr;

 if ((stream = fopen("myfile.dat", "r")) == NULL) {

 printf("Unable to open file\n");

 exit(1);

 }

 errno = 0;

 ptr = fgetws(wcs, 100, stream);

 if (ptr == NULL) {

 if (errno == EILSEQ) {

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 else if (feof(stream))

 printf("end of file reached\n");

 else

 perror("read error");

 }

 printf("wcs=\"%ls\"\n", wcs);

 fclose(stream);

}

Related Information

v “stdio.h” on page 82

v “wchar.h” on page 98

fgetws

596 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “fgets() — Read a String from a Stream” on page 591

v “fgetwc() — Get Next Wide Character” on page 593

v “fputws() — Output a Wide-Character String” on page 668

fgetws

Chapter 3. Part 3. Library Functions 597

fileno() — Get the File Descriptor from an Open Stream

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <stdio.h>

int fileno(const FILE *stream);

General Description

Returns the file descriptor number associated with a specified z/OS XL C/C++ I/O

stream. The argument stream points to a FILE structure controlling a z/OS XL

C/C++ I/O stream.

The unistd.h header file defines the following macros, which are constants that map

to the file descriptors of the standard streams:

STDIN_FILENO Standard input, stdin (value 0)

STDOUT_FILENO Standard output, stdout (value 1)

STDERR_FILENO Standard error, stderr (value 2)

Note that stdin, stdout, and stderr are macros, not constants.

Returned Value

If successful, fileno() returns the file descriptor number associated with an open

HFS stream (that is, one opened with fopen() or freopen()). MVS datasets are not

supported, so fileno() of an MVS data set returns −1.

If unsuccessful, fileno() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF One of the following error conditions exists:

v stream points to a closed stream

v stream is an incorrect stream pointer

v stream points to a stream associated with an MVS data set.

Example

CELEBF21

/* CELEBF21

 This example illustrates one use of fileno().

 */

#define _POSIX_SOURCE

#include <errno.h>

#include <stdio.h>

fileno

598 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

main() {

 FILE *stream;

 char hfs_file[]="./hfs_file", mvs_ds[]="//mvs.ds";

 printf("fileno(stdin) = %d\n", fileno(stdin));

 if ((stream = fopen(hfs_file, "w")) == NULL)

 perror("fopen() error for HFS file");

 else {

 printf("fileno() of the HFS file is %d\n", fileno(stream));

 fclose(stream);

 remove(hfs_file);

 }

 if ((stream = fopen(mvs_ds, "w")) == NULL)

 perror("fopen() error for MVS data set");

 else {

 errno = 0;

 printf("fileno() returned %d for MVS data set,\n",fileno(stream));

 printf(" errno=%s\n", strerror(errno));

 fclose(stream);

 remove(mvs_ds);

 }

}

Output

fileno(stdin) = 0

fileno() of the HFS file is 3

fileno() returned −1 for the MVS data set,

errno=Bad file descriptor

Related Information

v The “Standard Streams” chapter in z/OS XL C/C++ Programming Guide

v “stdio.h” on page 82

v “fdopen() — Associate a Stream with an Open File Descriptor” on page 545

v “fopen() — Open a File” on page 626

v “freopen() — Redirect an Open File” on page 675

v “open() — Open a File” on page 1313

fileno

Chapter 3. Part 3. Library Functions 599

finite() — Determine the Infinity Classification of a Floating-Point

Number

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both OS/390 V2R6

Format

#define _AIX_COMPATIBILITY

#include <math.h>

int finite(x)

double x;

General Description

The finite() function determines the infinity classification of floating-point number x.

Note: This function works in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

finite() returns nonzero if the x parameter is a finite number, that is, if x is not +−,

INF, NaNQ, or NaNS.

finite() does not return errors or set bits in the floating-point exception status, even if

a parameter is a NaNS.

Special behavior for hex

finite() always returns 1 when it is called from HFP mode.

Related Information

v IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards

754-1985 and 854-1987)

v “math.h” on page 60

finite

600 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fldata() — Retrieve File Information

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <stdio.h>

int fldata(FILE *file, char *filename, fldata_t *info);

General Description

Retrieves information about an open stream pointed to by file. It returns the file

name in filename and other information in the structure info. The file name returned

in filename is the name specified in fopen() or freopen(). If the file is opened with a

ddname (for example, fopen("DD:A","w"))), then the filename field will contain the

ddname used to open the file, prefixed with dd:. If the file is a DASD data set or a

memory file, the field __dsname contains the dsname. If the file is an HFS file, the

field __dsname contains the pathname. For all other files, it is NULL.

After a failure, the contents of the information structure are indeterminate.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

For full details about filename considerations, see one of the “Opening Files”

section s in z/OS XL C/C++ Programming Guide.

If fldata is the first reference to a standard stream, a call to the fldata() function

opens the stream.

See Table 26 on page 602.

Note:

A filename of NULL indicates that no filename will be returned.

FILENAME_MAX is recommended for the size of the filename buffer.

Special Behavior for POSIX C

Under z/OS UNIX services, if there had been an exec to an application that invokes

fldata(), the standard streams are opened at the time of the exec. Thus fldata()

fldata

Chapter 3. Part 3. Library Functions 601

|

|

does not attempt to open them again. See “z/OS XL C/C++ applications with z/OS

UNIX System Services C functions” on page 13 for more information about using

POSIX support.

Returned Value

If successful, fldata() returns 0.

If unsuccessful, fldata() returns nonzero.

 Table 26. Elements Returned in fldata_t Data Structure

Element Data Type General Description

__recfmF:1 unsigned int Indicates whether it has fixed-length records.

__recfmV:1 unsigned int Indicates whether it has variable-length records.

__recfmU:1 unsigned int Indicates whether it has undefined-length records.

__recfmS:1 unsigned int Indicates whether it has either standard (if

fixed-length) or spanned (if variable-length) records.

__recfmBlk:1 unsigned int Indicates whether it has blocked records.

__recfmASA:1 unsigned int Indicates whether it has ASA print-control

characters.

__recfmM:1 unsigned int Indicates whether it has machine print-control

codes.

__dsorgPO:1 unsigned int Indicates whether it is a partitioned data set.

__dsorgPDSmem:1 unsigned int Indicates whether a file is a member.

__dsorgPDSdir:1 unsigned int Indicates whether a file is a PDS or PDSE directory.

__dsorgPS:1 unsigned int Indicates whether it is a sequential data set.

__dsorgConcat:1 unsigned int Indicates whether it is a sequentially concatenated

file.

__dsorgMem:1 unsigned int Indicates whether it is a memory file.

__dsorgHiper:1 unsigned int Indicates whether it is a memory file in hiperspace.

__dsorgTemp:1 unsigned int Indicates whether it is a temporary file created by

tmpfile().

__dsorgVSAM:1 unsigned int Indicates whether it is a VSAM file.

__dsorgHFS: unsigned int Indicates whether it is an HFS file.

__openmode:2 unsigned int Values are __TEXT, __BINARY, __RECORD.

__modeflag:4 unsigned int Values are __APPEND, __READ, __UPDATE,

__WRITE. These macros can be added together to

determine the value; for example, a file opened with

mode a+ will have the value __APPEND +

__UPDATE.

__dsorgPDSE:1 unsigned int Indicates whether a file is a PDSE.

__vsamRLS:3 unsigned int Returned values are __NORLS, __RLS, __TVS.

__reserve2:4 unsigned int Reserved bits.

__device char Returned values are __DISK, __TERMINAL,

__PRINTER, __TAPE, __TDQ, __DUMMY,

__OTHER, __MEMORY, __MSGFILE, __HFS,

__HIPERSPACE.

__blksize unsigned long Total block size of the file, including all control

information needed in the block.

fldata

602 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 26. Elements Returned in fldata_t Data Structure (continued)

Element Data Type General Description

__maxreclen unsigned long Maximum length of the data in the record, including

ASA control characters, if present.

__vsamtype unsigned short Returned values are __NOTVSAM, __ESDS,

__KSDS, __RRDS, __ESDS_PATH,

__KSDS_PATH.

Note: Valid only if __dsorgVSAM is set.

__vsamkeylen unsigned long Length of VSAM key (if any).

Note: Valid only if __dsorgVSAM is set.

__vsamRKP unsigned long Key position.

Note: Valid only if __dsorgVSAM is set.

__access_method uint8_t Identifies the access method used for the data set.

Values include:

 __AM_UNSPEC

__AM_BSAM

__AM_QSAM

Note: Valid only if __dsorgPS or __dsorgPO is set.

__noseek_to_seek uint8_t Identifies the reason noseek was changed to seek.

Values include:

 __AM_BSAM_NOSWITCH

__AM_BSAM_UPDATE

__AM_BSAM_BSAMWRITE

__AM_BSAM_FBS_APPEND

__AM_BSAM_LRECLX

__AM_BSAM_PARTITIONED_DIRECTORY

__AM_BSAM_PARTITIONED_INDIRECT

Note: Valid only if __dsorgPS or __dsorgPO is set.

__dsname char * The contents of this field is determined by the

following:

v If the file is a DASD data set, memory file, or an

HFS file, then __dsname contains the real file

name of file opened by ddname

v If you open by ddname, and the ddname is a

concatenation of PDS or PDSE data sets, then

__dsname contains the data set name of the first

PDS or PDSE. This is because your are only

opening the directory of the first PDS or PDSE.

v If you open by ddname(member) and the

ddname is a concatenation of PDS or PDSE data

sets, then __dsname contains the data set name

of the first PDS or PDSE containing the member.

Otherwise this field is NULL.

The char *__dsname field is allocated internally by

the library functions and must be saved before the

next call to the fldata() function.

__reserve4 unsigned long Reserved.

Note: The numeric values for the macro names can be found in stdio.h. The

meaning of the __noseek_to_seek values are described in section ″2.16.1

Using the __amrc structure″ of the z/OS XL C/C++ Programming Guide.

fldata

Chapter 3. Part 3. Library Functions 603

Example

#include <stdio.h>

int main(void)

{

 FILE *stream;

 char filename[100];

 fldata_t fileinfo;

 int rc;

 stream = fopen("myfile.dat","rb+"); ...
 rc = fldata(stream, filename, &fileinfo);

 if (rc != 0)

 printf("fldata failed\n");

 else

 printf("filename is %s\n",filename);

}

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

v “freopen() — Redirect an Open File” on page 675

fldata

604 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

flocate() — Locate a VSAM Record

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <stdio.h>

int flocate(FILE *stream, const void *key, size_t key_len, int options);

General Description

Moves the VSAM file position indicator associated with the stream pointed to by

stream, according to the rest of the arguments specified.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

key points to a key used for positioning.

key_len specifies the length of the search key. The key_len argument value must

always be nonzero, except for __KEY_FIRST and __KEY_LAST.

KSDS, KSDS PATH, and ESDS PATH

The key can point to a field of any storage type except register.

Typically it points to a character string whose length is key_len. The

key_len must be less than or equal to the key length of the data

set. If key_len is the same as the file’s key length, a full key search

is automatically used; otherwise, a generic search is used. A

generic key search is one in which the search key is a leading

portion of the key field. The record positioned to is the first of the

records having the same generic key.

ESDS The key points to a relative byte address that may be stored as 4

or 8 byte value. key_len is either 4 or 8.

RRDS The key points to a relative record number stored as an unsigned

long int. key_len is either 4 or 8.

options specifies the position options described in Table 27.

 Table 27. Position Options Parameter for flocate()

__KEY_FIRST Positions to the first record in the file. Subsequent reads are in the

forward direction. key and key_len are ignored.

flocate

Chapter 3. Part 3. Library Functions 605

Table 27. Position Options Parameter for flocate() (continued)

__KEY_LAST Positions to the last record in the file. Subsequent reads are in

backward order. key and key_len are ignored.

Only applies to VSAM files opened in record mode.

__KEY_EQ Positions to the first record with the specified key. Subsequent reads

are in the forward direction.

__KEY_EQ_BWD Positions to the first record with the specified key. Subsequent reads

are in backward order. Using this option requires a full key search.

Key_len must be equal to the key length as defined for the data set.

Only applies to VSAM files opened in record mode.

__KEY_GE Positions to the first record with a key greater than or equal to the

specified key.

__RBA_EQ Positions to the record with the specified RBA. Subsequent reads

are in the forward direction.

You cannot use __RBA_EQ with an alternative index path.

Using this option with RRDS is not recommended. The underlying

VSAM utilities do not support seeking to an RBA in an RRDS file.

The flocate() function attempts to convert the RBA to a Relative

Record Number by dividing the value by the LRECL of the file and

using the equivalent __KEY_EQ.

Using this option with KSDS is not recommended because the RBA

of a given record may change over time, because of inserts,

deletions, or updates of other records.

__RBA_EQ_BWD Positions to the record with the specified RBA. Subsequent reads

are in backward order.

You cannot use __RBA_EQ_BWD with an alternative index path.

Using this option with RRDS is not recommended. The underlying

VSAM utilities do not support seeking to an RBA in an RRDS file.

The flocate() function attempts to convert the RBA to a Relative

Record Number by dividing the value by the LRECL of the file and

using the equivalent __KEY_EQ_BWD.

Using this option with KSDS is not recommended because the RBA

of a given record may change over time, because of inserts,

deletions, or updates of other records.

Only applies to VSAM files opened in record mode.

_KEY_EQ_BWD Positions to the first record with the specified key. Subsequent reads

are in backward order.

Using this option requires a full key search. key_len must be set

equal to the key length as defined for the data set.

Only applies to VSAM files opened in record mode.

Notes:

v When you are trying to use flocate() in a path to a nonunique key, the resulting

position will be at the first physical record of the duplicate key set.

v flocate() releases all record locking.

v Writes to VSAM data sets are not affected by preceding calls to flocate().

flocate

606 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v If a record was not found, you must successfully relocate to another position

before reading or writing (using the flocate() function). The exception to this is

that a write that follows a failed flocate() will succeed if the file was opened for

initial loading, but no records have been written to it yet.

Considerations For VSAM extended addressability data sets

flocate() accepts key lengths of 4 or 8 when relative byte address (RBA) values are

used for positioning. A key length of 8 is required only when the working with a

VSAM extended addressability data set, because when the address grows past the

4GB boundary, the key needs to be large enough to hold the value.

When using the value 4GB-1 as the key to flocate(), the key length must be 8 and

the data type used must be 8 bytes in size (for example, X'00000000FFFFFFFF') .

If the key length is 4, flocate() treats the key as -1(EOF).

Returned Value

If successful, flocate() returns 0.

If a record was not found or the position is beyond the EOF, flocate() returns EOF.

Example

#include <stdio.h>

int main(void)

{

 FILE *stream;

 int vsam_rc;

 char *key = "RECORD 27";

 stream = fopen("DD:MYCLUS", "rb+,type=record");

 vsam_rc = flocate(stream, key, 9, __KEY_EQ); ...
}

Related Information

v “Performing VSAM I/O Operations” in z/OS XL C/C++ Programming Guide

v “stdio.h” on page 82

v “fdelrec() — Delete a VSAM Record” on page 539

v “fgetpos() — Get File Position” on page 589

v “fseek() — Change File Position” on page 693

v “fsetpos() — Set File Position” on page 701

v “ftell() — Get Current File Position” on page 711

v “fupdate() — Update a VSAM Record” on page 725

flocate

Chapter 3. Part 3. Library Functions 607

flockfile()— stdio Locking

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R8

Format

#define _UNIX03_SOURCE

#include <stdio.h>

void flockfile(FILE *file);

General Description

This function provides explicit application-level locking of stdio (FILE*) objects. The

flockfile() family of the functions can be used by a thread to delineate a sequence of

I/O statements that are executed as a unit.

The flockfile() function acquires ownership of a (FILE*) object for the thread, waiting

if necessary, and increases the internal lock count. If the thread has previously

been granted ownership, the internal lock count is increased.

The internal lock count allows matching calls to flockfile() (or successful calls to

ftrylockfile()) and funlockfile() to be nested.

z/OS Consideration

The flockfile() family of functions acts upon FILE * objects. It is possible to have the

same physical file represented by multiple FILE * objects that are not recognized as

being equivalent. For example, fopen() opens a file and open() opens the same file,

and then fdopen() creates a FILE * object. In this case, locking the first FILE * does

not prevent the second FILE * from also being locked and used.

Returned Value

None.

Note:

v Because the flockfile() function returns void, no error information can be

returned.

v It is the application’s responsibility to prevent deadlock (or looping). For

example, deadlock (or looping) may occur if a (FILE *) object is closed, or

a thread is terminated, before relinquishing all locked (FILE *) objects.

Related Information

v “ftrylockfile() — stdio Locking” on page 721

v “funlockfile() — stdio Unlocking” on page 724

flockfile

608 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|||
|

floor(), floorf(), floorl() — Round Down to Integral Value

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double floor(double x);

float floor(float x); /* C++ only */

long double floor(long double x); /* C++ only */

float floorf(float x);

long double floorl(long double x);

General Description

Calculates the largest integer that is less than or equal to x.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Returns the calculated integral value expressed as a double, float, or long double

value. The result cannot have a range error.

Example

CELEBF24

/* CELEBF24

 This example assigns y the value of the largest integer that is less

 than or equal to 2.8, and it assigns z the value of the largest integer

 that is less than or equal to −2.8.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double y, z;

 y = floor(2.8);

 z = floor(−2.8);

 printf("floor(2.8) = %f\n", y);

 printf("floor(−2.8) = %f\n", z);

}

floor, floorf, floorl

Chapter 3. Part 3. Library Functions 609

||||

|
|
|
|
|
|
|

||

|

Output

floor(2.8) = 2.000000

floor(-2.8) = -3.000000

Related Information

v “math.h” on page 60

v “ceil(), ceilf(), ceill() — Round Up to Integral Value” on page 251

v “fmod(), fmodf(), fmodl() — Calculate Floating-Point Remainder” on page 619

floor, floorf, floorl

610 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

floord32(), floord64(), floord128() — Round Down to Integral Value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 floord32(_Decimal32 x);

_Decimal64 floord64(_Decimal64 x);

_Decimal128 floord128(_Decimal128 x);

_Decimal32 floor(_Decimal32 x); /* C++ only */

_Decimal64 floor(_Decimal64 x); /* C++ only */

_Decimal128 floor(_Decimal128 x); /* C++ only */

General Description

Calculates the largest integer that is less than or equal to x.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

Returns the calculated integral value expressed as a _Decimal32, _Decimal64, or

_Decimal128 value. The result cannot have a range error.

Example

/* CELEBF78

 This example illustrates the floord64() function.

 This example assigns y the value of the largest integer that is less

 than or equal to 2.8, and it assigns z the value of the largest

 integer that is less than or equal to −2.8.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal64 y, z;

 y = floord64(+2.8DD);

 z = floord64(−2.8DD);

 printf("floord64(+2.8) = %+Df\n", y);

 printf("floord64(−2.8) = %+Df\n", z);

}

floord32, floord64, floord128

Chapter 3. Part 3. Library Functions 611

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “math.h” on page 60

v “ceild32(), ceild64(), ceild128() — Round Up to Integral Value” on page 253

v “floor(), floorf(), floorl() — Round Down to Integral Value” on page 609

floord32, floord64, floord128

612 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

fma(), fmaf(), fmal() — Multiply then Add

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

double fma(double x, double y, double z);

float fmaf(float x, float y, float z);

long double fmal(long double x, long double y, long double z);

General Description

The fma() family of functions compute (x * y) + z, rounded as one ternary operation:

they compute the value to infinite precision and round once to the resulting format

according to the rounding mode characterized by the value of FLT_ROUNDS.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fma X X

fmaf X X

fmal X X

Restriction

The fmaf() function does not support the _FP_MODE_VARIABLE feature test

macro.

Returned Value

If successful, they return the rounded value of (x * y) + z as one ternary operation.

Related Information

v “math.h” on page 60

fma, fmaf, fmal

Chapter 3. Part 3. Library Functions 613

||||

|
|
||

|

fmax(), fmaxf(), fmaxl() — Calculate the Maximum Numeric Value

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both

 z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

double fmax(double x, double y);

float fmaxf(float x, float y);

long double fmaxl(long double x, long double y);

General Description

The fmax() family of functions determine the maximum numeric value of their

arguments. NaN arguments are treated as missing data. If one argument is a NaN

and the other numeric, then the numeric value will be chosen.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fmax X X

fmaxf X X

fmaxl X X

Restriction

The fmaxf() function does not support the _FP_MODE_VARIABLE feature test

macro.

Returned Value

If successful, they return the maximum numeric value of their arguments.

Related Information

v “math.h” on page 60

v “fdim(), fdimf(), fdiml() — Calculate the Positive Difference” on page 543

v “fmin(), fminf(), fminl() — Calculate the Minimum Numeric Value” on page 617

fmax, fmaxf, fmaxl

614 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|
|

fmaxd32(), fmaxd64(), fmaxd128() — Calculate the Maximum Numeric

Value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 fmaxd32(_Decimal32 x, _Decimal32 y);

_Decimal64 fmaxd64(_Decimal64 x, _Decimal64 y);

_Decimal128 fmaxd128(_Decimal128 x, _Decimal128 y);

_Decimal32 fmax(_Decimal32 x, _Decimal32 y); /* C++ only */

_Decimal64 fmax(_Decimal64 x, _Decimal64 y); /* C++ only */

_Decimal128 fmax(_Decimal128 x, _Decimal128 y); /* C++ only */

General Description

The fmax() family of functions determine the maximum numeric value of their

arguments. NaN arguments are treated as missing data. If one argument is a NaN

and the other numeric, then the numeric value will be chosen.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, they return the maximum numeric value of their arguments.

Example

/* CELEBF79

 This example illustrates the fmaxd128() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal128 x = 3.5DL, y = 4.0DL, z;

 z = fmaxd128(x, y);

 printf("The maximum number between %DDf and %DDf is %DDf\n", x, y, z);

}

Related Information

v “math.h” on page 60

fmaxd32, fmaxd64, fmaxd128

Chapter 3. Part 3. Library Functions 615

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

v “fdimd32(), fdimd64(), fdimd128() — Calculate the Positive Difference” on page

544

v “fmax(), fmaxf(), fmaxl() — Calculate the Maximum Numeric Value” on page 614

v “fmind32(), fmind64(), fmind128() — Calculate the Minimum Numeric Value” on

page 618

fmaxd32, fmaxd64, fmaxd128

616 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

fmin(), fminf(), fminl() — Calculate the Minimum Numeric Value

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both

 z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

double fmin(double x, double y);

float fminf(float x, float y);

long double fminl(long double x, long double y);

General Description

The fmin() family of functions determine the minimum numeric value of their

arguments. NaN arguments are treated as missing data. If one argument is a NaN

and the other numeric, then the numeric value will be chosen.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

fmin X X

fminf X X

fminl X X

Restriction

The fminf() function does not support the _FP_MODE_VARIABLE feature test

macro.

Returned Value

If successful, they return the minimum numeric value of their arguments.

Related Information

v “math.h” on page 60

v “fdim(), fdimf(), fdiml() — Calculate the Positive Difference” on page 543

v “fmax(), fmaxf(), fmaxl() — Calculate the Maximum Numeric Value” on page 614

fmin, fminf, fminl

Chapter 3. Part 3. Library Functions 617

||||

|
|
||

|
|

fmind32(), fmind64(), fmind128() — Calculate the Minimum Numeric

Value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 fmind32(_Decimal32 x, _Decimal32 y);

_Decimal64 fmind64(_Decimal64 x, _Decimal64 y);

_Decimal128 fmind128(_Decimal128 x, _Decimal128 y);

_Decimal32 fmin(_Decimal32 x, _Decimal32 y); /* C++ only */

_Decimal64 fmin(_Decimal64 x, _Decimal64 y); /* C++ only */

_Decimal128 fmin(_Decimal128 x, _Decimal128 y); /* C++ only */

General Description

The fmin() family of functions determine the minimum numeric value of their

arguments. NaN arguments are treated as missing data. If one argument is a NaN

and the other numeric, then the numeric value will be chosen.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, they return the minimum numeric value of their arguments.

Example

/* CELEBF70

 This example illustrates the fmind32() function

*/

Related Information

v “math.h” on page 60

v “fdimd32(), fdimd64(), fdimd128() — Calculate the Positive Difference” on page

544

v “fmaxd32(), fmaxd64(), fmaxd128() — Calculate the Maximum Numeric Value” on

page 615

v “fmin(), fminf(), fminl() — Calculate the Minimum Numeric Value” on page 617

fmind32, fmind64, fmind128

618 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|

|

|

|
|
|

|
|
|
|
|
|
|

fmod(), fmodf(), fmodl() — Calculate Floating-Point Remainder

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double fmod(double x, double y);

float fmod(float x, float y); /* C++ only */

long double fmod(long double x, long double y); /* C++ only */

float fmodf(float x, float y);

long double fmodl(long double x, long double y);

General Description

Calculates the floating-point remainder of x/y. The absolute value of the result is

always less than the absolute value of y. The result will have the same sign as x.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

If y is 0, or the result would overflow, then the function returns 0. Errno remains

unchanged.

Special Behavior for IEEE

If successful, the function returns the floating-point remainder of x/y.

If y is 0, the function sets errno to EDOM and returns NaNQ. No other errors will

occur.

Example

CELEBF25

/* CELEBF25

 This example computes z as the remainder of x/y; here x/y is −3 with a

 remainder of −1.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y, z;

fmod, fmodf, fmodl

Chapter 3. Part 3. Library Functions 619

||||

|
|
|
|
|
|
|

||

|

x = −10.0;

 y = 3.0;

 z = fmod(x,y); /* z = −1.0 */

 printf("fmod(%f, %f) = %lf\n", x, y, z);

}

Output

fmod(-10.000000, 3.000000) = -1.000000

Related Information

v “math.h” on page 60

v “modf(), modff(), modfl() — Extract Fractional and Integral Parts of Floating-Point

Value” on page 1237

fmod, fmodf, fmodl

620 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fmtmsg() — Display a Message in the Specified Format

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity,

 const char *text, const char *action, const char *tag);

General Description

The fmtmsg() function can be used to display messages in a specified format

instead of the traditional printf() function.

Based on a message’s classification component, fmtmsg() writes a formatted

message either to standard error, to the console, or to both.

A formatted message consists of up to five components as defined below. The

component classification is not part of a message displayed to the user, but defines

the source of the message and directs the display of the formatted message.

classification Contains identifiers from the following groups of major

classifications and subclassifications. Any one identifier from a

subclass may be used in combination with a single identifier from a

different subclass. Two or more identifiers from the same subclass

should not be used together, with the exception of identifiers from

the display subclass. (Both display subclass identifiers may be used

so that messages can be displayed to both standard error and the

system console).

Major Classifications

Identifies the source of the condition. Identifiers are:

MM_HARD (hardware), MM_SOFT (software), and

MM_FIRM (firmware).

Message Source Subclassifications

Identifies the type of software in which the problem

is detected. Identifiers are: MM_APPL (application),

MM_UTIL (utility), and MM_OPSYS (operating

system).

Display Subclassifications

Indicates where the message is to be displayed.

Identifiers are: MM_PRINT to display the message

on the standard error stream, MM_CONSOLE to

display the message on the system console. One or

both identifiers may be used.

Status Subclassifications

Indicates whether the application will recover from

fmtmsg

Chapter 3. Part 3. Library Functions 621

||||

|
|
||

|

the condition. Identifiers are: MM_RECOVER

(recoverable) and MM_NRECOV (non-recoverable).

An additional identifier, MM_NULLMC, indicates that no

classification component is supplied for the message.

label Identifies the source of the message. The format is two fields

separated by a colon. The first field is up to 10 bytes, the second is

up to 14 bytes. The constant __MM_MXLABELLN defines the

maximum length of label.

severity Indicates the seriousness of the condition. Identifiers for the levels

of severity are:

MM_HALT indicates that the application has encountered a

severe fault and is halting. Produces the string

“HALT”.

MM_ERROR indicates that the application has detected a fault.

Produces the string “ERROR”.

MM_WARNING

indicates a condition that is out of the ordinary, that

might be a problem, and should be watched.

Produces the string “WARNING”.

MM_INFO provides information about a condition that is not in

error. Produces the string “INFO”.

MM_NOSEV indicates that no severity level is supplied for the

message.

Other provides an unknown severity. Produce the string

“SV=n”, where n is the severity value specified.

text Describes the error condition that produced the message. The

character string is not limited to a specific size. If the character

string is empty, then the text produced is unspecified.

action Describes the first step to be taken in the error-recovery process.

The fmtmsg() function precedes the action string with the prefix:

“TO FIX:”. The action string is not limited to a specific size.

tag An identifier that references on-line documentation for the message.

Suggested usage is that tag includes the label and a unique

identifying number. A sample tag is “XSI:cat:146”. The constant

__MM_MXTAGLN defines the maximum length of tag.

The MSGVERB environment variable (for message verbosity) tells fmtmsg() which

message components it is to select when writing messages to standard error. The

value of MSGVERB is a colon-separated list of optional keywords. Valid keywords

are: label, severity, text, action, and tag. If MSGVERB contains a keyword for a

component and the component’s value is not the component’s NULL value,

fmtmsg() includes that component in the message when writing the message to

standard error. If MSGVERB does not include a keyword for a message component,

that component is not included in the display of the message. The keywords may

appear in any order. If MSGVERB is not defined, if its value is the NULL string, if its

value is not of the correct format, or if it contains keywords other than the valid

ones listed above, fmtmsg() selects all components.

MSGVERB affects only which components are selected for display to standard

error. All message components are included in console messages.

fmtmsg

622 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Returned Value

fmtmsg() returns one of the following values:

Value Description

MM_OK The function succeeded.

MM_NOCON The function was unable to generate a console message, but

otherwise succeeded.

MM_NOMSG The function was unable to generate a message on standard error,

but otherwise succeeded.

MM_NOTOK The function failed completely.

Examples

The following is an example of fmtmsg():

fmtmsg(MM_PRINT, "XSI:cat", MM_ERROR, "illegal option",

"refer to cat in user’s reference manual", "XSI:cat:001")

 produces a complete message in the specified message format:

XSI:cat: ERROR: illegal option

TO FIX: refer to cat in user’s reference manual XSI:cat:001

The following is another example when the environment variable MSGVERB is set.

export MSGVERB=severity:text:action

fmtmsg(MM_PRINT, "XSI:cat", MM_ERROR, "illegal option",

"refer to cat in user’s reference manual", "XSI:cat:001")

 produces a complete message in the specified message format:

ERROR: illegal option

TO FIX: refer to cat in user’s reference manual

Related Information

v “fmtmsg.h” on page 48

v “fprintf(), printf(), sprintf() — Format and Write Data” on page 648

fmtmsg

Chapter 3. Part 3. Library Functions 623

fnmatch() — Match Filename or Pathname

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <fnmatch.h>

int fnmatch(const char *pattern, const char *string, int flags);

General Description

The fnmatch() function matches patterns as described in Section 2.13.1 , Patterns

Matching a Single Character, and Section 2.13.2 , Patterns Matching Multiple

Characters. It checks the string specified by the string argument to see if it

matches the pattern specified by the pattern argument.

The flags argument modifies the interpretation of pattern and string. It is the bitwise

inclusive-OR of zero or more of the flags defined in the header <fnmatch.h>. If the

FNM_PATHNAME flag is set in flags, then a slash character in string will be

explicitly matched by a slash in pattern; it will not be matched by either the asterisk

or question-mark special characters, nor by a bracket expression. If

FNM_PATHNAME is set and either of these characters would match a slash, the

function returns FNM_ESLASH. If the FNM_PATHNAME flag is not set, the slash

character is treated as an ordinary character.

If FNM_NOESCAPE is not set in flags, a backslash character (\) in pattern followed

by any other character will match that second character in string. In particular, \\ will

match a backslash in string. If FNM_NOESCAPE is set, a backslash character will

be treated as an ordinary character.

If FNM_PERIOD is set in flags, then a leading period in string will match a period in

pattern; as described by rule 2 in the XCU specification, Section 2.13.3 , Patterns

Used for Filename Expansion where the location of “leading” is indicated by the

value of FNM_PATHNAME:

v If FNM_PATHNAME is set, a period is “leading” if it is the first character in string

or if it immediately follows a slash.

v If FNM_PATHNAME is not set, a period is “leading” only if it is the first character

of string.

If FNM_PERIOD is not set, then no special restrictions are placed on matching a

period. If FNM_PERIOD is set, and a pattern wildcard would match a leading period

as defined by the above rules, then the function returns FNM_EPERIOD.

Returned Value

If string matches the pattern specified by pattern, fnmatch() returns 0.

If there is no match, fnmatch() returns FNM_NOMATCH, which is defined in the

header <fnmatch.h>.

fnmatch

624 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

If an error occurs, fnmatch() returns another nonzero value. See the discussion

above for the various possible nonzero returns.

Related Information

v “fnmatch.h” on page 48

v “glob() — Generate Pathnames Matching a Pattern” on page 898

v “wordexp() — Perform Shell Word Expansions” on page 2457

fnmatch

Chapter 3. Part 3. Library Functions 625

fopen() — Open a File

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

FILE *fopen(const char *__restrict__filename, const char *__restrict__mode);

General Description

Opens the file specified by filename and associates a stream with it. The mode

variable is a character string specifying the type of access requested for the file.

The mode variable contains one positional parameter followed by optional keyword

parameters. The positional parameters are described in Table 28 and Table 29 on

page 628.

The positional parameters must be passed as lowercase characters.

The keyword parameters can be passed in mixed case. They must be separated by

commas. Only one instance of a keyword can be specified.

The file name passed to fopen() often determines the type of file that is opened. A

set of file-naming rules exist, which allow you to create an application that

references both MVS and HFS files specifically. For details on how fopen()

determines the type of file from the filename and mode strings, see one of the

“Opening Files” section s in z/OS XL C/C++ Programming Guide.

File mode

Restriction: When running with POSIX(OFF) and specifying a mode parameter

that includes t, for example, rt, rt+, r+t, wt, wt+, w+t, at, at+ or a+t,

the fopen() request will fail with a message indicating a non-valid

mode was specified.

 Table 28. Values for the Positional Parameter

File Mode General Description

r Open a text file for reading. (The file must exist.)

w Open a text file for writing. If the w mode is specified for a ddname that has

DISP=MOD, the behavior is the same as if a had been specified. Otherwise,

if the file already exists, its contents are destroyed.

a Open a text file in append mode for writing at the end of the file. fopen()

creates the file if it does not exist.

r+ Open a text file for both reading and writing. (The file must exist.)

fopen

626 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Table 28. Values for the Positional Parameter (continued)

File Mode General Description

w+ Open a text file for both reading and writing. If the w+ mode is specified for a

ddname that has DISP=MOD, the behavior is the same as if a+ had been

specified. Otherwise, if the file already exists, its contents are destroyed.

a+ Open a text file in append mode for reading or updating at the end of the

file. fopen() creates the file if it does not exist.

rb Open a binary file for reading. (The file must exist.)

wb Open an empty binary file for writing. If the wb mode is specified for a

ddname that has DISP=MOD, the behavior is the same as if ab had been

specified. Otherwise, if the file already exists, its contents are destroyed.

ab Open a binary file in append mode for writing at the end of the file. fopen()

creates the file if it does not exist.

rt Open a text file for reading. (The file must exist.)

wt Open a text file for writing. If the file already exists, its contents are

destroyed.

at Open a text file in append mode for writing at the end of the file. fopen()

creates the file if it does not exist.

r+b or rb+ Open a binary file for both reading and writing. (The file must exist.)

w+b or wb+ Open an empty binary file for both reading and writing. If the w+b (or wb+)

mode is specified for a ddname that has DISP=MOD, the behavior is the

same as if ab+ had been specified. Otherwise, if the file already exists, its

contents are destroyed.

a+b or ab+ Open a binary file in append mode for reading or updating at the end of the

file. fopen() creates the file if it does not exist.

r+t or rt+ Open a text file for both reading and writing. (The file must exist.)

w+t or wt+ Open a text file for both reading and writing. If the file already exists, its

contents are destroyed.

a+t or at+ Open a text file in append mode for reading or updating at the end of the

file. fopen() creates the file if it does not exist.

Attention: Use the w, w+, wb, w+b, and wb+ parameters with care; data in existing

files of the same name will be lost.

Text files contain printable characters and control characters organized into lines.

Each line ends with a newline character. The system may insert or convert control

characters in an output text stream. For example, \r written to an MVS DASD text

file will be treated as if \n (newline) was written.

Note: When compared, data output to a text stream may not be equal to data input

from the same text stream.

Binary files contain a series of characters. For binary files, the system does not

translate control characters on input or output. Under z/OS XL C/C++, some types

of files are always treated as binary files, even when opened in text mode.

In such cases, a control character is written to the file as binary data. On input, the

control character will be read back as it was written. See “The Byte Stream Model”

in z/OS XL C/C++ Programming Guide for more information.

fopen

Chapter 3. Part 3. Library Functions 627

z/OS XL C/C++ has a Record I/O file extension. These files are binary in

nature—no data interpretation—and require the additional qualifier: type=record.

See “Writing to Record I/O Files” in z/OS XL C/C++ Programming Guide for more

information.

When you open a file with a, a+, ab, a+b, or ab+ mode, all write operations take

place at the end of the file. Although you can reposition the file pointer using

fseek(), fsetpos(), or rewind(), the write functions move the file pointer back to the

end of the file before they carry out any output operation. This action prevents you

from overwriting existing data.

When you specify the update mode (using + in the second or third position), you

can both read from and write to the file. However, when switching between reading

and writing, you must include an intervening positioning function such as fseek(),

fsetpos(), rewind(), or fflush(). Output may immediately follow input if the EOF was

detected.

 Table 29. Keyword Parameters for File Mode

Parameter Description

acc=value Indicator of the direction of the access of the VSAM data set.

Value can be fwd or bwd.

acc=bwd Sets the file position indicator to the last record. The access

direction may be changed by a call to flocate().

blksize=value Specifies the maximum length, in bytes, of a physical block of

records. To check whether your blksize parameter is valid and

is within its limits, see the appropriate section in z/OS XL

C/C++ Programming Guide for the type of file you are

opening.

byteseek Indicator to allow byte seeks for a binary file. For more

information, see the ftell() and fseek() functions.

lrecl=value Specifies the length, in bytes, for fixed-length records and the

maximum length for variable-length records. To check whether

your lrecl parameter is valid and is within its limits, see the

appropriate section in z/OS XL C/C++ Programming Guide for

the type of file you are opening.

recfm=A ASA print-control characters

recfm=F Fixed-length, unblocked

recfm=FA Fixed-length, ASA print-control characters

recfm=FB Fixed-length, blocked

recfm=FM Fixed-length, machine print-control codes

recfm=FS Fixed-length, unblocked, standard

recfm=FBA Fixed-length, blocked, ASA print-control characters

recfm=FBM Fixed-length, blocked, machine print-control codes

recfm=FBS Fixed-length, unblocked, standard ASA print-control characters

recfm=FSA Fixed-length, unblocked, standard, ASA print-control

characters

recfm=FSM Fixed-length, unblocked, standard, machine print-control codes

recfm=FBSA Fixed-length, blocked, standard, ASA print-control characters

recfm=FBSM Fixed-length, blocked, standard, machine print-control codes

recfm=U Undefined-length

fopen

628 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 29. Keyword Parameters for File Mode (continued)

Parameter Description

recfm=UA Undefined-length, ASA print control characters

recfm=UM Undefined-length, machine print control codes

recfm=V Variable, unblocked

recfm=VA Variable, ASA print-control characters

recfm=VB Variable, blocked

recfm=VM Variable, machine print-control codes

recfm=VS Variable, unblocked, spanned

recfm=VBA Variable, blocked, ASA print-control characters

recfm=VBM Variable, blocked, machine print-control codes

recfm=VBS Variable, blocked, spanned

recfm=VSA Variable, unblocked, spanned, ASA print-control characters

recfm=VSM Variable, unblocked, spanned, machine print-control codes

recfm=VBSA Variable, blocked, spanned, ASA print-control characters

recfm=VBSM Variable, blocked, spanned, machine print-control codes

recfm=* Existing file attributes are used if file is opened in write mode.

Note: Using recfm=* is only valid for existing DASD data sets.

It is ignored in all other cases.

recfm=+ Identical to recfm=* with the following exceptions:

v If there is no record format for the existing DASD data set,

defaults are assigned as if the data set did not exist.

v When append mode is used, the fopen() fails.

See z/OS XL C/C++ Programming Guide for more details on

fopen() default attributes.

space Space attributes for MVS data sets. Within the parameter, you

cannot have any imbedded blanks.

Where:

v u - unit type of space requested

v p - primary amount of space requested

v s - secondary amount of space requested

v d - number of directory space requested

See z/OS XL C/C++ Programming Guide in the section :

″fopen() and freopen() Parameters″ for complete details on the

syntax of this parameter.

type=memory This parameter identifies this file as a memory file that is

accessible only from C programs.

type=memory(hiperspace) If you are using MVS/ESA, you can specify the HIPERSPACE

suboption to open a hiperspace memory file.

Restriction: For AMODE 64 applications,

type=memory(hiperspace) is treated as type=memory.

type=record This parameter specifies that the file is to be opened for

sequential record I/O. The file must be opened as a binary file;

otherwise, fopen() fails. Read and write operations are done

with the fread() and fwrite() functions. This is the default

fopen() mode for accessing VSAM clusters.

fopen

Chapter 3. Part 3. Library Functions 629

Table 29. Keyword Parameters for File Mode (continued)

Parameter Description

asis Indicates that the file name is not to be converted to

uppercase but used as is. This option is the default under

POSIX. It is also the default for HFS file names (see z/OS XL

C/C++ Programming Guide for details).

password=xxxxxxx Specifies the password for a VSAM data set.

noseek Indicates that the stream may not use any of the reposition

functions. This may improve performance.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Named Pipes in Multi-Threaded Environment

Do not use fopen() to open named pipes in multi- threaded environment. If used, a

deadlock will occur. See the z/OS XL C/C++ Programming Guide for a detailed

explanation.

Returned Value

If successful, fopen() returns a pointer to the object controlling the associated

stream.

If unsuccessful, fopen() returns a NULL pointer.

fopen() generally fails if parameters are mismatched.

Special Behavior for Large Files for HFS

The following is a possible value of errno:

Error Code Description

EOVERFLOW The named file is a regular file and the size of the file cannot be

represented correctly in an object of type off_t.

Example

CELEBF26

/* CELEBF26

 This example attempts to open two files for reading, myfile.dat

 and myfile2.dat.

 */

#include <stdio.h>

int main(void)

{

 FILE *stream;

fopen

630 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

||
|

/* The following call opens a text file for reading */

 if ((stream = fopen("myfile.dat", "r")) == NULL)

 printf("Could not open data file for reading\n");

 /* The following call opens:

 the file myfile2.dat,

 a binary file for reading and writing,

 whose record length is 80 bytes,

 and maximum length of a physical block is 240 bytes,

 fixed−length, blocked record format

 for sequential record I/O.

 */

 if ((stream = fopen("myfile2.dat", "rb+, lrecl=80,\

 blksize=240, recfm=fb, type=record")) == NULL)

 printf("Could not open data file for read update\n");

}

Related Information

v Various chapter s dealing with I/O in z/OS XL C/C++ Programming Guide

v “stdio.h” on page 82

v “fclose() — Close File” on page 525

v “fldata() — Retrieve File Information” on page 601

v “freopen() — Redirect an Open File” on page 675

fopen

Chapter 3. Part 3. Library Functions 631

fork() — Create a New Process

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

Note: Although POSIX.1 does not require that the <sys/types.h> include file be

included, XPG4 has it as an optional header. Therefore, it is recommended

that you include it for portability.

General Description

Creates a new process. The new process (the child process) is an exact duplicate

of the process that calls fork() (the parent process), except for the following:

v The child process has a unique process ID (PID) that does not match any active

process group ID.

v The child has a different parent process ID, that is, the process ID of the process

that called fork().

v The child has its own copy of the parent’s file descriptors. Each file descriptor in

the child refers to the same open file description as the corresponding file

descriptor in the parent.

v The child has its own copy of the parent’s open directory streams. Each child’s

open directory stream can share directory stream positioning with the

corresponding parent’s directory stream.

v The following elements in the tms structure are set to 0 in the child:

 tms_utime

 tms_stime

 tms_cutime

 tms_cstime

For more information about these elements, see “times() — Get Process and

Child Process Times” on page 2206.

v The child does not inherit any file locks previously set by the parent.

v The child process has no alarms set (similar to the results of a call to alarm()

with an argument value of 0).

v The child has no pending signals.

v The child process has only a single thread. That thread is a copy of the thread in

the parent that called fork(). The child process has a different thread ID. If the

parent process was multi-threaded (invoked pthread_create() at least once), the

child process can only safely invoke async-signal-safe functions before it invokes

an exec() family function. (This restriction also applies to any process created as

the result of the child invoking fork() before it invokes an exec() family function

fork

632 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

because the child process is still considered multi-threaded.) The child process

does not inherit pthread attributes or pthread security environment. See Table 30

for a list of async-signal-safe functions.

In all other respects, the child is identical to the parent. Because the child is a

duplicate, it contains the same call to fork() that was in the parent. Execution begins

with this fork() call, which returns a value of 0; the child then proceeds with normal

execution.

The child address space inherits the following address space attributes of the

parent address space:

v Region size

v Time limit

If the parent process is multi-threaded, it is the responsibility of the application to

ensure that the application data is in a consistent state when the fork() occurs. For

example, mutexes that are used to serialize updates to application data may need

to be locked before the fork() and unlocked afterwards.

For more information on fork(), refer to z/OS UNIX System Services Programming:

Assembler Callable Services Reference, SA22-7803.

You can use MVS memory files from a z/OS UNIX program. However, use of the

fork() function from the program removes access from a hiperspace memory file for

the child process. Use of an exec function from the program clears a memory file

when the process address space is cleared.

The child process that results from a fork() in a multi-threaded environment can only

invoke async-signal-safe functions.

An async-signal-safe function is defined as a function that may be invoked, without

restriction, from signal-catching functions. All supported async-signal-safe functions

are listed in Table 30.

 Table 30. Async-signal-safe library functions

abort() fpathconf() raise() sigpending()

accept() fstat() read() sigprocmask()

access() fsync() readlink() sigqueue()

aio_error() ftruncate() recv() sigset()

aio_return() getegid() recvfrom() sigsuspend()

aio_suspend() geteuid() recvmsg() socket()

alarm() getgid() rename() socketpair()

bind() getgroups() rmdir() stat()

cfgetispeed() getpeername() select() symlink()

cfgetospeed() getpgrp() send() sysconf()

cfsetispeed() getpid() sendmsg() tcdrain()

cfsetospeed() getppid() sendto() tcflow()

chdir() getsockname() setgid() tcflush()

chmod() getsockopt() setpgid() tcgetattr()

chown() getuid() setsid() tcgetpgrp()

close() kill() setsockopt() tcsendbreak()

fork

Chapter 3. Part 3. Library Functions 633

Table 30. Async-signal-safe library functions (continued)

connect() link() setuid() tcsetattr()

creat() listen() shutdown() tcsetpgrp()

dup() lseek() sigaction() time()

dup2() lstat() sigaddset() times()

execle() mkdir() sigdelset() umask()

execve() mkfifo() sigemptyset() uname()

_Exit() open() sigfillset() unlink()

_exit() pathconf() sigismember() utime()

fchmod() pause() sleep() wait()

fchown() pipe() signal() waitpid()

fcntl() poll() sigpause() write()

fork()

Interoperability Restriction

For POSIX resources, fork() behaves as just described. But in general, MVS

resources that existed in the parent do not exist in the child. This is true for open

streams in MVS data sets and assembler-accessed MVS facilities, such as

STIMERS. In addition, MVS allocations (through JCL, SVC99, or ALLOCATE) are

not passed to the child process.

Special Behavior for z/OS UNIX Services

Notes:

1. A prior loaded copy of an HFS program in the same address space is reused

under the same circumstances that apply to the reuse of a prior loaded MVS

unauthorized program from an unauthorized library by the MVS XCTL service

with the following exceptions:

v If the calling process is in Ptrace debug mode, a prior loaded copy is not

reused.

v If the calling process is not in Ptrace debug mode, but the only prior loaded

usable copy found of the HFS program is in storage modifiable by the caller,

the prior copy is not reused.

2. If the specified file name represents an external link or a sticky bit file, the

program is loaded from the caller’s MVS load library search order. For an

external link, the external name is only used if the name is eight characters or

less, otherwise the caller receives an error from the loadhfs service. For a sticky

bit program, the file name is used if it is eight characters or less. Otherwise, the

program is loaded from the HFS.

3. If the calling task is in a WLM enclave, the resulting task in the new process

image is joined to the same WLM enclave. This allows WLM to manage the old

and new process images as one ‘business unit of work’ entity for system

accounting and management purposes.

Returned Value

If successful, fork() returns 0 to the child process and the process ID of the newly

created child to the parent process.

fork

634 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If unsuccessful, fork() fails to create a child process, returns −1 to the parent, and

sets errno to one of the following values:

Error Code Description

EAGAIN There are insufficient resources to create another process, or the

process has already reached the maximum number of processes

you can run.

ELEMSGERR Language Environment message file not available.

ELEMULTITHREAD

Application contains a language that does not support fork() in a

multithreaded environment, or the multithreaded fork() is being

attempted while running in a Language Environment preinitialization

(CEEPIPI) environment.

ELENOFORK Application contains a language that does not support fork().

ENOMEM The process requires more space than is available.

Example

CELEBF27

/* CELEBF27

 This example creates a new child process.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/wait.h>

main() {

 pid_t pid;

 int status;

 if ((pid = fork()) < 0)

 perror("fork() error");

 else if (pid == 0) {

 puts("This is the child.");

 printf("Child's pid is %d and my parent's is %d\n",

 (int) getpid(), (int) getppid());

 exit(42);

 }

 else {

 puts("This is the parent.");

 printf("Parent's pid is %d and my child's is %d\n",

 (int) getpid(), (int) pid);

 puts("I'm waiting for my child to complete.");

 if (wait(&status) == −1)

 perror("wait() error");

 else if (WIFEXITED(status))

 printf("The child exited with status of %d\n",

 WEXITSTATUS(status));

 else

 puts("The child did not exit successfully");

 }

}

Output

fork

Chapter 3. Part 3. Library Functions 635

This is the parent.

This is the child.

Child’s pid is 1114120 and my parent’s is 2293766

Parent’s pid is 2293766 and my child’s is 1114120

I’m waiting for my child to complete.

The child exited with status of 42

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “alarm() — Set an Alarm” on page 180

v “exec Functions” on page 486

v “fcntl() — Control Open File Descriptors” on page 527

v “getrlimit() — Get Current/Maximum Resource Consumption.” on page 846

v “kill() — Send a Signal to a Process” on page 1055

v “nice() — Change Priority of a Process” on page 1304

v “putenv() — Change or Add an Environment Variable” on page 1569

v “semop() — Semaphore Operations” on page 1734

v “shmat() — Shared Memory Attach Operation” on page 1864

v “sysconf() — Determine System Configuration Options” on page 2111

v “times() — Get Process and Child Process Times” on page 2206

v “ulimit() — Get/Set Process File Size Limits” on page 2287

v “wait() — Wait for a Child Process to End” on page 2349

fork

636 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fortrc() — Return FORTRAN Return Code

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <stdlib.h>

int fortrc(void);

External Entry Point

@@FORTRC, __fortrc

General Description

Restriction: This function is not supported in AMODE 64.

The fortrc() function returns the value specified on the FORTRAN RETURN

statement issued by the last FORTRAN routine called from the C program.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

The FORTRAN routine called must be identified to C as a FORTRAN routine using

the following preprocessor directive:

#pragma

linkage(identifier,FORTRAN,RETURNCODE).

The function fortrc() should be called immediately after a call to the FORTRAN

routine identifier or else results are unpredictable.

If you do not include stdlib.h in your source code or you use the compile-time

option LANGLVL(ANSI), then you must use _ _fortrc to call the function.

Related Information

v “stdlib.h” on page 85

fortrc

Chapter 3. Part 3. Library Functions 637

fpathconf() — Determine Configurable Pathname Variables

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

long fpathconf(int fildes, int varcode);

General Description

Determines the value of a configuration variable (varcode) associated with a

particular file descriptor (fildes).

fpathconf() works exactly like pathconf(), except that it takes a file descriptor as an

argument rather than taking a pathname.

The varcode argument can be any one of a set of symbols defined in the unistd.h

header file. Each symbol stands for a configuration variable. These are the possible

symbols:

_PC_LINK_MAX

Represents LINK_MAX, the maximum number of links the file can

have. If pathname is a directory, fpathconf() returns the maximum

number of links that can be established to the directory itself.

_PC_MAX_CANON

Represents MAX_CANON, the maximum number of bytes in a

terminal canonical input line. pathname must refer to a character

special file for a terminal.

_PC_MAX_INPUT

Represents MAX_INPUT, the minimum number of bytes for which

space will be available in a terminal input queue. This input space

is the maximum number of bytes that a portable application will

allow an end user to enter before the application actually reads the

input. pathname must refer to a character special file for a terminal.

_PC_NAME_MAX

Represents NAME_MAX, the maximum number of characters in a

file name (not including any terminating NULL character if the file

name is stored as a string). This limit refers only to the file name

itself, that is, the last component of the file’s pathname. fpathconf()

returns the maximum length of file names.

_PC_PATH_MAX

Represents PATH_MAX, the maximum number of characters in a

complete pathname (not including any terminating NULL if the

pathname is stored as a string). fpathconf() returns the maximum

length of a relative pathname.

fpathconf

638 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

_PC_PIPE_BUF

Represents PIPE_BUF, the maximum number of bytes that can be

written to a pipe as one unit. If more than this number of bytes is

written to a pipe, the operation can take more than one physical

write operation and can require more than one physical read

operation to read the data on the other end of the pipe. If pathname

is a FIFO special file, fpathconf() returns the value for the file itself.

If pathname is a directory, fpathconf() returns the value for any

FIFOs that exist or can be created under the directory. If pathname

is any other kind of file, an errno of EINVAL (see description below)

will be returned.

_PC_CHOWN_RESTRICTED

Represents _POSIX_CHOWN_RESTRICTED defined in the

unistd.h header file. This symbol indicates that the use of chown() is

restricted; see the callable service chown() for more details. If

pathname is a directory, fpathconf() returns the value for any kind of

file under the directory, but not for subdirectories of the directory.

_PC_NO_TRUNC

Represents _POSIX_NO_TRUNC defined in the unistd.h header

file. This symbol indicates that an error should be generated if a file

name is longer than NAME_MAX. If pathname refers to a directory,

the value returned by fpathconf() applies to all files under that

directory.

_PC_VDISABLE

Represents _POSIX_VDISABLE defined in the unistd.h header file.

This symbol indicates that terminal special characters can be

disabled using this character value, if it is defined. See the callable

service tcsetattr() for details. pathname must refer to a character

special file for a terminal.

_PC_ACL Returns 1 if an access control mechanism is supported by the

security product for the file identified by the file descriptor.

_PC_ACL_ENTRIES_MAX

Returns the maximum number of ACL entries in an ACL for the file

or directory identified by the file descriptor.

Returned Value

If a particular variable has no limit, fpathconf() returns −1 but does not change

errno.

If successful, fpathconf() returns the value of the variable requested in varcode.

If unsuccessful, fpathconf() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINVAL varcode is not a valid variable code, or the given variable cannot be

associated with the specified file.

v If varcode refers to MAX_CANON, MAX_INPUT, or

_POSIX_VDISABLE, and pathname does not refer to a character

special file, fpathconf() returns −1 and sets errno to EINVAL.

fpathconf

Chapter 3. Part 3. Library Functions 639

v If varcode refers to NAME_MAX, PATH_MAX, or

POSIX_NO_TRUNC, and pathname does not refer to a directory,

fpathconf() returns the requested information.

v If varcode refers to PC_PIPE_BUF and pathname refers to a

pipe or a FIFO, the value returned applies to the referenced

object itself. If pathname refers to a directory, the value returned

applies to any FIFOs that exist or can be created within the

directory. If pathname refers to any other type of file, the function

sets errno to EINVAL.

Example

CELEBF29

/* CELEBF29

 This example uses fpathconf() with __PC_NAME_MAX to determine the value

 of the NAME_MAX configuration variable.

 */

#define _POSIX_SOURCE

#include <errno.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 long result;

 char fn[]="temp.file";

 int fd;

 if ((fd = creat(fn, S_IRUSR)) < 0)

 perror("creat() error");

 else {

 errno = 0;

 puts("examining NAME_MAX limit for current working directory's");

 puts("filesystem:");

 if ((result = fpathconf(fd, _PC_NAME_MAX)) == −1)

 if (errno == 0)

 puts("There is no limit to NAME_MAX.");

 else perror("fpathconf() error");

 else

 printf("NAME_MAX is %ld\n", result);

 close(fd);

 unlink(fn);

 }

}

Output

examining NAME_MAX limit for current working directory’s

file system:

NAME_MAX is 255

Related Information

v “unistd.h” on page 96

v “open() — Open a File” on page 1313

v “pathconf() — Determine Configurable Pathname Variables” on page 1337

fpathconf

640 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fpclassify() — Classifies an argument value

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int fpclassify (real-floating x);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int fpclassify(real-floating x or decimal-floating x);

General Description

This macro classifies its argument value as NaN, infinite, normal, subnormal or zero

based on the type of its argument. If the argument is represented in a format wider

than its semantic type, then it is converted to its semantic type and then it is

classified.

 Function Hex IEEE

fpclassify X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

fpclassify() returns:

v FP_NAN if the argument is Not-a-Number.

v FP_INFINITE if the argument is plus or minus infinity.

v FP_ZERO if the argument is of value zero.

v FP_SUBNORMAL if the argument is too small to be represented in the normal

format.

v FP_NORMAL if none of the above.

Special behavior in Hex

v FP_ZERO if the argument is of value zero.

v FP_NORMAL if the argument is a normalized number.

v FP_SUBNORMAL if the argument is an unnormalized number.

Related Information

v “math.h” on page 60

fpclassify

Chapter 3. Part 3. Library Functions 641

||||

|
|
|

||

|

|
|
|
|
|
|
|
|

|
|

|
|

fp_clr_flag() — Reset Floating-Point Exception Status Flag

Standards

 Standards / Extensions C or C++ Dependencies

 both OS/390 V2R6

Format

#include <float.h>

#include <fpxcp.h>

void fp_clr_flag(mask)

fpflag_t mask;

General Description

The fp_clr_flag() function resets the exception status flags defined by the mask

parameter to 0 (false). The remaining flags in the exception status remain

unchanged.

Note: This function works only in IEEE Binary Floating-Point. See “IEEE Binary

Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

The fpxcp.h file defines the following names for the flags indicating floating-point

exception status:

FP_INVALID Invalid operation summary

FP_OVERFLOW Overflow

FP_UNDERFLOW Underflow

FP_DIV_BY_ZERO Division by 0

FP_INEXACT Inexact result

Users can reset multiple exception flags using the fp_clr_flag() function by OR-ing

the names of individual flags. For example, the following resets both the overflow

and inexact flags.

fp_clr_flag(FP_OVERFLOW | FP_INEXACT)

Returned Value

fp_clr_flag() returns no values.

Related Information

v “float.h” on page 46

v “fpxcp.h” on page 48

v “fp_raise_xcp() — Raise a Floating-Point Exception” on page 643

v “fp_read_flag() — Return the Current Floating-Point Exception Status” on page

645

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

fp_clr_flag

642 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

fp_raise_xcp() — Raise a Floating-Point Exception

Standards

 Standards / Extensions C or C++ Dependencies

 both OS/390 V2R6

Format

#include <fpxcp.h>

int fp_raise_xcp(mask)

fpflag_t mask;

General Description

The fp_raise_xcp() function causes floating-point exceptions defined by the mask

parameter to be raised immediately.

If the exceptions defined by the mask parameter are enabled and the program is

running in serial mode, the signal for floating-point exceptions, SIGFPE, is raised.

Note: This function works only in IEEE Binary Floating-Point. See “IEEE Binary

Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

The fpxcp.h file defines the following names for the flags indicating floating-point

exception status:

FP_INVALID Invalid operation summary

FP_OVERFLOW Overflow

FP_UNDERFLOW Underflow

FP_DIV_BY_ZERO Division by 0

FP_INEXACT Inexact result

Users can cause multiple exceptions using fp_raise_xcp() by OR-ing the names of

individual flags. For example, the following causes both overflow and division by 0

exceptions to occur.

fp_raise_xcp(FP_OVERFLOW | FP_DIV_BY_ZERO)

If more than one exception is included in the mask variable, the exceptions are

raised in the following order:

1. Non-valid operation

2. Division by zero

3. Underflow

4. Overflow

5. Inexact result

Thus, if the user exception handler does not disable further exceptions, one call to

the fp_raise_xcp() function can cause the exception handler to be entered many

times.

fp_raise_xcp

Chapter 3. Part 3. Library Functions 643

Returned Value

If successful, fp_raise_xcp() returns 0.

If unsuccessful, fp_raise_xcp() returns nonzero.

Related Information

v “fpxcp.h” on page 48

v “fp_clr_flag() — Reset Floating-Point Exception Status Flag” on page 642

v “fp_read_flag() — Return the Current Floating-Point Exception Status” on page

645

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

fp_raise_xcp

644 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fp_read_flag() — Return the Current Floating-Point Exception Status

Standards

 Standards / Extensions C or C++ Dependencies

 both OS/390 V2R6

Format

#include <float.h>

#include <fpxcp.h>

fpflag_t fp_read_flag()

General Description

The fp_read_flag() function returns the current floating-point exception status.

These functions aid in determining both when an exception has occurred and the

exception type. These functions can be called explicitly around blocks of code that

may cause a floating-point exception.

According to the IEEE Standard for Binary Floating-Point Arithmetic, the following

types of floating-point operations must be signaled when detected in a floating-point

operation:

v Non-valid operation

v Division by zero

v Overflow

v Underflow

v Inexact

A non-valid operation occurs when the result cannot be represented (for example, a

square root operation on a number less than 0).

The IEEE Standard for Binary Floating-Point Arithmetic states: “For each type of

exception, the implementation shall provide a status flag that shall be set on any

occurrence of the corresponding exception when no corresponding trap occurs. It

shall be reset only at the user’s request. The user shall be able to test and to alter

the status flags individually, and should further be able to save and restore all five

at one time.”

Floating-point operations can set flags in the floating-point exception status but

cannot clear them. Users can clear a flag in the floating-point exception status using

an explicit software action such as the fp_clr_flag (0) subroutine.

Note: This function works only in IEEE Binary Floating-Point. See “IEEE Binary

Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

The fpxcp.h file defines the following names for the flags indicating floating-point

exception status:

FP_INVALID non-valid operation summary

FP_OVERFLOW Overflow

FP_UNDERFLOW Underflow

fp_read_flag

Chapter 3. Part 3. Library Functions 645

|
|
|
|

FP_DIV_BY_ZERO Division by 0

FP_INEXACT Inexact result

Returned Value

fp_read_flag() returns the current floating-point exception status. The flags in the

returned exception status can be tested using the flag definitions above. You can

test individual flags or sets of flags.

Related Information

v IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards

754-1985 and 854-1987)

v “float.h” on page 46

v “fpxcp.h” on page 48

v “fp_clr_flag() — Reset Floating-Point Exception Status Flag” on page 642

v “fp_raise_xcp() — Raise a Floating-Point Exception” on page 643

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

fp_read_flag

646 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fp_read_rnd() — Determine Rounding Mode

Standards

 Standards / Extensions C or C++ Dependencies

 both OS/390 V2R6

Format

#define _AIX_COMPATIBILITY 1

#include <float.h>

fprnd_t fp_read_rnd(void);

General Description

For an application running in binary floating-point mode, the fp_read_rnd() function

returns the current rounding mode indicated by the rounding mode field of the

floating-point control (FPC) register. For an application running in hexadecimal

floating-point mode, fp_read_rnd() returns 0.

Note: This function will not return or update decimal floating-point rounding mode

bits.

Returned Value

For an application running in IEEE Binary Floating-Point mode, fp_read_rnd()

returns the following:

Value Rounding Mode

_FP_RND_RZ Round toward 0

_FP_RND_RN Round to nearest

_FP_RND_RP Round toward +infinity

_FP_RND_RM

Round toward −infinity

For an application running in hexadecimal floating-point mode, fp_read_rnd() returns

0.

Related Information

v “float.h” on page 46

v “fp_swap_rnd() — Swap Rounding Mode” on page 660

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

fp_read_rnd

Chapter 3. Part 3. Library Functions 647

|
|
|
|

|
|

fprintf(), printf(), sprintf() — Format and Write Data

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both z/OS V1.9

Format

#include <stdio.h>

int fprintf(FILE *__restrict__stream, const char *__restrict__format-string, ...);

int printf(const char *__restrict__format-string, ...);

int sprintf(char *__restrict__buffer, const char *__restrict__format-string, ...);

General Description

These three related functions are referred to as the fprintf family.

The fprintf() function formats and writes output to a stream. It converts each entry in

the argument list, if any, and writes to the stream according to the corresponding

format specification in the format-string. The fprintf() function cannot be used with a

file that is opened using type=record.

The printf() function formats and writes output to the standard output stream stdout.

printf() cannot be used if stdout has been reopened using type=record.

The sprintf() function formats and stores a series of characters and values in the

array pointed to by buffer. Any argument-list is converted and put out according to

the corresponding format specification in the format-string. If the strings pointed to

by buffer and format overlap, behavior is undefined.

fprintf() and printf() have the same restriction as any write operation for a read

immediately following a write or a write immediately following a read. Between a

write and a subsequent read, there must be an intervening flush or reposition.

Between a read and a subsequent write, there must also be an intervening flush or

reposition unless an EOF has been reached.

The format-string consists of ordinary characters, escape sequences, and

conversion specifications. The ordinary characters are copied in order of their

appearance. Conversion specifications, beginning with a percent sign (%) or the

sequence (%n$) where n is a decimal integer in the range [1,NL_ARGMAX],

determine the output format for any argument-list following the format-string. The

format-string can contain multibyte characters beginning and ending in the initial

shift state. When the format-string includes the use of the optional prefix ll to

indicate the size expected is a long long datatype then the corresponding value in

the argument list should be a long long datatype if correct output is expected.

Special Behavior for XPG4

fprintf, printf, sprintf

648 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|
|

||
|

|

v If the %n$ conversion specification is found, the value of the nth argument after

the format-string is converted and output according to the conversion

specification. Numbered arguments in the argument list can be referenced from

format-string as many times as required.

v The format-string can contain either form of the conversion specification, that is,

% or %n$ but the two forms cannot be mixed within a single format-string except

that %% can be mixed with the %n$ form. When numbered conversion

specifications are used, specifying the ’nth’ argument requires that the first to

(n-1)th arguments are specified in the format-string.

The format-string is read from left to right. When the first format specification is

found, the value of the first argument after the format-string is converted and output

according to the format specification. The second format specification causes the

second argument after the format-string to be converted and output, and so on

through the end of the format-string. If there are more arguments than there are

format specifications, the extra arguments are evaluated and ignored. The results

are undefined if there are not enough arguments for all the format specifications.

The format specification is illustrated below.

Each field of the format specification is a single character or number signifying a

particular format option. The type character, which appears after the last optional

format field, determines whether the associated argument is interpreted as a

character, a string, a number, or pointer. The simplest format specification contains

only the percent sign and a type character (for example, %s).

The percent sign

If a percent sign (%) is followed by a character that has no meaning as a format

field, the character is simply copied to stdout. For example, to print a percent sign

character, use %%.

The flag characters

The flag characters in Table 31 on page 650 are used for the justification of output

and printing of thousands’ grouping characters, signs, blanks, decimal-points, octal,

and hexadecimal prefixes, and the semantics for wchar_t precision unit. Notice that

more than one flag can appear in a format specification. This is an optional field.

�� %

flags

width

.

precision

h

hh

l

ll

j

L

t

z

 type ��

Figure 5. Format Specification for fprintf(), printf(), and sprintf()

fprintf, printf, sprintf

Chapter 3. Part 3. Library Functions 649

Table 31. Flag Characters for fprintf() Family

Flag Meaning Default

’ Added for XPG4:The integer portion of the

result of a decimal conversion(%i,%d,%u,

%f,%g or %G) will be formatted with the

thousands’ grouping characters.

No grouping.

− Left-justify the result within the field width. Right-justify.

+ Prefix the output value with a sign (+ or −) if

the output value is of a signed type.

Sign appears only for

negative signed values (−).

blank(’ ’) Prefix the output value with a blank if the

output value is signed and positive. The +

flag overrides the blank flag if both appear,

and a positive signed value will be output

with a sign.

No blank.

When used with the o, x, or X formats, the #

flag prefixes any nonzero output value with

0, 0x, or 0X, respectively.

For o conversion, it increases the precision,

if and only if necessary, to force the first digit

of the result to be a zero (if the value and

precision are both 0, a single 0 will be

printed)

No prefix.

When used with the f, e, or E formats, the #

flag forces the output value to contain a

decimal-point in all cases.

The decimal-point is sensitive to the

LC_NUMERIC category of the same current

locale.

Decimal-point appears only if

digits follow it.

When used with the g or G formats, the # flag

forces the output value to contain a

decimal-point in all cases and prevents the

truncation of trailing zeros.

Decimal-point appears only if

digits follow it; trailing zeros

are truncated.

When used with the ls or S format, the # flag

causes precision to be measured in wide

characters.

Precision indicates the

maximum number of bytes to

be output.

0 When used with the d, i, o, u, x, X, e, E, f, g,

or G formats, the 0 flag causes leading 0’s to

pad the output to the field width. The 0 flag

is ignored if precision is specified for an

integer or if the − flag is specified.

Space padding.

The code point for the # character varies between the EBCDIC encoded character

sets. The definition of the # character is based on the current LC_SYNTAX

category. The default C locale expects the # character to use the code point for

encoded character set IBM-1047.

When the LC_SYNTAX category is set using setlocale(), the format strings passed

to the printf() functions must use the same encoded character set as is specified for

the LC_SYNTAX category.

The # flag should not be used with c, lc, C, d, i, u, s, or p types.

The Width of the Output

fprintf, printf, sprintf

650 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Width is a nonnegative decimal integer controlling the minimum number of

characters printed. If the number of characters in the output value is less than the

specified width, blanks are added on the left or the right (depending on whether the

— flag is specified) until the minimum width is reached.

Width never causes a value to be truncated; if the number of characters in the

output value is greater than the specified width, or width is not given, all characters

of the value are output (subject to the precision specification).

The width specification can be an asterisk (*); if it is, an argument from the

argument list supplies the value. The width argument must precede the value being

formatted in the argument list. This is an optional field.

If format-string contains the %n$ form of conversion specification, width can be

indicated by the sequence *m$, where m is a decimal integer in the range

[1,NL_ARGMAX] giving the position of an integer argument in the argument list

containing the field width.

The Precision of the Output

precision is a nonnegative decimal integer preceded by a period. It specifies the

number of characters to be output, or the number of decimal places. Unlike the

width specification, the precision can cause truncation of the output value or

rounding of a floating-point value.

Be aware that the rounding of floating-point values may not always occur as

expected based on the decimal value of the number. This is because the internal

binary representation cannot always be an exact representation of the decimal

value, so the rounding may occur on an inexact value. This is true of both OS/390

hexadecimal and IEEE 754 binary floating- point formats.

The precision specification can be an asterisk (*); if it is, an argument from the

argument list supplies the value. The precision argument must precede the value

being formatted in the argument list. The precision field is optional.

If format-string contains the %n$ form of conversion specification, precision can be

indicated by the sequence *m$, where m is a decimal integer in the range

[1,NL_ARGMAX] giving the position of an integer argument in the argument list

containing the field precision.

The interpretation of the precision value and the default when the precision is

omitted depend upon the type, as shown in Table 32.

 Table 32. Precision Argument in fprintf() Family

Type Meaning Default

 d

 i

 o

 u

 x

 X

Precision specifies the minimum number of

digits to be output. If the number of digits in

the argument is less than precision, the

output value is padded on the left with zeros.

The value is not truncated when the number

of digits exceeds precision.

Default precision is 1. If precision

is 0, or if the period (.) appears

without a number following it, the

precision is set to 0. When

precision is 0, conversion of the

value zero results in no

characters.

fprintf, printf, sprintf

Chapter 3. Part 3. Library Functions 651

Table 32. Precision Argument in fprintf() Family (continued)

Type Meaning Default

 e

 E

 f

 F

Precision specifies the number of digits to be

output after the decimal-point. The last digit

output is rounded.

The decimal-point is sensitive to the

LC_NUMERIC category of the current locale.

Default precision is 6. If precision

is 0 or the period appears without

a number following it, no

decimal-point is output.

 a

 A

Precision specifies the number of

hexadecimal digits to be output after the

decimal-point character.

Default precision is 6. If precision

is 0, no decimal-point is output.

 g

 G

Precision specifies the maximum number of

significant digits output.

All significant digits are output.

 c No effect. The character is output.

 C

 lc

No effect. The wide character is output.

 s Precision specifies the maximum number of

characters to be output. Characters in

excess of precision are not output.

Characters are output until a

NULL character is encountered.

 S

 ls

Precision specifies the maximum number of

bytes to be output. Bytes in excess of

precision are not output; however, multibyte

integrity is always preserved.

wchar_t characters are output

until a NULL character is

encountered.

Optional prefix

Used to indicate the size of the argument expected:

D Specifies that any following e, E, f, F, g, or G conversions specifier applies

to a _Decimal64 argument.

DD Specifies that any following e, E, f, F, g, or G conversions specifier applies

to a _Decimal128 argument.

H Specifies that any following e, E, f, F, g, or G conversions specifier applies

to a _Decimal32 argument.

h A prefix with the integer types d, i, o, u, x, X means the integer is 16 bits

long.

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a

signed char or unsigned char argument (the argument will have been

promoted according to the integer promotions, but its value shall be

converted to signed char or unsigned char before printing); or that a

following n conversion specifier applies to a pointer to a signed char

argument.

j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an

intmax_t or uintmax_t argument; or that a following n conversion specifier

applies to a pointer to an intmax_t argument.

l A prefix with d, i, o, u, x, X, and n types that specifies that the argument is a

long int or unsigned long int.

 The l prefix with the c type conversion specifier indicates that the argument

is a wint_t. The l prefix with the s type conversion specifier indicates that

the argument is a pointer to a wchar_t.

fprintf, printf, sprintf

652 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||
|

||
|

||
|

Has no effect on a following a, A, e, E, f, F, g, G conversion specifier.

ll A prefix with the integer types d, i, o, u, x, X means the integer is 64 bits

long.

L A prefix with e, E, f, g, or G types that specifies that the argument is long

double.

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a

ptrdiff_t or the corresponding unsigned type argument; or that a following n

conversion specifier applies to a pointer to a ptrdiff_t argument.

z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a

size_t or the corresponding signed integer type argument; or that a

following n conversion specifier applies to a pointer to a signed integer type

corresponding to a size_t argument.

Note: If you pass a long double value and do not use the L qualifier or if you pass

a double value only and use the L qualifier, errors occur.

Table 33 below shows the meaning of the type characters used in the precision

argument.

 Table 33. Type Characters and their Meanings

Type Argument Output Format

d, i Integer Signed decimal integer.

u Integer Unsigned decimal integer.

o Integer Unsigned octal integer.

x Integer Unsigned hexadecimal integer, using abcdef.

X Integer Unsigned hexadecimal integer, using ABCDEF.

f, F Double Signed value having the form [−]dddd.dddd, where dddd is

one or more decimal digits. The number of digits before the

decimal-point depends on the magnitude of the number.

The number of digits after the decimal-point is equal to the

requested precision.

The decimal-point is sensitive to the LC_NUMERIC

category of the current locale.

e Double Signed value having the form [−]d.dddde[sig n]ddd, where

d is a single-decimal digit, dddd is one or more decimal

digits, ddd is 2 or more decimal digits, and sign is + or −.

A double argument representing an infinity or NaN is

converted in the style of an f or F conversion specifier.

E Double Identical to the e format, except that E introduces the

exponent, not e.

g Double Signed value output in f or e format. The e format is used

only when the exponent of the value is less than −4 or

greater than or equal to the precision. Trailing zeros are

truncated, and the decimal-point appears only if one or

more digits follow it.

A double argument representing an infinity or NaN is

converted in the style of an f or F conversion specifier.

G Double Identical to the g format, except that E introduces the

exponent (where appropriate), not e.

fprintf, printf, sprintf

Chapter 3. Part 3. Library Functions 653

Table 33. Type Characters and their Meanings (continued)

Type Argument Output Format

D(n,p) Decimal type

argument.

Fixed−point value consisting of a series of one or more

decimal digits possibly containing a decimal-point.

c

C or lc

Character

Wide Character

Single character.

The argument of wchar_t type is converted to an array of

bytes representing a multibyte character as if by call to

wctomb().

s

S or ls

String

Wide String

Characters output up to the first NULL character (\0) or until

precision is reached.

The argument is a pointer to an array of wchar_t type. Wide

characters from the array are converted to multibyte

characters up to and including a terminating NULL wide

character. Conversion takes place as if by a call to

wcstombs(), with the conversion state described by the

mbstate_t object initialized to 0. The result written out will

not include the terminating NULL character.

If no precision is specified, the array contains a NULL wide

character. If a precision is specified, its sets the maximum

number of characters written, including shift sequences. A

partial multibyte character cannot be written.

n Pointer to integer Number of characters successfully output so far to the

stream or buffer; this value is stored in the integer whose

address is given as the argument.

p Pointer Pointer to void converted to a sequence of printable

characters. Refer to the individual system reference guides

for the specific format.

fprintf, printf, sprintf

654 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 33. Type Characters and their Meanings (continued)

Type Argument Output Format

a, A Double A double argument representing a floating-point number is

converted to the ″[-]0xh.hhhhp)d″ format, where there is

one hexadecimal digit (non-zero when the argument is a

normalized floating-point number; otherwise unspecified)

before the decimal-point character and the number of

hexadecimal digits after it is equal to the precision. If the

precision is missing and FLT_RADIX is a power of 2, then

the precision will be sufficient for an exact representation of

the value. If the precision is missing and FLT_RADIX is not

a power of 2, then the precision will be sufficient to

distinguish values of type double, except that trailing zeros

may be omitted. If the precision is zero and the ’#’ flag is

not specified, no decimal-point will appear. The letters

″abcdef″ are used for the a conversion and the letters

″ABCDEF″ for the A conversion. The A conversion specifier

produces a number with letters ’X’ and ’P’ instead of letters

’x’ and ’p’ . The exponent always contains at least one digit,

and only as many more digits as necessary to represent the

decimal exponent of 2. If the value is zero, the exponent is

zero.

A double argument representing an infinity or NaN is

converted in the style of an f or F conversion specifier.

If precision is zero, results can be different for Hexadecimal

floating point format and IEEE floating point format. For

Hexadecimal floating point, a decimal point will not appear

in the output. For IEEE floating point, a decimal point will

appear.

Note:

1. FLOAT(HEX) normalizes differently than FLOAT(IEEE). FLOAT(HEX)

produces output in 0x0.hhhhhp+/-dd format, not in the 0x1.hhhhhhp+/-dd

format.

2. To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

fprintf Family of Formatted Output Functions

fprintf family functions match e, E, f, F, g or G conversion specifiers to floating-point

arguments for which they produce floating-point number substrings in the output

stream. fprintf family functions have been extended to determine the floating-point

format, hexadecimal floating-point or IEEE Binary Floating-Point, of types e, E, f, F,

g or G by using __isBFP().

fprintf family functions convert IEEE Binary Floating-Point infinity and NaN argument

values to special infinity and NaN floating-point number output sequences.

v The special output sequence for infinity values is a plus or minus sign, then the

character sequence INF followed by a a white space character (space, tab, or

newline), a NULL character (\0) or EOF.

v The special output sequence for NaN values is a plus or minus sign, then the

character sequence NANS for a signalling NaN or NANQ for a quiet NaN, then a

NaN ordinal sequence, and then a a white space character (space, tab, or

newline), a NULL character (\0) or EOF.

fprintf, printf, sprintf

Chapter 3. Part 3. Library Functions 655

For Binary Floating Point NANs:

A NaN ordinal sequence is a left-parenthesis character, “(”, followed by a digit

sequence representing an integer n, where 1 <= n <= INT_MAX−1, followed by a

right-parenthesis character, “)”. The integer value, n, is determined by the fraction

bits of the NaN argument value as follows:

1. For a signalling NaN value, NaN fraction bits are reversed (left to right) to

produce bits (right to left) of an even integer value, 2*n. Then formatted

output functions produce a (signalling) NaN ordinal sequence corresponding

to the integer value n.

2. For a quiet NaN value, NaN fraction bits are reversed (left to right) to produce

bits (right to left) of an odd integer value, 2*n−1. Then formatted output

functions produce a (quiet) NaN ordinal sequence corresponding to the

integer value n.

For Decimal Floating Point NANs:

A NaN ordinal sequence is a left parenthesis character, ″(″, followed by a decimal

digit sequence of up to 6 digits for a _Decimal32 output number, up to 15 digits

for a _Decimal64 output value, or up to 33 digits for a _Decimal128 output value,

followed by a right parenthesis, ″)″. If the NaN ordinal sequence is omitted, NaN

ordinal sequence ″(0)″ is assumed. If the NaN ordinal sequence is shorter than

6, 15, or 33 digits, it will be padded on the left with ″0″ digits so that the length

becomes 6, 15, or, 33 digits for _Decimal32, _Decimal64, and _Decimal128

values respectively.

For Decimal Floating Point numbers, the digits are not reversed, and both odd or

even NaN ordinal sequences can be specified for either a Quiet NAN or

Signalling NAN.

The C99 standard does not distinguish between the quiet NaN and signaling NaN

values. An argument representing a NaN (Not a Number) is to be displayed as

[-]nan or [-]nan(n-char-sequence); where the implementation decides the

representation. For the A, E, F, and G conversion specifiers, NaN values are

displayed as the uppercase versions of the aforementioned character string

representations. To get this behavior set the environment variable _EDC_C99_NAN

to YES.

Some compatibility with NaN sequences output by AIX formatted output functions

can be achieved by setting a new environment variable,

_AIX_NAN_COMPATIBILITY, which z/OS formatted output functions recognize, to

one of the following (string) values:

Value Output Function

1 Formatted output functions which produce special NaN output

sequences omit the NaN ordinal output sequence (1). This results

in output NaN sequences of plus or minus sign followed by NANS

or NANQ instead of plus or minus sign followed by NANS(1) or

NANQ(1). All other NaN ordinal sequences are explicitly output.

ALL Formatted output functions which produce special NaN output

sequences omit the NaN ordinal output sequence for all NaN

values. This results in output NaN sequences of plus or minus sign

followed by NANS or NANQ instead of plus or minus sign followed

by NANS(n) or NANQ(n) for all NaN values.

Note: _AIX_NAN_COMPATIBILITY does not affect the formatting of DFP NAN

values. It affects only the formatting of BFP NAN values.

fprintf, printf, sprintf

656 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|
|
|
|
|
|
|

|
|
|

|
|

The sprintf() function is available to C applications in a stand-alone System

Programming C (SPC) Environment.

Returned Value

If successful, fprintf(), printf(), and sprintf() return the number of characters output.

The ending NULL character is not counted.

If unsuccessful, they return a negative value.

Example

CELEBF30

/* CELEBF30

 This example prints data using &printf. in a variety of

 formats.

 */

#include <stdio.h>

int main(void)

{

 char ch = 'h', *string = "computer";

 int count = 234, hex = 0x10, oct = 010, dec = 10;

 double fp = 251.7366;

 unsigned int a = 12;

 float b = 123.45;

 int c;

 void *d = "a";

 printf("the unsigned int is %u\n\n",a);

 printf("the float number is %g, and %G\n\n",b,b);

 printf("RAY%n\n\n",&c);

 printf("last line prints %d characters\n\n",c);

 printf("Address of d is %p\n\n",d);

 printf("%d %+d %06d %X %x %o\n\n",

 count, count, count, count, count, count);

 printf("1234567890123%n4567890123456789\n\n", &count);

 printf("Value of count should be 13; count = %d\n\n", count);

 printf("%10c%5c\n\n", ch, ch);

 printf("%25s\n%25.4s\n\n", string, string);

 printf("%f %.2f %e %E\n\n", fp, fp, fp, fp);

 printf("%i %i %i\n\n", hex, oct, dec);

}

Output

the unsigned int is 12

the float number is 123.45 and 123.45

RAY

last line prints 3 characters

fprintf, printf, sprintf

Chapter 3. Part 3. Library Functions 657

Address of d is DD72F9

234 +234 000234 EA ea 352

12345678901234567890123456789

Value of count should be 13; count = 13

 h h

 computer

 comp

251.736600 251.74 2.517366e+02 2.517366E+02

16 8 10

CELEBF31

/* CELEBF31

 The following example illustrates the use of printf() to print

 fixed-point decimal data types.

 This example works under C only, not C++.

 */

#include <stdio.h>

#include <decimal.h>

decimal(10,2) pd01 = -12.34d;

decimal(12,4) pd02 = 12345678.9876d;

decimal(31,10) pd03 = 123456789013579246801.9876543210d;

int main(void) {

 printf("pd01 %%D(10,2) = %D(10,2)\n", pd01);

 printf("pd02 %%D(12 , 4) = %D(12 , 4)\n", pd02);

 printf("pd01 %%010.2D(10,2) = %010.2D(10,2)\n", pd01);

 printf("pd02 %%20.2D(12,4) = %20.2D(12,4)\n", pd02);

 printf("\n Give strange result if the specified size is wrong!\n");

 printf("pd03 %%D(15,3) = %D(15,3)\n\n", pd03);

}

Output

pd01 %D(10,2) = -12.34

pd02 %D(12 , 4) = 12345678.9876

pd01 %010.2D(10,2) = -000012.34

pd02 %20.2D(12,4) = 12345678.98

Give strange result if the specified size is wrong!

pd03 %D(15,3) = -123456789013.579

CELEBF32

/* CELEBF32

 This example illustrates the use of sprintf() to format and print

 various data.

 */

#include <stdio.h>

char buffer[200];

int i, j;

double fp;

char *s = "baltimore";

char c;

int main(void)

{

fprintf, printf, sprintf

658 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

c = ’l’;

 i = 35;

 fp = 1.7320508;

 /* Format and print various data */

 j = sprintf(buffer, "%s\n", s);

 j += sprintf(buffer+j, "%c\n", c);

 j += sprintf(buffer+j, "%d\n", i);

 j += sprintf(buffer+j, "%f\n", fp);

 printf("string:\n%s\ncharacter count = %d\n", buffer, j);

}

Output

string:

Baltimore

l

35

1.732051

character count = 24

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “System Programming C (SPC) Facilities” in z/OS XL C/C++ Programming Guide

v “locale.h” on page 57

v “stdio.h” on page 82

v “wchar.h” on page 98

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “localeconv() — Query Numeric Conventions” on page 1117

v “setlocale() — Set Locale” on page 1811

v “wcrtomb() — Convert a Wide Character to a Multibyte Character” on page 2360

fprintf, printf, sprintf

Chapter 3. Part 3. Library Functions 659

fp_swap_rnd() — Swap Rounding Mode

Standards

 Standards / Extensions C or C++ Dependencies

 both OS/390 V2R6

Format

#define _AIX_COMPATIBILITY 1

#include <float.h>

fprnd_t fp_swap_rnd(RoundMode)

fprnd_t RoundMode

General Description

For an application running in IEEE Binary Floating-Point mode, the fp_swap_rnd()

function returns the current rounding mode specified by the rounding mode field of

the floating-point control (FPC) register and sets the rounding mode field in the FPC

register based on the value of RoundMode as follows:

Value Rounding Mode

_FP_RND_RZ Round toward 0

_FP_RND_RN Round to nearest

_FP_RND_RP Round toward +infinity

_FP_RND_RM

Round toward −infinity

Note:

v When processing IEEE Binary Floating-Point values, the z/OS XL C/C++

run-time library math functions require IEEE rounding mode of round to

nearest. The z/OS XL C/C++ run-time library takes care of setting round to

nearest rounding mode while executing math functions and restoring

application rounding mode before returning to the caller.

v This function will not return or update decimal floating-point rounding

mode bits.

Returned Value

For an application running in hexadecimal floating-point mode, fp_swap_rnd()

returns 0.

For an application running in IEEE Binary Floating-Point mode, fp_swap_rnd()

returns the previous (changed from) rounding mode as follows:

Value Rounding Mode

_FP_RND_RZ Round toward 0

_FP_RND_RN Round to nearest

_FP_RND_RP Round toward +infinity

_FP_RND_RM

Round toward −infinity

fp_swap_rnd

660 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

Related Information

v “float.h” on page 46

v “fp_read_rnd() — Determine Rounding Mode” on page 647

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

fp_swap_rnd

Chapter 3. Part 3. Library Functions 661

fputc() — Write a Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int fputc(int c, FILE *stream);

General Description

Converts c to an unsigned char and then writes c to the output stream pointed to

by stream at the current position and advances the file position appropriately. The

fputc() function is identical to putc but is always a function, because it is not

available as a macro.

If the stream is opened with one of the append modes, the character is appended

to the end of the stream regardless of the current file position.

The fputc() function is not supported for files opened with type=record.

fputc() has the same restriction as any write operation for a read immediately

following a write, or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, fputc() returns the character written.

If unsuccessful, fputc() returns EOF.

Example

CELEBF34

/* CELEBF34

 This example writes the contents of buffer to a file called

 myfile.dat.

 Because the output occurs as a side effect within the second

 expression of the for statement, the statement body is null.

 */

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)

{

 FILE * stream;

fputc

662 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

int i;

 int ch;

 char buffer[NUM_ALPHA + 1] = "abcdefghijklmnopqrstuvwxyz";

 if ((stream = fopen("myfile.dat", "w"))!= NULL)

 {

 /* Put buffer into file */

 for (i = 0; (i < sizeof(buffer)) &&

 ((ch = fputc(buffer[i], stream)) != EOF); ++i);

 fclose(stream);

 }

 else

 printf("Error opening myfile.dat\n");

}

Related Information

v “stdio.h” on page 82

v “fgetc() — Read a Character” on page 587

v “putc(), putchar() — Write a Character” on page 1566

fputc

Chapter 3. Part 3. Library Functions 663

fputs() — Write a String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int fputs(const char * __restrict__string, FILE * __restrict__stream);

General Description

Writes the string pointed to by string to the output stream pointed to by stream. It

does not write the terminating \0 at the end of the string.

For a text file, truncation may occur if the record is too long. Truncation means that

excess characters are discarded after the record is full, up to a control character

that ends the line (\n). Characters after the \n start at the next record. For more

information, see the section on “Truncation” in z/OS XL C/C++ Programming Guide.

fputs() is not supported for files opened with type=record.

fputs() has the same restriction as any write operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, fputs() returns the number of bytes written.

If unsuccessful, fputs() returns EOF.

Example

CELEBF35

/* CELEBF35

 This example writes a string to a stream.

 */

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)

{

 FILE * stream;

 int num;

 /* Do not forget that the '\0' char occupies one character */

fputs

664 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

static char buffer[NUM_ALPHA + 1] = "abcdefghijklmnopqrstuvwxyz";

 if ((stream = fopen("myfile.dat", "w")) != NULL)

 {

 /* Put buffer into file */

 if ((num = fputs(buffer, stream)) != EOF)

 {

 /* Note that fputs() does not copy the \0 character */

 printf("Total number of characters written to file = %i\n", num);

 fclose(stream);

 }

 else /* fputs failed */

 printf("fputs failed");

 }

 else

 printf("Error opening myfile.dat");

}

Related Information

v “stdio.h” on page 82

v “fgets() — Read a String from a Stream” on page 591

v “gets() — Read a String” on page 850

v “puts() — Write a String” on page 1574

fputs

Chapter 3. Part 3. Library Functions 665

fputwc() — Output a Wide-Character

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <stdio.h>

#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE *stream);

XPG4

#define _XOPEN_SOURCE

#include <stdio.h>

#include <wchar.h>

wint_t fputwc(wint_t wc, FILE *stream);

XPG4 and MSE

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <stdio.h>

#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE *stream);

General Description

Converts the wide character specified by wc to a multibyte character and writes it to

the output stream pointed to by stream, at the position indicated by the associated

file position indicator for the stream (if defined), and advances the indicator

appropriately. If the file cannot support positioning requests or if the stream was

opened with append mode, the character is appended to the output stream.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. Using non-wide-character functions with fputwc() results in

undefined behavior.

fputwc() has the same restriction as any write operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then the compiler assumes

that your program is using the XPG4 variety of the fputwc() function, unless you

also define the _MSE_PROTOS feature test macro. Please see Table 4 on page 22

for a list of XPG4 and other feature test macros.

fputwc

666 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

The prototype for the XPG4 variety of the fputwc() function is:

wint_t fputwc(wint_t wc, FILE *stream);

The difference between this variety and the MSE variety of the fputwc() function is

that the first parameter has type wint_t rather than type wchar_t.

Returned Value

If successful, fputwc() returns the wide character written.

If a write error occurs, the error indicator for the stream is set and WEOF is

returned. If an encoding error occurs during conversion from wide character to a

multibyte character, the value of the macro EILSEQ is stored in errno and WEOF is

returned.

Example

CELEBF36

/* CELEBF36 */

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <errno.h>

int main(void)

{

 FILE *stream;

 wchar_t *wcs = L"This test string should not cause a WEOF condition";

 int i;

 int rc;

 if ((stream = fopen("myfile.dat", "w")) == NULL) {

 printf("Unable to open file.\n");

 exit(1);

 }

 for (i=0; wcs[i] != L'\0'; i++) {

 errno = 0;

 if ((rc = fputwc(wcs[i], stream)) == WEOF) {

 printf("Unable to fputwc() the wide character.\n");

 printf("wcs[%d] = 0x%lx\n", i, wcs[i]);

 if (errno == EILSEQ)

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 }

 fclose(stream);

}

Related Information

v “stdio.h” on page 82

v “wchar.h” on page 98

fputwc

Chapter 3. Part 3. Library Functions 667

fputws() — Output a Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

int fputws(const wchar_t * __restrict__wcs, FILE * __restrict__stream);

General Description

Converts the wide-character string pointed to by wcs to a multibyte character string

and writes it to the stream pointed to by stream, as a multibyte character string. The

terminating NULL byte is not written.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. Using non-wide-character functions with fputws() results in

undefined behavior.

fputws() has the same restriction as any write operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, fputws() returns a nonnegative value.

If a stream error occurs, fputws() returns −1 and the error indicator for the stream is

set.

If an encoding error occurs, fputws() returns −1 and the value of the macro EILSEQ

is stored in errno. An encoding error is one that occurs when converting a wide

character to a multibyte character.

Example

CELEBF37

/* CELEBF37 */

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

int main(void)

{

 FILE *stream;

 wchar_t *wcs = L"This test string should not return −1";

 int rc;

 if ((stream = fopen("myfile.dat", "w")) == NULL) {

fputws

668 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

printf("Unable to open file.\n");

 exit(1);

 }

 errno = 0;

 rc = fputws(wcs, stream);

 if (rc == EOF) {

 printf("Unable to complete fputws() function.\n");

 if (errno == EILSEQ)

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 fclose(stream);

}

Related Information

v “stdio.h” on page 82

v “wchar.h” on page 98

fputws

Chapter 3. Part 3. Library Functions 669

fread() — Read Items

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

size_t fread(void * __restrict__buffer, size_t size, size_t count, FILE * __restrict__stream);

General Description

Reads up to count items of size length from the input stream pointed to by stream

and stores them in the given buffer. The file position indicator advances by the

number of bytes read.

If there is an error during the read operation, the file position indicator is undefined.

If a partial element is read, the element’s value is undefined.

When you are using fread() for record I/O, set size to 1 and count to the maximum

expected length of the record, to obtain the number of bytes. Only one record is

read, regardless of count, when using record I/O.

fread() has the same restriction as any read operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

fread() returns the number of complete items successfully read.

If size or count is 0, fread() returns 0, and the contents of the array and the state of

the stream remain unchanged. For record I/O, it is possible that the number of

complete items can be less than count. However, this result does not necessarily

indicate that an error has occurred.

The ferror() and feof() functions are used to distinguish between a read error and

an EOF. Note that EOF is only reached when an attempt is made to read “past” the

last byte of data. Reading up to and including the last byte of data does not turn on

the EOF indicator.

Example

CELEBF38

/* CELEBF38

 This example attempts to read NUM_ALPHA characters from the

fread

670 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

file myfile.dat.

 If there are any errors with either &fread. or &fopen., a

 message is printed.

 */

#include <stdio.h>

#define NUM_ALPHA 26

int main(void)

{

 FILE * stream;

 int num; /* number of characters read from stream */

 /* Do not forget that the '\0' char occupies one character too! */

 char buffer[NUM_ALPHA + 1];

 buffer[NUM_ALPHA+1] = '\0';

 if ((stream = fopen("myfile.dat", "r"))!= NULL)

 {

 num = fread(buffer, sizeof(char), NUM_ALPHA, stream);

 if (num == NUM_ALPHA) { /* fread success */

 printf("Number of characters read = %i\n", num);

 printf("buffer = %s\n", buffer);

 fclose(stream);

 }

 else { /* fread failed */

 if (ferror(stream)) /* possibility 1 */

 printf("Error reading myfile.dat");

 else if (feof(stream)) { /* possibility 2 */

 printf("EOF found\n");

 printf("Number of characters read %d\n", num);

 printf("buffer = %.*s\n", num, buffer);

 }

 }

 }

 else

 printf("Error opening myfile.dat");

}

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

v “freopen() — Redirect an Open File” on page 675

v “fwrite() — Write Items” on page 731

fread

Chapter 3. Part 3. Library Functions 671

free() — Free a Block of Storage

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

void free(void *ptr);

General Description

Frees a block of storage pointed to by ptr. The ptr variable points to a block

previously reserved with a call to calloc(), malloc(), realloc(), or strdup(). The

number of bytes freed is the number of bytes specified when you reserved (or

reallocated, in the case of realloc()), the block of storage. If ptr is NULL, free()

simply returns without freeing anything. Since ptr is passed by value free() will not

set ptr to NULL after freeing the memory to which it points.

This function is also available to C applications in a stand-alone System

Programming C (SPC) Environment.

Note: Attempting to free a block of storage not allocated with calloc(), malloc(),

realloc(), strdup(), or previously freed storage, can affect the subsequent

reserving of storage and lead to an abend.

Special Behavior for C++

Under C++, you cannot use free() with an item that was allocated using the C++

new keyword.

Returned Value

free() returns no values.

Example

/* This example illustrates the use of calloc() to allocate storage for x

 array elements and then calls free() to free them.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 long * array; /* start of the array */

 long * index; /* index variable */

 int i; /* index variable */

 int num; /* number of entries of the array */

 printf("Enter the size of the array\n");

free

672 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

|
|
|

scanf("%i", &num);

 /* allocate num entries */

 if ((index = array = (long *)calloc(num, sizeof(long))) != NULL)

 {

 ...
 /* do something with the array */

 free(array); /* deallocates array */

 }

 else

 { /* Out of storage */

 printf("Error: out of storage\n");

 abort();

 }

}

Related Information

v “Using the System Programming C Facilities” in z/OS XL C/C++ Programming

Guide

v “spc.h” on page 78

v “stdlib.h” on page 85

v “calloc() — Reserve and Initialize Storage” on page 230

v “malloc() — Reserve Storage Block” on page 1172

v “realloc() — Change Reserved Storage Block Size” on page 1620

free

Chapter 3. Part 3. Library Functions 673

freeaddrinfo() — free addrinfo storage

Standards

 Standards / Extensions C or C++ Dependencies

RFC2553

Single UNIX Specification, Version 3

both z/OS V1R4

Format

#define _OPEN_SYS_SOCK_IPV6

#include <sys/socket.h>

#include <netdb.h>

void *freeaddrinfo(struct addrinfo *ai);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <sys/socket.h>

#include <netdb.h>

void *freeaddrinfo(struct addrinfo *ai);

General Description

The freeaddrinfo() function frees one or more addrinfo structures returned by

getaddrinfo(), along with any additional storage associated with those structures. If

the ai_next field of the structure is not null, the entire list of structures is freed.

Returned Value

No return value is defined.

Related Information

v “connect() — Connect a Socket” on page 325

v “gai_strerror() — address and name information error description” on page 735

v “getaddrinfo() — get address information” on page 738

v “socket() — Create a Socket” on page 1970

v “netdb.h” on page 64

v “sys/socket.h” on page 89

freeaddrinfo

674 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|

freopen() — Redirect an Open File

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

FILE *freopen(const char *__restrict__filename, const char *__restrict__mode, FILE *__restrict__stream);

General Description

Closes the file currently associated with stream and pointed to by stream, opens the

file specified by the filename, and then associates the stream with it.

The freopen() function opens the new file with the type of access requested by the

mode argument. The mode argument is used as in the fopen() function. See

“fopen() — Open a File” on page 626 for a description of the mode parameter.

You can also use the freopen() function to redirect the standard stream files stdin,

stdout, and stderr to files that you specify. The file pointer input to the freopen()

function must point to a valid open file. If the file pointer has been closed, the

behavior is undefined.

You could use the following freopen() call to redirect stdout to a memory file a.b:

 freopen("a.b","wb,type=memory",stdout);

If filename is an empty string, freopen() closes the file and reuses the original file

name. For details on how the file name and open mode is interpreted, see z/OS XL

C/C++ Programming Guide.

A standard stream can be opened by default to a type of file not available to a

general fopen(). This is true for standard streams under CICS, and also true for the

default stderr, when running a non-POSIX Language Environment application.

The following statement uses freopen() to have stdin use binary mode instead of

text mode:

 fp = freopen("", "rb", stdin);

You can use the same empty string method to change the mode from binary back

to text. This method is not allowed for:

v The default CICS data queues used by the standard streams under CICS

v The Language Environment Message File (MSGFILE), which is the default for

stderr

v HFS files.

freopen

Chapter 3. Part 3. Library Functions 675

||||

|
|
|
|
|
|

||

|

Note: Using the empty string method is included in the SAA C definition, but not in

the ANSI C standard.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, freopen() returns the value of stream, the same value that was

passed to it, and clears both the error and EOF indicators associated with the

stream.

A failed attempt to close the original file is ignored.

If an error occurs in reopening the requested file, freopen() closes the original file,

and returns a NULL pointer value.

Special Behavior for Large Files for HFS

The following is the possible value of errno:

Error Code Description

EOVERFLOW The named file is a regular file and the size of the file cannot be

represented correctly in an object of type off_t.

Example

This example illustrates the z/OS XL C extension that allows you to change

characteristics of a file by reopening it.

#include <stdio.h>

int main(void)

{

 FILE *stream, *stream2;

 stream = fopen("myfile.dat","r");

 stream2 = freopen("", "w+", stream);

}

This example closes the stream data stream and reassigns its stream pointer:

#include <stdio.h>

int main(void)

{

 FILE *stream, *stream2;

 stream = fopen("myfile.dat","r");

 stream2 = freopen("myfile2.dat", "w+", stream);

}

Note: stream and stream2 will have the same value.

freopen

676 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

||
|

Related Information

v “stdio.h” on page 82

v “fclose() — Close File” on page 525

v “fopen() — Open a File” on page 626

freopen

Chapter 3. Part 3. Library Functions 677

frexp(), frexpf(), frexpl() — Extract Mantissa and Exponent of the

Floating-Point Value

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double frexp(double x, int *expptr);

float frexp(float x, int *expptr); /* C++ only */

long double frexp(long double x, int *expptr); /* C++ only */

float frexpf(float x, int *expptr);

long double frexpl(long double x, int *expptr);

General Description

Breaks down the floating-point value x into a component m for the normalized

fraction component and another term n for the exponent, such that the absolute

value of m is greater than or equal to 0.5 and less than 1.0 or equal to 0, and x = m

* 2n. The function stores the integer exponent n at the location to which expptr

points.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Returns the normalized fraction m. If x is 0, the function returns 0 for both the

fraction and exponent. The fraction has the same sign as the argument x. The

result of the function cannot have a range error.

Example

CELEBF41

/* CELEBF41

 This example decomposes the floating−point value of x, 16.4, into its

 normalized fraction 0.5125, and its exponent 5.

 It stores the mantissa in y and the exponent in n.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, m;

frexp, frexpf, frexpl

678 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|
|

||

|

int n;

 x = 16.4;

 m = frexp(x, &n);

 printf("The fraction is %lf and the exponent is %d\n", m, n);

}

Output

The mantissa is 0.512500 and the exponent is 5

Related Information

v “math.h” on page 60

v “ldexp(), ldexpf(), ldexpl() — Multiply by a Power of Two” on page 1067

v “modf(), modff(), modfl() — Extract Fractional and Integral Parts of Floating-Point

Value” on page 1237

frexp, frexpf, frexpl

Chapter 3. Part 3. Library Functions 679

frexpd32(), frexpd64(), frexpd128() — Extract Mantissa and Exponent of

the Decimal Floating-Point Value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 frexpd32(_Decimal32 x, int *expptr);

_Decimal64 frexpd64(_Decimal64 x, int *expptr);

_Decimal128 frexpd128(_Decimal128 x, int *expptr);

_Decimal32 frexp(_Decimal32 x, int *expptr); /* C++ only */

_Decimal64 frexp(_Decimal64 x, int *expptr); /* C++ only */

_Decimal128 frexp(_Decimal128 x, int *expptr); /* C++ only */

General Description

Breaks down the decimal floating-point value x into a component m for the

normalized fraction component and another term n for the exponent, such that the

absolute value of m is greater than or equal to 0.1 and less than 1.0 or equal to 0,

and x = m * 10n. The function stores the integer exponent n at the location to which

expptr points.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

Returns the normalized fraction m. If x is 0, the function returns 0 for both the

fraction and exponent. The fraction has the same sign as the argument x. The

result of the function cannot have a range error.

Example

/* CELEBF81

 This example illustrates the frexpd64() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal64 x, m;

 int n;

 x = 164.5DD;

 m = frexpd64(x, &n);

frexpd32, frexpd64, frexpd128

680 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("The fraction of %Df is %Df and the exponent is %d\n",

 x, m, n);

}

Related Information

v “math.h” on page 60

v “frexp(), frexpf(), frexpl() — Extract Mantissa and Exponent of the Floating-Point

Value” on page 678

v “ilogbd32(), ilogbd64(), ilogbd128() — Integer Unbiased Exponent” on page 935

v “ldexpd32(), ldexpd64(), ldexpd128() — Multiply by a Power of Ten” on page

1069

frexpd32, frexpd64, frexpd128

Chapter 3. Part 3. Library Functions 681

|
|
|
|
|

|
|
|
|
|
|
|

fscanf(), scanf(), sscanf() — Read and Format Data

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#include <stdio.h>

int fscanf(FILE *__restrict__stream, const char *__restrict__format-string, ...);

int scanf(const char *__restrict__format-string, ...);

int sscanf(const char *__restrict__buffer, const char *__restrict__format, ...);

General Description

These three related functions are referred to as the fscanf family.

Reads data from the current position of the specified stream into the locations given

by the entries in the argument list, if any. The argument list, if it exists, follows the

format string. The fscanf() function cannot be used for a file opened with

type=record.

The scanf() function reads data from the standard input stream stdin into the

locations given by each entry in the argument list. The argument list, if it exists,

follows the format string. scanf() cannot be used if stdin has been reopened as a

type=record file.

The sscanf() function reads data from buffer into the locations given by

argument-list. Reaching the end of the string pointed to by buffer is equivalent to

fscanf() reaching EOF. If the strings pointed to by buffer and format overlap,

behavior is undefined.

fscanf() and scanf() have the same restriction as any read operation for a read

immediately following a write or a write immediately following a read. Between a

write and a subsequent read, there must be an intervening flush or reposition.

Between a read and a subsequent write, there must also be an intervening flush or

reposition unless an EOF has been reached.

For all three functions, each entry in the argument list must be a pointer to a

variable of a type that matches the corresponding conversion specification in

format-string. If the types do not match, the results are undefined.

For all three functions, the format-string controls the interpretation of the argument

list. The format-string can contain multibyte characters beginning and ending in the

initial shift state.

The format string pointed to by format-string can contain one or more of the

following:

fscanf, scanf, sscanf

682 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

v White space characters, as specified by isspace(), such as blanks and newline

characters. A white space character causes fscanf(), scanf(), and sscanf() to

read, but not to store, all consecutive white space characters in the input up to

the next character that is not white space. One white space character in

format-string matches any combination of white space characters in the input.

v Characters that are not white space, except for the percent sign character (%). A

non-white space character causes fscanf(), scanf(), and sscanf() to read, but not

to store, a matching non-white space character. If the next character in the input

stream does not match, the function ends.

v Conversion specifications which are introduced by the percent sign (%) or the

sequence (%n$) where n is a decimal integer in the range [1,NL_ARGMAX]. A

conversion specification causes fscanf(), scanf(), and sscanf() to read and

convert characters in the input into values of a conversion specifier. The value is

assigned to an argument in the argument list.

All three functions read format-string from left to right. Characters outside of

conversion specifications are expected to match the sequence of characters in the

input stream; the matched characters in the input stream are scanned but not

stored. If a character in the input stream conflicts with format-string, the function

ends, terminating with a “matching” failure. The conflicting character is left in the

input stream as if it had not been read.

When the first conversion specification is found, the value of the first input field is

converted according to the conversion specification and stored in the location

specified by the first entry in the argument list. The second conversion specification

converts the second input field and stores it in the second entry in the argument list,

and so on through the end of format-string.

Special Behavior for XPG4.2

v When the %n$ conversion specification is found, the value of the input field is

converted according to the conversion specification and stored in the location

specified by the nth argument in the argument list. Numbered arguments in the

argument list can only be referenced once from format-string.

v The format-string can contain either form of the conversion specification, that is,

% or %n$ but the two forms cannot be mixed within a single format-string except

that %% or %* can be mixed with the %n$ form.

An input field is defined as:

v All characters until a white space character (space, tab, or newline) is

encountered

v All characters until a character is encountered that cannot be converted

according to the conversion specification

v All characters until the field width is reached.

If there are too many arguments for the conversion specifications, the extra

arguments are evaluated but otherwise ignored. The results are undefined if there

are not enough arguments for the conversion specifications.

fscanf, scanf, sscanf

Chapter 3. Part 3. Library Functions 683

Each field of the conversion specification is a single character or a number

signifying a particular format option. The conversion specifier, which appears after

the last optional format field, determines whether the input field is interpreted as a

character, a string, or a number. The simplest conversion specification contains only

the percent sign and a conversion specifier (for example, %s).

Each field of the format specification is discussed in detail below.

Other than conversion specifiers, you should avoid using the percent sign (%),

except to specify the percent sign: %%. Currently, the percent sign is treated as the

start of a conversion specifier. Any unrecognized specifier is treated as an ordinary

sequence of characters. If, in the future, z/OS XL C/C++ permits a new conversion

specifier, it could match a section of your format string, be interpreted incorrectly,

and result in undefined behavior. See Table 34 on page 685 for a list of conversion

specifiers.

An asterisk (*) following the percent sign suppresses assignment of the next input

field, which is interpreted as a field of the specified conversion specifier. The field is

scanned but not stored.

width is a positive decimal integer controlling the maximum number of characters to

be read. No more than width characters are converted and stored at the

corresponding argument.

Fewer than width characters are read if a white space character (space, tab, or

newline), or a character that cannot be converted according to the given format

occurs before width is reached.

The optional prefix l shows that you use the long version of the following

conversion specifier, while the prefix h indicates that the short version is to be

used. The corresponding argument should point to a long or double object (for the

l character), a long double object (for the L character), or a short object (with the h

character). The l and h modifiers can be used with the d, i, o, x, and u conversion

specifiers. The l modifier can also be used with the e, f, and g conversion

specifiers. The L modifier can be used with the e, f and g conversion specifiers.

Note that the l modifier is also used with the c, s and [conversion specifiers to

indicate that the corresponding argument is a pointer to an array of wide characters.

The l and h modifiers are ignored if specified for any other conversion specifier.

Optional prefix

Used to indicate the size of the argument expected:

�� %

*

width

h

hh

l

ll

j

L

t

z

 conversion specifier ��

Figure 6. Syntax of Conversion Specification for fscanf(), scanf(), and sscanf()

fscanf, scanf, sscanf

684 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

D Specifies that any following e, E, f, F, g, or G conversions specifier applies

to a _Decimal64 argument.

DD Specifies that any following e, E, f, F, g, or G conversions specifier applies

to a _Decimal128 argument.

H Specifies that any following e, E, f, F, g, or G conversions specifier applies

to a _Decimal32 argument.

hh Specifies that a following d, i, o, u, x, X or n conversion specifier applies to

an argument with type pointer to signed char or unsigned char.

j Specifies that a following d, i, o, u, x, X or n conversion specifier applies to

an argument with type pointer to intmax_t or uintmax_t.

t Specifies that a following d, i, o, u, x, X or n conversion specifier applies to

an argument with type pointer to ptrdiff_t or the corresponding unsigned

type.

z Specifies that a following d, i, o, u, x, X or n conversion specifier applies to

an argument with type pointer to size_t or the corresponding signed integer

type.

The type characters and their meanings are in Table 34.

 Table 34. Conversion Specifiers in fscanf(), scanf() and sscanf()

Conversion

Specifier Type of Input Expected Type of Argument

d Decimal integer Pointer to int

o Octal integer Pointer to unsigned

int

x

X

Hexadecimal integer Pointer to unsigned

int

i Decimal, hexadecimal, or octal integer Pointer to int

u Unsigned decimal integer Pointer to unsigned

int

e

E

f

F

g

G

Floating-point value consisting of an optional sign (+

or −); a series of one or more decimal digits possibly

containing a decimal-point; and an optional exponent

(e or E) followed by a possibly signed integer value

Pointer to float

a

A

Matches an optionally signed floating-point number,

infinity, or NaN, whose format is the same as

expected for the subject sequence of strtod(). In the

absence of a size modifier, the application shall

ensure that the corresponding argument is a pointer

to float.

Pointer to float

fscanf, scanf, sscanf

Chapter 3. Part 3. Library Functions 685

||
|

||
|

||
|

Table 34. Conversion Specifiers in fscanf(), scanf() and sscanf() (continued)

Conversion

Specifier Type of Input Expected Type of Argument

fscanf Family of Formatted Input Functions

fscanf family functions match e, E, f, F, g or G conversion specifiers to floating-point number

substrings in the input stream. fscanf family functions convert each input substring matched

by an e, E, f, F, g or G conversion specifier to a float, double or long double value

depending on a size modifier preceding the e, E, f, F, g or G conversion specifier.

The floating-point value produced is hexadecimal floating-point or IEEE Binary Floating-Point

format depending on the floating-point mode of the thread invoking the fscanf family function.

The fscanf family functions use __isBFP() to determine the floating-point mode of invoking

threads.

Many z/OS XL C/C++ formatted input functions, including the fscanf family, recognize special

infinity and NaN floating-point number input sequences when the invoking thread is in IEEE

Binary Floating-Point mode as determined by __isBFP().

v The special sequence for infinity input is an optional plus or minus sign, then the character

sequence INF, where the individual characters may be uppercase or lowercase, and then

a white space character (space, tab, or newline), a NULL character (\0) or EOF.

v The special sequence for NaN input is an optional plus or minus sign, then the character

sequence NANS for a signalling NaN or NANQ for a quiet NaN, where the individual

characters may be uppercase or lowercase, then an optional NaN ordinal sequence, and

then a a white space character (space, tab, or newline), a NULL character (\0) or EOF.

For Binary Floating Point NANs:

A NaN ordinal sequence is a left-parenthesis character, “(”, followed by a digit sequence

representing an integer n, where 1 <= n <= INT_MAX−1, followed by a right-parenthesis

character, “)”. If the NaN ordinal sequence is omitted, NaN ordinal sequence (1) is

assumed. The integer value, n, corresponding to a NaN ordinal sequence determines what

IEEE Binary Floating-Point NaN fraction bits are produced by formatted input functions.

For a signalling NaN, these functions produce NaN fraction bits (left to right) by reversing

the bits (right to left) of the even integer value 2*n.

For a quiet NaN they produce NaN fraction bits (left to right) by reversing the bits (right to

left) of the odd integer value 2*n−1.

For Decimal Floating Point NANs:

A NaN ordinal sequence is a left parenthesis character, ″(″, followed by a decimal digit

sequence of up to 6 digits for a _Decimal32 output number, up to 15 digits for a

_Decimal64 output value, or up to 33 digits for a _Decimal128 output value, followed by a

right parenthesis, ″)″. If the NaN ordinal sequence is omitted, NaN ordinal sequence ″(0)″

is assumed. If the NaN ordinal sequence is shorter than 6, 15, or 33 digits, it will be

padded on the left with ″0″ digits so that the length becomes 6, 15, or, 33 digits for

_Decimal32, _Decimal64, and _Decimal128 values respectively.

For Decimal Floating Point numbers, the digits are not reversed, and both odd or even

NaN ordinal sequences can be specified for either a Quiet NAN or Signalling NAN.

D(n,p) Fixed−point value consisting of an optional sign (+ or

−); a series of one or more decimal digits possibly

containing a decimal-point.

Pointer to decimal

c Sequence of one or more characters as specified by

field width; white space characters that are ordinarily

skipped are read when %c is specified. No

terminating null is added.

Pointer to char large

enough for input field.

fscanf, scanf, sscanf

686 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|
|
|
|
|
|

|
|

Table 34. Conversion Specifiers in fscanf(), scanf() and sscanf() (continued)

Conversion

Specifier Type of Input Expected Type of Argument

C or lc The input is a sequence of one or more multibyte

characters as specified by the field width, beginning

in the initial shift state. Each multibyte character in

the sequence is converted to a wide character as if

by a call to the mbrtowc() function. The conversion

state described by the mbstate_t object is initialized

to zero before the first multibyte character is

converted.

The corresponding argument is a pointer to the initial

element of an array of wchar_t large enough to

accept the resulting sequence of wide characters. No

NULL wide character is added.

C or lc uses a pointer

to wchar_t.

s Like c, a sequence of bytes of type char (signed or

unsigned), except that white space characters are

not allowed, and a terminating null is always added.

Pointer to character

array large enough for

input field, plus a

terminating NULL

character (\0) that is

automatically

appended.

S or ls A sequence of multibyte characters that begins and

ends in the initial shift state. Each multibyte character

in the sequence is converted to a wide character as

if by a call to the mbrtowc() function, with the

conversion state described by the mbstate_t object

initialized to zero before the first multibyte character

is converted.

The corresponding argument is a pointer to the initial

array of wchar_t large enough to accept the

sequence and the terminating NULL wide character,

which is added automatically.

S or ls uses a pointer

to wchar_t string.

n No input read from stream or buffer. Pointer to int, into

which is stored the

number of characters

successfully read from

the stream or buffer

up to that point in the

call to either fscanf()

or to scanf().

p Pointer to void converted to series of characters. For

the specific format of the input, see the individual

system reference guides.

Pointer to void.

fscanf, scanf, sscanf

Chapter 3. Part 3. Library Functions 687

Table 34. Conversion Specifiers in fscanf(), scanf() and sscanf() (continued)

Conversion

Specifier Type of Input Expected Type of Argument

[A non-empty sequence of bytes to be matched

against a set of expected bytes (the scanset), which

form the conversion specification. White space

characters that are ordinarily skipped are read when

%[is specified.

Consider the following situations:

[^bytes]. In this case, the scanset contains all bytes

that do not appear between the circumflex and the

right square bracket.

[]abc] or [^]abc.] In both these cases the right

square bracket is included in the scanset (in the first

case:]abc and in the second case, not]abc)

[a–z] In EBCDIC The – is in the scanset, the

characters b through y are not in the scanset; in

ASCII The – is not in the scanset, the characters b

through y are.

The code point for the square brackets ([and]) and

the caret (^) vary among the EBCDIC encoded

character sets. The default C locale expects these

characters to use the code points for encoded

character set Latin-1 / Open Systems 1047.

Conversion proceeds one byte at a time: there is no

conversion to wide characters.

Pointer to the initial

byte of an array of

char, signed char, or

unsigned char large

enough to accept the

sequence and a

terminating byte,

which will be added

automatically.

l[If an l length modifier is present, input is a sequence

of multibyte characters that begins and ends in the

initial shift state. Each multibyte character in the

sequence is converted to a wide character as if by a

call to the mbrtowc() function, with the conversion

state described by the mbstate_t object initialized to

zero before the first multibyte character is converted.

The corresponding argument is a pointer to the initial

array of wchar_t large enough to accept the

sequence and the terminating NULL wide character,

which is added automatically.

l[uses a pointer to

wchar_t string

When the LC_SYNTAX category is set using setlocale(), the format strings passed

to the fscanf(), scanf(), or sscanf() functions must use the same encoded character

set as is specified for the LC_SYNTAX category.

To read strings not delimited by space characters, substitute a set of characters in

square brackets ([]) for the s (string) conversion specifier. The corresponding input

field is read up to the first character that does not appear in the bracketed character

set. If the first character in the set is a logical not (¬), the effect is reversed: the

input field is read up to the first character that does appear in the rest of the

character set.

To store a string without storing an ending NULL character (\0), use the specification

%ac, where a is a decimal integer. In this instance, the c conversion specifier means

that the argument is a pointer to a character array. The next a characters are read

from the input stream into the specified location, and no NULL character is added.

fscanf, scanf, sscanf

688 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The input for a %x conversion specifier is interpreted as a hexadecimal number.

All three functions, fscanf(), scanf(), and sscanf() scan each input field character by

character. It might stop reading a particular input field either before it reaches a

space character, when the specified width is reached, or when the next character

cannot be converted as specified. When a conflict occurs between the specification

and the input character, the next input field begins at the first unread character. The

conflicting character, if there is one, is considered unread and is the first character

of the next input field or the first character in subsequent read operations on the

input stream.

Note: To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

Returned Value

All three functions, fscanf(), scanf(), and sscanf() return the number of input items

that were successfully matched and assigned. The returned value does not include

conversions that were performed but not assigned (for example, suppressed

assignments). The functions return EOF if there is an input failure before any

conversion, or if EOF is reached before any conversion. Thus a returned value of 0

means that no fields were assigned: there was a matching failure before any

conversion. Also, if there is an input failure, then the file error indicator is set, which

is not the case for a matching failure.

The ferror() and feof() functions are used to distinguish between a read error and

an EOF. Note that EOF is only reached when an attempt is made to read “past” the

last byte of data. Reading up to and including the last byte of data does not turn on

the EOF indicator.

Examples

CELEBF42

/* CELEBF42

 This example scans various types of data

 */

#include <stdio.h>

int main(void)

{

 int i;

 float fp;

 char c, s[81];

 printf("Enter an integer, a real number, a character "

 "and a string : \n");

 if (scanf("%d %f %c %s", &i, &fp, &c, s) != 4)

 printf("Not all of the fields were assigned\n");

 else

 {

 printf("integer = %d\n", i);

 printf("real number = %f\n", fp);

 printf("character = %c\n", c);

 printf("string = %s\n",s);

 }

}

Output

fscanf, scanf, sscanf

Chapter 3. Part 3. Library Functions 689

|
|

If input is: 12 2.5 a yes, then output would be:

Enter an integer, a real number, a character and a string:

integer = 12

real number = 2.500000

character = a

string = yes

CELEBF43

/* CELEBF43

 This example converts a hexadecimal integer to a decimal integer.

 The while loop ends if the input value is not a hexadecimal integer.

 */

#include <stdio.h>

int main(void)

{

 int number;

 printf("Enter a hexadecimal number or anything else to quit:\n");

 while (scanf("%x",&number))

 {

 printf("Hexadecimal Number = %x\n",number);

 printf("Decimal Number = %d\n",number);

 }

}

Output

If input is: 0x231 0xf5e 0x1 q, then output would be:

Enter a hexadecimal number or anything else to quit:

Hexadecimal Number = 231

Decimal Number = 561

Hexadecimal Number = f5e

Decimal Number = 3934

Hexadecimal Number = 1

Decimal Number = 1

CELEBF44

/* CELEBF44

 The next example illustrates the use of scanf() to input fixed-point

 decimal data types. This example works under C only, not C++.

 */

#include <stdio.h>

#include <decimal.h>

decimal(15,4) pd01;

decimal(10,2) pd02;

decimal(5,5) pd03;

int main(void) {

 printf("\nFirst time :-------------------------------\n");

 printf("Enter three fixed-point decimal number\n");

 printf(" (15,4) (10,2) (5,5)\n");

 if (scanf("%D(15,4) %D(10,2) %D(5,5)", &pd01, &pd02, &pd03) != 3) {

 printf("Error found in scanf\n");

 } else {

 printf("pd01 = %D(15,4)\n", pd01);

 printf("pd02 = %D(10,2)\n", pd02);

 printf("pd03 = %D(5,5)\n", pd03);

 }

 printf("\nSecond time :------------------------------\n");

 printf("Enter three fixed-point decimal number\n");

 printf(" (15,4) (10,2) (5,5)\n");

 if (scanf("%D(15,4) %D(10,2) %D(5,5)", &pd01, &pd02, &pd03) != 3) {

fscanf, scanf, sscanf

690 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

printf("Error found in scanf\n");

 } else {

 printf("pd01 = %D(15,4)\n", pd01);

 printf("pd02 = %D(10,2)\n", pd02);

 printf("pd03 = %D(5,5)\n", pd03);

 }

 return(0);

}

Output

First time :-------------------------------

Enter three fixed-point decimal number

 (15,4) (10,2) (5,5)

12345678901.2345 -987.6 .24680

pd01 = 12345678901.2345

pd02 = -987.60

pd03 = 0.24680

Second time :------------------------------

Enter three fixed-point decimal number

 (15,4) (10,2) (5,5)

123456789013579.24680 123.4567890 987

pd01 = 12345678901.3579

pd02 = 123.45

pd03 = 0.98700

CELEBF46

/* CELEBF46

 The next example opens the file myfile.dat for reading and then scans

 this file for a string, a long integer value, a character, and a

 floating-point value.

 */

#include <stdio.h>

#define MAX_LEN 80

int main(void)

{

 FILE *stream;

 long l;

 float fp;

 char s[MAX_LEN + 1];

 char c;

 stream = fopen("myfile.dat", "r");

 /* Put in various data. */

 fscanf(stream, "%s", &s[0]);

 fscanf(stream, "%ld", &l);

 fscanf(stream, "%c", &c);

 fscanf(stream, "%f", &fp);

 printf("string = %s\n", s);

 printf("long double = %ld\n", l);

 printf("char = %c\n", c);

 printf("float = %f\n", fp);

}

Output

If myfile.dat contains abcdefghijklmnopqrstuvwxyz 343.2, then the expected

output is:

fscanf, scanf, sscanf

Chapter 3. Part 3. Library Functions 691

string = abcdefghijklmnopqrstuvwxyz

long double = 343

char = .

float = 2.000000

CELEBS32

/* CELEBS32

 This example uses sscanf() to read various data from the string

 tokenstring, and then displays the data.

 */

#include <stdio.h>

#define SIZE 81

int main(void)

{

char *tokenstring = "15 12 14";

int i;

float fp;

char s[SIZE];

char c;

 /* Input various data */

 printf("No. of conversions=%d\n",

 sscanf(tokenstring, "%s %c%d%f", s, &c, &i, &fp));

 /* If there were no space between %s and %c, */

 /* sscanf would read the first character following */

 /* the string, which is a blank space. */

 /* Display the data */

 printf("string = %s\n",s);

 printf("character = %c\n",c);

 printf("integer = %d\n",i);

 printf("floating-point number = %f\n",fp);

}

Output

You would see this output from example CELEBS32.

No. of conversions = 4

string = 15

character = 1

integer = 2

floating-point number = 14.000000

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “stdio.h” on page 82

v “fprintf(), printf(), sprintf() — Format and Write Data” on page 648

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “setlocale() — Set Locale” on page 1811

fscanf, scanf, sscanf

692 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fseek() — Change File Position

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int fseek(FILE *stream, long int offset, int origin);

General Description

Changes the current file position associated with stream to a new location within the

file. The next operation on the stream takes place at the new location. On a stream

open for update, the next operation can be either a reading or a writing operation.

The origin must be one of the following constants defined in stdio.h:

Origin Definition

SEEK_SET Beginning of file

SEEK_CUR Current position of file pointer

SEEK_END End of file

Note: If you specify SEEK_CUR, any characters pushed back by ungetc() or

ungetwc() will have backed up the current position of the file pointer—which

is the starting point of the seek. The seek will discard any pushed-back

characters before repositioning, but the starting point will still be affected. For

more information about calling fseek() after an ungetc() or ungetwc() see

“ungetc() — Push Character onto Input Stream” on page 2307 and

“ungetwc() — Push a Wide Character onto a Stream” on page 2310.

The _EDC_COMPAT environment variable causes fseek() to ignore the effects of

ungetc() or ungetwc(). For more details, see “Environment Variables” in z/OS XL

C/C++ Programming Guide.

Binary Streams

ANSI states that binary streams use relative byte offsets for both ftell() and fseek().

Under z/OS XL C/C++, this is true except for record-oriented files that have variable

length records. For these types of files, the default behavior is to use encoded

offsets for ftell() and fseek(), using an origin of SEEK_SET.

Encoded offsets restrict you to seeking only to those positions that are recorded by

a previous ftell() or to position 0. If you want to use relative-byte offsets for these

types of files, you can either open with the BYTESEEK fopen() option or set the

_EDC_BYTE_SEEK environment variable before opening. For details about

BYTESEEK or _EDC_BYTE_SEEK, see z/OS XL C/C++ Programming Guide.

fseek

Chapter 3. Part 3. Library Functions 693

||||

|
|
|
|
|
|

||

|

With relative-byte offsets, you are free to calculate your own offsets. If the offset

exceeds the EOF, your file is extended with NULLs, except for HFS files, for which

the file is only extended with NULLs if you subsequently write new data. This is true

also under POSIX, using HFS files, where the file is only extended with NULLs if

you subsequently write new data.

Attempting to reposition to before the start of the file causes fseek() to fail.

Regardless of whether encoded or relative offsets are returned by ftell(), you can

specify relative offsets when using SEEK_CUR and SEEK_END.

If the new position is before the start of the file, fseek() fails. If the relative offset is

positioned beyond the EOF, the file is padded with NULLs, except in the case of

POSIX, using HFS files, where padding does not occur until a subsequent write of

new data.

Text Streams

For text streams, ftell() returns an encoded offset. When seeking with an origin of

SEEK_SET, you are restricted to seeking only to 0 or to positions returned by a

previous ftell().

Attempting to calculate your own position is not supported, and may result in a

non-valid position and the failure of fseek().

When you are using SEEK_CUR or SEEK_END, the offset is a relative byte offset.

Attempting to seek to before the start of the file or past the EOF results in failure.

Record I/O

For files opened as type=record, ftell() returns the relative record number. For the

origins of SEEK_SET, SEEK_CUR, and SEEK_END, the offset is a relative record

number.

Attempting to seek to before the first record or past the EOF results in failure.

For wide-oriented streams, all the above restrictions apply.

Attention: Repositioning within a wide-oriented file and performing updates is

strongly discouraged because it is not possible to predict if your update will

overwrite part of a multibyte string or character, thereby invalidating subsequent

data. For example, you could inadvertently add data that overwrites a shift-out. The

following data expects the shift-out to be there, so is not valid if it is treated as if in

the initial shift state. Repositioning to the end of the file and adding new data is

safe.

For details about wide-oriented streams, see z/OS XL C/C++ Programming Guide.

If successful, the fseek() function clears the EOF indicator, even when origin is

SEEK_END, and cancels the effect of any preceding ungetc() or ungetwc() function on

the same stream.

If the call to the fseek() function or the fsetpos() function is not valid, the call is

treated as a flush and the ungetc characters are discarded.

Large Files for HFS

fseek

694 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable operations on HFS files that are larger than 2 gig-1 in size.

When this choice has been made then fseek() should be replaced by the neutral

function fseeko().

Multivolume Data Sets Performance

Using the fgetpos() and fsetpos() functions generally results in better repositioning

performance compared to the ftell() and fseek() functions when working with

multivolume data sets.

Considerations For VSAM extended addressability data sets

As of z/OS V1.8, support is added for extended addressable VSAM data sets,

meaning that the VSAM data set can grow beyond 4GB in size and still be able to

be read from, written to, or repositioned, in a z/OS XL C/C++ application.

AMODE 31: The fseek() function accepts a signed 4-byte offset and therefore is

limited in what direct and relative positions can be achieved. For example, fseek()

cannot be used to position directly beyond 2GB-1 when using SEEK_SET as the

origin for binary I/O. Applications should use the large files version of fseeko() to

avoid the limitations.

AMODE 64: There are no restrictions with fseek() since it accepts a signed 8-byte

offset.

See z/OS XL C/C++ Programming Guide for additional usage information with

respect to fseek() and VSAM data sets.

Returned Value

If successful in moving the pointer, fseek() returns 0.

If unsuccessful, or on devices that cannot seek, such as terminals and printers,

fseek() returns nonzero.

Special Behavior for XPG4.2

If unsuccessful, fseek() returns -1 and sets errno to one of the following values:

Error Code Description

EOVERFLOW The resulting file offset would be a value which cannot be

represented correctly in an object of type long.

Note: Starting with z/OS V1.9, environment variable

_EDC_EOVERFLOW can be used to control behavior of

fseek() with respect to detecting an EOVERFLOW condition

for UNIX files. By default, fseek() will continue to be able to

position beyond a location that ftell() can return. When

_EDC_EOVERFLOW is set to YES, fseek() will check if the

new position can be returned by ftell().

ESPIPE The underlying file type for the stream is a PIPE or a socket.

fseek

Chapter 3. Part 3. Library Functions 695

||

||
|

|
|
|
|
|
|
|

||

Example

/* This example opens a file myfile.dat for reading.

 After performing input operations (not shown), it moves the file

 pointer to the beginning of the file.

 */

#include <stdio.h>

int main(void)

{

 FILE *stream;

 int result;

 if (stream = fopen("myfile.dat", "r"))

 { /* successful */

 if (fseek(stream, 0L, SEEK_SET)); /* moves pointer to */

 /* the beginning of the file */

 { /* if not equal to 0

 then error ... */

 }

 else {

 /* fseek() successful */

 }

}

Related Information

v “stdio.h” on page 82

v “fseeko() — Change File Position” on page 697

v “ftell() — Get Current File Position” on page 711

v “ungetc() — Push Character onto Input Stream” on page 2307

v “ungetwc() — Push a Wide Character onto a Stream” on page 2310

fseek

696 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fseeko() — Change File Position

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R10

Format

#define _XOPEN_SOURCE 500

#include <stdio.h>

int fseeko(FILE *stream, off_t offset, int origin);

General Description

Changes the current file position associated with stream to a new location within the

file. The next operation on the stream takes place at the new location. On a stream

open for update, the next operation can be either a reading or a writing operation.

The origin must be one of the following constants defined in stdio.h:

Origin Definition

SEEK_SET Beginning of file

SEEK_CUR Current position of file pointer

SEEK_END End of file

Note: If you specify SEEK_CUR, any characters pushed back by ungetc() or

ungetwc() will have backed up the current position of the file pointer--which

is the starting point of the seek. The seek will discard any pushed-back

characters before repositioning, but the starting point will still be affected. For

more information about calling fseeko() after an ungetc() or ungetwc() see

“ungetc() — Push Character onto Input Stream” on page 2307 and

“ungetwc() — Push a Wide Character onto a Stream” on page 2310.

The _EDC_COMPAT environment variable causes fseeko() to ignore the effects of

ungetc() or ungetwc(). For more details, see “Environment Variables” in z/OS XL

C/C++ Programming Guide.

Binary Streams

ANSI states that binary streams use relative byte offsets for both ftello() and

fseeko(). Under z/OS XL C/C++, this is true except for record-oriented files that

have variable length records. For these types of files, the default behavior is to use

encoded offsets for ftello() and fseeko(), using an origin of SEEK_SET.

Encoded offsets restrict you to seeking only to those positions that are recorded by

a previous ftello() or to position 0. If you want to use relative-byte offsets for these

types of files, you can either open with the BYTESEEK fopen() option or set the

_EDC_BYTE_SEEK environment variable before opening. For details about

BYTESEEK or _EDC_BYTE_SEEK, see z/OS XL C/C++ Programming Guide.

With relative-byte offsets, you are free to calculate your own offsets. If the offset

exceeds the EOF, your file is extended with NULLs, except for HFS files, for which

fseeko

Chapter 3. Part 3. Library Functions 697

||||

|
|
||

|

the file is only extended with NULLs if you subsequently write new data. This is true

also under POSIX, using HFS files, where the file is only extended with NULLs if

you subsequently write new data.

Attempting to reposition to before the start of the file causes fseeko() to fail.

Regardless of whether encoded or relative offsets are returned by ftello(), you can

specify relative offsets when using SEEK_CUR and SEEK_END.

If the new position is before the start of the file, fseeko() fails. If the relative offset is

positioned beyond the EOF, the file is padded with NULLs, except in the case of

POSIX, using HFS files, where padding does not occur until a subsequent write of

new data.

Text Streams

For text streams, ftello() returns an encoded offset. When seeking with an origin of

SEEK_SET, you are restricted to seeking only to 0 or to positions returned by a

previous ftello().

Attempting to calculate your own position is not supported, and may result in a

non-valid position and the failure of fseeko().

When you are using SEEK_CUR or SEEK_END, the offset is a relative byte offset.

Attempting to seek to before the start of the file or past the EOF results in failure.

Record I/O

For files opened as type=record, ftello() returns the relative record number. For the

origins of SEEK_SET, SEEK_CUR, and SEEK_END, the offset is a relative record

number.

Attempting to seek to before the first record or past the EOF results in failure.

For wide-oriented streams, all the above restrictions apply.

Note: Repositioning within a wide-oriented file and performing updates is strongly

discouraged because it is not possible to predict if your update will overwrite

part of a multibyte string or character, thereby invalidating subsequent data.

For example, you could inadvertently add data that overwrites a shift-out.

The following data expects the shift-out to be there, so is not valid if it is

treated as if in the initial shift state. Repositioning to the end of the file and

adding new data is safe.

For details about wide-oriented streams, see z/OS XL C/C++ Programming Guide.

If successful, the fseeko() function clears the EOF indicator, even when the origin is

SEEK_END, and cancels the effect of any preceding ungetc() or ungetwc() function

on the same stream.

If the call to the fseeko() function or the fsetpos() function is not valid, the call is

treated as a flush and the ungetc characters are discarded.

Multivolume Data Sets Performance

fseeko

698 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Using the fgetpos() and fsetpos() functions generally results in better repositioning

performance compared to the ftell() and fseek() functions when working with

multivolume data sets.

Considerations For VSAM extended addressability data sets

As of z/OS V1.8, support is added for extended addressable VSAM data sets,

meaning that the VSAM data set can grow beyond 4GB in size and still be able to

be read from, written to, or repositioned, in a z/OS XL C/C++ application.

AMODE 31: The non-large files version of fseeko() is equivalent to fseek(), in that it

accepts a signed 4-byte offset and therefore is limited in what direct and relative

positions can be achieved. For example, non-large files fseeko() cannot be used to

position directly beyond 2GB-1 when using SEEK_SET as the origin for binary I/O.

The large files version of fseeko() accepts a signed 8-byte offset and it has been

updated to support VSAM extended addressable data sets.

AMODE 64: There are no restrictions with fseeko() since it accepts a signed 8-byte

offset.

See z/OS XL C/C++ Programming Guide for additional usage information with

respect to fseek() and VSAM data sets.

Returned Value

If successful, fseeko() returns 0, which means it successfully moved the pointer.

If unsuccessful, fseeko() returns nonzero and sets errno to one of the following

values.

On devices that cannot seek, such as terminals and printers, fseeko() returns

nonzero.

Error Code Description

EBADF The file descriptor underlying stream is not an open file descriptor.

EOVERFLOW The current file offset cannot be represented correctly in an object

of type off_t.

ESPIPE The file descriptor underlying stream is associated with a pipe or

FIFO.

Example

 /* This example opens a file myfile.dat for reading.

 After performing input operations (not shown), it moves the file

 pointer to the beginning of the file.

 */

 #define _LARGE_FILES 1

 #include <stdio.h>

 int main(void)

 {

 FILE *stream;

 int result;

 if (stream = fopen("/myfile.dat", "r"))

 { /* successful */

fseeko

Chapter 3. Part 3. Library Functions 699

|
|

if (fseeko(stream, 0LL, SEEK_SET)); /* moves pointer to */

 /* the beginning of the file */

 { /* if not equal to 0

 then error ... */

 }

 else {

 /* fseeko() successful */

 }

 }

Related Information

v “stdio.h” on page 82

v “fseek() — Change File Position” on page 693

v “ftello() — Get Current File Position” on page 714

v “ungetc() — Push Character onto Input Stream” on page 2307

v “ungetwc() — Push a Wide Character onto a Stream” on page 2310

fseeko

700 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fsetpos() — Set File Position

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

General Description

Moves the file position associated with stream to a new location within the file

according to the value of the object pointed to by pos. The value of pos must be

obtained by a call to the fgetpos() library function. If successful, the fsetpos()

function clears the EOF indicator, and cancels the effect of any previous ungetc() or

ungetwc() function on the same stream.

If the call to the fsetpos() function is not valid, the call is treated as a flush, and the

ungetc characters are discarded.

The fsetpos() function handles Double-Byte Character Set (DBCS) state information

for wide-oriented files. An fsetpos() call to a position that no longer exists results in

an error.

For text streams, the DBCS shift state is recalculated from the start of the record,

which has a performance implication. The fsetpos() function repositions to the start

of a multibyte character.

For binary streams, the DBCS shift state is set to the state saved by the fsetpos()

function. If the record has been updated in the meantime, the shift state may be

incorrect.

After the fsetpos() call, the next operation on a stream in update mode may be

input or output.

Note: Repositioning within a wide-oriented file and performing updates is strongly

discouraged because it is not possible to predict if your update will overwrite

part of a multibyte string or character, thereby invalidating subsequent data.

For example, you could inadvertently add data that overwrites a shift-out.

The following data expects the shift-out to be there, so is not valid if it is

treated as if in the initial shift state. Repositioning to the end of the file and

adding new data is safe.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

fsetpos

Chapter 3. Part 3. Library Functions 701

||||

|
|
|
|
|
|

||

|

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Multivolume Data Sets Performance

Using the fgetpos() and fsetpos() functions generally results in better repositioning

performance compared to the ftell() and fseek() functions when working with

multivolume data sets.

Returned Value

If successful in changing the current position of the file, fsetpos() returns 0.

If unsuccessful, fsetpos() returns nonzero and sets errno.

Special Behavior for XPG4.2

If unsuccessful, fsetpos() returns -1 and sets errno to one of the following values:

Error Code Description

ESPIPE The underlying file type for the stream is a PIPE or a socket.

Example

/* This example opens a file called myfile.dat for reading.

 After performing input operations (not shown), it moves the file

 pointer to the beginning of the file and rereads the first byte.

 */

#include <stdio.h>

int main(void)

{

 FILE *stream;

 int retcode;

 fpos_t pos, pos1, pos2, pos3;

 char ptr[20]; /* existing file ’myfile.dat’ has 20 byte records */

 /* Open file, get position of file pointer, and read first record */

 stream = fopen("myfile.dat", "rb");

 fgetpos(stream,&pos);

 pos1 = pos;

 if (!fread(ptr,sizeof(ptr),1,stream))

 printf("fread error\n");

 /* Perform a number of read operations. The value of ’pos’

 changes if ’pos’ is passed to fgetpos() */ ...
 /* Re-set pointer to start of file and re-read first record */

 fsetpos(stream,&pos1);

 if (!fread(ptr,sizeof(ptr),1,stream))

 printf("fread error\n");

 fclose(stream);

}

fsetpos

702 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

||

Related Information

v “stdio.h” on page 82

v “fgetpos() — Get File Position” on page 589

v “ftell() — Get Current File Position” on page 711

v “rewind() — Set File Position to Beginning of File” on page 1681

v “ungetc() — Push Character onto Input Stream” on page 2307

v “ungetwc() — Push a Wide Character onto a Stream” on page 2310

fsetpos

Chapter 3. Part 3. Library Functions 703

fstat() — Get Status Information about a File

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/stat.h>

int fstat(int fildes, struct stat *info);

General Description

Gets status information about the file specified by the open file descriptor fildes and

stores it in the area of memory indicated by the info argument. The status

information is returned in a stat structure, as defined in the sys/stat.h header file.

The elements of this structure are described in “stat() — Get File Information” on

page 2008.

Note: Starting with z/OS V1.9, environment variable _EDC_EOVERFLOW can be

used to control behavior of fstat() with respect to detecting an EOVERFLOW

condition for UNIX files. By default, fstat() will not set EOVERFLOW when

the file size can not be represented correctly in structure pointed to by info.

When _EDC_EOVERFLOW is set to YES, fstat() will check for an overflow

condition.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, fstat() returns 0.

If unsuccessful, fstat() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINVAL info contains a NULL.

EIO Added for XPG4.2: An I/O error occurred while reading from the

file system.

EOVERFLOW

fstat

704 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

|
|
|
|
|
|

||

The file size in bytes or the number of blocks allocated to the file or

the file serial number cannot be represented correctly in the

structure pointed to by info.

Note: Starting with, z/OS V1R9, the fstat() function may fail with

EOVERFLOW if Large Files for HFS is not enabled. The

environment variable _EDC_EOVERFLOW controls this

behavior. If _EDC_EOVERFLOW is set to YES the new

behavior will take place. The default for

_EDC_EOVERFLOW is NO.

Example

CELEBF47

/* CELEBF47

 This example gets status information for the file called temp.file.

 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

#include <time.h>

main() {

 char fn[]="temp.file";

 struct stat info;

 int fd;

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 if (fstat(fd, &info) != 0)

 perror("fstat() error");

 else {

 puts("fstat() returned:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 printf("created: %s", ctime(&info.st_createtime));

 }

 close(fd);

 unlink(fn);

 }

}

Output

fstat() returned:

 inode: 3057

 dev id: 1

 mode: 03000080

 links: 1

 uid: 25

 gid: 500

created: Fri Jun 16 16:03:16 2001

fstat

Chapter 3. Part 3. Library Functions 705

|
|
|

|
|
|
|
|
|

Related Information

v “sys/stat.h” on page 89

v “sys/types.h” on page 90

v “fcntl() — Control Open File Descriptors” on page 527

v “lstat() — Get Status of File or Symbolic Link” on page 1163

v “open() — Open a File” on page 1313

v “stat() — Get File Information” on page 2008

fstat

706 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fstatvfs() — Get File System Information

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/statvfs.h>

int fstatvfs(int fildes, struct statvfs *fsinfo);

General Description

The fstatvfs() function obtains information about the file system containing the file

referenced by fildes and stores it in the area of memory pointed to by the fsinfo

argument.

The information is returned in a statvfs structure, as defined in the sys/statvfs.h

header file. The elements of this structure are described in “statvfs() — Get File

System Information” on page 2012. If fstatvfs() successfully determines this

information, it stores it in the area indicated by the fsinfo argument. The size of the

buffer determines how much information is stored; data that exceeds the size of the

buffer is truncated.

Returned Value

If successful, fstatvfs() returns 0.

If unsuccessful, fstatvfs() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINTR A signal was caught during the execution of the function.

EIO An I/O error has occurred while reading the file system.

Example

#include <sys/statvfs.h>

#include <stdio.h>

main()

{

 char fn[]="temp.file";

 int fd;

 struct statvfs buf;

 if ((fd = creat(fn,S_IWUSR)) < 0)

 perror("creat() error");

 else {

 if (fstatvfs(fd, &buf) == -1)

 perror("fstatvfs() error");

 else {

 printf("each block is %d bytes big\n", buf.f_bsize);

 printf("there are %d blocks available\n", buf.f_bavail);

fstatvfs

Chapter 3. Part 3. Library Functions 707

||||

|
|
||

|

printf("out of a total of %d in bytes,\n", buf.f_blocks);

 printf("that’s %.0f bytes free out of a total of %.0f\n",

 ((double)buf.f_bavail * buf.f_bsize),

 ((double)buf.f_blocks * buf.f_bsize));

 }

 close(fd);

 unlink(fn);

 }

}

Output

each block is 4096 bytes big

there are 2089 blocks available

out of a total of 2400 in bytes,

that’s 8556544 bytes free out of a total of 9830400

Related Information

v “sys/statvfs.h” on page 89

v “chmod() — Change the Mode of a File or Directory” on page 280

v “chown() — Change the Owner or Group of a File or Directory” on page 283

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup() — Duplicate an Open File Descriptor” on page 449

v “fcntl() — Control Open File Descriptors” on page 527

v “link() — Create a Link to a File” on page 1101

v “mknod() — Make a Directory or File” on page 1223

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

v “read() — Read From a File or Socket” on page 1602

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

v “time() — Determine current UTC time” on page 2204

v “unlink() — Remove a Directory Entry” on page 2312

v “utime() — Set File Access and Modification Times” on page 2317

v “write() — Write Data on a File or Socket” on page 2464

fstatvfs

708 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fsync() — Write Changes to Direct-Access Storage

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX1_SOURCE 2

#include <unistd.h>

int fsync(int fildes);

General Description

Transfers all data for the file indicated by the open file descriptor fildes to the

storage device associated with fildes. fsync() does not return until the transfer has

completed, or until an error is detected.

Returned Value

If successful, fsync() returns 0.

If unsuccessful, fsync() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINVAL The file is not a regular file.

Example

CELEBF48

/* CELEBF48 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

#define mega_string_len 250000

main() {

 char *mega_string;

 int fd, ret;

 char fn[]="fsync.file";

 if ((mega_string = (char*) malloc(mega_string_len)) == NULL)

 perror("malloc() error");

 else if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 memset(mega_string, 's', mega_string_len);

 if ((ret = write(fd, mega_string, mega_string_len)) == −1)

 perror("write() error");

fsync

Chapter 3. Part 3. Library Functions 709

||||

|
|
|
|

||

|

else {

 printf("write() wrote %d bytes\n", ret);

 if (fsync(fd) != 0)

 perror("fsync() error");

 else if ((ret = write(fd, mega_string, mega_string_len)) == −1)

 perror("write() error");

 else

 printf("write() wrote %d bytes\n", ret);

 }

 close(fd);

 unlink(fn);

 }

}

Output

write() wrote 250000 bytes

write() wrote 250000 bytes

Related Information

v “unistd.h” on page 96

v “open() — Open a File” on page 1313

v “write() — Write Data on a File or Socket” on page 2464

fsync

710 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ftell() — Get Current File Position

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

long int ftell(FILE *stream);

General Description

Obtains the current value of the file position indicator for the stream pointed to by

stream.

Binary Streams

ANSI states that ftell() returns relative byte offsets from the beginning of the file for

binary files. Under z/OS XL C/C++, this is true except for record-oriented files that

have variable length records. For these types of files, ftell() returns an encoded

offset.

If you want to use relative-byte offsets for these types of files, you can either open

your files with the BYTESEEK fopen() option, or set the _EDC_BYTE_SEEK

environment variable before opening them. For details about BYTESEEK or

_EDC_BYTE_SEEK see z/OS XL C/C++ Programming Guide.

Text Streams

ftell() returns an encoded offset for text streams.

Record I/O

For files opened for record I/O using the type=record open mode parameter, ftell()

returns the relative record offset of the current file position from the beginning of the

file. All offset values are given in terms of records. For more information about

calling ftell() after an ungetc() or ungetwc() see “ungetc() — Push Character onto

Input Stream” on page 2307 and “ungetwc() — Push a Wide Character onto a

Stream” on page 2310.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable operations on HFS files that are larger than 2 gig-1 in size.

When this choice has been made, then ftell() should be replaced by the neutral

function ftello().

ftell

Chapter 3. Part 3. Library Functions 711

||||

|
|
|
|
|
|

||

|

Multivolume Data Sets Performance

Using the fgetpos() and fsetpos() functions generally results in better repositioning

performance compared to the ftell() and fseek() functions when working with

multivolume data sets.

Considerations For VSAM extended addressability data sets

As of z/OS V1.8, support is added for extended addressable VSAM data sets,

meaning that the VSAM data set can grow beyond 4GB in size and still be able to

be read from, written to, or repositioned, in a z/OS XL C/C++ application. Being

able to report a relative byte address (RBA) beyond 4GB requires the ability to

return an 8-byte value back to the application.

AMODE 31: The ftell() function returns a signed 4-byte value and therefore has

limitations on positions that can be returned. For example, ftell() cannot report an

RBA beyond 2GB-1. Applications should use the large files version of ftello() to

avoid the limitations.

AMODE 64: There is no restriction with ftell() since it returns a signed 8-byte value.

See z/OS XL C/C++ Programming Guide for additional usage information with

respect to ftell() and VSAM data sets.

Returned Value

If successful, ftell() returns the calculated value.

If unsuccessful, ftell() returns −1 and sets errno to a positive value.

Special Behavior for XPG4.2

If unsuccessful, ftell() returns -1 and sets errno to one of the following values:

Error Code Description

EOVERFLOW For ftell(), the current file offset cannot be represented correctly in

an object of type long.

Note: Starting with z/OS V1.9, environment variable

_EDC_EOVERFLOW can be used to control behavior of

ftell() with respect to detecting an EOVERFLOW condition

for UNIX files. By default, ftell() will not set EOVERFLOW

when the file offset can not be represented correctly. When

_EDC_EOVERFLOW is set to YES, ftell() will check for an

overflow condition.

ESPIPE The underlying file type for the stream is a PIPE or a socket.

Example

/* This example opens the file myfile.dat for reading.

 The current file pointer position is stored in the variable pos.

 */

#include <stdio.h>

int main(void)

{

 FILE *stream

 long int pos;

ftell

712 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||
|

|
|
|
|
|
|
|

stream = fopen("myfile.dat", "rb");

 /* The value returned by ftell can be used by fseek()

 to set the file pointer if ’pos’ is not -1 */

 if ((pos = ftell(stream)) != EOF)

 printf("Current position of file pointer found\n");

 fclose(stream);

}

Related Information

v “stdio.h” on page 82

v “fgetpos() — Get File Position” on page 589

v “fopen() — Open a File” on page 626

v “fseek() — Change File Position” on page 693

v “fsetpos() — Set File Position” on page 701

v “ftello() — Get Current File Position” on page 714

ftell

Chapter 3. Part 3. Library Functions 713

ftello() — Get Current File Position

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R10

Format

#define _XOPEN_SOURCE 500

#include <stdio.h>

off_t ftello(FILE *stream);

General Description

Obtains the current value of the file position indicator for the stream pointed to by

stream.

Binary Streams

ANSI states that ftello() returns relative byte offsets from the beginning of the file for

binary files. Under z/OS XL C/C++, this is true except for record-oriented files that

have variable length records. For these types of files, ftello() returns an encoded

offset.

If you want to use relative-byte offsets for these types of files, you can either open

your files with BYTESEEK fopen() option, or set the _EDC_BYTE_SEEK

environment variable before opening them. For details about BYTESEEK see z/OS

XL C/C++ Programming Guide.

Text Streams

ftello() returns an encoded offset for text streams.

Record I/O

For files opened for record I/O using the type=record open mode parameter, ftello()

returns the relative record offset of the current file position from the beginning of the

file. All offset values are given in terms of records. For more information about

calling ftello() after an ungetwc() see “ungetc() — Push Character onto Input

Stream” on page 2307 and “ungetwc() — Push a Wide Character onto a Stream”

on page 2310.

Multivolume Data Sets Performance

Using the fgetpos() and fsetpos() functions generally results in better repositioning

performance compared to the ftell() and fseek() functions when working with

multivolume data sets.

Considerations For VSAM extended addressability data sets

As of z/OS V1.8, support is added for extended addressable VSAM data sets,

meaning that the VSAM data set can grow beyond 4GB in size and still be able to

be read from, written to, or repositioned, in a z/OS XL C/C++ application. Being

ftello

714 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

able to report a relative byte address (RBA) beyond 4GB requires the ability to

return an 8-byte value back to the application.

AMODE 31: The non-large files version of ftello() is equivalent to ftell(), in that it

returns a signed 4-byte value and therefore has limitations on positions that can be

returned. For example, non-large files ftello() cannot report an RBA beyond 2GB-1.

The large files version of ftello() returns a signed 8-byte value and it has been

updated to support VSAM extended addressable data sets.

AMODE 64: There is no restriction with ftello() since it returns a signed 8-byte

value.

See z/OS XL C/C++ Programming Guide for additional usage information with

respect to ftello() and VSAM data sets.

Returned Value

If successful, ftello() returns the calculated value.

If unsuccessful, ftello() returns (off_t)-1 and sets errno to one of the following

values:

Error Code

Description

EBADF

The file descriptor underlying stream is not an open file descriptor.

EOVERFLOW

The current file offset cannot be represented correctly in an object of type

off_t.

ESPIPE

The file descriptor underlying stream is associated with a pipe or FIFO.

Example

 /* This example opens the file myfile.dat for reading.

 The current file pointer position is stored in the variable pos.

 */

 #define _LARGE_FILES 1

 #include <stdio.h>

 int main(void)

 {

 FILE *stream

 off_t pos;

 stream = fopen("/myfile.dat", "rb");

 /* The value returned by ftello() can be used by fseeko()

 to set the file pointer if ’pos’ is not -1 */

 if ((pos = ftello(stream)) != -1LL)

 printf("Current position of file pointer found\n");

 fclose(stream);

 }

Related Information

v “stdio.h” on page 82

v “fgetpos() — Get File Position” on page 589

v “fopen() — Open a File” on page 626

v “fseek() — Change File Position” on page 693

ftello

Chapter 3. Part 3. Library Functions 715

v “fsetpos() — Set File Position” on page 701

v “ftell() — Get Current File Position” on page 711

v “ungetc() — Push Character onto Input Stream” on page 2307

v “ungetwc() — Push a Wide Character onto a Stream” on page 2310

ftello

716 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ftime() — Set the Date and Time

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/timeb.h>

int ftime(struct timeb *tp);

General Description

The ftime() function sets the time and millitm members of the timeb structure

pointed to by tp to contain seconds and milliseconds, respectively, of the current

time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1,

1970.

Note: The ftime() function has been moved to the Legacy Option group in Single

UNIX Specification, Version 3 and may be withdrawn in a future version. The

time() function is preferred for portability.

Returned Value

If successful, ftime() returns 0.

If overflow occurs, ftime() returns -1.

1

Related Information

v “limits.h” on page 55

v “sys/timeb.h” on page 89

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “time() — Determine current UTC time” on page 2204

1. Overflow occurs when the current time in seconds since 00:00:00 UTC, January 1, 1970 exceeds the capacity of the time member

of the timeb structure pointed to by tp. The time member is type time_t.

ftime

Chapter 3. Part 3. Library Functions 717

||||

|
|
||

|

|
|
|

ftok() — Generate an Interprocess Communication (IPC) key

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/ipc.h>

key_t ftok(const char *path, int id);

General Description

The ftok() function returns a key based on path and id that is usable in subsequent

calls to msgget(), semget(), and shmget(). The path argument must be the

pathname of an existing file that the process is able to stat().

The ftok() function returns the same key value for all paths that name the same file,

when called with the same id value. If a different id value is given, or a different file

is given, a different key is returned. Only the low-order 8-bits of id are significant,

and must be nonzero.

Returned Value

If successful, ftok() returns a key.

If unsuccessful, ftok() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EINVAL The low-order 8-bits of id are zero.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG

One of the following error conditions exists:

v The length of the path argument exceeds PATH_MAX or a

pathname component is longer than NAME_MAX.

v The pathname resolution of a symbolic link produced an

intermediate result whose length exceeds PATH_MAX.

ENOENT A component of path does not name an existing file or path is an

empty string.

ENOTDIR A component of the path prefix is not a directory.

Related Information

v “sys/ipc.h” on page 87

v “msgget() — Get Message Queue” on page 1257

v “semget() — Get a Set of Semaphores” on page 1731

v “shmget() — Get a Shared Memory Segment” on page 1869

v “stat() — Get File Information” on page 2008

ftok

718 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|

ftruncate() — Truncate a File

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX1_SOURCE 2

#include <unistd.h>

int ftruncate(int fildes, off_t length);

General Description

Truncates the file indicated by the open file descriptor fildes to the indicated length.

fildes must be a regular file that is open for writing. If the file size exceeds length,

any extra data is discarded. If the file size is smaller than length, bytes between the

old and new lengths are read as zeros. A change to the size of the file has no

impact on the file offset.

Special Behavior for XPG4.2

If ftruncate() would cause the file size to exceed the soft file size limit for the

process, ftruncate() will fail and a SIGXFSZ signal will be generated for the process.

If successful, ftruncate() marks the st_ctime and st_mtime fields of the file.

If unsuccessful, ftruncate() leaves the file unchanged.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, ftruncate() returns 0.

If unsuccessful, ftruncate() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EFBIG The length argument was greater than the maximum file size.

EINTR Added for XPG4.2: A signal was caught during execution.

EINVAL fildes does not refer to a regular file, it is opened read-only, or the

length specified is incorrect.

ftruncate

Chapter 3. Part 3. Library Functions 719

||||

|
|
|

||

|

EIO Added for XPG4.2: An I/O error occurred while reading from or

writing to a file system.

EROFS The file resides on a read-only file system.

Example

CELEBF49

/* CELEBF49 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

#define string_len 1000

main() {

 char *mega_string;

 int fd, ret;

 char fn[]="write.file";

 struct stat st;

 if ((mega_string = (char*) malloc(string_len)) == NULL)

 perror("malloc() error");

 else if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 memset(mega_string, '0', string_len);

 if ((ret = write(fd, mega_string, string_len)) == −1)

 perror("write() error");

 else {

 printf("write() wrote %d bytes\n", ret);

 fstat(fd, &st);

 printf("the file has %ld bytes\n", (long) st.st_size);

 if (ftruncate(fd, 1) != 0)

 perror("ftruncate() error");

 else {

 fstat(fd, &st);

 printf("the file has %ld bytes\n", (long) st.st_size);

 }

 }

 close(fd);

 unlink(fn);

 }

}

Output

write() wrote 1000 bytes

the file has 1000 bytes

the file has 1 bytes

Related Information

v “unistd.h” on page 96

v “open() — Open a File” on page 1313

v “truncate() — Truncate a File to a Specified Length” on page 2253

ftruncate

720 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ftrylockfile() — stdio Locking

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R8

Format

#define _UNIX03_SOURCE

#include <stdio.h>

int ftrylockfile(FILE *file);

General Description

This function provides explicit application-level locking of stdio (FILE*) objects. The

flockfile() family of functions can be used by a thread to delineate a sequence of I/O

statements that are executed as a unit.

If the (FILE*) object specified by the ftrylockfile() function is available, ownership is

granted to the thread for the (FILE*) object and the internal lock count is increased.

If the thread has previously been granted ownership, the internal lock count is

increased. If another thread has been granted ownership, ftrylockfile() does not

grant ownership to the calling thread and returns a non-zero value. ftrylockfile() is a

non-blocking version of flockfile().

The internal lock count allows matching calls to flockfile() (or successful calls to

ftrylockfile()) and funlockfile() to be nested.

z/OS Consideration

The flockfile() family of functions acts upon FILE * objects. It is possible to have the

same physical file represented by multiple FILE * objects that are not recognized as

being equivalent. For example, fopen() opens a file and open() opens the same file,

and then fdopen() creates a FILE * object. In this case, locking the first FILE * does

not prevent the second FILE * from also being locked and used.

Returned Value

The ftrylockfile() function returns zero for success and non-zero to indicate that the

lock cannot be acquired.

Error Code Definition

EBADF The input (FILE *) object is not valid.

EBUSY The input (FILE *) object is locked by another thread.

Note: It is the application’s responsibility to prevent deadlock (or looping). For

example, deadlock (or looping) may occur if a (FILE *) object is closed, or a

thread is terminated, before relinquishing all locked (FILE *) objects.

Related Information

v “flockfile()— stdio Locking” on page 608

v “funlockfile() — stdio Unlocking” on page 724

floor, floorf, floorl

Chapter 3. Part 3. Library Functions 721

||||

|||
|

ftw() — Traverse a File Tree

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <ftw.h>

int ftw(const char *path,

 int (*fn)(const char *, const struct stat *, int),

 int ndirs);

General Description

The ftw() function recursively descends the directory hierarchy rooted in path. For

each object in the hierarchy, ftw() calls the function pointed to by fn, passing it a

pointer to a NULL-terminated string containing the name of the object, a pointer to a

stat structure containing information about the object, and an integer. Possible

values of the integer, defined in the <ftw.h> header, are:

FTW_D for a directory

FTW_DNR for a directory that cannot be read

FTW_F for a file

FTW_SL for a symbolic link

FTW_NS for an object other than a symbolic link on which stat() could not be

successfully executed. If the object is a symbolic link, and stat()

failed, it is unspecified whether ftw() passes FTW_SL or FTW_NS

to the user-supplied function.

If the integer is FTW_DNR, descendants of that directory will not be processed. If

the integer is FTW_NS, the stat structure will contain undefined values. An example

of an object that would cause FTW_NS to be passed to the function pointed to by

fn would be a file in a directory with read but without execute (search) permission.

The ftw() function visits a directory before visiting any of its descendants.

The ftw() function uses at most one file descriptor for each level in the tree.

The argument ndirs should be in the range of 1 to OPEN_MAX.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a

nonzero value, or some other error, other than [EACCES], is detected within ftw().

The ndirs argument specifies the maximum number of directory streams or file

descriptors or both available for use by ftw() while traversing the tree. When ftw()

returns it closes any directory streams and file descriptors it uses not counting any

opened by the application-supplied fn function.

ftw

722 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|
|
|
|

Note: When working with Large Files, the function pointed to by fn should be

compiled with Large Files support or else data may be inaccurate in the stat

structure

Returned Value

If the tree is exhausted, ftw() returns 0. If the function pointed to by fn returns a

nonzero value, ftw() stops its tree traversal and returns whatever value was

returned by the function pointed to by fn().

If ftw() detects an error, it returns −1 and sets errno to one of the following values.

All other errnos returned by ftw() are unchanged.

Error Code Description

EACCES Search permission is denied for any component of

path or read permission is denied for path.

EINVAL The value of the ndirs argument is not valid.

ELOOP Too many symbolic links were encountered.

ENAMETOOLONG One of the following error conditions exists:

v Pathname resolution of a symbolic link produced

an intermediate result whose length exceeds

PATH_MAX.

v The length of path exceeds PATH_MAX, or a

pathname component is longer than PATH_MAX.

ENOENT A component of path does not name an existing file

or path is an empty string.

ENOTDIR A component of path is not a directory.

Related Information

v “ftw.h” on page 48

v “longjmp() — Restore Stack Environment” on page 1143

v “lstat() — Get Status of File or Symbolic Link” on page 1163

v “malloc() — Reserve Storage Block” on page 1172

v “nftw() — Traverse a File Tree” on page 1301

v “opendir() — Open a Directory” on page 1319

v “readdir() — Read an Entry from a Directory” on page 1608

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “stat() — Get File Information” on page 2008

ftw

Chapter 3. Part 3. Library Functions 723

|
|
|

|

funlockfile() — stdio Unlocking

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R8

Format

#define _UNIX03_SOURCE

#include <stdio.h>

void funlockfile(FILE *file);

General Description

This function provides explicit application-level unlocking of stdio (FILE*) objects.

The flockfile() family of functions can be used by a thread to delineate a sequence

of I/O statements that are executed as a unit.

The funlockfile() function reduces the internal lock count. When the count is

reduced to zero, the funlockfile() function relinquishes the ownership granted to the

thread, of a (FILE *) object. If a call to funlockfile() is made by a thread which has

not been granted ownership of a (FILE *) object, the call is ignored and the lock

count is not reduced

The internal lock count allows matching calls to flockfile() (or successful calls to

ftrylockfile()) and funlockfile() to be nested.

z/OS Consideration

The flockfile() family of functions acts upon FILE * objects. It is possible to have the

same physical file represented by multiple FILE * objects that are not recognized as

being equivalent. For example, fopen() opens a file and open() opens the same file,

and then fdopen() creates a FILE * object. In this case, locking the first FILE * does

not prevent the second FILE * from also being locked and used.

Returned Value

None.

Note:

v Because the funlockfile() function returns void, no error information can be

returned. If an invalid (FILE *) object is input, it will be ignored.

v It is the application’s responsibility to prevent deadlock (or looping). For

example, deadlock (or looping) may occur if a (FILE *) object is closed, or

a thread is terminated, before relinquishing all locked (FILE *) objects.

Related Information

v “flockfile()— stdio Locking” on page 608

v “ftrylockfile() — stdio Locking” on page 721

floor, floorf, floorl

724 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|||
|

fupdate() — Update a VSAM Record

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <stdio.h>

size_t fupdate(const void *buffer, size_t size, FILE *stream);

General Description

Replaces the last record read from the VSAM cluster pointed to by stream, with the

contents of buffer for a length of size. See “Performing VSAM I/O Operations” in

z/OS XL C/C++ Programming Guide for details.

The fupdate() function can be used only with a VSAM data set opened in update

mode (rb+/r+b, ab+/a+b, or wb+/w+b) with the type=record option.

The fupdate() function can only be used after an fread() call has been performed

and before any other operation on that file pointer. For example, if you need to

acquire the file position using ftell() or fgetpos(), you can do it either before the

fread() or after the fupdate(). An fread() after an fupdate() retrieves the next updated

record.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

KSDS or KSDS PATH

The size of the record can be changed by a call to fupdate(). If the size is greater

than the existing record size but less than or equal to the maximum record length of

the file, a call to fupdate() will lengthen the record up to the maximum record length

of the file. If the size is greater than the maximum record length of the file, the

record is truncated and errno is set. If the size is less than or equal to the existing

record length, all size bytes of the record are written, and no padding or overlaying

occurs. The records will be shortened and not partially updated.

ESDS, ESDS PATH, or RRDS

The size of a record cannot be changed by a call to fupdate(). If you call fupdate()

with size smaller than the size of the existing record, size bytes of the record are

updated; the remaining bytes are unchanged, and the record length remains

unchanged.

fupdate

Chapter 3. Part 3. Library Functions 725

The key of reference (the prime key if opened as a cluster, the alternative index key

if opened as a path) cannot be changed by an update. If a data set is opened as a

path, the prime key cannot be changed by an update. For RRDS files, the buffer

must be an RRDS record structure, which includes an rrds_key.

Returned Value

If successful, fupdate() returns the size of the updated record.

If the update operation is not successful, fupdate() returns 0.

Example

CELEBF50

/* CELEBF50 */

#include <stdio.h>

int main(void)

{

 FILE *stream;

 struct record { char name[20];

 char address[40];

 int age;

 } buffer;

 int vsam_rc, numread;

 stream = fopen("DD:MYCLUS", "rb+,type=record");

 numread = fread(&buffer, 1, sizeof(buffer), stream);

 /* ... Update fields in the record ... */

 vsam_rc = fupdate(&buffer, sizeof(buffer), stream);

}

Related Information

v “Performing VSAM I/O Operations” in z/OS XL C/C++ Programming Guide

v “stdio.h” on page 82

v “fdelrec() — Delete a VSAM Record” on page 539

v “flocate() — Locate a VSAM Record” on page 605

fupdate

726 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fwide() — Set Stream Orientation

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _MSE_PROTOS

#include <stdio.h>

#include <wchar.h>

int fwide(FILE *stream, int mode);

General Description

fwide() determines the orientation of the stream pointed to by stream. If mode is

greater than 0, the function attempts to make the stream wide-oriented. If mode is

less than 0, the function attempts to make the stream byte-oriented. Otherwise,

mode is 0 and the function does not alter the orientation of the stream, rather the

function returns the current orientation of the stream.

If the orientation of the stream has already been determined, fwide() will not change

it.

Streams opened as type=record do not have orientation.

VSAM data sets and CICS transient data queues do not have orientation. Use of

fwide() against streams referring to VSAM data sets or CICS transient data queues

will be unsuccessful.

An application wishing to check for error situations should set errno to 0, then call

fwide(), then check errno. If errno is non-zero assume an error has occurred.

Special Considerations for C++

The interaction of fwide() and a C++ I/O stream is undefined.

Usage Note

The run-time library does not prevent using byte-oriented I/O functions on a

wide-oriented stream, using wide-oriented I/O functions on a byte-oriented stream,

or any other mixed orientation usage. The behavior of an application doing so is

undefined. As a result, the orientation of a stream reported by fwide() might not be

consistent with the I/O functions that are being used. The stream orientation first set

using fwide() itself, or through the first I/O operation on the stream is what will be

returned. For example, if fwide() is used to set the orientation as byte-oriented, but

only wide-oriented I/O functions are used on the stream, the orientation of the

stream remains byte-oriented even though no mixing of I/O functions has occurred.

fwide

Chapter 3. Part 3. Library Functions 727

||||

|
|
|
|

||

|

Returned Value

If successful, fwide() returns a value greater than 0 if the stream has

wide-orientation after the call. It returns a value less than 0 if the stream has

byte-orientation, or 0 if the stream has no orientation after the call.

When unsuccessful, fwide() returns 0 and sets errno to one of the following:

EBADF – The stream specified by stream was not valid.

EINVAL – The stream specified by stream was opened type=record, or the stream

refers to a VSAM data set or CICS transient data queue.

Related Information

v “stdio.h” on page 82

v “wchar.h” on page 98

fwide

728 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fwprintf(), swprintf(), wprintf() — Format and Write Wide Characters

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

int fwprintf(FILE * __restrict__ stream, const wchar_t * __restrict__ format, ...);

int swprintf(wchar_t * __restrict__ wcs, size_t n, const wchar_t * __restrict__ format, ...);

int wprintf(const wchar_t * __restrict__ format, ...);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

int fwprintf(FILE * __restrict__ stream, const wchar_t * __restrict__ format, ...);

int swprintf(wchar_t *__restrict__ wcs, size_t n, const wchar_t * __restrict__ format, ...);

int wprintf(const wchar_t * __restrict__ format, ...);

General Description

The fwprintf(), swprintf() and wprintf() functions are equivalent to fprintf(), sprintf()

and printf(), respectively, except for the following:

v For swprintf(), the argument wcs specifies an array of type wchar_t into which the

generated output is to be written, rather than an array of type char.

v The argument format specifies an array of type wchar_t that describes how

subsequent arguments are converted for output, rather than an array of type

char.

v %c without an l prefix means an int arg is to be converted to wchar_t, as if

mbtowc() were called, and then written.

v %c with l prefix means a wint_t is converted to wchar_t and then written.

v %s without an l prefix means a character array containing a multibyte character

sequence is to be converted to an array of wchar_t and then written. The

conversion will take place as if mbrtowc() were called repeatedly.

v %s with l prefix means an array of wchar_t will be written. The array is written

up to but not including the terminating NULL character, unless the precision

specifies a shorter output.

For swprintf(), a NULL wide character is written at the end of the wide characters

written; the NULL wide character is not counted as part of the returned sum. If

copying takes place between objects that overlap, the behavior is undefined.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the fwprintf(),

fwprintf(), swprintf, wprintf()

Chapter 3. Part 3. Library Functions 729

||||

|
|
|

||

|

swprintf() or wprintf() function in the wchar header available when you compile your

program. Please see Table 4 on page 22 for a list of XPG4 and other feature test

macros.

Note: The fwprintf() and wprintf() functions have a dependency on the level of the

Enhanced ASCII Extensions. See “Enhanced ASCII Support ” on page 2495

for details.

Returned Value

If successful, fwprintf(), wprintf(), and swprintf() return the number of wide

characters written, not counting the terminating NULL wide character.

If unsuccessful, a negative value is returned.

If n or more wide characters were requested to be written, swprintf() returns a

negative value and sets errno to indicate the error.

Related Information

v “wchar.h” on page 98

v “fprintf(), printf(), sprintf() — Format and Write Data” on page 648

v “vfwprintf(), vswprintf(), vwprintf() — Format and Write Wide Characters of a

stdarg Argument List” on page 2338

fwprintf(), swprintf, wprintf()

730 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fwrite() — Write Items

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

size_t fwrite(const void * __restrict__buffer, size_t size, size_t count, FILE * __restrict__stream);

General Description

Writes up to count items of size size from the location pointed to by buffer to the

stream pointed to by stream.

When you are using fwrite() for record I/O output, set size to 1 and count to the

length of the record to be written. You can only write one record at a time when you

are using record I/O. Any string longer than the record length is cut off at the record

length. A flush or reposition is required before a subsequent read.

Because fwrite() may buffer output before writing it out to the stream, data from

prior fwrite() calls may be lost where a subsequent call to fwrite() causes a failure

when the buffer is written to the stream.

fwrite() has the same restriction as any write operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

fwrite() returns the number of items that were successfully written.

This number can be smaller than count only if a write error occurred.

Example

CELEBF51

/* CELEBF51

 This example writes NUM long integers to a stream in binary

 format.

 It checks that the &fopen. function is successful and that

 100 items are written to the stream.

 */

#include <stdio.h>

#define NUM 100

int main(void)

fwrite

Chapter 3. Part 3. Library Functions 731

||||

|
|
|
|
|
|

||

|

{

 FILE *stream;

 long list[NUM];

 int numwritten, number;

 if((stream = fopen("myfile.dat", "w+b")) != NULL)

 {

 for (number = 0; number < NUM; ++number)

 list[number] = number;

 numwritten = fwrite(list, sizeof(long), NUM, stream);

 printf("number of long characters written is %d\n",numwritten);

 }

 else

 printf("fopen error\n");

}

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

v “freopen() — Redirect an Open File” on page 675

v “fread() — Read Items” on page 670

fwrite

732 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

fwscanf(),swscanf(),wscanf() — Convert Formatted Wide-character

Input

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

Non-XPG4

#define _MSE_PROTOS

#include <stdio.h>

#include <wchar.h>

int fwscanf(FILE *__restrict__ stream,

 const wchar_t *__restrict__ format, ...);

int swscanf(const wchar_t * __restrict__ wcs,

 const wchar_t * __restrict__ format, ...);

int wscanf(const wchar_t *__restrict__ format, ...);

XPG4 and swscanf()

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

int swscanf(const wchar_t *wcs, const wchar_t *format, ...);

General Description

The fwscanf(), swscanf(), and wscanf() functions are equivalent to fscanf(), scanf(),

and sscanf() respectively, except for the following:

v The argument wcs specifies an array of type wchar_t from which the input is to

be obtained, rather than an array of type char.

v The format argument specifies an array of type wchar_t that describes the

admissible input sequences and how they are to be converted for assignment,

rather than an array of type char.

v %c with no l prefix means one or more (depending on precision) wchar_t is

converted to multibyte characters and copied to the character array pointed to by

the corresponding argument.

v %c with the l prefix means one or more (depending on precision) wchar_t is

copied to the array of wchar_t pointed to by the corresponding argument.

v %s with no l prefix means a sequence of non-white wchar_t will be converted

and copied, including the terminating NULL character, to the character array

pointed to by the corresponding argument.

v %s with the l prefix means an array of wchar_t will be copied, including the

terminating NULL wide-character, to the array of wchar_t pointed to by the

corresponding argument.

fwscanf, swscanf,wscanf

Chapter 3. Part 3. Library Functions 733

||||

|
|
|
|

||

|

v %[with no l prefix means a sequence of non-white wchar_t will be converted and

copied, including the terminating NULL character, to the character array pointed

to by the corresponding argument.

v %[with the l prefix means an array of wchar_t will be copied, including the

terminating NULL wide-character, to the array of wchar_t pointed to by the

corresponding argument.

Note: Reaching the end of a wide-character string is equivalent to reaching the end

of a char string for the fscanf() and scanf() functions. If copying takes place

between objects that overlap, the behavior is undefined.

Special Behavior for XPG4 and swscanf()

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the swscanf()

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

Returned Value

If successful, they either return the number of input items assigned, which can be

fewer than provided for, or 0 in the event of an early matching failure. If an input

failure occurs before any conversion, EOF is returned.

Related Information

v “stdio.h” on page 82

v “wchar.h” on page 98

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

fwscanf, swscanf,wscanf

734 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

gai_strerror() — address and name information error description

Standards

 Standards / Extensions C or C++ Dependencies

RFC2553

Single UNIX Specification, Version 3

both z/OS V1R4

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netdb.h>

char *gai_strerror(int ecode);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <netdb.h>

const char *gai_strerror(int ecode);

General Description

The gai_strerror() function returns a pointer to a text string describing the error

value returned by a failure return from either the getaddrinfo() or getnameinfo()

function. If the ecode is not one of the EAI_xxx values from the <netdb.h> header,

then gai_strerror() returns a pointer to a string indicating an unknown error.

Subsequent calls to gai_strerror() will overwrite the buffer containing the text string.

Returned Value

When successful, gai_strerror() returns a pointer to a string describing the error.

Upon failure, gai_strerror() will return NULL and set errno to one of the following:

Error Code Description

ENOMEM Insufficient memory to allocate buffer for text string describing the

error.

Related Information

v “getaddrinfo() — get address information” on page 738

v “getnameinfo() — get name information” on page 808

v “netdb.h” on page 64

gai_strerror

Chapter 3. Part 3. Library Functions 735

||||

|
|
||

|

|
|
|

|
|
|
|

gamma() — Calculate Gamma Function

Standards

 Standards / Extensions C or C++ Dependencies

SAA

XPG4

XPG4.2

both

Format

#include <math.h>

double gamma(double x);

Compiler Option

LANGLVL(SAA), LANGLVL(SAAL2), or LANGLVL(EXTENDED)

General Description

gamma() provides the same function as lgamma(), including the use of signgam.

Use of lgamma() instead of gamma() is suggested by XPG4.2.

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use lgamma() instead of gamma().

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Related Information

v “math.h” on page 60

v “lgamma(), lgammaf(), lgammal() — Log Gamma Function” on page 1096

v “__signgam() — Return signgam Reference” on page 1923

gamma

736 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|
|
|

gcvt() — Convert Double to String

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

char *gcvt(double x, int ndigit, char *buf);

General Description

The gcvt() function converts double floating-point argument values to floating-point

output strings. The gcvt() function has been extended to determine the floating-point

format (hexadecimal floating-point or IEEE Binary Floating-Point) of double

argument values by using __isBFP().

z/OS XL C/C++ formatted output functions, including the gcvt() function, convert

IEEE Binary Floating-Point infinity and NaN argument values to special infinity and

NaN floating-point number output sequences. See “fprintf Family of Formatted

Output Functions” on page 655 for a description of the special infinity and NaN

output sequences.

The gcvt() function converts x to a NULL-terminated string (similar to the %g format

of “fprintf(), printf(), sprintf() — Format and Write Data” on page 648) in the array

pointed to by buf and returns buf. It produces ndigit significant digits (limited to an

unspecified value determined by the precision of a double) in %f if possible, or %e

(scientific notation) otherwise. A minus sign is included in the returned string if value

is less than 0. A radix character is included in the returned string if value is not a

whole number. Trailing zeros are suppressed where value is not a whole number.

The radix character is determined by the current locale. If “setlocale() — Set

Locale” on page 1811 has not been called successfully, the default locale, “POSIX”,

is used. The default locale specifies a period (.) as the radix character. The

LC_NUMERIC category determines the value of the radix character within the

current locale.

Note: This function has been moved to the Legacy Option group in Single UNIX

Specification, Version 3 and may be withdrawn in a future version. The

sprintf() function is preferred for portability.

Returned Value

If successful, gcvt() returns the character equivalent of x as specified above.

If unsuccessful, gcvt() returns NULL.

Related Information

v “stdlib.h” on page 85

v “ecvt() — Convert Double to String” on page 464

v “fcvt() — Convert Double to String” on page 538

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

gcvt

Chapter 3. Part 3. Library Functions 737

||||

|
|
||

|

|
|
|

getaddrinfo() — get address information

Standards

 Standards / Extensions C or C++ Dependencies

RFC2553

Single UNIX Specification, Version 3

both z/OS V1R4

Format

#define _OPEN_SYS_SOCK_IPV6

#include <sys/socket.h>

#include <netdb.h>

int getaddrinfo(const char *nodename,

 const char *servname,

 const struct addrinfo *hints,

 struct addrinfo **res);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <sys/socket.h>

#include <netdb.h>

int getaddrinfo(const char *__restrict__ nodename,

 const char *__restrict__ servname,

 const struct addrinfo *__restrict__ hints,

 struct addrinfo **__restrict__ res);

General Description

The getaddrinfo() function translates the name of a service location (for example, a

host name) and/or service name and returns a set of socket addresses and

associated information to be used in creating a socket with which to address the

specified service.

The nodename and servname arguments are either pointers to null-terminated

strings or null pointers. One or both of these two arguments must be specified as a

non-null pointer.

The format of a valid name depends on the protocol family or families. If a specific

family is not given and the name could be interpreted as valid within multiple

supported families, the function attempts to resolve the name in all supported

families. When no errors are detected, all successful results will be returned.

If the nodename argument is not null, it can be a descriptive name or it can be an

address string. If the specified address family is AF_INET, AF_INET6, or

AF_UNSPEC, valid descriptive names include host names. If the specified address

family is AF_INET or AF_UNSPEC, address strings using standard dot notation as

specified in inet_addr() are valid. If the specified address family is AF_INET6 or

AF_UNSPEC, standard IPv6 text forms described in inet_pton() are valid. In

addition, scope information can be appended to the descriptive name or the

address string using the format nodename%scope information. Scope information

can be either an interface name or the numeric representation of an interface index

suitable for use on this system.

If nodename is not null, the requested service location is named by nodename;

otherwise, the requested service location is local to the caller.

getaddrinfo

738 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

If servname is null, the call returns network-level addresses for the specified

nodename. If servname is not null, it is a null-terminated character string identifying

the requested service. This can be either a descriptive name or a numeric

representation suitable for use with the address family or families. If the specified

address family is AF_INET, AF_INET6, or AF_UNSPEC, the service can be

specified as a string specifying a decimal port number.

If the argument hints is not null, it refers to a structure containing input values that

may direct the operation by providing options and by limiting the returned

information to a specific socket type, address family and/or protocol. In the hints

structure every member other than ai_flags, ai_family, ai_socktype, and ai_protocol

must be zero or a null pointer. A value of AF_UNSPEC for ai_family means that the

caller will accept any protocol family. A value of zero for ai_socktype means that the

caller will accept any socket type. A value of zero for ai_protocol means that the

caller will accept any protocol. If hints is a null pointer, the behavior must be as if it

referred to a structure containing the value zero for the ai_flags, ai_socktype, and

ai_protocol fields, and AF_UNSPEC for the ai_family field.

The ai_flags member to which the hints argument points can be set to 0 or be the

bitwise inclusive OR of one or more of the following values:

v AI_PASSIVE

v AI_CANONNAME

v AI_NUMERICHOST

v AI_NUMERICSERV

v AI_V4MAPPED

v AI_ALL

v AI_ADDRCONFIG

If the AI_PASSIVE bit is set in the ai_flags member of the hints structure, then the

caller plans to use the returned socket address structure in a call to bind(). In this

case, if the nodename argument is a null pointer, then the IP address portion of the

socket address structure will be set to INADDR_ANY for an IPv4 address or

IN6ADDR_ANY_INIT for an IPv6 address. If the AI_PASSIVE bit is not set in the

ai_flags member of the hints structure, then the returned socket address structure

will be ready for a call to connect() (for a connection-oriented protocol) or either

connect(), sendto(), or sendmsg() (for a connectionless protocol). In this case, if the

nodename argument is a null pointer, then the IP address portion of the socket

address structure will be set to the loopback address.

If the AI_CANONNAME bit is set in the ai_flags member of the hints structure, then

upon successful return the ai_canonname member of the first addrinfo structure in

the linked list will point to a null-terminated string containing the canonical name of

the specified nodename.

If the AI_NUMERICHOST bit is set in the ai_flags member of the hints structure,

then a non-null nodename string must be a numeric host address string. Otherwise

an error code of EAI_NONAME is returned. This flag prevents any type of name

resolution service (for example, the DNS) from being called.

If the AI_NUMERICSERV flag is specified then a non-null servname string must be

a numeric port string. Otherwise an error code EAI_NONAME is returned. This flag

prevents any type of name resolution service (for example, NIS+ from being

invoked.

If the AI_V4MAPPED flag is specified along with the AF field with the value of

AF_INET6, or a value of AF_UNSPEC when IPv6 is supported on the system, then

getaddrinfo

Chapter 3. Part 3. Library Functions 739

the caller will accept IPv4-mapped IPv6 addresses. When the AI_ALL flag is not

also specified and no IPv6 addresses are found, then a query is made for IPv4

addresses. If any IPv4 addresses are found, they are returned as IPv4-mapped

IPv6 addresses.

If the AF field does not have a value of AF_INET6 or the AF field contains

AF_UNSPEC but IPv6 is not supported on the system, this flag is ignored.

When the AF field has a value of AF_INET6 and AI_ALL is set, the AI_V4MAPPED

flag must also be set to indicate that the caller will accept all addresses (IPv6 and

IPv4-mapped IPv6 addresses). When the AF field has a value of AF_UNSPEC

when the system supports IPv6 and AI_ALL is set, the caller accepts IPv6

addresses and either IPv4 (if AI_V4MAPPED is not set) or IPv4-mapped IPv6 (if

AI_V4MAPPED is set) addresses. A query is first made for IPv6 addresses and if

successful, the IPv6 addresses are returned. Another query is then made for IPv4

addresses and any found are returned as IPv4 addresses (if AI_V4MAPPED was

not set) or as IPv4-mapped IPv6 addresses (if AI_V4MAPPED was set). If the AF

field does not have the value of AF_INET6, or the value of AF_UNSPEC when the

system supports IPv6, the flag is ignored.

If the AI_ADDRCONFIG flag is specified then a query for IPv6 address records

should occur only if the node has at least one IPv6 source address configured. A

query for IPv4 address records will always occur, whether or not any IPv4

addresses are configured. The loopback address is not considered for this case as

valid as a configured sources address.

All of the information returned by getaddrinfo() is dynamically allocated: the addrinfo

structures, and the socket address structures and canonical node name strings

pointed to by the addrinfo structures. To return this information to the system the

function freeaddrinfo() is called.

Application Usage Notes

1. If the caller handles only TCP and not UDP, for example, then the ai_protocol

member of the hints structure should be set to IPPROTO_TCP when

getaddrinfo() is called.

2. If the caller handles only IPV4 and not IPv6, then the ai_family member of the

hints structure should be set to AF_INET when getaddrinfo() is called.

3. Scope information is only pertinent to IPv6 link-local addresses. It is ignored for

resolved IPv4 addresses and IPv6 addresses that are not link-local addresses.

Returned Value

When successful, getaddrinfo() returns 0 and a pointer to a linked list of one or

more addrinfo structures through the res argument. The caller can process each

addrinfo structure in this list by following the ai_next pointer, until a null pointer is

encountered. In each returned addrinfo structure the three members ai_family,

ai_socktype, and ai_protocol are the corresponding arguments for a call to the

socket() function. In each addrinfo structure the ai_addr member points to a filled-in

socket address structure whose length is specified by the ai_addrlen member. Upon

failure, getaddrinfo() returns a non-zero error code. The error codes are as follows:

Error Code Description

EAI_AGAIN The name specified by the Node_Name or Service_Name

getaddrinfo

740 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

parameter could not be resolved within the configured time interval,

or the resolver address space has not been started. The request

can be retried later.

EAI_BADFLAGS

The flags parameter had an incorrect setting.

EAI_FAIL An unrecoverable error occurred.

EAI_FAMILY The family parameter had an incorrect setting.

EAI_MEMORY

A memory allocation failure occurred during an attempt to acquire

an Addr_Info structure.

EAI_NONAME One of the following conditions occurred:

1. The name does not resolve for the specified parameters. At

least one of the Name or Service operands must be specified.

2. The request name parameter is valid, but it does not have a

record at the name server.

EAI_SERVICE The service that was passed was not recognized for the specified

socket type.

EAI_SOCKTYPE

The intended socket type was not recognized.

EAI_SYSTEM A system error occurred.

 For more information about the above return codes, see z/OS Communications

Server: IP and SNA Codes.

Related Information

v “netdb.h” on page 64

v “sys/socket.h” on page 89

v “freeaddrinfo() — free addrinfo storage” on page 674

v “gai_strerror() — address and name information error description” on page 735

v “getnameinfo() — get name information” on page 808

getaddrinfo

Chapter 3. Part 3. Library Functions 741

getc(), getchar() — Read a Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int getc(FILE *stream);

int getchar(void);

General Description

Reads a single character from the current stream position and advances the stream

position to the next character. The getchar() function is identical to getc(stdin).

The getc() and fgetc() functions are identical. However, getc() and getchar() are

provided in a highly efficient macro form. For performance purposes, it is

recommended that the macro forms be used rather than the functional forms or

fgetc(). By default, stdio.h provides the macro versions of these functions.

However, to get the functional forms, do one or more of the following:

v For C only: do not include stdio.h.

v Specify #undef, for example, #undef getc

v Surround the call statement by parentheses, for example, (getc)

getc() and getchar() are not supported for files opened with type=record.

getc() and getchar() have the same restriction as any read operation for a read

immediately following a write or a write immediately following a read. Between a

write and a subsequent read, there must be an intervening flush or reposition.

Between a read and a subsequent write, there must also be an intervening flush or

reposition unless an EOF has been reached.

If the application is not multithreaded, then setting the

_ALL_SOURCE_NO_THREADS feature test macro may improve performance of

the application, because it allows use of the inline version of this function.

Special Behavior for POSIX

In a multithreaded C application that uses POSIX(ON), in the presence of the

feature test macro, _OPEN_THREADS, these macros are in an #undef status

because they are not thread-safe.

Note: Because the getc() macro reevaluates its input argument more than once,

you should never pass a stream argument that is an expression with side

effects.

getc, getchar

742 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Returned Value

getc() and getchar() return the character read.

A returned value of EOF indicates either an error or an EOF condition. If a read

error occurs, the error indicator is set. If an EOF is encountered, the EOF indicator

is set.

Use ferror() or feof() to determine whether an error or an EOF condition occurred.

Note that EOF is only reached when an attempt is made to read past the last byte

of data. Reading up to and including the last byte of data does not turn on the EOF

indicator.

Example

CELEBG02

/* CELEBG02

 This example gets a line of input from the stdin stream.

 You can also use getc(stdin) instead of &getchar. in the for

 statement to get a line of input from stdin.

 */

#include <stdio.h>

#define LINE 80

int main(void)

{

 char buffer[LINE+1];

 int i;

 int ch;

 printf("Please enter string\n");

 /* Keep reading until either:

 1. the length of LINE is exceeded or

 2. the input character is EOF or

 3. the input character is a new−line character

 */

 for (i = 0; (i < LINE) && ((ch = getchar()) != EOF) &&

 (ch !='\n'); ++i)

 buffer[i] = ch;

 buffer[i] = '\0'; /* a string should always end with '\0' ! */

 printf("The string is %s\n", buffer);

}

Output

Please enter string

hello world

The string is hello world

Related Information

v “stdio.h” on page 82

v “fgetc() — Read a Character” on page 587

v “gets() — Read a String” on page 850

v “putc(), putchar() — Write a Character” on page 1566

v “ungetc() — Push Character onto Input Stream” on page 2307

getc, getchar

Chapter 3. Part 3. Library Functions 743

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked

— Stdio With Explicit Client Locking

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R8

Format

#define _UNIX03_SOURCE

#include <stdio.h>

int getc_unlocked(FILE *stream);

int getchar_unlocked(void);

int putc_unlocked(int c, FILE *stream);

int putchar_unlocked(int c);

General Description

Versions of the functions getc(), getchar(), putc(), and putchar() respectively named

getc_unlocked(), getchar_unlocked(), putc_unlocked(), and putchar_unlocked() are

functionally equivalent to the original versions, with the exception that they are not

thread-safe. These functions may safely be used in a multi-threaded program if and

only if they are called while the invoking thread owns the (FILE*) object, as is the

case after a successful call to the flockfile() or ftrylockfile() functions.

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked are provided in

a highly efficient macro form. For performance purposes, it is recommended that

the macro forms be used rather than the functional forms. By default, stdio.h

provides the macro versions of these functions.

However, to get the functional forms, do one or more of the following:

v Surround the call statement by parentheses, for example, (getc_unlocked)

v Specify #undef, for example, #undef getc_unlocked

v For C only: do not include stdio.h.

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked are not

supported for files that are opened with type=record.

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked have the same

restrictions as any read or write operation for a read immediately following a write

or a write immediately following a read. Between a write and a subsequent read,

there must be an intervening flush or reposition. Between a read and a subsequent

write, there must also be an intervening flush or reposition unless an EOF has been

reached.

Note: Because the macro forms of these functions reevaluate their input arguments

more than once, you must not pass an argument that is an expression with

side effects.

Returned Value

See “getc(), getchar() — Read a Character” on page 742 and “putc(), putchar() —

Write a Character” on page 1566.

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked

744 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|||
|

Related Information

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked

Chapter 3. Part 3. Library Functions 745

getclientid() — Get the Identifier for the Calling Application

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

#include <sys/types.h>

int getclientid(int domain, struct clientid *clientid);

General Description

The getclientid() function call returns the identifier by which the calling application is

known to the TCP/IP address space. The clientid can be used in the givesocket()

and takesocket() calls. However, this function is supplied for use by existing

programs that depend on the address space name returned. Even for these

programs it is recommended that the name be saved for its later use and the

__getclientid() function be issued to reconstruct the clientid structure for use by

givesocket() and takesocket().

Parameter Description

domain The address domain requested.

clientid The pointer to a clientid structure to be filled.

The clientid structure is filled in by the call and returned as follows:

The clientid structure:

 struct clientid {

 int domain;

 union {

 char name[8];

 struct {

 int NameUpper;

 pid_t pid;

 } c_pid;

 } c_name;

 char subtaskname[8];

 struct {

 char type;

 union {

 char specific[19];

 struct {

 char unused[3];

 int SockToken;

 } c_close;

 } c_func;

 } c_reserved;

 };

Element Description

domain The input domain value returned in the domain field of the clientid

structure.

getclientid

746 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

c_name.name The application program’s address space name, left-justified and

padded with blanks.

subtaskname The calling program’s task identifier.

c_reserved Specifies binary zeros.

Returned Value

If successful, getclientid() returns 0.

If unsuccessful, getclientid() returns -1 and sets errno to one of the following values:

Error Code Description

EFAULT Using the clientid parameter as specified would result in an attempt

to access storage outside the caller’s address space, or storage not

modifiable by the caller.

Related Information

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “__getclientid() — Get the PID Identifier for the Calling Application” on page 748

getclientid

Chapter 3. Part 3. Library Functions 747

__getclientid() — Get the PID Identifier for the Calling Application

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

#include <sys/types.h>

int __getclientid(int domain, struct clientid *clientid);

General Description

The __getclientid() function call returns the process identifier (PID) by which the

calling application is known to the TCP/IP address space. The clientid is used in the

givesocket() and takesocket() calls. Use the __getclientid() function call to transfer

sockets between the caller and the selected application. The __getclientid() function

provides improved performance and integrity over the getclientid() function for

applications that use the output of __getclientid() as input clientids for givesocket()

and takesocket().

Parameter Description

domain The address domain requested.

clientid The pointer to a clientid structure to be filled.

The clientid structure:

 struct clientid {

 int domain;

 union {

 char name[8];

 struct {

 int NameUpper;

 pid_t pid;

 } c_pid;

 } c_name;

 char subtaskname[8];

 struct {

 char type;

 union {

 char specific[19];

 struct {

 char unused[3];

 int SockToken;

 } c_close;

 } c_func;

 } c_reserved;

 };

Element Description

domain The input domain value returned in the domain field of the clientid

structure.

c_pid.pid Is the label in the clientid structure that is filled in by the function

__getclientid

748 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

call to the PID of the requester (caller of __getclientid()). It should

be left as set because it is used by the takesocket() and

givesocket() functions.

subtaskname Blanks

c_reserved Binary zeros

Returned Value

If successful, __getclientid() returns 0.

If unsuccessful, __getclientid() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT Using the clientid parameter as specified would result in an attempt

to access storage outside the caller’s address space, or storage not

modifiable by the caller.

Related Information

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “getclientid() — Get the Identifier for the Calling Application” on page 746

v “givesocket() — Make the Specified Socket Available” on page 894

v “takesocket() — Acquire a Socket from Another Program” on page 2127

__getclientid

Chapter 3. Part 3. Library Functions 749

getcontext() — Get User Context

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ucontext.h>

int getcontext(ucontext_t *ucp);

General Description

The getcontext() function initializes the structure pointed to by ucp to the current

user context of the calling process. The ucontext_t type that ucp points to defines

the user context and includes the contents of the calling process’s machine

registers, the signal mask, and the current execution stack. A subsequent call to

setcontext() restores the saved context and returns control to a point in the program

corresponding to the getcontext() call. Execution resumes as if the getcontext() call

had just returned. The return value from getcontext() is the same regardless of

whether the return is from the initial invocation or using a call to setcontext().

The context created by getcontext() may be modified by the makecontext() function.

Refer to makecontext for details.

getcontext() is similar in some respects to sigsetjmp() (and setjmp() and _setjmp()).

The getcontext()–setcontext() pair, the sigsetjmp()–siglongjmp() pair, the

setjmp()–longjmp() pair, and the _setjmp()–_longjmp() pair cannot be intermixed. A

context saved by getcontext() should be restored only by setcontext().

Note: Some compatibility exists with siglongjmp(), so it is possible to use

siglongjmp() from a signal handler to restore a context created with

getcontext(), but it is not recommended.

Portable applications should not modify or access the uc_mcontext member of

ucontext_t. A portable application cannot assume that context includes any

process-wide static data, possibly including errno. Users manipulating contexts

should take care to handle these explicitly when required.

This function is supported only in a POSIX program.

The <ucontext.h> header file defines the ucontext_t type as a structure that

includes the following members:

mcontext_t uc_mcontext A machine-specific representation

 of the saved context.

ucontext_t *uc_link Pointer to the context that will

 be resumed when this context returns.

sigset_t uc_sigmask The set of signals that are blocked

 when this context is active.

stack_t uc_stack The stack used by this context.

Special Behavior for C++

getcontext

750 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

If getcontext() and setcontext() are used to transfer control in a z/OS XL C++

program, the behavior in terms of the destruction of automatic objects is undefined.

This applies to both z/OS XL C++ and z/OS XL C/C++ ILC modules. The use of

getcontext() and setcontext() in conjunction with try(), catch(), and throw() is also

undefined.

Do not issue getcontext() in a C++ constructor or destructor, since the saved

context would not be usable in a subsequent setcontext() or swapcontext() after the

constructor or destructor returns.

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the V2R10 or later C compilers that are to

run with Language Environment V2R10 or later libraries and use the jmp_buf,

sigjmp_buf or ucontext_t types must not be compiled with C headers from

Language Environment V2R9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not define jmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Language Environment V2R10 and later

headers define a larger jmp_buf, sigjmp_buf or ucontext_tarea that is

required by setjmp(), getcontext(), and related functions when they are called

from an XPLINK routine. If __XPLINK__ is not defined, the Language

Environment V2R10 and later headers define a shorter jmp_buf, sigjmp_buf or

ucontext_t area. The Language Environment headers before V2R10 also

define the shorter version of these data areas. If an XPLINK function calls

setjmp(), getcontext() or similar functions with a short jmp_buf, sigjmp_buf or

ucontext_t area, a storage overlay or program check may occur when the C

library tries to store past the end of the passed-in (too short) data area.

Returned Value

If successful, getcontext() returns 0.

If unsuccessful, getcontext() returns −1.

There are no errno values defined.

Example

This example saves the context in main with the getcontext() statement. It then

returns to that statement from the function func using the setcontext() statement.

Since getcontext() always returns 0 if successful, the program uses the variable x to

determine if getcontext() returns as a result of setcontext() or not.

/* This example shows the usage of getcontext() and setcontext(). */

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdio.h>

#include <ucontext.h>

void func(void);

int x = 0;

getcontext

Chapter 3. Part 3. Library Functions 751

ucontext_t context, *cp = &context;

int main(void) {

 getcontext(cp);

 if (!x) {

 printf("getcontext has been called\n");

 func();

 }

 else {

 printf("setcontext has been called\n");

 }

}

void func(void) {

 x++;

 setcontext(cp);

}

Output

getcontext has been called

setcontext has been called

Related Information

v “ucontext.h” on page 96

v “makecontext() — Modify User Context” on page 1169

v “setcontext() — Restore User Context” on page 1778

v “setjmp() — Preserve Stack Environment” on page 1802

v “_setjmp() — Set Jump Point for a Nonlocal Goto” on page 1806

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

v “swapcontext() — Save and Restore User Context” on page 2101

getcontext

752 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__get_cpuid() — Retrieves the system CPUID

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R10

Format

#define _OPEN_SYS_EXT 1

#include <sys/ps.h>

int __get_cpuid(char *buff);

General Description

Retrieves the current CPU ID in the form of a string containing the readable part of

the serial number concatenated with the model number. The variable buff is a

character string of 11 bytes in length. It is a work area to build the unique cpuid.

Returned Value

Always returns the serial and model number.

Related Information

v “sys/ps.h” on page 88

__get_cpuid

Chapter 3. Part 3. Library Functions 753

getcwd() — Get Pathname of the Working Directory

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

char *getcwd(char *buffer, size_t size);

General Description

Determines the pathname of the working directory and stores it in buffer.

size The number of characters in the buffer area.

buffer The name of the buffer that will be used to hold the path name of

the working directory. buffer must be big enough to hold the working

directory name, plus a terminating NULL to mark the end of the

name.

Returned Value

If successful, getcwd() returns a pointer to the buffer.

If unsuccessful, getcwd() returns a NULL pointer and sets errno to one of the

following values:

Error Code Description

EACCES The process did not have read or search permission on some

component of the working directory’s pathname.

EINVAL size is less than or equal to zero.

EIO An input/output error occurred.

ENOENT A component of the working directory’s pathname does not exist.

ENOTDIR A directory component of the working directory’s pathname is not

really a directory.

ERANGE size is greater than 0, but less than the length of the working

directory’s pathname, plus 1 for the terminating NULL.

Example

CELEBG03

/* CELEBG03

 This example determines the working directory.

 */

#define _POSIX_SOURCE

#include <unistd.h>

getcwd

754 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 char cwd[256];

 if (chdir("/tmp") != 0)

 perror("chdir() error()");

 else {

 if (getcwd(cwd, sizeof(cwd)) == NULL)

 perror("getcwd() error");

 else

 printf("current working directory is: %s\n", cwd);

 }

}

Output

current working directory is: /tmp

Related Information

v “unistd.h” on page 96

v “chdir() — Change the Working Directory” on page 273

getcwd

Chapter 3. Part 3. Library Functions 755

getdate() — Convert User Format Date and Time

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <time.h>

struct tm *getdate(const char *string);

extern int getdate_err;

General Description

The getdate() function converts definable date and/or time specifications pointed to

by string into a tm structure. The tm structure declaration is in the header <time.h>.

Templates are used to parse and interpret the input string. The templates are

contained in text files created by the process and identified using the environment

variable DATEMSK. The DATEMSK variable should be set to indicate the full pathname

of the file that contains the templates. The first line in the template that matches the

input specification is used for the interpretation and conversion into the internal time

format.

The following field descriptors are supported:

%% same as %.

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c locale’s appropriate date and time representation

%C Century number [00,99]; leading zeros are permitted but not required. Used

in conjuction with %y

%d day of month (01-31; the leading 0 is optional)

%D date as %m/%d/%y

%e same as %d

%h same as %b

%H hour (00-23; the leading 0 is optional)

%I hour (01-12; the leading 0 is optional)

%m month number (00-11; the leading 0 is optional)

%M minute (00-59; the leading 0 is optional)

%n same as \n

getdate

756 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

||
|

%p locale’s equivalent of either AM or PM

%r locale’s 12 hour time representation. In the POSIX locale this is equivalent

to %I:%M:%S %p

%R time as %H:%M

%S Seconds [00,60]. The range goes to 60 (rather than stopping at 59) to allow

positive leap seconds to be expressed. Since leap seconds cannot be

predicted by any algorithm, leap second data must come from some

external source.

%t same as \t (tab)

%T time as %H:%M:%S

%w weekday number (0-6; 0 indicates Sunday)

%x locale’s date representation. In the POSIX locale this is equivalent to

%m/%d/%y.

%X locale’s time representation. In the POSIX locale this is equivalent to

%H:%M:%S.

%y year within century. When a century is not otherwise specified, values in the

range 69-99 refer to years in the twentieth century (1969 to 1999 inclusive);

values in the range 00-68 refer to years in the twenty-first century (2000 to

2068 inclusive).

%Y year as ccyy (1969-9999)

%Z time zone name or no characters if no time zone exists. If the time zone

supplied for %Z is not the time zone getdate() expects, a non-valid input

specification error will result. The getdate() function calculates an expected

time zone based on time and date information supplied to it.

The match between the template and input specification performed by getdate() is

case insensitive.

The month and weekday names can consist of any combination of uppercase or

lowercase letters. The process can request that the input date and time

specification be in a specific language by setting the LC_TIME category (see

setlocale()).

Leading 0’s are not necessary for the descriptors that allow leading 0’s. However, at

most two digits are allowed for those descriptors, including leading 0’s. Extra white

space in either the template file or in string is ignored.

The field descriptors %c, %x, and %X will not be supported if they include

unsupported field descriptors.

The following rules apply for converting the input specification into a tm structure:

v If only weekday is given, today is assumed if the given day is equal to the

current day and next week if it is less,

v If only the month is given, the current month is assumed if the given month is

equal to the current month and next year if it is less and no year is given (the

first day of the month is assumed if no day is given),

v If no hour, minute, and second are given, the current hour, minute and second

are assumed,

getdate

Chapter 3. Part 3. Library Functions 757

||
|
|
|

v If no date is given, today is assumed if the given hour is greater than the current

hour and tomorrow is assumed if it is less.

Returned Value

If successful, getdate() returns a pointer to a tm structure.

If unsuccessful, getdate() returns a NULL pointer and sets the external variable

getdate_err to a value indicating the error.

The tm structure to which getdate() returns a pointer is not shared with any other

functions. Also, the getdate() function produces a tm structure unique to the thread

on which it runs.

As is true for all external variables, C/370 allocates storage for the getdate_err

external variable in writable static storage which is shared among all threads. Thus,

getdate_err is not intrinsically “thread-safe”.

C/370 allocates storage on a per thread basis for an analog of getdate_err. The

__gderr() function returns a pointer to this storage. It is recommended that

multithread applications and applications running from a DLL use the __gderr()

function rather than getdate_err if getdate() returns a NULL pointer to determine in

a thread-safe manner why getdate() was unsuccessful.

The __gderr() is defined as follows:

#include <time.h>

int *__gderr(void);

The __gderr() function returns a pointer to the thread-specific value of getdate_err.

The following is a list of getdate_err settings and their description:

1 The DATEMSK environment variable is NULL or undefined.

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 An error was encountered while reading the template file.

6 Memory allocation failed (not enough memory available).

7 No line in the template file matches the input specification.

8 Non-valid input specification. For example, February 31; or a time that can

not be represented in a time_t (representing the time is seconds since

Epoch - midnight, January 1, 1970 (UTC)).

9 Unable to determine current time.

Note: This value is unique for z/OS UNIX services.

Related Information

v “time.h” on page 93

getdate

758 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getdtablesize() — Get the File Descriptor Table Size

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int getdtablesize(void);

General Description

The getdtablesize() function is equivalent to getrlimit() with the RLIMIT_NOFILE

option.

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use getrlimit() instead of getdtablesize().

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

getdtablesize() returns the current soft limit as if obtained from a call to getrlimit().

There are no errno values defined.

Related Information

v “unistd.h” on page 96

v “close() — Close a File” on page 299

v “getrlimit() — Get Current/Maximum Resource Consumption.” on page 846

v “open() — Open a File” on page 1313

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “setrlimit() — Control Maximum Resource Consumption” on page 1837

getdtablesize

Chapter 3. Part 3. Library Functions 759

|
|
|
|

|
|
|
|
|

getegid() — Get the Effective Group ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

gid_t getegid(void);

General Description

Finds the effective group ID (GID) of the calling process.

Returned Value

Returns the effective group ID (GID). It is always successful.

There are no documented errno values.

Example

CELEBG04

/* CELEBG04

 This example finds the group ID.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

main() {

 printf("my group id is %d\n", (int) getgid());

}

Output

my group id is 500

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “getgid() — Get the Real Group ID” on page 767

v “setegid() — Set the Effective Group ID” on page 1781

v “setgid() — Set the Group ID” on page 1789

getegid

760 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

getenv() — Get Value of Environment Variables

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

char *getenv(const char *varname);

General Description

Searches the table of environment variables for an entry corresponding to varname

and returns a pointer to a buffer containing the current string value of varname.

Special Behavior for POSIX

Under POSIX, the value of the char **environ pointer is honored and used by

getenv(). You can declare and use this pointer. Under POSIX(OFF) this is not the

case: the table start cannot be modified. See “z/OS XL C/C++ applications with

z/OS UNIX System Services C functions” on page 13 for more information.

Returned Value

If successful, getenv() returns a pointer to a buffer containing the current string

value of varname. You should copy the string that is returned because a

subsequent call to getenv() will overwrite it.

If the varname is not found, getenv() returns a NULL pointer. The returned value is

NULL if the given variable is not currently defined.

Example

CELEBG05

/* CELEBG05

 In this example, *pathvar points to the value of the PATH

 environment variable.

 In a POSIX environment, this variable would be from the CENV

 group ID.

 */

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 char *pathvar;

getenv

Chapter 3. Part 3. Library Functions 761

||||

|
|
|
|
|
|

||

|

pathvar = getenv("PATH");

 printf("pathvar=%s",pathvar);

}

Related Information

v “Using Environment Variables” in z/OS XL C/C++ Programming Guide

v “stdlib.h” on page 85

v “clearenv() — Clear Environment Variables” on page 291

v “__getenv() — Get an Environment Variable” on page 763

v “setenv() — Add, Delete, and Change Environment Variables” on page 1783

v “putenv() — Change or Add an Environment Variable” on page 1569

getenv

762 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__getenv() — Get an Environment Variable

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <stdlib.h>

char *__getenv(const char *varname);

General Description

__getenv() returns a unique character pointer for each environmental variable. For

single-threaded applications, this eliminates the need to copy the string returned by

previous __getenv() calls.

This function should not be used by multithreaded applications. Updates to the

environmental variable on another thread may invalidate the address returned by

__getenv() before the application copies the returned value.

The format of an environment variable is made up of three parts that are combined

to form:

 name=value

Where:

1. The first part, name, is a character string that represents the name of the

environment variable. It is this part of the environment variable that __getenv()

tries to match with varname.

2. The second part, =, is a separator character (since the equal sign is used as a

separator character it cannot appear in the name).

3. The third part, value, is a NULL-terminated character string that represents the

value that the environment variable, name, is set to. This is the part of the

environment variable that __getenv() returns a pointer to.

There are several ways to establish a set of environment variables.

v Set at program initialization time from the Language Environment run-time option

ENVAR.

v Set at program initialization time from a data set.

v If the program was invoked with a system() call, they can be inherited from the

calling enclave.

v In the z/OS UNIX environment they can also be inherited from the parent

process if the program was invoked with one of the exec functions.

v During the running of a program they can be set with the setenv() function or the

putenv() function.

For a list of the environment variables that z/OS UNIX services support, see the

chapter “Using Environment Variables” in z/OS XL C/C++ Programming Guide.

Special Behavior for POSIX

__getenv

Chapter 3. Part 3. Library Functions 763

Under POSIX, the value of the char **environ pointer is honored and used by

getenv(). You can declare and use this pointer. Under POSIX(OFF) this is not the

case: the table start cannot be modified. See “z/OS XL C/C++ applications with

z/OS UNIX System Services C functions” on page 13 for more information.

Note: The __getenv() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, __getenv() returns a pointer to the string containing the value of the

environment variable specified by varname.

If unsuccessful, __getenv() returns a NULL pointer. The returned value is NULL if

the given variable is not currently defined or if the system does not support

environment variables.

Related Information

v “Using Environment Variables” in z/OS XL C/C++ Programming Guide

v “stdlib.h” on page 85

v “clearenv() — Clear Environment Variables” on page 291

v “getenv() — Get Value of Environment Variables” on page 761

v “putenv() — Change or Add an Environment Variable” on page 1569

v “setenv() — Add, Delete, and Change Environment Variables” on page 1783

__getenv

764 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

geteuid() — Get the Effective User ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

uid_t geteuid(void);

General Description

Finds the effective user ID (UID) of the calling process.

Returned Value

Returns the effective user ID of the calling process. It is always successful.

There are no documented errno values.

Example

CELEBG06

/* CELEBG06

 This example returns information for your user ID.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <pwd.h>

#include <unistd.h>

main() {

 struct passwd *p;

 uid_t uid;

 if ((p = getpwuid(uid = geteuid())) == NULL)

 perror("getpwuid() error");

 else {

 puts("getpwuid() returned the following info for your userid:");

 printf(" pw_name : %s\n", p−>pw_name);

 printf(" pw_uid : %d\n", (int) p−>pw_uid);

 printf(" pw_gid : %d\n", (int) p−>pw_gid);

 printf(" pw_dir : %s\n", p−>pw_dir);

 printf(" pw_shell : %s\n", p−>pw_shell);

 }

}

Output

getpwuid() returns the following information for your user ID:

geteuid

Chapter 3. Part 3. Library Functions 765

||||

|
|
|
|

||

|

pw_name : MVSUSR1

pw_uid : 25

pw_gid : 500

pw_dir : /u/mvsusr1

pw_shell : /bin/sh

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “getuid() — Get the Real User ID” on page 878

v “seteuid() — Set the Effective User ID” on page 1787

v “setreuid() — Set Real and Effective User IDs” on page 1835

v “setuid() — Set the Effective User ID” on page 1857

geteuid

766 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getgid() — Get the Real Group ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

gid_t getgid(void);

General Description

Finds the real group ID (GID) of the calling process.

Returned Value

Returns the real group ID of the calling process. It is always successful.

There are no documented errno values.

Example

CELEBG07

/* CELEBG07

 This example gets the real group ID.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

main() {

 printf("my group id is %d\n", (int) getgid());

}

Output

my group id is 500

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “getegid() — Get the Effective Group ID” on page 760

v “geteuid() — Get the Effective User ID” on page 765

v “getuid() — Get the Real User ID” on page 878

v “setgid() — Set the Group ID” on page 1789

getgid

Chapter 3. Part 3. Library Functions 767

||||

|
|
|
|

||

|

getgrent() — Get Group Database Entry

The information for this function is included in “endgrent() — Group Database Entry

Functions” on page 468.

getgrent

768 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getgrgid() — Access the Group Database by ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <grp.h>

struct group *getgrgid(gid_t gid);

General Description

Provides information about the group specified by gid and its members.

Returned Value

If successful, getgrgid() returns a pointer to a group structure containing an entry

from the group database with the specified gid. The return value may point to static

data that is overwritten by each call. This group structure, defined in the grp.h

header file, contains the following members:

gr_name The name of the group

gr_gid The numerical group ID (GID)

gr_mem A NULL-terminated vector of pointers to the individual member

names

If unsuccessful, getgrgid() returns a NULL pointer.

There are no documented errno values.

Example

CELEBG08

/* CELEBG08

 This example provides the root GID and group name.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <grp.h>

#include <stdio.h>

#include <sys/stat.h> /*FIX: used to be <stat.h>*/

main() {

 struct stat info;

 struct group *grp;

 if (stat("/", &info) < 0)

 perror("stat() error");

 else {

 printf("The root is owned by gid %d\n", info.st_gid);

 if ((grp = getgrgid(info.st_gid)) == NULL)

 perror("getgrgid() error");

getgrgid

Chapter 3. Part 3. Library Functions 769

||||

|
|
|
|

||

|

else

 printf("This group name is %s\n", grp−>gr_name);

 }

}

Output

The root is owned by gid 500

This group name is SYS1

Related Information

v “grp.h” on page 48

v “sys/types.h” on page 90

v “endgrent() — Group Database Entry Functions” on page 468

v “getgrgid_r() — Get Group Database Entry for a Group ID” on page 771

v “getgrnam() — Access the Group Database by Name” on page 772

v “getgrnam_r() — Search Group Database for a Name” on page 774

v “getlogin() — Get the User Login Name” on page 799

v “getlogin_r() — Get Login Name” on page 801

getgrgid

770 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getgrgid_r() — Get Group Database Entry for a Group ID

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <sys/types.h>

#include <grp.h>

int getgrgid_r(gid_t gid, struct group *grp, char *buffer,

size_t bufsize, struct group **result);

General Description

The getgrgid_r() function updates the group structure pointed to by grp and stores a

pointer to that structure at the location pointed to by result. The structure contains

an entry from the group database with a matching gid. Storage referenced by the

group structure is allocated from the memory provided with the buffer parameter,

which is bufsize bytes in size. A NULL pointer is returned at the location pointed to

by result on error or if the requested entry is not found.

Returned Value

If successful, getgrgid_r() returns 0.

If unsuccessful, getgrgid_r() sets errno to one of the following values:

Error Code Description

ERANGE Insufficient storage was supplied in buffer and bufsize to contain the

data to be referenced by the resulting group structure.

Related Information

v “grp.h” on page 48

v “endgrent() — Group Database Entry Functions” on page 468

v “getgrgid() — Access the Group Database by ID” on page 769

v “getgrnam() — Access the Group Database by Name” on page 772

v “getgrnam_r() — Search Group Database for a Name” on page 774

v “getlogin() — Get the User Login Name” on page 799

v “getlogin_r() — Get Login Name” on page 801

getgrgid_r

Chapter 3. Part 3. Library Functions 771

||||

|
|
||

|

getgrnam() — Access the Group Database by Name

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <grp.h>

struct group *getgrnam(const char *name);

General Description

Accesses the group structure containing an entry from the group database with the

specified name.

Returned Value

If successful, getgrnam() returns a pointer to a group structure. The return value

may point to static data that is overwritten by each call.

The group structure, defined in the grp.h header file, contains the following

members:

gr_name The name of the group

gr_gid The numerical group ID (GID)

gr_mem A NULL-terminated vector of pointers to the individual member

names.

If unsuccessful or if the requested entry is not found, getgrnam() returns a NULL

pointer.

There are no documented errno values.

Example

CELEBG09

/* CELEBG09

 This example provides the members of a group.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <grp.h>

#include <stdio.h>

main() {

 struct group *grp;

 char grpname[]="USERS", **curr;

 if ((grp = getgrnam(grpname)) == NULL)

 perror("getgrnam() error");

 else {

getgrnam

772 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

printf("The following are members of group %s:\n", grpname);

 for (curr=grp−>gr_mem; (*curr) != NULL; curr++)

 printf(" %s\n", *curr);

 }

}

Output

The following are members of group USERS:

 MVSUSR1

 MVSUSR2

 MVSUSR3

 MVSUSR4

 MVSUSR5

 MVSUSR6

 MVSUSR7

 MVSUSR8

 MVSUSR9

Related Information

v “grp.h” on page 48

v “sys/types.h” on page 90

v “endgrent() — Group Database Entry Functions” on page 468

v “getgrgid() — Access the Group Database by ID” on page 769

v “getgrgid_r() — Get Group Database Entry for a Group ID” on page 771

v “getgrnam_r() — Search Group Database for a Name” on page 774

getgrnam

Chapter 3. Part 3. Library Functions 773

getgrnam_r() — Search Group Database for a Name

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <sys/types.h>

#include <grp.h>

int getgrnam_r(const char *name, struct group *grp, char *buffer,

size_t bufsize, struct group **result);

General Description

The getgrnam_r() function updates the group structure pointed to by grp and stores

a pointer to that structure at the location pointed to by result. The structure contains

an entry from the group database with a matching gid or name. Storage referenced

by the group structure is allocated from the memory provided with the buffer

parameter, which is bufsize bytes in size. A NULL pointer is returned at the location

pointed to by result on error or if the requested entry is not found.

Returned Value

If successful, getgrnam_r() returns 0.

If unsuccessful, getgrnam_r() sets errno to one of the following values:

Error Code Description

ERANGE Insufficient storage was supplied in buffer and bufsize to contain the

data to be referenced by the resulting group structure.

Related Information

v “grp.h” on page 48

v “sys/types.h” on page 90

v “endgrent() — Group Database Entry Functions” on page 468

v “getgrgid() — Access the Group Database by ID” on page 769

v “getgrgid_r() — Get Group Database Entry for a Group ID” on page 771

v “getgrnam() — Access the Group Database by Name” on page 772

getgrnam_r

774 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

getgroups() — Get a List of Supplementary Group IDs

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int getgroups(int size, gid_t list[]);

General Description

Stores the supplementary group IDs of the calling process in the list array. size

gives the number of gid_t elements that can be stored in the list array.

Returned Value

If successful, getgroups() returns the number of supplementary group IDs that it

puts into list. This value is always greater than or equal to 1 and less than or equal

to the value of NGROUPS_MAX (which is defined in the limits.h header file).

If size is zero, getgroups() returns the total number of supplementary group IDs for

the process. getgroups() does not try to store group IDs in list.

If unsuccessful, getgroups() returns −1 and sets errno to one of the following

values.

Error Code Description

EINVAL size was not equal to 0 and is less than the total number of

supplementary group IDs for the process. list may or may not

contain a subset of the supplementary group IDs for the process.

Example

CELEBG10

/* CELEBG10

 This example provides a list of the supplementary group IDs.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <grp.h>

#include <stdio.h>

#include <unistd.h>

#define dim(x) (sizeof(x)/sizeof(x[0]))

main() {

 gid_t gids[500];

 struct group *grp;

 int count, curr;

getgroups

Chapter 3. Part 3. Library Functions 775

||||

|
|
|
|

||

|

if ((count = getgroups(dim(gids), gids)) == −1)

 perror("getgroups() error");

 else {

 puts("The following is the list of my supplementary groups:");

 for (curr=0; curr<count; curr++) {

 if ((grp = getgrgid(gids[curr])) == NULL)

 perror("getgrgid() error");

 else

 printf(" %8s (%d)\n", grp−>gr_name, (int) gids[curr]);

 }

 }

}

Output

The following is the list of my supplementary groups:

 SYS1 (500)

 KINGS (512)

 NOBLES (513)

 KNIGHTS (514)

 WIZARDS (515)

 SCRIBES (516)

 JESTERS (517)

 PEASANTS (518)

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “getegid() — Get the Effective Group ID” on page 760

v “getgid() — Get the Real Group ID” on page 767

v “getgrnam() — Access the Group Database by Name” on page 772

v “setgid() — Set the Group ID” on page 1789

getgroups

776 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getgroupsbyname() — Get Supplementary Group IDs by User Name

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int getgroupsbyname(char username[], int size, gid_t list[]);

General Description

Stores the supplementary group IDs of the specified username in the array, list. size

gives the number of gid_t elements that can be stored in the array, list.

Returned Value

If successful, getgroupsbyname() returns the number of supplementary group IDs

that it puts into list. This value is always greater than or equal to one, and less than

or equal to the value of NGROUPS_MAX.

If size is zero, getgroupsbyname() returns the total number of supplementary group

IDs for the process. getgroupsbyname() does not try to store group IDs in list.

If unsuccessful, getgroupsbyname() returns −1 and sets errno to one of the

following values.

Error Code Description

EINVAL size was less than or equal to the total number of supplementary

group IDs for the process. list may or may not contain a subset of

the supplementary group IDs for the process.

Example

CELEBG11

/* CELEBG11

 This example provides a list of the supplementary group IDs for

 MVSUSR1.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <grp.h>

#include <stdio.h>

#include <unistd.h>

#define dim(x) (sizeof(x)/sizeof(x[0]))

main() {

 gid_t gids[500];

 struct group *grp;

 int count, curr;

 char user[]="MVSUSR1";

 if ((count = getgroupsbyname(user, dim(gids), gids)) == −1)

getgroupsbyname

Chapter 3. Part 3. Library Functions 777

perror("getgroups() error");

 else {

 printf("The following is the list of %s's supplementary groups:\n",

 user);

 for (curr=0; curr<count; curr++) {

 if ((grp = getgrgid(gids[curr])) == NULL)

 perror("getgrgid() error");

 else

 printf(" %8s (%d)\n", grp−>gr_name, (int) gids[curr]);

 }

 }

}

Output

The following is the list of MVSUSR1’s supplementary groups:

 SYS1 (500)

 USERS (523)

Related Information

v “unistd.h” on page 96

v “getegid() — Get the Effective Group ID” on page 760

v “getgid() — Get the Real Group ID” on page 767

v “getgroups() — Get a List of Supplementary Group IDs” on page 775

v “setgid() — Set the Group ID” on page 1789

getgroupsbyname

778 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

gethostbyaddr() — Get a Host Entry by Address

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyaddr(const void *address, size_t len, int type);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct hostent *gethostbyaddr(char *address, int address_len, int domain);

General Description

The gethostbyaddr() call tries to resolve the host address through a name server, if

one is present. gethostbyaddr() searches the local host tables until a matching host

address is found or an EOF marker is reached.

Parameter Description

address The pointer to a structure containing the address of the host.

(An unsigned long for AF_INET.)

address_len The size of address in bytes.

domain The address domain supported (AF_INET).

If you want gethostbyaddr() to bypass the name server and instead resolve the host

address using the local host tables, you must define the RESOLVE_VIA_LOOKUP

symbol before including any sockets-related include files in your source program.

You can use the X_ADDR environment variable to specify different local host tables

and override those supplied by the z/OS global resolver during initialization.

Note: For more information on these local host tables or the environment variables,

see z/OS Communications Server: IP Configuration Guide, SC31-8775.

The gethostbyaddr() call returns a pointer to a hostent structure for the host

address specified on the call.

gethostent(), gethostbyaddr(), and gethostbyname() all use the same static area to

return the hostent structure. This static area is only valid until the next one of these

functions is called on the same thread.

The netdb.h include file defines the hostent structure and contains the following

elements:

gethostbyaddr

Chapter 3. Part 3. Library Functions 779

||||

|
|
||

|

Element Description

h_addr_list A pointer to a NULL-terminated list of host network addresses.

h_addrtype The type of address returned; currently, it is always set to AF_INET.

h_aliases A zero-terminated array of alternative names for the host.

h_length The length of the address in bytes.

h_name The official name of the host.

The following function (X/Open sockets only) is defined in netdb.h and should be

used by multithreaded applications when attempting to reference h_errno return on

error:

int *__h_errno(void);

Also use this function when you invoke gethostbyaddr() in a DLL.

This function returns a pointer to a thread-specific value for the h_errno variable.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The gethostbyaddr() and gethostbyname() functions have been moved to

obsolescence in Single UNIX Specification, Version 3 and may be withdrawn

in a future version. The getaddrinfo() and getnameinfo() functions are

preferred for portability.

Returned Value

The return value points to static data that is overwritten by subsequent calls. A

pointer to a hostent structure indicates success. A NULL pointer indicates an error

or End Of File (EOF).

If unsuccessful in X/Open, gethostbyaddr() sets h_errno to indicate the error as

follows:

Error Code Description

HOST_NOT_FOUND

No such host is known.

NO_DATA The server recognized the request and the name but no address is

available. Another type of request to the name server might return

an answer.

NO_RECOVERY

An unexpected server failure occurred from which there is no

recovery.

TRY_AGAIN A temporary error such as no response from a server, indicating the

information is not available now but may be at a later time.

Related Information

v “netdb.h” on page 64

v “endhostent() — Close the Host Information Data Set” on page 470

v “gethostbyname() — Get a Host Entry by Name” on page 782

v “gethostent() — Get the Next Host Entry” on page 785

gethostbyaddr

780 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

v “sethostent() — Open the Host Information Data Set” on page 1793

gethostbyaddr

Chapter 3. Part 3. Library Functions 781

gethostbyname() — Get a Host Entry by Name

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyname(const char *name);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct hostent *gethostbyname(char *name);

General Description

The gethostbyname() call tries to resolve the host name through a name server, if

one is present. If a name server is not present, gethostbyname() searches the local

host tables until a matching host name is found or an EOF marker is reached.

Parameter Description

name The name of the host.

The gethostbyname() call returns a pointer to a hostent structure for the host name

specified on the call.

gethostent(), gethostbyaddr(), and gethostbyname() all use the same static area to

return the hostent structure. This static area is only valid until the next one of these

functions is called on the same thread.

If you want gethostbyname() to bypass the name server and instead resolve the

host name using the local host tables, you must define the

RESOLVE_VIA_LOOKUP symbol before including any sockets-related include files

in your source program.

If the name server is not present or the RESOLVE_VIA_LOOKUP option is in effect,

you can use the X_SITE environment variable to specify different local host tables

and override those supplied by the z/OS global resolver during initialization.

Note: For more information on these local host tables or the environment variables,

see z/OS Communications Server: IP Configuration Guide, SC31-8775.

gethostent(), gethostbyaddr(), and gethostbyname() all use the same static area to

return the HOSTENT structure. This static area is only valid until the next one of

these functions is called on the same thread.

gethostbyname

782 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

The netdb.h include file defines the hostent structure and contains the following

elements:

Element Description

h_addr_list A pointer to a NULL-terminated list of host network addresses.

h_addrtype The type of address returned; currently, it is always set to AF_INET.

h_aliases A zero-terminated array of alternative names for the host.

h_length The length of the address in bytes.

h_name The official name of the host.

The following function (X/Open sockets only) is defined in netdb.h and should be

used by multithreaded applications when attempting to reference h_errno return on

error:

int *__h_errno(void);

Also use this function when you invoke gethostbyname() in a DLL. This function

returns a pointer to a thread-specific value for the h_errno variable.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The gethostbyaddr() and gethostbyname() functions have been moved to

obsolescence in Single UNIX Specification, Version 3 and may be withdrawn

in a future version. The getaddrinfo() and getnameinfo() functions are

preferred for portability.

Returned Value

The return value points to static data that is overwritten by subsequent calls. A

pointer to a hostent structure indicates success. A NULL pointer indicates an error

or End Of File (EOF).

If unsuccessful in X/Open, gethostbyname() sets h_errno to one of the following

values:

Error Code Description

HOST_NOT_FOUND

No such host is known.

NO_DATA The server recognized the request and the name but no address is

available. Another type of request to the name server might return

an answer.

NO_RECOVERY

An unexpected server failure occurred from which there is no

recovery.

TRY_AGAIN A temporary error such as no response from a server, indicating the

information is not available now but may be at a later time.

Related Information

v “netdb.h” on page 64

v “endhostent() — Close the Host Information Data Set” on page 470

gethostbyname

Chapter 3. Part 3. Library Functions 783

|
|
|
|

v “gethostbyaddr() — Get a Host Entry by Address” on page 779

v “gethostent() — Get the Next Host Entry” on page 785

v “gethostname() — Get the Name of the Host Processor” on page 788

v “sethostent() — Open the Host Information Data Set” on page 1793

gethostbyname

784 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

gethostent() — Get the Next Host Entry

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

struct hostent *gethostent(void);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct hostent *gethostent(void);

General Description

The gethostent() call reads the next line of the local host tables.

The gethostent() call returns a pointer to the next entry in the local host tables.

gethostent() uses the local host tables to get aliases.

You can use the X_SITE environment to specify different local host tables and

override those supplied by the z/OS resolver during initialization.

Note: For more information on these local host tables or the environment variables,

see z/OS Communications Server: IP Configuration Guide, SC31-8775 .

gethostent(), gethostbyaddr(), and gethostbyname() all use the same static area to

return the hostent structure. This static area is only valid until the next one of these

functions is called on the same thread.

The netdb.h include file defines the hostent structure and contains the following

elements:

Element Description

h_addrtype The type of address returned; currently, it is always set to AF_INET.

h_addr A pointer to the network address of the host.

h_aliases A zero-terminated array of alternative names for host.

h_length The length of the address in bytes.

h_name The official name of the host.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

gethostent

Chapter 3. Part 3. Library Functions 785

||||

|
|
||

|

Returned Value

If successful, gethostent() returns a pointer to a hostent structure. The return value

points to data that is overwritten by subsequent calls returning the same data

structure.

If unsuccessful, gethostent() returns a NULL pointer, indicating an error or End Of

File (EOF).

Related Information

v “netdb.h” on page 64

v “gethostbyaddr() — Get a Host Entry by Address” on page 779

v “gethostbyname() — Get a Host Entry by Name” on page 782

v “sethostent() — Open the Host Information Data Set” on page 1793

gethostent

786 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

gethostid() — Get the Unique Identifier of the Current Host

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

long gethostid(void);

Berkeley Sockets

#define _OE_SOCKETS

#include <unistd.h>

int gethostid();

General Description

The gethostid() call gets the unique 32-bit identifier for the current host. This value

is the default home Internet address.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, gethostid() returns the 32-bit identifier of the current host, which

should be unique across all hosts.

If unsuccessful, gethostid() returns −1 and stores the error value in errno. For return

codes, see z/OS UNIX System Services Messages and Codes.

Related Information

v “unistd.h” on page 96

v “gethostname() — Get the Name of the Host Processor” on page 788

gethostid

Chapter 3. Part 3. Library Functions 787

||||

|
|
||

|

gethostname() — Get the Name of the Host Processor

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int gethostname(char *name, size_t namelen);

Berkeley Sockets

#define _OE_SOCKETS

#include <unistd.h>

int gethostname(char *name, int namelen);

General Description

The gethostname() call returns the name of the host processor that the program is

running on. Up to namelen characters are copied into the name array. The returned

name is NULL-terminated unless there is insufficient room in the name array.

Parameter Description

name The character array to be filled with the host name.

namelen The length of name.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, gethostname() returns 0.

If unsuccessful, gethostname() returns −1 and sets errno to one of the following

values:

Error Code Description

EFAULT Using name and namelen would result in an attempt to copy the

address into a portion of the caller’s address space to which data

cannot be written.

EMVSPARM Incorrect parameters were passed to the service.

Related Information

v “unistd.h” on page 96

v “gethostbyname() — Get a Host Entry by Name” on page 782

v “gethostid() — Get the Unique Identifier of the Current Host” on page 787

gethostname

788 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

getibmopt() — Get IBM TCP/IP Image

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

int getibmopt(int cmd, struct ibm_gettcpinfo *bfrp);

General Description

The getibmopt() function call returns -1 with errno EOPNOTSUPP to indicate that

this function is not currently supported.

Parameter Description

cmd The value in domain must be AF_INET.

bfrp The pointer to an ibm_gettcpinfo structure.

Returned Value

getibmopt() always returns -1, indicating that this function is not currently supported.

Error Code Description

EOPNOTSUPP

This function is not supported.

Related Information

v “sys/socket.h” on page 89

getibmopt

Chapter 3. Part 3. Library Functions 789

getibmsockopt() — Get the Options Associated with a Bulk Mode

Socket

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

int getibmsockopt(int s, int level, int optname, char *optval, int *optlen);

General Description

Like getsockopt(), the getibmsockopt() gets the options associated with a socket in

the AF_INET or AF_INET6 domain. Only SOL_SOCKET is supported. This call is

for options specific to the IBM implementation of sockets. Currently, only the

SOL_SOCKET level and the socket options SO_BULKMODE,

SO_NONBLOCKLOCAL, and SO_IGNOREINCOMINGPUSH are supported.

Bulk mode is supported only for receive-type socket calls. Currently, send-type

socket calls are not supported for bulk mode.

Use getibmsockopt() with the socket option SO_BULKMODE to test whether the

UDP socket s is in bulk mode. Normally, UNIT transactions occur between the

socket application and the TCP/IP address space for every receive (read(), recv(),

recvfrom(), or recvmsg()) or send (send(), sendto(), sendmsg(), or write()) issued on

a socket. The bulk mode socket option enables an application to queue multiple

datagrams, sending all of the datagrams in one UNIT transaction. This reduces the

CPU consumption for each datagram.

This call is used only in the AF_INET domain.

Parameter Description

s The socket descriptor.

level The level for which the option is set.

optname The name of a specified socket option.

optval The pointer to option data.

optlen The pointer to the length of the option data.

For SO_BULKMODE, optval should point to an ibm_bulkmode_struct, which is

defined in SOCKET.H. The ibm_bulkmode_struct contains the following fields:

Element Description

b_onoff 1 means bulk mode is on; 0 means bulk mode is

off.

b_max_receive_queue_size The maximum receiving queue size in bytes.

b_max_send_queue_size The maximum sending queue size in bytes. This

getibmsockopt

790 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

value is set to zero, since send-type socket calls

are not currently supported for bulk mode.

b_move_data For outbound sockets, if b_move_data is nonzero,

the data is moved into buffers in the queue. The

client’s buffers can be reused right away. If

b_move_data is zero, pointers to the data are

saved in the queue. The buffers should not be

reused until the queue has been flushed (generally

by issuing an ibmsflush()).

b_teststor If this element is nonzero, the message buffer

address and the message buffer are checked for

addressability during each socket call. errno is set

to EFAULT if either address or buffer cannot be

addressed. If this element is zero, no checking is

performed.

b_max_send_queue_size_avail

The maximum send queue size in bytes that can be

set for the b_max_send_queue_size field of

ibm_bulkmode_struct. This value will be set to zero,

since send-type socket calls are not currently

supported for bulk mode.

b_num_UNITs_sent The number of actual UNITs issued in sending

datagrams to TCP/IP. This value will be set to zero,

since send-type socket calls are not currently

supported for bulk mode.

b_num_UNITs_received The number of actual UNITs issued in receiving

datagrams from TCP/IP.

The fields b_num_UNITs_sent and b_num_UNITs_received represent cumulative

totals for this socket since the time the application was started.

For SO_NONBLOCKLOCAL, optval should point to an integer. getibmsockopt()

returns 0 in optval if the socket is in blocking mode, and returns 1 in optval if the

socket is in nonblocking mode.

For SO_IGNOREINCOMINGPUSH, optval should point to an integer.

getibmsockopt() returns 0 in optval if the option is not set, and returns 1 in optval if

the option is set.

Returned Value

If successful, getibmsockopt() returns 0.

If unsuccessful, getibmsockopt() returns -1 and sets errno to one of the following

values:

Error Code Description

EBADF The s parameter is not a valid socket descriptor (outside the range

of descriptors as specified with maxdesc()).

EFAULT Using optval and optlen parameters would result in an attempt to

access storage outside the caller’s address space.

getibmsockopt

Chapter 3. Part 3. Library Functions 791

ENOPROTOOPT

The optname parameter is unrecognized, or the level parameter is

not SOL_SOCKET.

Example

The following is an example of the getibmsockopt() call.

 #include <stdio.h>

 #include <sys/socket.h>

 { struct ibm_bulkmode_struct bulkstr;

 int optlen, rc, s;

 FILE *stream;

 /* Create, bind, etc done for socket s */

 .

 .

 .

 optlen = sizeof(bulkstr);

 rc = getibmsockopt(s, SOL_SOCKET, SO_BULKMODE, (char *) &bulkstr, &optlen);

 if (rc < 0)

 { tcperror("on getibmsockopt()");

 exit(-1);

 }

 fprintf(stream,"%d byte buffer available for outbound queue.\n",

 bulkstr.b_max_send_queue_size_avail);

 }

Related Information

v “sys/socket.h” on page 89

v “ibmsflush() — Flush the Application-side Datagram Queue” on page 918

v “setibmsockopt() — Set IBM Specific Options Associated with a Socket” on page

1796

getibmsockopt

792 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__getipc() — Query Interprocess Communications

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _XOPEN_SOURCE

#include <sys/__getipc.h>

int __getipc(int token_id, IPCQPROC *bufptr, size_t buflng, int cmd);

General Description

The __getipc() function provides means for obtaining information about the status of

interprocess communications (IPC) resources, message queues, semaphores,

shared memory, and map service memory.

The argument token_id is a number that identifies the relative position of an IPC

member in the system or specifies a message queue ID, semaphore ID, or shared

memory ID. Zero represents the first IPC member ID in the system. On the first call

to __getipc(), pass the a token_id of zero; the function will return the token that

identifies the next IPC resource to which the caller has access. Use this token on

the next call to __getipc().

The argument bufptr is the address where the data is to be stored.

The argument buflen is the length of the buffer.

The argument cmd specifies one of the following commands:

IPCQALL Retrieve the next shared memory, semaphore, or message queue

IPCQMSG Retrieve the next message member

IPCQSEM Retrieve the next semaphore member

IPCQSHM Retrieve the next shared memory member

IPCQMAP Retrieve the next map service memory currently allocated

IPCQOVER Overview of system variables. Ignores the value of the first

argument token_id.

Returned Value

If successful, __getipc() returns 0.

If unsuccessful, __getipc() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES Operation permission (read) is denied to the calling process for the

member ID specified by token_id.

EFAULT The argument bufptr contains an non-valid address.

__getipc

Chapter 3. Part 3. Library Functions 793

EINVAL The member ID specified in the argument token_id is not valid for

the command specified, or the argument cmd is not a valid

command.

Related Information

v “sys/__getipc.h” on page 87

v “sys/ipc.h” on page 87

v “msgctl() — Message Control Operations” on page 1255

v “msgget() — Get Message Queue” on page 1257

v “msgrcv() — Message Receive Operation” on page 1260

v “msgsnd() — Message Send Operations” on page 1265

v “msgxrcv() — Extended Message Receive Operation” on page 1267

v “semctl() — Semaphore Control Operations” on page 1728

v “semget() — Get a Set of Semaphores” on page 1731

v “semop() — Semaphore Operations” on page 1734

v “shmat() — Shared Memory Attach Operation” on page 1864

v “shmctl() — Shared Memory Control Operations” on page 1866

v “shmdt() — Shared Memory Detach Operation” on page 1868

v “shmget() — Get a Shared Memory Segment” on page 1869

__getipc

794 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getipv4sourcefilter — Get source filter

Standards

 Standards / Extensions C or C++ Dependencies

RFC3678 both z/OS V1.9

Format

#define _OPEN_SYS_SOCK_EXT3

#include <netinet/in.h>

int getipv4sourcefilter(int s, struct in_addr interface,struct in_addr group,

 uint32_t *fmode, uint32_t *numsrc, struct in_addr *slist);

General Description

This function allows applications to get a previously set multicast filtering state for a

tuple consisting of socket, interface, and multicast group values.

A multicast filter is described by a filter mode, which is MCAST_INCLUDE or

MCAST_EXCLUDE, and a list of source addresses which are filtered.

This function is IPv4-specific, must be used only on AF_INET sockets with an open

socket of type SOCK_DGRAM or SOCK_RAW.

If the function is unable to obtain the required storage, control will not return to the

caller. Instead the application will terminate due to an out of memory condition (if

the reserve stack is available and the caller is not XPLINK), or it will terminate with

an abend indicating that storage could not be obtained.

Argument

Description

s Identifies the socket.

interface

Holds the local IP address of the interface.

group Holds the IP multicast address of the group.

fmode Points to an integer that will contain the filter mode on a successful return.

The value of this field will be either MCAST_INCLUDE or

MCAST_EXCLUDE, which are likewise defined in <netinet/in.h>.

numsrc

It is a pointer that on input, points to the number of source addresses that

will fit in the slist array. On return, points to the total number of sources

associated with the filter.

slist Points to buffer into which an array of IP addresses of included or excluded

(depending on the filter mode) sources will be written. If numsrc was 0 on

input, a NULL pointer may be supplied.

Returned Value

If successful, the function returns 0. Otherwise, it returns -1 and sets errno to one of

the following values.

errno Description

getipv4sourcefilter

Chapter 3. Part 3. Library Functions 795

|

|

||||

|||
|

|

|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|

||

|
|

||

||
|
|

|
|
|
|

||
|
|

|

|
|

||

EADDRNOTAVAIL

The tuple consisting of socket, interface, and multicast group values does

not exist, or the specified interface address is incorrect for this host, or the

specified interface address is not multicast capable.

EBADF

s is not a valid socket descriptor.

EINVAL

Interface or group is not a valid IPv4 address, or the socket s has already

requested multicast setsockopt options.

EPROTOTYPE

The socket s is not of type SOCK_DGRAM or SOCK_RAW.

 Related Information

v “netinet/in.h” on page 68

v “setipv4sourcefilter — Set source filter” on page 1798

getipv4sourcefilter

796 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|

|
|
|

|
|

|

|

|

getitimer() — Get Value of an Interval Timer

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/time.h>

int getitimer(int which, struct itimerval *value);

General Description

getitimer() gets the current value of an (previously set) interval timer. An interval

timer is a timer which sends a signal after each repetition (interval) of time.

The which argument indicates what kind of time is being controlled. Values for

which are:

ITIMER_REAL This timer is marking real (clock) time. A SIGALRM signal is

generated after each interval of time.

Note: alarm() also sets the real interval timer.

ITIMER_VIRTUAL

This timer is marking process virtual time. Process virtual time is

the amount of time spent while executing in the process, and can

be thought of as a CPU timer. A SIGVTALRM signal is generated

after each interval of time.

ITIMER_PROF

This timer is marking process virtual time plus time spent while the

system is running on behalf of the process. A SIGPROF signal is

generated after each interval of time.

Note: In a multithreaded environment, each of the above timers is specific to a

thread of execution for both the generation of the time interval and the

measurement of time. For example, an ITIMER_VIRTUAL timer will mark

execution time for just the thread, not the entire process.

The value argument is a pointer to a structure containing:

it_interval timer interval

it_value current timer value (time remaining)

Each of these fields is a timeval structure, and contains:

tv_sec seconds since January 1, 1970 (UTC)

tv_usec microseconds

Returned Value

If successful, getitimer() returns 0, and value points to the itimerval structure.

If unsuccessful, getitimer() returns −1 and sets errno to one of the following values:

getitimer

Chapter 3. Part 3. Library Functions 797

||||

|
|
||

|

Error Code Description

EINVAL which is not a valid timer type.

Related Information

v “sys/time.h” on page 89

v “alarm() — Set an Alarm” on page 180

v “gettimeofday() — Get Date and Time” on page 876

v “sleep() — Suspend Execution of a Thread” on page 1959

v “setitimer() — Set Value of an Interval Timer” on page 1800

v “ualarm() — Set the Interval Timer” on page 2282

v “usleep() — Suspend Execution for an Interval” on page 2316

getitimer

798 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getlogin() — Get the User Login Name

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

_POSIX_SOURCE

#define _POSIX_SOURCE

#include <unistd.h>

char *getlogin(void);

_XOPEN_SOURCE

#define _XOPEN_SOURCE

#include <unistd.h>

char *getlogin(void);

General Description

Finds the name that the login process associated with the current terminal. This

string is stored in a static data area and, therefore, may be overwritten with every

call to getlogin().

Special Behavior for _POSIX_SOURCE

If called from a batch program, a TSO command, or a shell command, getlogin()

returns the MVS user name associated with the program. With z/OS UNIX services,

this name is a TSO/E user ID. When _POSIX_SOURCE is defined and

_XOPEN_SOURCE is not defined, then getlogin() is the same as __getlogin1().

Special Behavior for XPG4.2

You must have a TTY at file descriptor 0, 1, or 2, and the TTY must be recorded in

the /etc/utmpx database. Someone must have logged in using the TTY. Also, the

program must be invoked from a shell session, and file descriptors 0, 1, and 2 are

not all redirected.

If getlogin() cannot determine the login name, you can call getuid() to get the user

ID of the process, and then call getpwuid() to get a login name associated with that

user ID. getpwuid() always returns the passwd struct for the same user, even if

multiple users have the same UID.

Returned Value

If successful, getlogin() returns a pointer to a string that has the login name for the

current terminal.

Special Behavior for _POSIX_SOURCE

getlogin

Chapter 3. Part 3. Library Functions 799

||||

|
|
|
|

||

|

If unsuccessful, getlogin() returns the NULL pointer.

There are no documented errno values.

Special Behavior for XPG4.2

If unsuccessful, getlogin() returns a NULL pointer and sets errno to one of the

following values:

Error Code Description

EMFILE OPEN_MAX file descriptors are currently open in the calling

process.

ENFILE The maximum allowable number of files is currently open in the

system.

ENXIO The calling process has no controlling terminal.

Example

CELEBG12

/* CELEBG12

 This example gets the user login name.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <unistd.h>

main() {

 char *user;

 if ((user = __getlogin1()) == NULL)

 perror("__getlogin1() error");

 else printf("__getlogin1() returned %s\n", user);

}

Output

getlogin() returned MEGA

Related Information

v “unistd.h” on page 96

v “getlogin_r() — Get Login Name” on page 801

v “__getlogin1() — Get the User Login Name” on page 802

v “getpwuid() — Access the User Database by User ID” on page 843

v “getpwuid_r() — Search User Database for a User ID” on page 845

v “getuid() — Get the Real User ID” on page 878

getlogin

800 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getlogin_r() — Get Login Name

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <unistd.h>

int getlogin_r(char *name, size_t namesize);

General Description

The getlogin_r() function puts the name associated by the login activity with the

control terminal of the current process in the character array pointed to by name.

The array is namesize characters long and should have space for the name and the

terminating NULL character. The maximum size of the login name is

LOGIN_NAME_MAX.

If getlogin_r() is successful, name points to the name the user used at login, even if

there are several login names with the same user ID.

Returned Value

If successful, getlogin_r() returns 0.

If unsuccessful, getlogin_r() sets errno to one of the following values:

Error Code Description

ERANGE The value of namesize is smaller than the length of the string to be

returned including the terminating NULL character.

Related Information

v “unistd.h” on page 96

v “getlogin() — Get the User Login Name” on page 799

v “__getlogin1() — Get the User Login Name” on page 802

v “getpwuid() — Access the User Database by User ID” on page 843

v “getpwuid_r() — Search User Database for a User ID” on page 845

v “getuid() — Get the Real User ID” on page 878

getlogin_r

Chapter 3. Part 3. Library Functions 801

||||

|
|
||

|

__getlogin1() — Get the User Login Name

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

both

Format

_POSIX_SOURCE

#define _POSIX_SOURCE

#include <unistd.h>

char *__getlogin1(void);

General Description

Finds the name that the login process associated with the current terminal. If called

from batch, __getlogin1() finds the name associated with the batch program. With

z/OS UNIX services, this name is a TSO/E user ID unless the USERIDALISTABLE

is in use. If the USERIDALISTABLE is setup and a UNIX alias name exists for a

given MVS(TSO, batch user, etc.) userid, then that will be returned.

If __getlogin1() cannot determine the login name, you can call getuid() to get the

user ID of the process, and then call getpwuid() to get a login name associated with

that user ID. getpwuid() always returns the passwd struct for the same user, even if

multiple users have the same UID.

Returned Value

If successful, __getlogin1() returns a pointer to a string that has the login name for

the current terminal.

If unsuccessful, __getlogin1() returns the NULL pointer.

There are no documented errno values.

Example

CELEBG12

/* CELEBG12

 This example gets the user login name.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <unistd.h>

main() {

 char *user;

 if ((user = __getlogin1()) == NULL)

 perror("__getlogin1() error");

 else printf("__getlogin1() returned %s\n", user);

}

__getlogin1

802 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Output

getlogin() returned MEGA

Related Information

v “unistd.h” on page 96

v “getlogin() — Get the User Login Name” on page 799

v “getpwuid() — Access the User Database by User ID” on page 843

v “getuid() — Get the Real User ID” on page 878

__getlogin1

Chapter 3. Part 3. Library Functions 803

getmccoll() — Get Next Collating Element from String

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <collate.h>

collel_t getmccoll(char **src);

General Description

If the object pointed to by src is not a NULL pointer, the getmccoll() library function

determines the longest sequence of bytes in the array pointed to by src that

constitute a valid multicharacter collating element. It then produces the value of type

collel_t corresponding to that collating element. The object pointed to by src is

assigned the address just past the last byte of the multicharacter collating element

processed.

Returned Value

If successful, getmccoll() returns the value of type collel_t that represents the

collating element found.

If the object pointed to by src is a NULL pointer, or if it points to NULL character,

getmccoll() returns 0.

Related Information

v “collate.h” on page 36

v “cclass() — Return Characters in a Character Class” on page 243

v “collequiv() — Return a List of Equivalent Collating Elements” on page 308

v “collorder() — Return List of Collating Elements” on page 310

v “collrange() — Calculate the Range List of Collating Elements” on page 312

v “colltostr() — Return a String for a Collating Element” on page 314

v “getwmccoll() — Get Next Collating Element from Wide String” on page 893

v “ismccollel() — Identify a Multicharacter Collating Element” on page 1030

v “maxcoll() — Return Maximum Collating Element” on page 1181

v “strtocoll() — Return Collating Element for String” on page 2064

getmccoll

804 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getmsg(), getpmsg() — Receive Next Message from a STREAMS File

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stropts.h>

int getmsg(int fildes, struct strbuf *ctlptr,

 struct strbuf *dataptr, int *flagsp);

int getpmsg(int fildes, struct strbuf *ctlptr,

 struct strbuf *dataptr, int *bandp, int *flagsp);

General Description

The getmsg() function retrieves the contents of a message located at the head of

the STREAM head read queue associated with a STREAMS file and places the

contents into one or more buffers. The message contains either a data part, a

control part, or both. The data and control parts of the message are placed into

separate buffers, as described below. The semantics of each part is defined by the

originator of the message.

The getpmsg() function does the same thing as getmsg(), but provides finer control

over the priority of the messages received. Except where noted, all requirements on

getmsg() also pertain to getpmsg().

The fildes argument specifies a file descriptor referencing a STREAMS-based file.

The ctlptr and dataptr arguments each point to a strbuf structure, in which the buf

member points to a buffer in which the data or control information is to be placed,

and the maxlen member indicates the maximum number of bytes this buffer can

hold. On return, the len member contains the number of bytes of data or control

information actually received. The len member is set to 0 if there is a zero-length

control or data part and len is set to -1 if no data or control information is present in

the message.

When getmsg() is called, flagsp should point to an integer that indicates the type of

message the process is able to receive. This is described further below.

The ctlptr argument is used to hold the control part of the message, and dataptr is

used to hold the data part of the message. If ctlptr (or dataptr) is a NULL pointer or

the maxlen member is -1, the control (or data) part of the message is not

processed and is left on the STREAM head read queue. If the ctlptr (or dataptr) is

not a NULL pointer, len is set to -1. If the maxlen member is set to 0 and there is a

zero-length control (or data) part, that zero-length part is removed from the read

queue and len is set to 0. If the maxlen member is set to 0 and there are more

than 0 bytes of control (or data) information, that information is left on the read

queue and len is set to 0. If the maxlen member in ctlptr (or dataptr) is less than

the control (or data) part of the message, maxlen bytes are retrieved. In this case,

the remainder of the message is left on the STREAM head read queue and a

nonzero return value is provided.

getmsg, getpmsg

Chapter 3. Part 3. Library Functions 805

||||

|
|
||

|

By default, getmsg() processes the first available message on the STREAM head

read queue. However, a process may choose to retrieve only high-priority

messages by setting the integer pointed to by flagsp to RS_HIPRI. In this case,

getmsg() and getpmsg() will only process the next message if it is a high-priority

message. When the integer pointed to by flagsp is 0, any message will be retrieved.

In this case, on return, the integer pointed to by flagsp will be set to RS_HIPRI if a

high-priority message was retrieved, or 0 otherwise.

For getpmsg(), the flags are different. The flagsp argument points to a bitmask with

the following mutually-exclusive flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY.

Like getmsg(), getpmsg() processes the first available message on the STREAM

head read queue. A process may choose to retrieve only high-priority messages by

setting the integer pointed to by flagsp to MSG_HIPRI and the integer pointed to by

bandp to 0. In this case, getpmsg() will only process the next message if it is a

high-priority message. In a similar manner, a process may choose to retrieve a

message from a particular priority band by setting the integer pointed to by flagsp to

MSG_BAND and the integer pointed to by bandp to the priority band of interest. In this

case, getpmsg() will only process the next message if it is in a priority band equal

to, or greater than, the integer pointed to by bandp, or if it is a high-priority

message. If a process just wants to get the first message off the queue, the integer

pointed to by flagsp should be set to MSG_ANY and the integer pointed to by bandp

should be set to 0. On return, if the message retrieved was a high-priority message,

the integer pointed to by flagsp will be set to MSG_HIPRI and the integer pointed to

by bandp will be set to 0. Otherwise, the integer pointed to by flagsp will be set to

MSG_BAND and the integer pointed to by bandp will be set to the priority band of the

message.

If O_NONBLOCK is not set, getmsg() and getpmsg() will block until a message of the

type specified by flagsp is available at the front of the STREAM head read queue. If

O_NONBLOCK is set and a message of the specified type is not present at the front of

the read queue, getmsg() and getpmsg() fail and set errno to EAGAIN.

If a hang-up occurs on the STREAM from which messages are to be retrieved,

getmsg() and getpmsg() continue to operate normally, as described above, until the

STREAM head read queue is empty. Thereafter, they return 0 in the len members

of ctlptr and dataptr.

The following symbolic constants are defined under

_XOPEN_SOURCE_EXTENDED 1 in <stropts.h>.

MSG_ANY Receive any message.

MSG_BAND Receive message from specified band.

MSG_HIPRI Send/Receive high priority message.

MORECTL More control information is left in message.

MOREDATA More data is left in message.

Returned Value

If successful, getmsg() and getpmsg() return a nonnegative value. A value of 0

indicates that a full message was read successfully. A return value of MORECTL

indicates that more control information is waiting for retrieval. A return value of

MOREDATA indicates that more data is waiting for retrieval. A return value of the

bitwise logical OR of MORECTL and MOREDATA indicates that both types of information

remain. Subsequent getmsg() and getpmsg() calls retrieve the remainder of the

message. However, if a message of higher priority has come in on the STREAM

head read queue, the next call to getmsg() or getpmsg() retrieves that

higher-priority message before retrieving the remainder of the previous message.

getmsg, getpmsg

806 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If unsuccessful, getmsg() and getpmsg() return -1 and set errno to one of the

following values.

Note: z/OS UNIX services do not supply any STREAMS devices or pseudodevices.

It is impossible for getmsg() and getpmsg() to get a message from a

STREAMS file. It will always return -1 with errno set to indicate the failure.

See “open() — Open a File” on page 1313 for more information.

Error Code Description

EAGAIN The O_NONBLOCK flag is set and no messages are available.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADMSG The queued message to be read is not valid for getmsg() or

getpmsg() or a pending file descriptor is at the STREAM head.

EINTR A signal was caught during getmsg() or getpmsg()

EINVAL An illegal value was specified by flagsp, or the STREAM or

multiplexer referenced by fildes is linked (directly or indirectly)

downstream from a multiplexer.

ENOSTR A STREAM is not associated with fildes.

In addition, getmsg() and getpmsg() will fail if the STREAM head had processed an

asynchronous error before the call. In this case, the value of errno does not reflect

the result of getmsg() or getpmsg() but reflects the prior error.

Related Information

v “stropts.h” on page 86

v “poll() — Monitor Activity on File Descriptors and Message Queues” on page

1353

v “putmsg(), putpmsg() — Send a Message on a STREAM” on page 1571

v “read() — Read From a File or Socket” on page 1602

v “write() — Write Data on a File or Socket” on page 2464

getmsg, getpmsg

Chapter 3. Part 3. Library Functions 807

getnameinfo() — get name information

Standards

 Standards / Extensions C or C++ Dependencies

RFC2553

Single UNIX Specification, Version 3

both z/OS V1R4

Format

#define _OPEN_SYS_SOCK_IPV6

#include <sys/socket.h>

#include <netdb.h>

int getnameinfo(cons struct sockaddr *sa, socklen_t salen,

 char *host, socklen_t hostlen,

 char *serv, socklen_t servlen,

 int flags);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <sys/socket.h>

#include <netdb.h>

int getnameinfo(cons struct sockaddr *__restrict__ sa, socklen_t salen,

 char *__restrict__ host, socklen_t hostlen, char *__restrict__ serv,

 socklen_t servlen, int flags);

General Description

The getnameinfo() function translates a socket address to a node name and service

location. The getnameinfo() function looks up an IP address and port number

provided by the caller in the DNS and system-specific database, and returns text

strings for both in buffers provided by the caller.

The sa argument points to either a sockaddr_in structure (for IPv4) or a

sockaddr_in6 structure (for IPv6) that holds the IP address and port number. The

sockaddr_in6 structure may also contain a zone index value, if the IPv6 address

represented by this sockaddr_in6 structure is a link-local address. The salen

argument gives the length of the sockaddr_in or sockaddr_in6 structure.

If the socket address structure contains an IPv4-mapped IPv6 address or an

IPv4-compatible IPv6 address, the embedded IPv4 address is extracted and the the

lookup is performed on the IPv4 address.

Note: The IPv6 unspecified address (“::”) and the IPv6 loopback address (“::1”) are

not IPv4-compatible addresses. If the address is the IPv6 unspecified

address, a lookup is not performed, and the EAI_NONAME error code is

returned.

The node name associated with the IP address is returned in the buffer pointed to

by the host argument. The caller provides the size of this buffer in the hostlen

argument. The caller specifies not to return the node name by specifying a zero

value for hostlen or a null host argument. If the node’s name cannot be located, the

numeric form of the node’s address is returned instead of its name. If a zone index

value was present in the sockaddr_in6 structure, the numeric form of the zone

index, or the interface name associated with the zone index, is appended to the

node name returned, using the format node name%scope information.

getnameinfo

808 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

If the size of the buffer specified in the hostlen argument is insufficient to contain

the entire node name, or node name and scope information combination, up to

hostlen characters will be copied into the buffer as a null terminated string.

The service name associated with the port number is returned in the buffer pointed

to by the serv argument, and the servlen argument gives the length of this buffer.

The caller specifies not to the service name by specifying a zero value for servlen

or a null serv argument. If the service’s name cannot be located, the numeric of the

service address (for example, its port number) will be returned instead of its name.

If the size of the buffer specified in the servlen argument is insufficient to contain

the entire service name, up to servlen characters will be copied into the buffer as a

null terminated string.

The final argument, flags, is a flag that changes the default actions of this function.

By default the fully-qualified domain name (FQDN) for the host is returned.

If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN is

returned for local hosts.

If the flag bit NI_NUMERICHOST is set, the numeric form of the host’s address is

returned instead of its name.

If the flag bit NI_NAMEREQD is set, an error is returned if the host’s name cannot

be located.

If the flag bit NI_NUMERICSERV is set, the numeric form of the service address is

returned (for example, its port number) instead of its name.

If the flag bit NI_NUMERICSCOPE is set, the numeric form of the scope identifier is

returned (for example, zone index) instead of its name. This flag is ignored if the sa

argument is not an IPv6 address.

If the flag bit NI_DGRAM is set, this specifies that the service is a datagram

service, and causes getservbyport() to be called with a second argument of ″udp″

instead of its default of ″tcp″. This flag is required for the few ports (for example,

[512,514]) that have different services for UDP and TCP.

Note: The three NI_NUMERICxxx flags are required to support the ″-n″ flag that

many commands provide.

Special Behavior for SUSv3:

Starting with z/OS V1.9, environment variable _EDC_SUSV3 can be used to control

the behavior of getnameinfo() with respect to detecting if the buffer pointed to by

the host or serv argument is too small to contain the entire resolved name. The

function will fail and return EAI_OVERFLOW. By default, getnameinfo() will truncate

the values pointed to by host or serv and return successfully. When _EDC_SUSV3

is set to 1, getnameinfo() will check for insufficient size buffers to contain the

resolved name.

Returned Value

Upon successful completion, getnameinfo() returns the node and service names, if

requested, in the buffers provided. The returned names are always null-terminated

strings.

getnameinfo

Chapter 3. Part 3. Library Functions 809

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|

A zero return value for getnameinfo() indicates successful completion; a non-zero

return value indicates failure. The possible values for the failures are listed as

follows.

Error Code Description

EAI_AGAIN The specified host address could not be resolved within the

configured time interval, or the resolver address space has not

been started. The request can be retried later.

EAI_BADFLAGS

The flags parameter had an incorrect value.

EAI_FAIL An unrecoverable error occurred.

EAI_FAMILY The address family was not recognized, or the address length was

not valid for the specified family.

EAI_MEMORY

A memory allocation failure occurred.

EAI_NONAME The name does not resolve for the supplied parameter. One of the

following occurred:

1. NI_NAMEREQD is set, and the host name cannot be located.

2. Both host name and service name were null.

3. The requested address is valid, but it does not have a record at

the name server.

EAI_OVERFLOW

An argument buffer overflowed. The buffer specified for the host

name or the service name was not sufficient to contain the entire

resolved name, and the caller previously specified

_EDC_SUSV3=1, indicating that truncation was not permitted.

EAI_SYSTEM An unrecoverable error occurred.

 For more information on the above error codes, refer to z/OS Communications

Server: IP and SNA Codes.

Related Information

v “gai_strerror() — address and name information error description” on page 735

v “getaddrinfo() — get address information” on page 738

v “getservbyname() — Get a Server Entry by Name” on page 852

v “getservbyport() — Get a Service Entry by Port” on page 854

v “inet_ntop() — Convert Internet Address Format from Binary to Text” on page 970

v “socket() — Create a Socket” on page 1970

v “netdb.h” on page 64

v “sys/socket.h” on page 89

getnameinfo

810 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

|
|
|
|
|

getnetbyaddr() — Get a Network Entry by Address

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

XPG4.2

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

struct netent *getnetbyaddr(ip_addr_t net, int type);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <netdb.h>

struct netent *getnetbyaddr(uint32_t net, int type);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <netdb.h>

struct netent *getnetbyaddr(unsigned long net, int type);

General Description

The getnetbyaddr() call searches the tcpip.HOSTS.ADDRINFO data set for the

specified network address.

Parameter Description

net The network address.

type The address domain supported (AF_INET).

If the name server is not present or the RESOLVE_VIA_LOOKUP option is in effect,

you can use the X_ADDR environment variable to specify a data set other than

tcpip.HOSTS.ADDRINFO.

Note: For more information on these data sets and environment variables,

tcpip.HOSTS.LOCAL, tcpip.HOSTS.ADDRINFO, and

tcpip.HOSTS.SITEINFO, see z/OS Communications Server: IP Configuration

Guide, SC31-8775.

getnetbyaddr(), getnetbyname(), and getnetent() all use the same static area to

return the netent structure. This static area is only valid until the next one of these

functions is called on the same thread.

The netent structure is defined in the netdb.h include file and contains the

following elements:

Element Description

n_addrtype The type of network address returned. The call always sets this

value to AF_INET.

getnetbyaddr

Chapter 3. Part 3. Library Functions 811

||||

|
|
||

|

|
|
|

n_aliases An array, terminated with a NULL pointer, of alternative names for

the network.

n_name The official name of the network.

n_net The network number, returned in host byte order.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, getnetbyaddr() returns a pointer to a netent structure. The return

value points to data that is overwritten by subsequent calls returning the same data

structure.

If unsuccessful, getnetbyaddr() returns a NULL pointer, indicating an error or End Of

File (EOF).

Related Information

v “netdb.h” on page 64

v “endhostent() — Close the Host Information Data Set” on page 470

v “endnetent() — Close Network Information Data Sets” on page 471

v “getnetbyname() — Get a Network Entry by Name” on page 813

v “getnetent() — Get the Next Network Entry” on page 815

v “setnetent() — Open the Network Information Data Set” on page 1822

getnetbyaddr

812 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getnetbyname() — Get a Network Entry by Name

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

struct netent *getnetbyname(const char *name);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct netent *getnetbyname(name);

General Description

The getnetbyname() call searches the tcpip.HOSTS.SITEINFO data set for the

specified network name.

Parameter Description

name The pointer to a network name.

You can use the X_SITE environment variable to specify a data set other than

tcpip.HOSTS.SITEINFO.

Note: For more information on these data sets and environment variables,

tcpip.HOSTS.LOCAL, tcpip.HOSTS.SITEINFO, and tcpip.HOSTS.SITEINFO,

see z/OS Communications Server: IP Configuration Guide, SC31-8775.

The getnetbyname() call returns a pointer to a netent structure for the network

name specified on the call. getnetbyaddr(), getnetbyname(), and getnetent() all use

the same static area to return the netent structure. This static area is only valid

until the next one of these functions is called on the same thread.

The netent structure is defined in the netdb.h include file and contains the

following elements:

Element Description

n_addrtype The type of network address returned. The call always sets this

value to AF_INET.

n_aliases An array, terminated with a NULL pointer, of alternative names for

the network.

n_name The official name of the network.

n_net The network number, returned in host byte order.

Special Behavior for C++

getnetbyname

Chapter 3. Part 3. Library Functions 813

||||

|
|
||

|

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, getnetbyname() returns a pointer to a netent structure. The return

value points to static data that is overwritten by subsequent calls.

If unsuccessful, getnetbyname() returns a NULL pointer, indicating an error or End

Of File (EOF).

Related Information

v “netdb.h” on page 64

v “endhostent() — Close the Host Information Data Set” on page 470

v “endnetent() — Close Network Information Data Sets” on page 471

v “getnetbyaddr() — Get a Network Entry by Address” on page 811

v “getnetent() — Get the Next Network Entry” on page 815

v “setnetent() — Open the Network Information Data Set” on page 1822

getnetbyname

814 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getnetent() — Get the Next Network Entry

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

struct netent *getnetent(void);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct netent *getnetent(void);

General Description

The getnetent() call reads the next entry of the tcpip.HOSTS.ADDRINFO data set.

You can use the X_ADDR environment variable to specify a data set other than

tcpip.HOSTS.ADDRINFO.

Note: For more information on these data sets and environment variables,

tcpip.HOSTS.LOCAL, tcpip.HOSTS.ADDRINFO, and

tcpip.HOSTS.SITEINFO, see z/OS Communications Server: IP Configuration

Guide, SC31-8775.

The getnetent() call returns a pointer to the next entry in the

tcpip.HOSTS.SITEINFO data set.

getnetbyaddr(), getnetbyname(), and getnetent() all use the same static area to

return the netent structure. This static area is only valid until the next one of these

functions is called on the same thread.

The netent structure is defined in the netdb.h include file and contains the

following elements:

Element Description

n_addrtype The type of network address returned. The call always sets this

value to AF_INET.

n_aliases An array, terminated with a NULL pointer, of alternative names for

the network.

n_name The official name of the network.

n_net The network number, returned in host byte order.

Special Behavior for C++

getnetent

Chapter 3. Part 3. Library Functions 815

||||

|
|
||

|

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, getnetent() returns a pointer to a netent structure. The return value

points to data that is overwritten by subsequent calls returning the same data

structure.

If unsuccessful, getnetent() returns a NULL pointer, indicating an error or End Of

File (EOF).

Related Information

v “netdb.h” on page 64

v “endhostent() — Close the Host Information Data Set” on page 470

v “endnetent() — Close Network Information Data Sets” on page 471

v “gethostbyaddr() — Get a Host Entry by Address” on page 779

v “gethostbyname() — Get a Host Entry by Name” on page 782

v “setnetent() — Open the Network Information Data Set” on page 1822

getnetent

816 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getopt() — Command Option Parsing

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdio.h>

int getopt(int argc, char *const argv[], const char *optsting);

extern char *optarg;

extern int optind, opterr, optopt;

SUSV3

#define _XOPEN_SOURCE 600

#include <unistd.h>

int getopt(int argc, char *const argv[], const char *optsting);

extern char *optarg;

extern int optind, opterr, optopt;

General Description

The getopt() function is a command-line parser that can be used by applications

that follow Utility Syntax Guidelines 3, 4, 5, 6, 7, 9 and 10 in X/Open CAE

Specification, System Interface Definitions, Issue 4, Version 2 Section 10.2 , Utility

Syntax Guidelines. The getopt() function provides the identical functionality

described in the X/Open CAE Specification System Interfaces and Headers, Issue

4, Version 2 for the getopt() function with the following extensions:

v If the external variable optind is set to zero, the getopt() function treats this as an

indication to restart the scan at the first byte of argv[1].

If getopt() encounters an option character that is not contained in optstring, it

returns the question-mark (?) character. If it detects a missing option-argument, it

returns the colon character (:) if the first character of optstring was a colon, or a

question-mark character (?) otherwise. In either case, getopt() sets the variable

optopt to the option character that caused the error. If the application has not set

the variable opterr to 0 and the first character of optstring is not a colon, getopt()

also prints a diagnostic message to stderr in the format specified for the getopts

utility.

Because the getopt() function returns thread-specific data the getopt() function can

be used safely from a multithreaded application.

Returned Value

If successful, getopt() returns the value of the next option character from argv that

matches a character in optstring.

A colon (:) is returned if getopt() detects a missing argument and the first character

of optstring was a colon (:).

getopt

Chapter 3. Part 3. Library Functions 817

||||

|
|
|

||

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

A question-mark (?) is returned if getopt() encounters an option character not in

optstring or detects a missing argument and the first character of optstring was not

a colon (:).

Otherwise getopt() returns -1 when all command line arguments have been parsed

or an unexpected error is encountered in the command line.

getopt() sets the external variables optind, optarg and optopt as described in the

X/Open CAE Specification System Interfaces and Headers, Issue 4, Version 2 for

the getopt() function.

The following functions defined in <stdio.h> should be used by multithreaded

applications when attempting to reference or change the optind, optopt, optarg and

opterr external variables:

 int *__opindf(void);

 int *__opoptf(void);

 char **__opargf(void);

 int *__operrf(void);

Also use these functions when you invoke getopt() in a DLL. These functions return

a pointer to a thread-specific value for each variable.

getopt() does not return any errno values.

If getopt() detects a missing argument or an option character not in optstring it will

write an error message to stderr describing the option character in error and the

invoking program.

Related Information

v “stdio.h” on page 82

v “getsubopt() — Parse Suboption Arguments” on page 871

getopt

818 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getpagesize() — Get the Current Page Size

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int getpagesize(void);

General Description

The getpagesize() function returns the current page size. The getpagesize() function

is equivalent to sysconf(_SC_PAGE_SIZE) and sysconf(_SC_PAGESIZE).

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use sysconf(_SC_PAGESIZE) instead of getpagesize().

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

getpagesize() returns the current page size.

Related Information

v “unistd.h” on page 96

v “sysconf() — Determine System Configuration Options” on page 2111

getpagesize

Chapter 3. Part 3. Library Functions 819

|
|
|
|

|
|
|
|
|

getpass() — Read a String of Characters Without Echo

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

both

Format

#define _XOPEN_SOURCE

#include <unistd.h>

char *getpass(const char *prompt);

General Description

The getpass() function opens the process’s controlling terminal, writes to that device

the NULL-terminated string prompt, disables echoing, reads a string of characters

up to the next newline character or EOF, restores the terminal state and closes the

terminal.

getpass() only works in an environment where either a controlling terminal exists, or

stdin and stderr refer to tty devices. Specifically, it does not work in a TSO

environment.

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3.

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If successful, getpass() returns a pointer to a NULL-terminated string of at most

PASS_MAX bytes that were read from the terminal device.

If unsuccessful, getpass() returns a NULL pointer and the terminal state is restored.

Related Information

v “unistd.h” on page 96

getpass

820 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

|
|
|
|
|

getpeername() — Get the Name of the Peer Connected to a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int getpeername(int socket, struct sockaddr *__restrict__ name,

 socklen_t *__restrict__ namelen);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

int getpeername(int socket, struct sockaddr *name,

 int *namelen);

General Description

The getpeername() call returns the name of the peer connected to socket descriptor

socket. namelen must be initialized to indicate the size of the space pointed to by

name and is set to the number of bytes copied into the space before the call

returns. The size of the peer name is returned in bytes. If the actual length of the

address is greater than the length of the supplied sockaddr, the stored address is

truncated. The sa_len member of the store structure contains the length of the

untruncated address.

Parameter Description

socket The socket descriptor.

name The Internet address of the connected socket that is filled by

getpeername() before it returns. The exact format of name is

determined by the domain in which communication occurs.

namelen Must initially point to an integer that contains the size in bytes of

the storage pointed to by name. On return, that integer contains the

size required to represent the address of the connecting socket. If

this value is larger than the size supplied on input, then the

information contained in sockaddr is truncated to the length

supplied on input. If name is NULL, namelen is ignored.

Sockets in the AF_INET6 Domain

For an AF_INET6 socket, the address is returned in a sockaddr_in6 address

structure. The sockaddr_in6 structure is defined in the header file netinet/in.h.

Special Behavior for C++

getpeername

Chapter 3. Part 3. Library Functions 821

||||

|
|
||

|

|
|
|
|
|

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The getpeername() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, getpeername() returns 0.

If unsuccessful, getpeername() returns -1 and sets errno to one of the following

values:

Error Code Description

EBADF The socket parameter is not a valid socket descriptor.

EFAULT Using the name and namelen parameters as specified would result

in an attempt to access storage outside of the caller’s address

space.

EINVAL The namelen parameter is not a valid length. The socket has been

shut down.

ENOBUFS getpeername() is unable to process the request due to insufficient

storage.

ENOTCONN The socket is not in the connected state.

ENOTSOCK The descriptor is for a file, not for a socket.

EOPTNOTSUPP

The operation is not supported for the socket protocol.

Related Information

v “sys/socket.h” on page 89

v “accept() — Accept a New Connection on a Socket” on page 120

v “connect() — Connect a Socket” on page 325

v “getsockname() — Get the Name of a Socket” on page 859

v “socket() — Create a Socket” on page 1970

getpeername

822 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getpgid() — Get Process Group ID

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

pid_t getpgid(pid_t pid);

General Description

The getpgid() function returns the process group ID of the process whose process

ID is equal to pid. If pid is 0, getpgid() returns the PID of the calling process.

Returned Value

If successful, getpgid() returns a process group ID.

If unsuccessful, getpgid() returns (pid_t)-1 and sets errno to one of the following

values:

Error Code Description

EPERM The process whose process ID is equal to pid is not the same

session as the calling process, and the implementation does not

allow to the process group ID of that process from the calling

process.

ESRCH There is no process with a process ID equal to pid.

getpgid() may fail if:

Error Code Description

EINVAL The value of the pid argument is not valid.

Related Information

v “unistd.h” on page 96

v “exec Functions” on page 486

v “fork() — Create a New Process” on page 632

v “getpgrp() — Get the Process Group ID” on page 824

v “getsid() — Get Process Group ID of Session Leader” on page 858

v “setregid() — Set Real and Effective Group IDs” on page 1833

v “setsid() — Create Session, Set Process Group ID” on page 1841

getpgid

Chapter 3. Part 3. Library Functions 823

||||

|
|
||

|

getpgrp() — Get the Process Group ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

pid_t getpgrp(void);

General Description

Finds the process group ID of the calling process.

Returned Value

Returns the found value. It is always successful.

There are no documented errno values.

Example

CELEBG13

/* CELEBG13

 This example gets all the process group IDs.

 */

#define _POSIX_SOURCE

#include <unistd.h>

#include <sys/wait.h>

main() {

 int status;

 if (fork() == 0) {

 if (fork() == 0) {

 printf("grandchild's pid is %d, process group id is %d\n",

 (int) getpid(), (int) getpgrp());

 exit(0);

 }

 printf("child's pid is %d, process group id is %d\n",

 (int) getpid(), (int) getpgrp());

 wait(&status);

 exit(0);

 }

 printf("parent's pid is %d, process group id is %d\n",

 (int) getpid(), (int) getpgrp());

 printf("the parent's parent's pid is %d\n", (int) getppid());

 wait(&status);

}

Output

getpgrp

824 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

parent’s pid is 5373959, process group id is 5111816

the parent’s parent’s pid is 5111816

child’s pid is 5832710, process group id is 5111816

grandchild’s pid is 196617, process group id is 5111816

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “setpgid() — Set Process Group ID for Job Control” on page 1826

v “setsid() — Create Session, Set Process Group ID” on page 1841

getpgrp

Chapter 3. Part 3. Library Functions 825

getpid() — Get the Process ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

pid_t getpid(void);

General Description

Finds the process ID (PID) of the calling process.

Returned Value

getpid() returns the found value. It is always successful.

There are no documented errno values.

Example

CELEBG14

/* CELEBG14 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <sys/types.h>

#include <signal.h>

#include <unistd.h>

void catcher(int signum) {

 puts("catcher has control!");

}

main() {

 struct sigaction sact;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGUSR1, &sact, NULL);

 printf("sending SIGUSR1 to pid %d\n", (int) getpid());

 kill(getpid(), SIGUSR1);

}

Output

sending SIGUSR1 to pid 5570567

catcher has control!

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

getpid

826 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

v “exec Functions” on page 486

v “fork() — Create a New Process” on page 632

v “getppid() — Get the Parent Process ID” on page 829

v “kill() — Send a Signal to a Process” on page 1055

getpid

Chapter 3. Part 3. Library Functions 827

getpmsg() — Receive Next Message from a STREAMS File

The information for this function is included in “getmsg(), getpmsg() — Receive

Next Message from a STREAMS File” on page 805.

getpmsg

828 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getppid() — Get the Parent Process ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

pid_t getppid(void);

General Description

Gets the parent process ID (PPID).

Returned Value

getppid() returns the parent process ID. It is always successful.

There are no documented errno values.

Example

CELEBG15

/* CELEBG15 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <sys/types.h>

#include <signal.h>

#include <unistd.h>

#include <sys/wait.h> /*FIX: used to be <wait.h>*/

volatile short footprint=0;

void catcher(int signum) {

 switch (signum) {

 case SIGALRM: puts("caught SIGALRM");

 break;

 case SIGUSR2: puts("caught SIGUSR2");

 break;

 default: printf("caught unexpected signal %d\n", signum);

 }

 footprint++;

}

main() {

 struct sigaction sact;

 int status;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGUSR2, &sact, NULL);

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

getppid

Chapter 3. Part 3. Library Functions 829

||||

|
|
|
|

||

|

sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 printf("parent (pid %d) is about to fork child\n", (int) getpid());

 if (fork() == 0) {

 printf("child is sending SIGUSR2 to pid %d\n", (int) getppid());

 kill(getppid(), SIGUSR2);

 exit(0);

 }

 alarm(30);

 while (footprint == 0);

 wait(&status);

 puts("parent is exiting");

}

Output

parent (pid 6094854) is about to fork child

is sending SIGUSR2 to pid 6094854

caught SIGUSR2

parent is exiting

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “exec Functions” on page 486

v “fork() — Create a New Process” on page 632

v “getpid() — Get the Process ID” on page 826

v “kill() — Send a Signal to a Process” on page 1055

getppid

830 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getpriority() — Get Process Scheduling Priority

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/resource.h>

int getpriority(int which, id_t who);

General Description

getpriority() obtains the current priority of a process, process group or user.

Processes are specified by the values of the which and who arguments. The which

argument may be any one of the following set of symbols defined in the

sys/resource.h include file:

PRIO_PROCESS

indicates that the who argument is to be interpreted as a process

ID

PRIO_PGRP indicates that the who argument is to be interpreted as a process

group ID

PRIO_USER indicates that the who argument is to be interpreted as a user ID

The who argument specifies the ID (process, process group, or user). A 0 (zero)

value for the who argument specifies the current process, process group or user ID.

Returned Value

If successful, getpriority() returns the priority of the process, process group, or used

ID requested in who. The priority is returned as an integer in the range -20 to 19

(the lower the numerical value, the higher the priority).

If more than one process is specified, getpriority() returns the highest priority

pertaining to any of the specified processes.

If unsuccessful, getpriority() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL The symbol specified in the which argument was not recognized, or

the value of the who argument is not a valid process ID, process

group ID or user ID.

ESRCH No process could be located using the which and who argument

values specified.

getpriority

Chapter 3. Part 3. Library Functions 831

||||

|
|
||

|

Because getpriority() can return the value -1 on successful completion, it is

necessary to set the external variable errno to 0 before a call to getpriority(). If

getpriority() returns -1, then errno can be checked to see if an error occurred or if

the value is a legitimate priority.

Related Information

v “sys/resource.h” on page 88

v “nice() — Change Priority of a Process” on page 1304

v “setpriority() — Set Process Scheduling Priority” on page 1829

getpriority

832 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getprotobyname() — Get a Protocol Entry by Name

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

struct protoent *getprotobyname(const char *name);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct protoent *getprotobyname(char name);

General Description

The getprotobyname() call searches the /etc/protocol or tcpip.ETC.PROTO data set

for the specified protocol name.

Parameter Description

name The name of the protocol.

The getprotobyname() call returns a pointer to a protoent structure for the network

protocol specified on the call. getprotobyname(), getprotobynumber(), and

getprotoent() all use the same static area to return the protoent structure. This

static area is only valid until the next one of these functions is called on the same

thread.

The protoent structure is defined in the netdb.h include file and contains the

following elements:

Element Description

p_aliases An array, terminated with a NULL pointer, of alternative names for

the protocol.

p_name The official name of the protocol.

p_proto The protocol number.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, getprotobyname() returns a pointer to a protoent structure. The return

value points to data that is overwritten by subsequent calls returning the same data

structure.

getprotobyname

Chapter 3. Part 3. Library Functions 833

||||

|
|
||

|

If unsuccessful, getprotobyname() returns a NULL pointer, indicating an error or End

Of File (EOF).

Related Information

v “netdb.h” on page 64

v “endprotoent() — Work with a Protocol Entry” on page 472

v “getprotobynumber() — Get a Protocol Entry by Number” on page 835

v “getprotoent() — Get the Next Protocol Entry” on page 837

v “setprotoent() — Open the Protocol Information Data Set” on page 1831

getprotobyname

834 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getprotobynumber() — Get a Protocol Entry by Number

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

struct protoent *getprotobynumber(int proto);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct protoent *getprotobynumber(int proto);

General Description

The getprotobynumber() call searches the /etc/protocol or tcpip.ETC.PROTO data

set for the specified protocol number.

Parameter Description

proto The protocol number.

The getprotobynumber() call returns a pointer to a protoent structure for the

network protocol specified on the call. getprotobyname(), getprotobynumber(), and

getprotoent() all use the same static area to return the protoent structure. This

static area is only valid until the next one of these functions is called on the same

thread.

The protoent structure is defined in the netdb.h include file and contains the

following elements:

Element Description

p_aliases An array, terminated with a NULL pointer, of alternative names for

the protocol.

p_name The official name of the protocol.

p_proto The protocol number.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, getprotobynumber() returns a pointer to a protoent structure. The

return value points to data that is overwritten by subsequent calls returning the

same data structure.

getprotobynumber

Chapter 3. Part 3. Library Functions 835

||||

|
|
||

|

If unsuccessful, getprotobynumber() returns a NULL pointer, indicating an error or

End Of File (EOF).

Related Information

v “netdb.h” on page 64

v “endprotoent() — Work with a Protocol Entry” on page 472

v “getprotobyname() — Get a Protocol Entry by Name” on page 833

v “getprotoent() — Get the Next Protocol Entry” on page 837

v “setprotoent() — Open the Protocol Information Data Set” on page 1831

getprotobynumber

836 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getprotoent() — Get the Next Protocol Entry

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

struct protoent *getprotoent(void);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct protoent *getprotoent(void);

General Description

The getprotoent() call reads /etc/protocol or the tcpip.ETC.PROTO data set.

The getprotoent()> call returns a pointer to the next entry in the /etc/protocol or the

tcpip.ETC.PROTO data set.

getprotobyname(), getprotobynumber(), and getprotoent() all use the same static

area to return the protoent structure. This static area is only valid until the next one

of these functions is called on the same thread.

The protoent structure is defined in the netdb.h include file and contains the

following elements:

Element Description

p_aliases An array, terminated with a NULL pointer, of alternative names for

the protocol.

p_name The official name of the protocol.

p_proto The protocol number.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, getprotoent() returns a pointer to a protoent structure. The return

value points to data that is overwritten by subsequent calls returning the same data

structure.

If unsuccessful, getprotoent() returns a NULL pointer, indicating an error or End Of

File (EOF).

getprotoent

Chapter 3. Part 3. Library Functions 837

||||

|
|
||

|

Related Information

v “netdb.h” on page 64

v “endprotoent() — Work with a Protocol Entry” on page 472

v “getprotobyname() — Get a Protocol Entry by Name” on page 833

v “getprotobynumber() — Get a Protocol Entry by Number” on page 835

v “setprotoent() — Open the Protocol Information Data Set” on page 1831

getprotoent

838 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getpwent() — Get User Database Entry

The information for this function is included in “endpwent() — User Database

Functions” on page 473.

getpwent

Chapter 3. Part 3. Library Functions 839

getpwnam() — Access the User Database by User Name

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <pwd.h>

struct passwd *getpwnam(const char *name);

General Description

Accesses the passwd structure (defined in the pwd.h header file), which contains the

following members:

pw_name User name

pw_uid User ID (UID) number

pw_gid Group ID (GID) number

pw_dir Initial working directory

pw_shell Initial user program

Returned Value

If successful, getpwnam() returns a pointer to a passwd structure containing an entry

from the user database with the specified name. Return values may point to the

static data that is overwritten on each call.

If unsuccessful, getpwnam() returns a NULL pointer and sets errno to one of the

following values:

Error Code Description

EINVAL A non-valid user name is detected.

Example

CELEBG16

/* CELEBG16

 This example provides information for the user data

 base, MEGA.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <pwd.h>

main() {

 struct passwd *p;

 char user[]="MEGA";

 if ((p = getpwnam(user)) == NULL)

 perror("getpwnam() error");

 else {

getpwnam

840 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

printf("getpwnam() returned the following info for user %s:\n",

 user);

 printf(" pw_name : %s\n", p−>pw_name);

 printf(" pw_uid : %d\n", (int) p−>pw_uid);

 printf(" pw_gid : %d\n", (int) p−>pw_gid);

 printf(" pw_dir : %s\n", p−>pw_dir);

 printf(" pw_shell : %s\n", p−>pw_shell);

 }

}

Output

 pw_name : MEGA

 pw_uid : 0

 pw_gid : 512

 pw_dir : /u/mega

 pw_shell : /bin/sh

Related Information

v “pwd.h” on page 75

v “sys/types.h” on page 90

v “endpwent() — User Database Functions” on page 473

v “getlogin() — Get the User Login Name” on page 799

v “getlogin_r() — Get Login Name” on page 801

v “getpwnam_r() — Search User Database for a Name” on page 842

v “getpwuid() — Access the User Database by User ID” on page 843

v “getpwuid_r() — Search User Database for a User ID” on page 845

getpwnam

Chapter 3. Part 3. Library Functions 841

getpwnam_r() — Search User Database for a Name

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <sys/types.h>

#include <pwd.h>

int getpwnam_r(const char *nam, struct passwd *pwd,

char *buffer, size_t bufsize, struct passwd **result);

General Description

The getpwnam_r() function updates the passwd structure pointed to by pwd and

stores a pointer to that structure at the location pointed to by result. The structure

will contain an entry from the user database with a matching name. Storage

referenced by the structure is allocated from the memory provided with the buffer

parameter, which is bufsize characters in size. A NULL pointer is returned at the

location pointed to by result on error or if the requested entry is not found.

Returned Value

If successful, getpwnam_r() returns 0.

If unsuccessful, getpwnam_r() sets errno to one of the following values:

Error Code Description

ERANGE Insufficient storage was supplied in buffer and bufsize to contain the

data to be referenced by the resulting passwd structure.

Related Information

v “pwd.h” on page 75

v “sys/types.h” on page 90

v “endpwent() — User Database Functions” on page 473

v “getlogin() — Get the User Login Name” on page 799

v “getlogin_r() — Get Login Name” on page 801

v “getpwnam() — Access the User Database by User Name” on page 840

v “getpwuid() — Access the User Database by User ID” on page 843

v “getpwuid_r() — Search User Database for a User ID” on page 845

getpwnam_r

842 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

getpwuid() — Access the User Database by User ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <pwd.h>

struct passwd *getpwuid(uid_t uid);

General Description

Gets information about a user with the specified uid. getpwuid() returns a pointer to

a passwd structure containing an entry from the user database for the specified uid.

This structure (defined in the pwd.h header file), contains the following members:

pw_name User name

pw_uid User ID (UID) number

pw_gid Group ID (GID) number

pw_dir Initial working directory

pw_shell Initial user program

Return values may point to the static data that is overwritten on each call.

Returned Value

If successful, getpwuid() returns a pointer.

If unsuccessful, getpwuid() returns a NULL pointer.

There are no documented errno values.

Example

CELEBG17

/* CELEBG17

 This example provides information for user ID 0.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <pwd.h>

main() {

 struct passwd *p;

 uid_t uid=0;

 if ((p = getpwuid(uid)) == NULL)

 perror("getpwuid() error");

 else {

 printf("getpwuid() returned the following info for uid %d:\n",

 (int) uid);

 printf(" pw_name : %s\n", p−>pw_name);

getpwuid

Chapter 3. Part 3. Library Functions 843

||||

|
|
|
|

||

|

printf(" pw_uid : %d\n", (int) p−>pw_uid);

 printf(" pw_gid : %d\n", (int) p−>pw_gid);

 printf(" pw_dir : %s\n", p−>pw_dir);

 printf(" pw_shell : %s\n", p−>pw_shell);

 }

}

Output

getpwuid() returned the following info for uid 0:

 pw_name : MEGA

 pw_uid : 0

 pw_gid : 512

 pw_dir : /u/mega

 pw_shell : /bin/sh

Related Information

v “pwd.h” on page 75

v “sys/types.h” on page 90

v “endpwent() — User Database Functions” on page 473

v “getlogin() — Get the User Login Name” on page 799

v “getlogin_r() — Get Login Name” on page 801

v “getpwnam() — Access the User Database by User Name” on page 840

v “getpwnam_r() — Search User Database for a Name” on page 842

v “getpwuid_r() — Search User Database for a User ID” on page 845

getpwuid

844 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getpwuid_r() — Search User Database for a User ID

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <sys/types.h>

#include <pwd.h>

int getpwuid_r(uid_t uid, struct passwd *pwd,

char *buffer, size_t bufsize, struct passwd **result);

General Description

The getpwuid_r() function updates the passwd structure pointed to by pwd and

stores a pointer to that structure at the location pointed to by result. The structure

will contain an entry from the user database with a matching uid. Storage

referenced by the structure is allocated from the memory provided with the buffer

parameter, which is bufsize characters in size. A NULL pointer is returned at the

location pointed to by result on error or if the requested entry is not found.

Returned Value

If successful, getpwuid_r() returns 0.

If unsuccessful, getpwuid_r() sets errno to one of the following values:

Error Code Description

ERANGE Insufficient storage was supplied in buffer and bufsize to contain the

data to be referenced by the resulting passwd structure.

Related Information

v “pwd.h” on page 75

v “sys/types.h” on page 90

v “endpwent() — User Database Functions” on page 473

v “getlogin() — Get the User Login Name” on page 799

v “getlogin_r() — Get Login Name” on page 801

v “getpwnam() — Access the User Database by User Name” on page 840

v “getpwnam_r() — Search User Database for a Name” on page 842

v “getpwuid() — Access the User Database by User ID” on page 843

getpwuid_r

Chapter 3. Part 3. Library Functions 845

||||

|
|
||

|

getrlimit() — Get Current/Maximum Resource Consumption.

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);

General Description

The getrlimit() function gets resource limits for the calling process. A resource limit

is a pair of values; one specifying the current (soft) limit, the other a maximum

(hard) limit.

The value RLIM_INFINITY defined in <sys/resource.h>, is considered to be larger

than any other limit value. If a call to getrlimit() returns RLIM_INFINITY for a

resource, it means the implementation does not enforce limits on that resource.

The resource argument specifies which resource to get the hard and/or soft limits

for, and may be one of the following values:

RLIMIT_CORE

The maximum size of a dump of memory (in bytes) allowed for the

process. A value of 0 (zero) prevents file creation. Dump file

creation will stop at this limit.

RLIMIT_CPU The maximum amount of CPU time (in seconds) allowed for the

process. If the limit is exceeded, a SIGXCPU signal is sent to the

process and the process is granted a small CPU time extension to

allow for signal generation and delivery. If the extension is used up,

the process is terminated with a SIGKILL signal.

RLIMIT_DATA The maximum size of the break value for the process, in bytes. In

this implementation, this resource always has a hard and soft limit

value of RLIM_INFINITY.

RLIMIT_FSIZE

The maximum file size (in bytes) allowed for the process. A value of

0 (zero) prevents file creation. If the size is exceeded, a SIGXFSZ

signal is sent to the process. If the process is blocking, catching, or

ignoring SIGXFSZ, continued attempts to increase the size of a file

beyond the limit will fail with an errno of EFBIG.

RLIMIT_NOFILE

The maximum number of open file descriptors allowed for the

process. This number is one greater than the maximum value that

may be assigned to a newly created descriptor. (That is, it is

one-based.) Any function that attempts to create a new file

descriptor beyond the limit will fail with an EMFILE errno.

RLIMIT_STACK

The maximum size of the stack for a process, in bytes. Note that in

getrlimit

846 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|

z/OS UNIX services, the stack is a per-thread resource. In this

implementation, this resource always has a hard and soft limit value

of RLIM_INFINITY. A call to setrlimit() to set this resource to any

value other than RLIM_INFINITY will fail with an errno of EINVAL.

RLIMIT_AS The maximum address space size for the process, in bytes. If the

limit is exceeded, malloc() and mmap() functions will fail with an

errno of ENOMEM. Automatic stack growth will also fail.

The rlp argument points to a rlimit structure. This structure contains the following

members:

rlim_cur The current (soft) limit

rlim_max The maximum (hard) limit

Refer to the <sys/resource.h> header for more detail.

The resource limit values are propagated across exec and fork.

Special Behavior for z/OS UNIX Services

An exception exists for exec processing in conjunction with daemon support. If a

daemon process invokes exec and it had previously invoked setuid() before exec,

the RLIMIT_CPU, RLIMIT_AS, RLIMIT_CORE, RLIMIT_FSIZE, and RLIMIT_NOFILE limit

values are set based on the limit values specified in the kernel parmlib member

BPXPRMxx.

For processes which are not the only process within an address space, the

RLIMIT_CPU and RLIMIT_AS limits are shared with all the processes within the

address space. For RLIMIT_CPU, when the soft limit is exceeded, action will be taken

on the first process within the address space. If the action is termination, all

processes within the address space will be terminated.

In addition to the RLIMIT_CORE limit values, the dump file defaults are set by

SYSMDUMP defaults. Refer to z/OS MVS Initialization and Tuning Reference for

information on setting up SYSMDUMP defaults using the IEADMR00 parmlib

member.

Dumps of memory are taken in 4160 byte increments. Therefore, RLIMIT_CORE

values affect the size of memory dumps in 4160 byte increments. For example, if

the RLIMIT_CORE soft limit value is 4000, the dump will contain no data. If the

RLIMIT_CORE soft limit value is 8000, the maximum size of a memory dump is

4160 bytes.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on memory sizes of 2 gig and larger.

File size and offset fields will be enlarged to 63 bits in width so any other function

operating on this file will have to be enabled with the same FTM.

getrlimit

Chapter 3. Part 3. Library Functions 847

|
|
|
|

Returned Value

If successful, getrlimit() returns 0.

If unsuccessful, getrlimit() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL A non-valid resource was specified.

Related Information

v “sys/resource.h” on page 88

v “stropts.h” on page 86

v “brk() — Change Space Allocation” on page 216

v “fork() — Create a New Process” on page 632

v “getdtablesize() — Get the File Descriptor Table Size” on page 759

v “malloc() — Reserve Storage Block” on page 1172

v “open() — Open a File” on page 1313

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

v “setrlimit() — Control Maximum Resource Consumption” on page 1837

v “sigaltstack() — Set and/or Get Signal Alternate Stack Context” on page 1901

v “sysconf() — Determine System Configuration Options” on page 2111

v “ulimit() — Get/Set Process File Size Limits” on page 2287

getrlimit

848 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getrusage() — Get Information About Resource Utilization

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/resource.h>

int getrusage(int who, struct rusage *r_usage);

General Description

The getrusage() function provides measures of the resources used by the current

process or its terminated and waited-for-child processes. If the value of the who

argument is RUSAGE_SELF, information is returned about resources used by the

current process. If the value of the who argument is RUSAGE_CHILDREN,

information is returned about resources used by the terminated and

waited-for-children of the current process. If the child is never waited for (for

instance, if the parent has SA_NOCLDWAIT set or sets SIGCHLD to SIG_IGN), the

resource information for the child process is discarded and not included in the

resource information provided by getrusage()

The r_usage argument is a pointer of an object of type struct rusage in which the

returned information is stored.

Returned Value

If successful, getrusage() returns 0.

If unsuccessful, getrusage() returns -1 and sets errno to one of the following values:

Error Code Description

EINVAL The value of the who argument is not valid.

Related Information

v “sys/resource.h” on page 88

v “exit() — End Program” on page 494

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “time() — Determine current UTC time” on page 2204

v “times() — Get Process and Child Process Times” on page 2206

v “wait() — Wait for a Child Process to End” on page 2349

getrusage

Chapter 3. Part 3. Library Functions 849

||||

|
|
||

|

gets() — Read a String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

char *gets(char *buffer);

General Description

Reads bytes from the standard input stream stdin, and stores them in the array

pointed to by buffer. The line consists of all characters up to and including the first

newline character (\n) or EOF. The gets() function discards any newline character,

and the NULL character (\0) is placed immediately after the last byte read. If there

is an error, the value stored in buffer is undefined.

gets() is not supported for files opened with type=record.

gets() has the same restriction as any read operation, such as a read immediately

following a write, or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, gets() returns its argument.

If unsuccessful, gets() returns a NULL pointer to indicate an error or an EOF

condition with no characters read.

Use ferror() or feof() to determine which of these conditions occurred. Note that

EOF is only reached when an attempt is made to read past the last byte of data.

Reading up to and including the last byte of data does not turn on the EOF

indicator.

Example

CELEBG18

/* CELEBG18

 This example gets a line of input from stdin.

 */

#include <stdio.h>

#define MAX_LINE 100

int main(void)

gets

850 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

{

 char line[MAX_LINE];

 char *result;

 printf("Enter string:\n");

 if ((result = gets(line)) != NULL)

 printf("string is %s\n",result);

 else

 if (ferror(stdin))

 printf("Error\n");

}

Related Information

v “stdio.h” on page 82

v “feof() — Test End Of File (EOF) Indicator” on page 556

v “ferror() — Test for Read/Write Errors” on page 559

v “fgets() — Read a String from a Stream” on page 591

v “fputs() — Write a String” on page 664

v “puts() — Write a String” on page 1574

gets

Chapter 3. Part 3. Library Functions 851

getservbyname() — Get a Server Entry by Name

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct servent *getservbyname(char *name, char *proto);

General Description

The getservbyname() call searches the /etc/services or tcpip.ETC.SERVICES data

set for the first entry that matches the specified service name and protocol name. If

proto is NULL, only the service name must match.

Parameter Description

name The service name.

proto The protocol name.

The getservbyname() call returns a pointer to a servent structure for the network

service specified on the call. getservbyname(), getservbyport(), and getservent() all

use the same static area to return the servent structure. This static area is only

valid until the next one of these functions is called on the same thread.

The servent structure is defined in the netdb.h include file and contains the

following elements:

Element Description

s_aliases An array, terminated with a NULL pointer, of alternative names for

the service.

s_name The official name of the service.

s_port The port number of the service.

s_proto The protocol required to contact the service.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

getservbyname

852 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

Returned Value

The return value points to data that is overwritten by subsequent calls returning the

same data structure.

If successful, getservbyname() returns a pointer to a servent structure.

If unsuccessful or End Of File (EOF), getservbyname() returns a NULL pointer.

Related Information

v “netdb.h” on page 64

v “endservent() — Close Network Services Information Data Sets” on page 474

v “getservbyport() — Get a Service Entry by Port” on page 854

v “getservent() — Get the Next Service Entry” on page 856

v “setservent() — Open the Network Services Information Data Set” on page 1840

getservbyname

Chapter 3. Part 3. Library Functions 853

getservbyport() — Get a Service Entry by Port

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

struct servent *getservbyport(int port, const char *proto);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct servent *getservbyport(int port, char *proto);

General Description

The getservbyport() call searches the /etc/services or the tcpip.ETC.SERVICES

data set for the first entry that matches the specified port number and protocol

name. If proto is NULL, only the port number must match.

Parameter Description

port The port number.

proto The protocol name.

The getservbyport() call returns a pointer to a servent structure for the port number

specified on the call. getservbyname(), getservbyport(), and getservent() all use the

same static area to return the servent structure. This static area is only valid until

the next one of these functions is called on the same thread.

The servent structure is defined in the netdb.h include file and contains the

following elements:

Element Description

s_aliases An array, terminated with a NULL pointer, of alternative names for

the service.

s_name The official name of the service.

s_port The port number of the service.

s_proto The protocol required to contact the service.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

getservbyport

854 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

Returned Value

The return value points to data that is overwritten by subsequent calls returning the

same data structure.

If successful, getservbyport() returns a pointer to a servent structure.

If unsuccessful or End Of File (EOF), getservbyport() returns a NULL pointer.

Related Information

v “netdb.h” on page 64

v “endservent() — Close Network Services Information Data Sets” on page 474

v “getservbyname() — Get a Server Entry by Name” on page 852

v “getservent() — Get the Next Service Entry” on page 856

v “setservent() — Open the Network Services Information Data Set” on page 1840

getservbyport

Chapter 3. Part 3. Library Functions 855

getservent() — Get the Next Service Entry

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

struct servent *getservent(void);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

struct servent *getservent(void);

General Description

The getservent() call reads the next line of the /etc/services or the

tcpip.ETC.SERVICES data set.

The getservent() call returns a pointer to the next entry in the /etc/services or the

tcpip.ETC.SERVICES data set.

getservbyname(), getservbyport(), and getservent() all use the same static area to

return the servent structure. This static area is only valid until the next one of these

functions is called on the same thread.

The servent structure is defined in the netdb.h include file and contains the

following elements:

Element Description

s_aliases An array, terminated with a NULL pointer, of alternative names for

the service.

s_name The official name of the service.

s_port The port number of the service.

s_proto The protocol required to contact the service.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

The return value points to data that is overwritten by subsequent calls returning the

same data structure.

If successful, getservent() returns a pointer to a servent structure.

getservent

856 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

If unsuccessful or End Of File (EOF), getservent() returns a NULL pointer.

Related Information

v “netdb.h” on page 64

v “endservent() — Close Network Services Information Data Sets” on page 474

v “getservbyname() — Get a Server Entry by Name” on page 852

v “getservbyport() — Get a Service Entry by Port” on page 854

v “setservent() — Open the Network Services Information Data Set” on page 1840

getservent

Chapter 3. Part 3. Library Functions 857

getsid() — Get Process Group ID of Session Leader

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

pid_t getsid(pid_t pid);

General Description

The getsid() function obtains the process group ID of the process that is the session

leader of the process specified by pid. If pid is 0, the system uses the PID of the

process calling getsid().

Returned Value

If successful, getsid() returns the process group ID of the session leader of the

specified process.

If unsuccessful, getsid() returns (pid_t)-1 and sets errno to one of the following

values:

Error Code Description

EPERM The process specified by pid is not in the same session as the

calling process, and the implementation does not allow access to

the process group ID of the session leader of that process from the

calling process.

ESRCH There is no process with a process ID equal to pid.

Related Information

v “unistd.h” on page 96

v “exec Functions” on page 486

v “fork() — Create a New Process” on page 632

v “getpid() — Get the Process ID” on page 826

v “getppid() — Get the Parent Process ID” on page 829

v “setpgid() — Set Process Group ID for Job Control” on page 1826

v “setsid() — Create Session, Set Process Group ID” on page 1841

getsid

858 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

getsockname() — Get the Name of a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int getsockname(int socket, struct sockaddr *__restrict__ name,

 socklen_t *__restrict__ namelen);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

int getsockname(int socket, struct sockaddr *name,

 int *namelen);

General Description

The getsockname() call stores the current name for the socket specified by the

socket parameter into the structure pointed to by the name parameter. It returns the

address to the socket that has been bound. If the socket is not bound to an

address, the call returns with the family set, and the rest of the structure set to zero.

For example, an unbound socket in the Internet domain would cause the name to

point to a sockaddr_in structure with the sin_family field set to AF_INET and all

other fields zeroed.

If the actual length of the address is greater than the length of the supplied

sockaddr, the stored address is truncated. The sa_len member of the store

structure contains the length of the untruncated address.

Parameter Description

socket The socket descriptor.

name The address of the buffer into which getsockname() copies the

name of socket.

namelen Must initially point to an integer that contains the size in bytes of

the storage pointed to by name. On return, that integer contains the

size required to represent the address of the connecting socket. If

this value is larger than the size supplied on input, then the

information contained in sockaddr is truncated to the length

supplied on input. If name is NULL, namelen is ignored.

The getsockname() call is often used to discover the port assigned to a socket after

the socket has been implicitly bound to a port. For example, an application can call

connect() without previously calling bind(). In this case, the connect() call completes

the binding necessary by assigning a port to the socket. This assignment can be

discovered with a call to getsockname().

getsockname

Chapter 3. Part 3. Library Functions 859

||||

|
|
||

|

|
|
|
|
|

Sockets in the AF_INET6 Domain

For an AF_INET6 socket, the address is returned in a sockaddr_6 address

structure. The sockaddr_in6 structure is defined in the header file netinet/in.h.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The getsockname() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, getsockname() returns 0.

If unsuccessful, getsockname() returns −1 and sets errno to one of the following

values:

Error Code Description

EBADF The socket parameter is not a valid socket

descriptor.

EFAULT Using the name and namelen parameters as

specified would result in an attempt to access

storage outside of the caller’s address space.

ENOBUFS getsockname() is unable to process the request due

to insufficient storage.

ENOTCONN The socket is not in the connected state.

ENOTSOCK The descriptor is for a file, not for a socket.

EOPNOTSUPP The operation is not supported for the socket

protocol.

Related Information

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “accept() — Accept a New Connection on a Socket” on page 120

v “bind() — Bind a Name to a Socket” on page 211

v “connect() — Connect a Socket” on page 325

v “getpeername() — Get the Name of the Peer Connected to a Socket” on page

821

v “socket() — Create a Socket” on page 1970

getsockname

860 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getsockopt() — Get the Options Associated with a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int getsockopt(int socket, int level, int option_name,

 void *__restrict__ option_value,

 socklen_t *__restrict__ option_len);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

int getsockopt(int socket, int level, int option_name,

 char *option_value,

 int *option_len);

General Description

The getsockopt() call gets options associated with a socket. Not all options are

supported by all address families. See each option for details. Options can exist at

multiple protocol levels.

Parameter Description

socket The socket descriptor.

level The level for which the option is set.

option_name The name of a specified socket option.

option_value The pointer to option data.

option_len The pointer to the length of the option data.

When manipulating socket options, you must specify the level at which the option

resides and the name of the option. To manipulate options at the socket or IP level,

the level parameter must be set to SOL_SOCKET or IPPROTO_IP as defined in

sys/socket.h. To manipulate options at any other level, such as the TCP level,

supply the appropriate protocol number for the protocol controlling the option. The

getprotobyname() call can be used to return the protocol number for a named

protocol.

The option_value and option_len parameters are used to return data used by the

particular get command. The option_value parameter points to a buffer that is to

receive the data requested by the get command. The option_len parameter points

to the size of the buffer pointed to by the option_value parameter. It must be initially

set to the size of the buffer before calling getsockopt(). On return it is set to the

actual size of the data returned.

getsockopt

Chapter 3. Part 3. Library Functions 861

||||

|
|
||

|

|
|
|
|
|
|

|
|
|
|
|
|
|

All the socket level options except SO_LINGER expect option_value to point to an

integer and option_len to be set to the size of an integer. When the integer is

nonzero, the option is enabled. When it is zero, the option is disabled. The

SO_LINGER option expects option_value to point to a linger structure as defined

in sys/socket.h. This structure is defined in the following example:

struct linger

{

 int l_onoff; /* option on/off */

 int l_linger; /* linger time */

};

The l_onoff field is set to zero if the SO_LINGER option is being disabled. A

nonzero value enables the option. The l_linger field specifies the amount of time to

linger on close.

The following options are recognized at the IP level:

Option Description

IP_MULTICAST_TTL

Used to get the IP time-to-live of outgoing multicast datagrams. The

TTL value is passed back as u_char.

IP_MULTICAST_LOOP

Used to determine whether loopback is enabled or disabled. The

loopback indicator is passed back as u_char. 0 means loopback is

disabled and 1 means it is enabled.

IP_MULTICAST_IF

Used to get the interface IP address used for sending outbound

multicast datagrams. The IP address is passed back using struct

in_addr.

The following options are recognized at IPv6 level:

Option Description

IPV6_CHECKSUM

Used to determine if checksum processing is enabled for a RAW

(non-ICMPv6) socket. The option value returned is the offset into

the user data where the checksum is located. It is passed back as

int. A value of -1 means the function is disabled.

IPV6_DONTFRAG

This option turns off the automatic inserting of a fragment header in

the packet for UDP and raw sockets.

IPV6_DSTOPTS

The application can remove any sticky destination options header

by calling setsockopt() for this option with a zero option length.

IPV6_HOPOPTS

The application can remove any sticky hop-by-hop options header

by calling setsockopt() for this option with a zero option length.

IPV6_MULTICAST_HOPS

Returns the hop limit value for outbound multicast datagrams. The

hop limit value is passed back as int.

getsockopt

862 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

IPV6_MULTICAST_IF

Returns the interface index for the interface used for sending

outbound multicast datagrams. The interface index is passed back

using struct u_int.

IPV6_MULTICAST_LOOP

Used to determine whether loopback of outgoing multicast packets

is enabled or disabled. The loopback indicator is passed back as

u_int. 0 means the function is disabled and 1 means it is enabled.

IPV6_NEXTHOP

Specifies the next hop for the datagram as a socket address

structure.

IPV6_PATHMTU

This is a getsockopt() option only. It is used to retrieve the current

path MTU value for the destination of a connected socket.

IPV6_PKTINFO

Returns the source IP address for an outgoing packet and the

outgoing interface. If a setsockopt() has been done for this option,

the value from the setsockopt() will be returned. It is passed back in

an in6_pktinfo structure as defined in netinet/in.h.

IPV6_RECVDSTOPTS

To receive destination options header this option must be enabled.

IPV6_RECVHOPLIMIT

Indicates whether the function to return the received hop limit as

ancillary data is enabled or disabled. The option value is passed

back as int. 0 means the function is disabled and 1 means it is

enabled.

IPV6_RECVHOPOPTS

To receive a hop-by-hop options header this option must be

enabled.

IPV6_RECVPATHMTU

Enables the receipt of of the IPV6_PATHMTU ancillary data item.

IPV6_RECVPKTINFO

Indicates whether the function is to return the destination IP

address and incoming interface is enabled or disabled. The option

value is passed back as int. 0 means the function is disabled and 1

means it is enabled.

IPV6_RECVRTHDR

To receive a routing header this option must be enabled.

IPV6_RECVTCLASS

To receive the traffic class this option must be enabled.

IPV6_RTHDR The application can remove any sticky routing header by calling

setsockopt() for this option with a zero option length.

IPV6_RTHDRDSTOPTS

The application can remove any sticky destination options header

by calling setsockopt() for this option with a zero option length.

IPV6_TCLASS To specify the traffic class value this option must be enabled.

getsockopt

Chapter 3. Part 3. Library Functions 863

IPV6_UNICAST_HOPS

Returns the hop limit value for outbound unicast datagrams. The

hop limit value is passed back as int.

IPV6_USE_MIN_MTU

Indicates whether the IP layer will use the minimu MTU size (1280)

for sending packets, bypassing path MTU discovery. The option

value is passed back as int. A value of -1 causes the default values

for unicast (disabled) and multicast (enabled) destinations to be

used. A value of 0 disables this option for unicast and multicast

destinations. A value of 1 enables this option for unicast and

multicast destinations and the minimum MTU size will be used. If a

setsockopt() call has not been made prior to a getsockopt() call, the

default value of -1 is returned.

IPV6_V6ONLY Used to determine whether a socket is restricted to IPv6

communications only. The option value is passed back as int. A

non-zero value means the option is enabled (socket can only be

used for IPv6 communications). 0 means the option is disabled.

 The following option is recognized at ICMPv6 level:

Option Description

ICMP6_FILTER

Used to filter ICMPv6 messages. It returns the filter value being

used for this socket. It is passed back in an icmp6_filter structure

as defined in netinet/icmp6.h.

 The following options are recognized at the socket level:

Option Description

SO_ACCEPTCONN

The socket had a listen() call.

SO_BROADCAST

Toggles the ability to broadcast messages. If this option is enabled,

it allows the application to send broadcast messages over socket, if

the interface specified in the destination supports the broadcasting

of packets. This option has no meaning for stream sockets. This

option is valid only for the AF_INET domain.

SO_DEBUG Reports whether debugging information is being recorded. This

option stores an int value.

SO_ERROR Returns any pending error on the socket and clears the error

status. You can use SO_ERROR to check for asynchronous errors

on connected datagram sockets or for other asynchronous errors

(errors that are not returned explicitly by one of the socket calls).

SO_KEEPALIVE

Toggles the TCP keep-alive mechanism for a stream socket. When

activated, the keep-alive mechanism periodically sends a packet on

an otherwise idle connection. If the remote TCP does not respond

to the packet or to retransmissions of the packet, the connection is

ended with the error ETIMEDOUT. Processes writing to that socket

are notified with a SIGPIPE signal. This option stores an int value.

This option is valid only for the AF_INET and AF_INET6 domains.

SO_LINGER Lingers on close if data is present. When this option is enabled and

getsockopt

864 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

there is unsent data present when close() is called, the calling

application is blocked during the close() call until the data is

transmitted or the connection has timed out. If this option is

disabled, the TCP/IP address space waits to try to send the data.

Although the data transfer is usually successful, it cannot be

guaranteed, because the TCP/IP address space waits only a finite

amount of time trying to send the data. The close() call returns

without blocking the caller. This option has meaning only for stream

sockets.

SO_OOBINLINE

Toggles reception of out-of-band data. When this option is enabled,

out-of-band data is placed in the normal data input queue as it is

received; it is then available to recv(), recvfrom(), and recvmsg()

without the need to specify the MSG_OOB flag in those calls. When

this option is disabled, out-of-band data is placed in the priority data

input queue as it is received; it is then available to recv(),

recvfrom(), and recvmsg() only if the MSG_OOB flag is specified in

those calls. This option has meaning only for stream sockets.

_SO_PROPAGATEUSERID

Toggles propagating a user ID (UID) over a socket. When enabled,

user (UID) information is extracted from the system when the

connect() function is invoked and presented over the socket when

the accept() function is invoked.

SO_RCVBUF Reports receive buffer size information. This option stores an int

value.

SO_REUSEADDR

 Toggles local address reuse. When enabled, this option allows local

addresses that are already in use to be bound. SO_REUSEADDR

alters the normal algorithm used in the bind() call.

 The system checks at connect time to ensure that the local address

and port do not have the same foreign address and port. The error

EADDRINUSE is returned if the association already exists.

 After the ’SO_REUSEADDR’ option is active, the following situation

is supported:

 A server can bind() the same port multiple times as long as every

invocation uses a different local IP address and the wildcard

address INADDR_ANY is used only one time per port.

 This option is valid only for the AF_INET and AF_INET6 domains.

SO_SECINFO Toggles receiving security information. When enabled on an

AF_UNIX UDP socket, the recvmsg() function will return security

information about the sender of each datagram as ancillary data.

This information contains the sender’s user ID, uid, gid, and

jobname and it is mapped by the secsinfo structure in

sys/socket.h.

SO_SNDBUF Reports send buffer size information. This option stores an int

value.

SO_TYPE This option returns the type of the socket. On return, the integer

pointed to by option_value is set to SOCK_STREAM or

SOCK_DGRAM. This option is valid for the AF_UNIX, AF_INET and

AF_INET6 domains.

getsockopt

Chapter 3. Part 3. Library Functions 865

|
|
|

|
|
|

|
|

|
|
|

|

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, getsockopt() returns 0.

If unsuccessful, getsockopt() returns −1 and sets errno to one of the following

values:

Error Code Description

EBADF The socket parameter is not a valid socket descriptor.

EFAULT Using option_value and option_len parameters would result in an

attempt to access storage outside the caller’s address space.

EINVAL The specified option is not valid at the specified socket level.

ENOBUFS Buffer space is not available to send the message.

ENOPROTOOPT

The option_name parameter is unrecognized, or the level

parameter is not SOL_SOCKET.

ENOSYS The function is not implemented. You attempted to use a function

that is not yet available.

ENOTSOCK The descriptor is for a file, not for a socket.

EOPNOTSUPP

The operation is not supported by the socket protocol. At least the

following options are not supported:

v IPV6_JOIN_GROUP

v IPV6_LEAVE_GROUP

v IP_ADD_SOURCE_MEMBERSHIP

v IP_DROP_SOURCE_MEMBERSHIP

v IP_DROP_MEMBERSHIP

v IP_ADD_MEMBERSHIP

v IP_BLOCK_SOURCE

v IP_UNBLOCK_SOURCE

v MCAST_JOIN_GROUP

v MCAST_LEAVE_GROUP

v MCAST_BLOCK_SOURCE

v MCAST_UNBLOCK_SOURCE

v MCAST_JOIN_SOURCE_GROUP

v MCAST_LEAVE_SOURCE_GROUP

Example

The following are examples of the getsockopt() call. See “setsockopt() — Set

Options Associated with a Socket” on page 1843 for examples of how the

setsockopt() call options are set.

int rc;

int s;

int option_value;

int option_len;

struct linger l;

int getsockopt(int s, int level, int option_name,char *option_value,

 int *option_len);

getsockopt

866 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|

...
/* Is out-of-band data in the normal input queue? */

option_len = sizeof(int);

rc = getsockopt(

 s, SOL_SOCKET, SO_OOBINLINE, (char *) &option_value, &option_len);

if (rc == 0)

{

 if (option_len == sizeof(int))

 {

 if (option_value)

 /* yes it is in the normal queue */

 else

 /* no it is not */

 }

}

 ...
/* Do I linger on close? */

option_len = sizeof(l);

rc = getsockopt(

 s, SOL_SOCKET, SO_LINGER, (char *) &l, &option_len);

if (rc == 0)

{

 if (option_len == sizeof(l))

 {

 if (l.l_onoff)

 /* yes I linger */

 else

 /* no I do not */

 }

}

Related Information

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “bind() — Bind a Name to a Socket” on page 211

v “close() — Close a File” on page 299

v “getprotobyname() — Get a Protocol Entry by Name” on page 833

v “setsockopt() — Set Options Associated with a Socket” on page 1843

v “socket() — Create a Socket” on page 1970

getsockopt

Chapter 3. Part 3. Library Functions 867

getsourcefilter — Get source filter

Standards

 Standards / Extensions C or C++ Dependencies

RFC3678 both z/OS V1.9

Format

#define _XOPEN_SYS_SOCK_EXT3

#include <netinet/in.h>

int getsourcefilter(int s, uint32_t interface, struct sockaddr *group,

 socklen_t grouplen, uint32_t *fmode, uint32_t *numsrc,

 struct sockaddr_storage *slist);

General Description

This function allow applications to get a previously set multicast filtering state for a

tuple consisting of socket, interface, and multicast group values.

A multicast filter is described by a filter mode, which is MCAST_INCLUDE or

MCAST_EXCLUDE, and a list of source addresses which are filtered.

This function is protocol-independent. It can be on either AF_INET or AF_INET6

sockets of the type SOCK_DGRAM or SOCK_RAW.

If the function is unable to obtain the required storage, control will not return to the

caller. Instead the application will terminate due to an out of memory condition (if

the reserve stack is available and the caller is not XPLINK), or it will terminate with

an abend indicating that storage could not be obtained.

Argument

Description

s Identifies the socket.

interface

Holds the index of the interface.

group Points to either a sockaddr_in structure for IPv4 or a sockaddr_in6 structure

for IPv6 that holds the IP multicast address of the group.

grouplen

Gives the length of the sockaddr_in or sockaddr_in6 structure.

fmode Points to an integer that will contain the filter mode on a successful return.

The value of this field will be either MCAST_INCLUDE or

MCAST_EXCLUDE, which are likewise defined in <netinet/in.h>.

numsrc

It is a pointer that on input, points to the number of source adresses that

will fit in the slist array. On return, points to the total number of sources

associated with the filter.

slist Points to buffer into which an array of IP addresses of included or excluded

(depending on the filter mode) sources will be written. If numsrc was 0 on

input, a NULL pointer may be supplied.

getsourcefilter

868 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|

||

|
|

||
|

|
|

||
|
|

|
|
|
|

||
|
|

Returned Value

If successful, the function returns 0. Otherwise, it returns -1 and sets errno to one of

the following values.

errno Description

EADDRNOTAVAIL

The tuple consisting of socket, interface, and multicast group values does

not exist; or the specified interface address is not multicast capable.

EAFNOSUPPORT

The address family of the input sockaddr is not AF_INET or AF_INET6.

EBADF

s is not a valid socket descriptor.

EINVAL

Interface or group is not a valid address, or the socket s has already

requested multicast setsockopt options (refer to z/OS Communications

Server: IP Sockets Application Programming Interface Guide and Reference

for details.) Or if the group address family is AF_INET and grouplen is not

at least size of sockaddr_in or if the group address family is AF_INET6 and

grouplen is not at least size of sockaddr_in6 or if grouplen is not at least

size of sockaddr_in.

ENXIO

The specified interface index provided in the interface parameter does not

exist.

EPROTOTYPE

The socket s is not of type SOCK_DGRAM or SOCK_RAW.

 Related Information

v “netinet/in.h” on page 68

v “setsourcefilter — Set source filter” on page 1852

getsourcefilter

Chapter 3. Part 3. Library Functions 869

|

|
|

||

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

getstablesize() — Get the Socket Table Size

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

int getstablesize(void);

General Description

The getstablesize() function obtains the number of sockets that are allowed for use

in bulk mode operations for a process.

Returned Value

If successful, getstablesize() returns the current limit for this process.

If it has not been changed by the maxdesc() function, then the default is returned.

The default is the hard limit returned by getrlimit() for RLIMIT_NOFILE. This is the

value set by a BPXPRMnn parmlib member on its MAXFILEPROC statement.

There are no errno values defined.

Related Information

v “sys/socket.h” on page 89

v “getrlimit() — Get Current/Maximum Resource Consumption.” on page 846

v “maxdesc() — Get Socket Numbers to Extend Beyond the Default Range” on

page 1182

getstablesize

870 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getsubopt() — Parse Suboption Arguments

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

int getsubopt(char **optionp, char *const *tokens, char **valuep);

General Description

The getsubopt() function parses suboption arguments in a flag argument that was

initially parsed by getopt(). These suboption arguments must be separated by

commas and may consist of either a single token, or a token-value pair separated

by an equal sign. Because commas delimit suboption arguments in the option

string, they are not allowed to be part of the suboption arguments or the value of a

suboption argument. Similarly, because the equal sign separates a token from its

value, a token must not contain an equal sign.

The getsubopt() function takes the address of a pointer to the option argument

string, a vector of possible tokens, and the address of a value string pointer. If the

option argument string at optionp contains only one suboption argument,

getsubopt() updates optionp to point to the NULL at the end of the string.

Otherwise, it isolates the suboption argument by replacing the comma separator

with a NULL, and updates optionp to point to the start of the next suboption

argument. If the suboption argument has an associated value, getsubopt() updates

valuep to point to the value’s first character. Otherwise it sets valuep to a NULL

pointer.

The token vector is organized as a series of pointers to strings. The end of the

token vector is identified by a NULL pointer.

When getsubopt() returns, if valuep is not a NULL pointer, then the suboption

argument processed included a value. The calling program may use this information

to determine if the presence or lack of a value for the suboption is an error.

Additionally, when getsubopt() fails to match the suboption argument with the

tokens in the tokens array, the calling program should decide if this is an error, or if

the unrecognized option should be passed on to another program.

Because the getsubopt() function returns thread-specific data the getsubopt()

function can be used safely from a multithreaded application.

Returned Value

If successful, getsubopt() returns the index of the matched token string.

If no token strings were matched, getsubopt() returns -1.

getsubopt() does not return any errno values.

getsubopt

Chapter 3. Part 3. Library Functions 871

||||

|
|
||

|

Related Information

v “stdlib.h” on page 85

v “getopt() — Command Option Parsing” on page 817

getsubopt

872 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getsyntx() — Return LC_SYNTAX Characters

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <variant.h>

struct variant *getsyntx(void);

General Description

Determines the encoding of the special characters defined in the LC_SYNTAX

category of the current locale, and stores the encoding values in the structure of

type variant. For details of the variant structure, see “variant.h” on page 98.

Returned Value

Returns the pointer to the structure containing the values of the special characters.

If the information about the special characters is not available in the current locale,

getsyntx() returns a NULL pointer.

The structure returned is not modified by the program that this function is used in.

The structure may be invalidated by calls to the setlocale() function with LC_ALL,

LC_CTYPE, LC_COLLATE, or LC_SYNTAX.

Example

CELEBG19

/* CELEBG19 */

#include <stdio.h>

#include <stdlib.h>

#include <variant.h>

#include <wchar.h>

int main(void)

{

 struct variant *var;

 var = getsyntx();

 printf("codeset : %s\n", var−>codeset);

 printf("backslash : %3d\n", var−>backslash);

 printf("right_bracket : %3d\n", var−>right_bracket);

 printf("left_bracket : %3d\n", var−>left_bracket);

 printf("right_brace : %3d\n", var−>right_brace);

 printf("left_brace : %3d\n", var−>left_brace);

 printf("circumflex : %3d\n", var−>circumflex);

 printf("tilde : %3d\n", var−>tilde);

 printf("exclamation_mark: %3d\n", var−>exclamation_mark);

 printf("number_sign : %3d\n", var−>number_sign);

 printf("vertical_line : %3d\n", var−>vertical_line);

 printf("dollar_sign : %3d\n", var−>dollar_sign);

 printf("commercial_at : %3d\n", var−>commercial_at);

 printf("grave_accent : %3d\n", var−>grave_accent);

}

getsyntx

Chapter 3. Part 3. Library Functions 873

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “variant.h” on page 98

v “setlocale() — Set Locale” on page 1811

getsyntx

874 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__get_system_settings() — Retrieves System Parameters

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R10

Format

#define _OPEN_SYS_EXT 1

#include <sys/ps.h>

struct _Optn *__get_system_settings(void);

General Description

The __get_system_settings() function retrieves system parameter information from

the BPXPRM member used during IPL, or updated by the OMVS operator

command.

Returned Value

If successful, __get_system_settings() returns a pointer to an _Optn structure

containing the values set for the BPXPRMxx member process during IPL, or

updated by the OMVS operator command.

If unsuccessful, __get_system_settings() returns NULL and may set errno to one of

the following values:

Error Code Description

ENOMEM Insufficient memory available to allocate _Optn structure.

Related Information

v “sys/ps.h” on page 88

__get_system_settings

Chapter 3. Part 3. Library Functions 875

gettimeofday() — Get Date and Time

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#undef _ALL_SOURCE

#include <sys/time.h>

int gettimeofday(struct timeval *__restrict__ tp,

 void *__restrict__ tzp);

#define _ALL_SOURCE

#include <sys/time.h>

int gettimeofday(struct timeval *__restrict__ tp,

 struct timezone *__restrict__ tzp);

General Description

The gettimeofday() function obtains the current time, expressed as seconds and

microseconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970,

and stores it in the timeval structure pointed to by tp.

Special Behavior for _ALL_SOURCE

The gettimeofday() function has two prototypes. Which one is used depends on

whether or not you define the _ALL_SOURCE feature test macro when you compile

your program. If _ALL_SOURCE is NOT defined when the C/370 preprocessor

processes the <sys/time.h> header, it includes a prototype for gettimeofday() which

defines the second argument, tzp, as a void pointer and includes a C/370 pragma

map statement for a C/370 version of gettimeofday() which ignores tzp.

If _ALL_SOURCE is defined, the C/370 preprocessor includes a prototype for

gettimeofday() which defines tzp as a pointer to a timezone structure and includes a

pragma map statement for a C/370 version of gettimeofday() which stores time

zone information in the timezone structure to which the second argument points.

The timezone structure contains the following members:

 int tz_minuteswest; /* Time west of Greenwich in minutes */

 int tz_dsttime; /* Type of DST correction to apply */

When _ALL_SOURCE is defined, the gettimeofday() function:

1. invokes tzset() to set the values of the timezone and daylight external variables.

2. converts the value of the timezone external variable to minutes and stores the

converted value, rounded up to the nearest minute, in tzp->tz_minuteswest.

3. stores the value of the daylight external variable in tzp->tz_dsttime.

Returned Value

If successful, gettimeofday() returns 0.

gettimeofday

876 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|
|
|
|
|
|
|
|
|

If overflow occurs, gettimeofday() returns nonzero. Overflow occurs when the

current time in seconds since 00:00:00 UTC, January 1, 1970 exceeds the capacity

of the tv_sec member of the timeval structure pointed to by tp. The tv_sec member

is type time_t.

Related Information

v “limits.h” on page 55

v “sys/time.h” on page 89

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “ftime() — Set the Date and Time” on page 717

gettimeofday

Chapter 3. Part 3. Library Functions 877

getuid() — Get the Real User ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

uid_t getuid(void);

General Description

Finds the real user ID (UID) of the calling process.

Returned Value

getuid() returns the found value. It is always successful.

There are no documented errno values.

Example

CELEBG20

/* CELEBG20

 This example provides information for your user ID.

 */

#define _POSIX_SOURCE

#include <pwd.h>

#include <sys/types.h>

#include <unistd.h>

main() {

 struct passwd *p;

 uid_t uid;

 if ((p = getpwuid(uid = getuid())) == NULL)

 perror("getpwuid() error");

 else {

 puts("getpwuid() returned the following info for your userid:");

 printf(" pw_name : %s\n", p−>pw_name);

 printf(" pw_uid : %d\n", (int) p−>pw_uid);

 printf(" pw_gid : %d\n", (int) p−>pw_gid);

 printf(" pw_dir : %s\n", p−>pw_dir);

 printf(" pw_shell : %s\n", p−>pw_shell);

 }

}

Output

getuid

878 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

pw_name : MVSUSR1

 pw_uid : 25

 pw_gid : 500

 pw_dir : /u/mvsusr1

 pw_shell : /bin/sh

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “geteuid() — Get the Effective User ID” on page 765

v “seteuid() — Set the Effective User ID” on page 1787

v “setreuid() — Set Real and Effective User IDs” on page 1835

v “setuid() — Set the Effective User ID” on page 1857

getuid

Chapter 3. Part 3. Library Functions 879

__getuserid() — Retrieve the active MVS user ID

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R9

Format

#define _OPEN_SYS_EXT

#include <sys/ps.h>

int __getuserid(char *userid, int userlen);

General Description

Retrieves the current active user ID for the requester. When successful, the output

in user ID will be the active MVS userid.

Returned Value

If successful, __getuserid() returns 0.

If unsuccessful, __getuserid() returns -1 and sets errno to one of the following

values:

Error Code Description

EINVAL One of the following error conditions exists:

v The length supplied by userlen does not allow enough storage in

the string to retrieve the MVS user ID.

v The UNIX system service returned a failure.

Related Information

v “sys/ps.h” on page 88

__getuserid

880 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getutxent() — Read Next Entry in utmpx Database

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <utmpx.h>

struct utmpx *getutxent(void);

General Description

The getutxent() function reads in the next entry from the utmpx database. If the

database is not already open, it opens it. If it reaches the end of the database, it

fails.

The pututxline() function obtains an exclusive lock in the utmpx database on the

byte range of the record which is ready to write and releases the lock before

returning to its caller. The functions getutxent(), getutxid(), and getutxline() might

continue to read and are not affected by pututxline().

Because the getutxent() function returns thread-specific data the getutxent() function

can be used safely from a multithreaded application. If multiple threads in the same

process open the database, then each thread opens the database with a different

file descriptor. The thread’s database file descriptor is closed when the calling

thread terminates or the endutxent() function is called by the calling thread.

The name of the database file defaults to /etc/utmpx. To process a different

database file name use the __utmpxname() function.

For all entries that match a request, the ut_type member indicates the type of the

entry. Other members of the entry will contain meaningful data based on the value

of the ut_type member as follows:

EMPTY No other members have meaningful data.

BOOT_TIME ut_tv is meaningful.

__RUN_LVL ut_tv and ut_line are meaningful

OLD_TIME ut_tv is meaningful.

NEW_TIME ut_tv is meaningful.

USER_PROCESS

ut_id, ut_user (login name of the user), ut_line, ut_pid, and ut_tv

are meaningful.

INIT_PROCESS

ut_id, ut_pid, and ut_tv are meaningful.

LOGIN_PROCESS

ut_id, ut_user (implementation-specific name of the login process),

ut_pid, and ut_tv are meaningful.

getutxent

Chapter 3. Part 3. Library Functions 881

||||

|
|
||

|

DEAD_PROCESS

ut_id, ut_pid, and ut_tv are meaningful.

Returned Value

If successful, getutxent() returns a pointer to a utmpx structure containing a copy of

the requested entry in the user accounting database.

If unsuccessful, getutxent() returns a NULL pointer.

No errors are defined for this function.

Related Information

v “utmpx.h” on page 98

v “endutxent() — Close the utmpx Database” on page 475

v “getutxid() — Search by ID utmpx Database” on page 883

v “getutxline() — Search by Line utmpx Database” on page 885

v “pututxline() — Write Entry to utmpx Database” on page 1576

v “setutxent() — Reset to Start of utmpx Database” on page 1861

v “__utmpxname() — Change the utmpx Database Name” on page 2322

getutxent

882 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getutxid() — Search by ID utmpx Database

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <utmpx.h>

struct utmpx *getutxid(const struct utmpx *id);

General Description

The getutxid() function searches forward from the current point in the utmpx

database. If the database is not already open, it opens it. If the ut_type value of the

utmpx structure pointed to by id is BOOT_TIME, __RUN_LVL, OLD_TIME, or

NEW_TIME, then it stops when it finds an entry with a matching ut_type value. If

the ut_type value is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or

DEAD_PROCESS, then it stops when it finds an entry whose type is one of these

four and whose ut_id member matches the ut_id member of the utmpx structure

pointed to by id. If the UT_type value is EMPTY, getutxid() fails (returns NULL)

without repositioning the utmpx database to the end. If the end of the of the

database is reached without a match, getutxid() fails.

The pututxline() function obtains an exclusive lock in the utmpx database on the

byte range of the record which is ready to write and releases the lock before

returning to its caller. The functions getutxent(), getutxid(), and getutxline() might

continue to read and are not affected by pututxline().

Because the getutxid() function returns thread-specific data the getutxid() function

can be used safely from a multithreaded application. If multiple threads in the same

process open the database, then each thread opens the database with a different

file descriptor. The thread’s database file descriptor is closed when the calling

thread terminates or the endutxent() function is called by the calling thread.

The name of the database file defaults to /etc/utmpx. To process a different

database file name use the __utmpxname() function.

For all entries that match a request, the ut_type member indicates the type of the

entry. Other members of the entry will contain meaningful data based on the value

of the ut_type member as follows:

EMPTY No other members have meaningful data.

BOOT_TIME ut_tv is meaningful.

__RUN_LVL ut_tv and ut_line are meaningful

OLD_TIME ut_tv is meaningful.

NEW_TIME ut_tv is meaningful.

USER_PROCESS

ut_id, ut_user (login name of the user), ut_line, ut_pid, and ut_tv

are meaningful.

getutxid

Chapter 3. Part 3. Library Functions 883

||||

|
|
||

|

INIT_PROCESS

ut_id, ut_pid, and ut_tv are meaningful.

LOGIN_PROCESS

ut_id, ut_user (implementation-specific name of the login process),

ut_pid, and ut_tv are meaningful.

DEAD_PROCESS

ut_id, ut_pid, and ut_tv are meaningful.

Returned Value

If successful, getutxid() returns a pointer to a utmpx structure containing a copy of

the requested entry in the user accounting database.

If unsuccessful, getutxid() returns a NULL pointer.

No errors are defined for this function.

Related Information

v “utmpx.h” on page 98

v “endutxent() — Close the utmpx Database” on page 475

v “getutxent() — Read Next Entry in utmpx Database” on page 881

v “getutxline() — Search by Line utmpx Database” on page 885

v “pututxline() — Write Entry to utmpx Database” on page 1576

v “setutxent() — Reset to Start of utmpx Database” on page 1861

v “__utmpxname() — Change the utmpx Database Name” on page 2322

getutxid

884 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getutxline() — Search by Line utmpx Database

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <utmpx.h>

struct utmpx *getutxline(const struct utmpx *line);

General Description

The getutxline() function searches forward from the current point in the utmpx

database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS

which also has a ut_line value matching that in the utmpx structure pointed to by

argument line. If the database is not already open, it opens it. If it reaches the end

of the database, it fails.

The pututxline() function obtains an exclusive lock in the utmpx database on the

byte range of the record which is ready to write and releases the lock before

returning to its caller. The functions getutxent(), getutxid(), and getutxline() might

continue to read and are not affected by pututxline().

Because the getutxline() function returns thread-specific data the getutxline()

function can be used safely from a multithreaded application. If multiple threads in

the same process open the database, then each thread opens the database with a

different file descriptor. The thread’s database file descriptor is closed when the

calling thread terminates or the endutxent() function is called by the calling thread.

The name of the database file defaults to /etc/utmpx. To process a different

database file name use the __utmpxname() function.

The functions getutxent(), getutxid(), and getutxline() cache the last entry read from

the database. For this reason, to use getutxline() function to search for multiple

occurrences, it is necessary to zero out the utmpx structure pointed to by the return

value from these functions.

For all entries that match a request, the ut_type member indicates the type of the

entry. Other members of the entry will contain meaningful data based on the value

of the ut_type member as follows:

EMPTY No other members have meaningful data.

BOOT_TIME ut_tv is meaningful.

__RUN_LVL ut_tv and ut_line are meaningful

OLD_TIME ut_tv is meaningful.

NEW_TIME ut_tv is meaningful.

USER_PROCESS

ut_id, ut_user (login name of the user), ut_line, ut_pid, and ut_tv

are meaningful.

getutxline

Chapter 3. Part 3. Library Functions 885

||||

|
|
||

|

INIT_PROCESS

ut_id, ut_pid, and ut_tv are meaningful.

LOGIN_PROCESS

ut_id, ut_user (implementation-specific name of the login process),

ut_pid, and ut_tv are meaningful.

DEAD_PROCESS

ut_id, ut_pid, and ut_tv are meaningful.

Returned Value

If successful, getutxline() returns a pointer to a utmpx structure containing a copy of

the requested entry in the user accounting database.

If unsuccessful, getutxline() returns a NULL pointer.

No errors are defined for this function.

Related Information

v “utmpx.h” on page 98

v “endutxent() — Close the utmpx Database” on page 475

v “getutxent() — Read Next Entry in utmpx Database” on page 881

v “getutxid() — Search by ID utmpx Database” on page 883

v “pututxline() — Write Entry to utmpx Database” on page 1576

v “setutxent() — Reset to Start of utmpx Database” on page 1861

v “__utmpxname() — Change the utmpx Database Name” on page 2322

getutxline

886 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

getw() — Get a Machine Word from a Stream

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

both

Format

#define _XOPEN_SOURCE

#include <stdio.h>

int getw(FILE *stream);

General Description

The getw() function reads the next word from the stream. The size of the word is

the size of an int, and varies from machine to machine. The getw() function

presumes no special alignment in the file.

The getw() function may mark the st_atime field of the file associated with stream

for update. The st_atime field will be marked for update by the first successful

execution of fgetc(), fgets(), fread(), getc(), getchar(), gets(), fscanf() or scanf()

using stream that returns data not supplied by a prior call to ungetc().

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use character-based input functions to replace getw() for portability.

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If successful, getw() returns the next word from the input stream pointed to by

stream. If the stream is at End Of File (EOF), the End Of File indicator for the

stream is set and getw() returns EOF. If a read error occurs, the error indicator for

the stream is set, getw() returns EOF and sets errno to indicate the error.

Refer to “fgetc() — Read a Character” on page 587 for errno values.

Because the representation of EOF is a valid integer, applications wishing to check

for errors should use ferror() and feof().

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

v “fwrite() — Write Items” on page 731

v “putw() — Put a Machine Word on a Stream” on page 1578

getw

Chapter 3. Part 3. Library Functions 887

|
|
|
|

|
|
|
|
|

getwc() — Get a Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wint_t getwc(FILE *stream);

General Description

Obtains the next multibyte character from stdin, converts it to a wide character, and

advances the associated file position indicator for stdin.

The getwc() function is equivalent to the fgetwc() function. Therefore, the argument

should never be an expression with side effects.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Using non-wide-character functions with getwc() results in undefined behavior. This

happens because getwc() processes a whole multibyte character and does not

expect to be “within” such a character. In addition, getwc() expects state information

to be set already. Because functions like fgetc() and fputc() do not obey such rules,

their results fail to meet the assumptions made by getwc().

getwc() has the same restriction as any read operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

Returns the next wide character from the input stream pointed to by stream or else

the function returns WEOF.

If there is an error, getwc() sets the error indicator. If the EOF is encountered, it

sets the EOF indicator. If an encoding error is encountered, it sets EILSEQ in errno.

Use ferror() or feof() to determine whether an error or an EOF condition occurred.

Note that EOF is only reached when an attempt is made to read past the last byte

of data. Reading up to and including the last byte of data does not turn on the EOF

indicator.

Example

CELEBG21

getwc

888 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

/* CELEBG21 */

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

int main(void)

{

 FILE *stream;

 wint_t wc;

 if ((stream = fopen("myfile.dat", "r")) == NULL) {

 printf("Unable to open file.");

 exit(1);

 }

 errno = 0;

 while ((wc = getwc(stream)) != WEOF)

 printf("wc=0x%lx\n", wc);

 if (errno == EILSEQ) {

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 fclose(stream);

}

Related Information

v “stdio.h” on page 82

v “wchar.h” on page 98

v “fgetwc() — Get Next Wide Character” on page 593

getwc

Chapter 3. Part 3. Library Functions 889

getwchar() — Get a Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wint_t getwchar(void);

General Description

The getwchar() function is equivalent to getwc() with the argument stdin.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

Returns the next wide character from the input stream pointed to by stdin or else

the function returns WEOF. If the stream is at EOF, the EOF indicator for the stream

is set and fgetwc() returns WEOF. If a read error occurs, the error indicator for the

stream is set and fgetwc() returns WEOF. If an encoding error occurs, the value of

the macro EILSEQ is stored in errno and WEOF is returned.

Use ferror() or feof() to determine whether an error or an EOF condition occurred.

Note that EOF is only reached when an attempt is made to read past the last byte

of data. Reading up to and including the last byte of data does not turn on the EOF

indicator.

Example

CELEBG22

/* CELEBG22 */

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

int main(void)

{

 wint_t wc;

 errno = 0;

 while ((wc = getwchar()) != WEOF)

 printf("wc=0x%X\n", wc);

 if (errno == EILSEQ) {

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

}

getwchar

890 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

Related Information

v “wchar.h” on page 98

v “fgetwc() — Get Next Wide Character” on page 593

v “getwc() — Get a Wide Character” on page 888

getwchar

Chapter 3. Part 3. Library Functions 891

getwd() — Get the Current Working Directory

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

char *getwd(char *path_name);

General Description

The getwd() function determines an absolute pathname of the current working

directory of the calling process, and copies that pathname into the array pointed to

by path_name argument.

If the length of the pathname of the current working directory is greater than

(PATH_MAX+1) including the NULL byte, getwd() fails and returns a NULL pointer.

For portability to implementations conforming to earlier versions of the standards,

getcwd() is preferred over this function.

Note: The getwd() function has been moved to the Legacy Option group in Single

UNIX Specification, Version 3 and may be withdrawn in a future version. The

getcwd() function is preferred for portability.

Returned Value

If successful, getwd() returns a pointer to the string containing the absolute

pathname of the current working directory.

If unsuccessful, getwd() returns a NULL pointer and the contents of the array

pointed to by path_name are undefined.

There are no errno values defined.

Related Information

v “unistd.h” on page 96

v “getcwd() — Get Pathname of the Working Directory” on page 754

getwd

892 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|

getwmccoll() — Get Next Collating Element from Wide String

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <collate.h>

collel_t getwmccoll(wchar_t **src);

General Description

If the object pointed to by src is not a NULL pointer, the getwmccoll() library function

determines the longest sequence of wide characters in the array pointed to by str

that constitute a valid multi-wide-character collating element. It then produces the

value of type collel_t corresponding to that collating element. The object pointed

to by src is assigned the address just past the last wide character of the

multi-wide-character collating element processed.

Returned Value

If successful, getwmccoll() returns the value of type collel_t that represents the

collating element found.

If the object pointed to by src is a NULL pointer or if it points to a NULL wide

character, getwmccoll() returns 0.

If the object pointed to by src points to a non-valid wide character, getwmccoll()

returns −1 and sets errno to EILSEQ.

Related Information

v “collate.h” on page 36

v “wchar.h” on page 98

v “cclass() — Return Characters in a Character Class” on page 243

v “collequiv() — Return a List of Equivalent Collating Elements” on page 308

v “collorder() — Return List of Collating Elements” on page 310

v “collrange() — Calculate the Range List of Collating Elements” on page 312

v “colltostr() — Return a String for a Collating Element” on page 314

v “getmccoll() — Get Next Collating Element from String” on page 804

v “ismccollel() — Identify a Multicharacter Collating Element” on page 1030

v “maxcoll() — Return Maximum Collating Element” on page 1181

v “strtocoll() — Return Collating Element for String” on page 2064

getwmccoll

Chapter 3. Part 3. Library Functions 893

givesocket() — Make the Specified Socket Available

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

int givesocket(int d, struct clientid *clientid);

General Description

The givesocket() call makes the specified socket available to a takesocket() call

issued by another program. Any socket can be given. Typically, givesocket() is used

by a master program that obtains sockets by means of accept() and gives them to

application programs that handle one socket at a time.

Parameter Description

d The descriptor of a socket to be given to another application.

clientid A pointer to a client ID structure specifying the program to which

the socket is to be given.

To pass a socket, the giving program first calls givesocket() with the client ID

structure filled in as follows:

The clientid structure:

 struct clientid {

 int domain;

 union {

 char name[8];

 struct {

 int NameUpper;

 pid_t pid;

 } c_pid;

 } c_name;

 char subtaskname[8];

 struct {

 char type;

 union {

 char specific[19];

 struct {

 char unused[3];

 int SockToken;

 } c_close;

 } c_func;

 } c_reserved;

 };

Element Description

domain The domain of the input socket descriptor.

c_name.name If the clientid was set by a getclientid() call, c_name.name can be

v set to the application program’s address space name,

left-justified and padded with blanks. The application program

givesocket

894 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

can run in the same address space as the master program, in

which case this field is set to the master program’s address

space.

v set to blanks, so any z/OS address space can take the socket.

subtaskname If the clientid was set by a getclientid() call, subtaskname can be

v set to the task identifier of the taker. This, combined with a

c_name.name value, allows only a process with this

c_name.name and subtaskname to take the socket.

v set to blanks. If c_name.name has a value and subtaskname is

blank, any task with that c_name.name can take the socket.

c_pid.pid If the clientid was set by a __getclientid() call, c_pid.pid should be

set to the process id (PID) of the taker, so only a process with that

PID can take the socket. The subtaskname field is ignored when

the c_pid has a value.

c_reserved.type

 When set to SO_CLOSE, this indicates the socket should be

automatically closed by givesocket(), and a unique socket

identifying token is to be returned in c_close.SockToken. The

c_close.SockToken should be passed to the taking program to be

used as input to takesocket() instead of the socket descriptor. The

now closed socket descriptor could be re-used by the time the

takesocket() is called, so the c_close.SockToken should be used for

takesocket().

 When set to _SO_SELECT, this indicates that the application

intends to block on the select() for exception, waiting for the

takesocket() to occur before closing the socket. If c_reserved.type

is set to _SO_SELECT and the caller of givesocket() closes the

socket before it has been taken, the connection will be severed.

_SO_SELECT also allows select() to return exception status if

select() is done after the socket was taken with takesocket().

c_close.SockToken

The unique socket identifying token returned by givesocket() to be

used as input to takesocket(), instead of the socket descriptor when

c_reserved.type has been set to SO_CLOSE.

c_reserved Specifies binary zeros if an automatic close of a socket is not to be

done by givesocket().

Using name and subtaskname for givesocket/takesocket:

1. The giving program calls getclientid() to obtain its client ID. The giving program

calls givesocket() to make the socket available for a takesocket() call. The

giving program passes its client ID along with the descriptor of the socket to be

given to the taking program by the taking program’s startup parameter list.

2. The taking program calls takesocket(), specifying the giving program’s client ID

and socket descriptor.

3. Waiting for the taking program to take the socket, the giving program uses

select() to test the given socket for an exception condition. When select()

reports that an exception condition is pending, the giving program calls close()

to free the given socket.

4. If the giving program closes the socket before a pending exception condition is

indicated, the connection is immediately reset, and the taking program’s call to

givesocket

Chapter 3. Part 3. Library Functions 895

takesocket() is unsuccessful. Calls other than the close() call issued on a given

socket return -1, with errno set to EBADF.

Note: For backward compatibility, a client ID can point to the struct client ID

structure obtained when the target program calls getclientid(). In this case, only the

target program, and no other programs in the target program’s address space, can

take the socket.

Using process id (PID) for givesocket/takesocket:

1. The giving program calls __getclientid() to obtain its client ID. The giving

program sets the c_pid.pid in the clientid structure to the PID of the taking

program that will take the socket (that is, issue the takesocket() call). This

ensures only a process that has obtained the giver’s PID can take the specified

socket. If the giving program wants the socket to be automatically closed by

givesocket(), c_reserved.type should be set to SO_CLOSE. The giving program

calls givesocket() to make the socket available for a takesocket() call. The

giving program passes its client ID, the descriptor of the socket to be given, and

the giving program’s PID to the taking program by the taking program’s startup

parameter list.

2. The taking program sets the c_pid.pid in the clientid structure to the PID of the

giving program to identify the process from which the socket is to be taken. If

the c_reserved.type field was set to SO_CLOSE on givesocket(), the

c_close.SockToken should be used as input to the takesocket() instead of the

normal socket descriptor. The taking program calls takesocket(), specifying the

giving program’s client ID and either the socket descriptor or

c_close.SockToken.

3. If the c_reserved.type field in the clientid structure was set to SO_CLOSE on

the givesocket() call, the socket is closed and the giving program does not have

to wait for the taking program to issue the takesocket(). Otherwise, steps 3 and

4 of ″Using name and subtaskname for givesocket/takesocket″ should be

followed.

Returned Value

If successful, givesocket() returns 0.

If unsuccessful, givesocket() returns -1 and sets errno to one of the following

values:

Error Code Description

EBADF The d parameter is not a valid socket descriptor. The socket has

already been given.

EFAULT Using the clientid parameter as specified would result in an attempt

to access storage outside the caller’s address space.

EINVAL The clientid parameter does not specify a valid client identifier or

the clientid domain does not match the domain of the input socket

descriptor.

Related Information

v “sys/socket.h” on page 89

v “accept() — Accept a New Connection on a Socket” on page 120

v “close() — Close a File” on page 299

v “getclientid() — Get the Identifier for the Calling Application” on page 746

v “listen() — Prepare the Server for Incoming Client Requests” on page 1104

givesocket

896 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “takesocket() — Acquire a Socket from Another Program” on page 2127

givesocket

Chapter 3. Part 3. Library Functions 897

glob() — Generate Pathnames Matching a Pattern

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <glob.h>

int glob(const char *__restrict__ pattern, int flags,

 int (*errfunc)(const char *epath, int eerrno),

 glob_t *__restrict__ pglob);

General Description

The glob() function is a pathname generator that implements the rules defined in

X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2 Section 2.13

, Pattern Matching Notation, with optional support for rule 3 in Section 2.13.3 ,

Patterns Used for Filename Expansion.

The structure glob_t is defined in the header <glob.h> and includes at least the

following members:

gl_pathc Count of paths matched by pattern.

gl_pathv Pointer to a list of matched filenames.

gl_offs Slots to reserve at the beginning of gl_pathv.

The argument pattern is a pointer to a pathname pattern to be expanded. The

glob() function matches all accessible pathnames against this pattern and develops

a list of all pathnames that match. In order to have access to a pathname, glob()

requires search permission on every component of a path except the last, and read

permission on each directory of any filename component of pattern that contains

any of the following special characters:

 * ? [

The glob() function stores the number of matched pathnames into pglob->gl_pathc

and a pointer to a list of pointers to pathnames into pglob->gl_pathv. The

pathnames are in sort order as defined by the current setting of the LC_COLLATE

category, see X/Open CAE Specification, System Interface Definitions, Issue 4,

Version 2 Section 5.3.2 , LC_COLLATE. The first pointer after the last pathname is

a NULL pointer. If the pattern does not match any pathnames, the returned number

of matched paths is set to 0, and the contents of pglob->gl_pathv are

implementation-dependent.

It is the caller’s responsibility to create the structure pointed to by pglob. The glob()

function allocates other space as needed, including the memory pointed to by

gl_pathv.

glob

898 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|
|
|
|

The flags argument is used to control the behavior of glob() The value of flags is a

bitwise inclusive-OR of zero or more of the following constants, which are defined in

the header <glob.h>:

GLOB_APPEND

Append pathnames generated to the ones from a previous call to

glob().

GLOB_DOOFFS

Make use of pglob->gl_offs. If this flag is set, pglob->gl_offs is used

to specify how many NULL pointers to add to the beginning of

pglob->gl_pathv. In other words, pglob->gl_pathv will point to

pglob->gl_offs NULL pointers, followed by pglob->gl_pathc

pathname pointers, followed by a NULL pointer.

GLOB_ERR Causes glob() to return when it encounters a directory that it cannot

open or read. Ordinarily, glob() continues to find matches.

GLOB_MARK Each pathname that is a directory that matches pattern has a slash

appended.

GLOB_NOCHECK

Support rule 3 in the XCU specification, Section 2.13.3 , Patterns

Used for Filename Expansion. If pattern does not match any

pathname, then glob() returns a list consisting of only pattern, and

the number of matched pathnames is 1.

GLOB_NOESCAPE

Disable backslash escaping.

GLOB_NOSORT

Ordinarily, glob() sorts the matching pathnames according to the

current setting of the LC_COLLATE category, see the XBD

specification, Section 5.3.2 , LC_COLLATE. When this flag is used

the order of pathnames returned is unspecified.

The GLOB_APPEND flag can be used to append a new set of pathnames to those

found in a previous call to glob(). The following rules apply when two or more calls

to glob() are made with the same value of pglob and without intervening calls to

globfree():

1. The first such call must not set GLOB_APPEND. All subsequent calls must set

it.

2. All calls must set GLOB_DOOFFS, or all must not set it.

3. After the second call, pglob->gl_pathv points to a list containing the following:

a. Zero or more NULL pointers, as specified by GLOB_DOOFFS and

pglob->gl_offs.

b. Pointers to the pathnames that were in the pglob->gl_pathv list before the

call, in the same order as before.

c. Pointers to the new pathnames generated by the second call, in the

specified order.

4. The count returned in pglob->gl_pathc will be the total number of pathnames

from the two calls.

5. The application can change any of the fields after a call to glob(). If it does, it

must reset them to the original value before a subsequent call, using the same

pglob value, to globfree() or glob() with the GLOB_APPEND flag.

glob

Chapter 3. Part 3. Library Functions 899

If, during the search, a directory is encountered that cannot be opened or read and

errfunc is not a NULL pointer, glob() calls (*errfunc()) with two arguments:

1. The epath argument is a pointer to the path that failed.

2. The eerrno argument is the value of errno from the failure, as set by opendir(),

readdir() or stat(). (Other values may be used to report other errors not explicitly

documented for those functions.)

Returned Value

If successful, glob() returns 0. The argument pglob->gl_pathc returns the number of

matched pathnames and the argument pglob->gl_pathv contains a pointer to a

NULL-terminated list of matched and sorted pathnames. However, if

pglob->gl_pathc is 0, the content of pglob->gl_pathv is undefined.

If glob() terminates due to an error, it returns one of the following nonzero constants

defined in <glob.h> as error return values for glob():

GLOB_ABORTED

The scan was stopped because GLOB_ERR was set or (*errfunc())

returned nonzero.

GLOB_NOMATCH

The pattern does not match any existing pathname, and

GLOB_NOCHECK was set in flags.

GLOB_NOSPACE

An attempt to allocate memory failed.

If (*errfunc()) is called and returns nonzero, or if the GLOB_ERR flag is set in flags,

glob() stops the scan and returns GLOB_ABORTED after setting gl_pathc and

gl_pathv in pglob to reflect the paths already scanned. If GLOB_ERR is not set and

either errfunc is a NULL pointer or (*errfunc()) returns 0, the error is ignored.

Related Information

v “glob.h” on page 48

v “exec Functions” on page 486

v “fnmatch() — Match Filename or Pathname” on page 624

v “opendir() — Open a Directory” on page 1319

v “readdir() — Read an Entry from a Directory” on page 1608

v “stat() — Get File Information” on page 2008

v “wordexp() — Perform Shell Word Expansions” on page 2457

glob

900 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

globfree() — Free Storage Allocated by glob()

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <glob.h>

void globfree(glob_t *pglob);

General Description

The globfree() function frees storage associated with pglob by a previous call to

glob().

Returned Value

globfree() returns no values.

Related Information

v “glob.h” on page 48

v “glob() — Generate Pathnames Matching a Pattern” on page 898

globfree

Chapter 3. Part 3. Library Functions 901

||||

|
|
|

||

|

gmtime() — Convert Time to Broken-Down UTC Time

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <time.h>

struct tm *gmtime(const time_t *timer);

General Description

Converts the calendar time pointed to by timer into a broken-down time, expressed

as Coordinated Universal Time (UTC).

2

The value pointed to by timer is usually obtained by a call to the time() function.

The relationship between a time in seconds since the Epoch used as an argument

to gmtime() and the tm structure (defined in the <time.h> header) is that the result

is as specified in the expression given in the definition of seconds since the Epoch,

where the names in the structure and in the expression correspond.

Returned Value

Returns a pointer to a tm structure containing the broken-down time, expressed in

Coordinated Universal Time (UTC) corresponding to calendar time pointed to by

timer. The fields in tm are shown in Table 19 on page 94. If the calendar time

pointed to by timer cannot be converted to broken-down time (in UTC), gmtime()

returns a NULL pointer.

Error code

Description

EOVERFLOW

The result cannot be represented.

 Notes:

v The range (0-60) for tm_sec allows for as many as one leap second.

v The gmtime() and localtime() functions may use a common, statically allocated

buffer for the conversion. Each call to one of these functions may alter the result

of the previous call.

v The calendar time returned by the time() function begins at the epoch, which was

at 00:00:00 Coordinated Universal Time (UTC), January 1, 1970.

2. Coordinated Universal Time (UTC) was formerly known as Greenwich Mean Time (GMT).

gmtime

902 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

|
|
|
|

|
|

|
|

Example

CELEBG23

/* CELEBG23

 This example uses the &gmtime. function to convert a

 time_t representation to a Coordinated Universal Time

 character string and then converts it to a printable string

 using &asct..

 */

#include <stdio.h>

#include <time.h>

int main(void)

{

 time_t ltime;

 time(<ime);

 printf ("Coordinated Universal Time is %s\n",

 asctime(gmtime(<ime)));

}

Output

Coordinated Universal Time (UTC) is Fri Jun 16 21:01:44 2001

Related Information

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

v “tzset() — Set the Time Zone” on page 2279

gmtime

Chapter 3. Part 3. Library Functions 903

gmtime_r() — Convert a Time Value to Broken-Down UTC Time

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <time.h>

struct tm *gmtime_r(const time_t *__restrict__ clock,

 struct tm *__restrict__ result);

General Description

The gmtime_r() function converts the calendar time pointed to by clock into a

broken-down time expressed as Coordinated Universal Time (UTC). The

broken-down time is stored in the structure referred to by result. The gmtime_r()

function also returns the address of the same structure.

The relationship between a time in seconds since the Epoch used as an argument

to gmtime() and the tm structure (defined in the <time.h> header) is that the result

is as specified in the expression given in the definition of seconds since the Epoch,

where the names in the structure and in the expression correspond.

Returned Value

If successful, gmtime_r() returns the address of the structure pointed to by the

argument result.

If an error is detected or UTC is not available, gmtime_r() returns a NULL pointer.

There are no documented errno values.

Error Code

Description

EOVERFLOW

The result cannot be represented.

Related Information

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

gmtime_r

904 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|

|
|
|
|

|
|

|
|

v “tzset() — Set the Time Zone” on page 2279

gmtime_r

Chapter 3. Part 3. Library Functions 905

grantpt() — Grant Access to the Slave Pseudoterminal Device

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

int grantpt(int fildes);

General Description

The grantpt() function changes the mode and ownership of the slave

pseudoterminal device. fildes should be the file descriptor of the corresponding

master pseudoterminal. The user ID of the slave is set to the real UID of the calling

process and the group ID is set to the group ID associated with the group name

specified by the installation in the TTYGROUP() initialization parameter. The

permission mode of the slave pseudoterminal is set to readable and writable by the

owner, and writable by the group.

You can provide secure connections by either using grantpt() and unlockpt(), or by

simply issuing the first open against the slave pseudoterminal from the first userid

or process that opened the master terminal.

Returned Value

If successful, grantpt() returns 0.

If unsuccessful, grantpt() returns -1 and sets errno to one of the following values:

Error Code Description

EACCES The slave pseudoterminal was opened before grantpt(), or a

grantpt() was already issued. In either case, slave pseudoterminal

permissions and ownership have already been updated. If you use

grantpt() to change slave pseudoterminal permissions, you must

issue grantpt() between the master open and the first

pseudoterminal open, and grantpt() can only be issued once.

EBADF The fildes argument is not a valid open file descriptor.

EINVAL The fildes argument is not associated with a master pseudoterminal

device.

ENOENT The slave pseudoterminal device was not found during lookup.

Related Information

v “stdlib.h” on page 85

v “open() — Open a File” on page 1313

v “ptsname() — Get Name of the Slave Pseudoterminal Device” on page 1566

v “unlockpt() — Unlock a Pseudoterminal Master/Slave Pair” on page 2314

grantpt

906 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

hcreate() — Create Hash Search Tables

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <search.h>

int hcreate(size_t nel);

General Description

The hcreate() function allocates sufficient space for a hash table containing nel

elements, and must be called before hsearch() is used.

The nel argument is an estimate of the maximum number of entries that the table

will contain. This number may be adjusted upward by hcreate() for the actual table

allocation in order to obtain certain mathematically favorable circumstances.

Threading Behavior: see “hsearch() — Search Hash Tables” on page 911.

Returned Value

If successful, hcreate() returns nonzero.

If hcreate() cannot allocate sufficient space for the table, it returns 0 and sets errno

to one of the following values:

Error Code Description

ENOMEM Insufficient storage space is available.

Related Information

v “search.h” on page 77

v “bsearch() — Search Arrays” on page 220

v “hdestroy() — Destroy Hash Search Tables” on page 908

v “hsearch() — Search Hash Tables” on page 911

v “lsearch() — Linear Search and Update” on page 1160

v “malloc() — Reserve Storage Block” on page 1172

v “strcmp() — Compare Strings” on page 2022

v “tsearch() — Binary Tree Search” on page 2257

hcreate

Chapter 3. Part 3. Library Functions 907

||||

|
|
|

||

|

hdestroy() — Destroy Hash Search Tables

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <search.h>

void hdestroy(void);

General Description

The hdestroy() function disposes of the search table, and may be followed by

another call to hcreate(). After the call to hdestroy(), the data can no longer be

considered accessible.

Threading Behavior: see “hsearch() — Search Hash Tables” on page 911.

Returned Value

hdestroy() returns no values.

Related Information

v “search.h” on page 77

v “bsearch() — Search Arrays” on page 220

v “hcreate() — Create Hash Search Tables” on page 907

v “hsearch() — Search Hash Tables” on page 911

v “lsearch() — Linear Search and Update” on page 1160

v “malloc() — Reserve Storage Block” on page 1172

v “strcmp() — Compare Strings” on page 2022

v “tsearch() — Binary Tree Search” on page 2257

hdestroy

908 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

__heaprpt() — Obtain Dynamic Heap Storage Report

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <stdlib.h>

typedef struct{int __uheap_size;

 int __uheap_bytes_alloc;

 int __uheap_bytes_free;

 } hreport_t;

int __heaprpt(hreport_t *heap_report_structure);

General Description

__heaprpt() returns to the caller the address of of a structure that contains the user

heap storage report. The storage report is similar in content to the user heap

storage report that is generated with the RPTSTG(ON) Run-Time option.

To use this function, the calling program must obtain storage where the user’s heap

storage report will be stored. The address of this storage is passed as an argument

to __heaprpt().

Returned Value

If successful, __heaprpt() fills the struct hreport_t with the user’s heap storage

report information.

If the address is not valid, __heaprpt() returns -1 and sets errno to EFAULT.

Example

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 hreport_t * strptr;

 strptr = (hreport_t *) malloc(sizeof(hreport_t));

 if (__heaprpt(strptr) != 0)

 perror("__heaprpt() error");

 else

 {

 printf("Total amount of user heap storage : %d\n",

 strptr->__uheap_size);

 printf("Amount of user heap storage in use : %d\n",

 strptr->__uheap_bytes_alloc);

 printf("Amount of available user heap storage: %d\n",

 strptr->__uheap_bytes_free);

 }

}

__heaprpt

Chapter 3. Part 3. Library Functions 909

Related Information

v “stdlib.h” on page 85

__heaprpt

910 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

hsearch() — Search Hash Tables

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <search.h>

ENTRY *hsearch(ENTRY item, ACTION action);

General Description

The hsearch() function is a hash-table search routine. It returns a pointer into a

hash table indicating the location at which an entry can be found. The item

argument is a structure of type ENTRY (defined in the <search.h> header) containing

two pointers: item.key points to the comparison key (a char *), and item.data (a

void *) points to any other data to be associated with that key. The comparison

function used by hsearch() is strcmp(). The action argument is a member of an

enumeration type ACTION indicating the disposition of the entry if it cannot be found

in the table. ENTER indicates that the item should be inserted in the table at an

appropriate point. FIND indicates that no entry should be made.

Threading Behavior: The hcreate() function allocates a piece of storage for use as

the hash table. This storage is not exposed to the user, and is referred to by all

threads. In other words, these functions operate on one hash table global to the

process. The library serializes access to the table and attendant data across

threads using an internal mutex.

Returned Value

hsearch() returns a NULL pointer if either the action is FIND and the item could not

be found or the action is ENTER and the table is full.

If an error occurs, hsearch() sets errno to one of the following values:

Error Code Description

ENOMEM Insufficient storage space is available.

Related Information

v “search.h” on page 77

v “bsearch() — Search Arrays” on page 220

v “hcreate() — Create Hash Search Tables” on page 907

v “hdestroy() — Destroy Hash Search Tables” on page 908

v “lsearch() — Linear Search and Update” on page 1160

v “malloc() — Reserve Storage Block” on page 1172

v “strcmp() — Compare Strings” on page 2022

v “tsearch() — Binary Tree Search” on page 2257

hsearch

Chapter 3. Part 3. Library Functions 911

||||

|
|
|

||

|

htonl() — Translate Address Host to Network Long

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

XPG4.2

#define _XOPEN_SOURCE_EXTENDED 1

#include <arpa/inet.h>

in_addr_t htonl(in_addr_t hostlong);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <apar/inet.h>

uint32_t htonl(uint32_t hostlong);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <arpa/inet.h>

#include <netinet/in.h>

unsigned long htonl(unsigned long a);

General Description

The htonl() function translates a long integer from host byte order to network byte

order.

Parameter Description

a The unsigned long integer to be put into network byte order.

in_addr_t hostlong

Is typed to the unsigned long integer to be put into network byte

order.

Notes:

1. For MVS, host byte order and network byte order are the same.

2. Since this function is implemented as a macro, you need one of the feature test

macros and the inet header file.

Returned Value

htonl() returns the translated long integer.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/types.h” on page 90

v “htons() — Translate an Unsigned Short Integer into Network Byte Order” on

page 914

v “ntohl() — Translate a Long Integer into Host Byte Order” on page 1309

htonl

912 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|

v “ntohs() — Translate an Unsigned Short Integer into Host Byte Order” on page

1311

htonl

Chapter 3. Part 3. Library Functions 913

htons() — Translate an Unsigned Short Integer into Network Byte

Order

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

XPG4.2

#define _XOPEN_SOURCE_EXTENDED 1

#include <arpa/inet.h>

in_port_t htons(in_port_t hostshort);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <arpa/inet.h>

uint16_t htons(uint16_t hostshort);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned short htons(unsigned short a);

General Description

The htons() function translates a short integer from host byte order to network byte

order.

Parameter Description

a The unsigned short integer to be put into network

byte order.

in_port_t hostshort Is typed to the unsigned short integer to be put into

network byte order.

Notes:

1. For MVS, host byte order and network byte order are the same.

2. Since this function is implemented as a macro, you need one of the feature test

macros and the inet header file.

Returned Value

htons() returns the translated short integer.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/types.h” on page 90

v “htonl() — Translate Address Host to Network Long” on page 912

htons

914 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

v “ntohl() — Translate a Long Integer into Host Byte Order” on page 1309

v “ntohs() — Translate an Unsigned Short Integer into Host Byte Order” on page

1311

htons

Chapter 3. Part 3. Library Functions 915

hypot(), hypotf(), hypotl() — Calculate the square root of the squares

of two arguments

Standards

 Standards / Extensions C or C++ Dependencies

SAA

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

 z/OS V1R7

Format

SAA

Compiler Option LANGLVL(EXTENDED), LANGLVL(SAA), or LANGLVL(SAAL2)

#include <math.h>

double hypot(double side1, double side2);

XPG4

#define _XOPEN_SOURCE

#include <math.h>

double hypot(double side1, double side2);

C99

#define _ISOC99_SOURCE

#include <math.h>

float hypotf(float side1, float side2);

long double hypotl(long double side1, long double side2);

General Description

The hypot() family of functions calculates the length of the hypotenuse of a

right-angled triangle based on the lengths of two sides side1 and side2. A call to

hypot() is equal to:

 sqrt(side1* side1 + side2 * side2);

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function SPC Hex IEEE

hypot X X X

hypotf X X

hypotl X X

Restriction

The hypotf() function does not support the _FP_MODE_VARIABLE feature test

macro.

hypot

916 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

|

Returned Value

The hypot() family of functions returns the calculated length of the hypotenuse.

If the correct value is outside the range of representable values, ±HUGE_VAL is

returned, according to the sign of the value. The value of the macro ERANGE is

stored in errno, to show the calculated value is out of range. If the correct value

would cause an underflow, zero is returned and the value of the macro ERANGE is

stored in errno.

Special Behavior for IEEE

If successful, The hypot() family of functions returns the calculated length of the

hypotenuse.

If the correct value overflows, hypot() sets errno to ERANGE and returns

HUGE_VAL.

Example

CELEBH01

/* CELEBH01

 This example calculates the hypotenuse of a right−angled

 triangle with sides of 3.0 and 4.0.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y, z;

 x = 3.0;

 y = 4.0;

 z = hypot(x,y);

 printf("The hypotenuse of the triangle with sides %lf and %lf"

 " is %lf\n", x, y, z);

}

Output

The hypotenuse of the triangle with sides 3.000000 and 4.000000 is 5.000000

Related Information

v “math.h” on page 60

v “sqrt(), sqrtf(), sqrtl() — Calculate Square Root” on page 1998

hypot

Chapter 3. Part 3. Library Functions 917

ibmsflush() — Flush the Application-side Datagram Queue

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

int ibmsflush(int s);

General Description

Bulk mode is supported only for receive-type socket calls. Currently, send-type

socket calls are not supported for bulk mode. Until bulk mode send is supported,

ibmsflush() simply returns to the calling program with a zero return code.

For outbound sockets, the application-side datagram queue is flushed (transferred

to the TCP/IP address space) if any one of the following occur:

v An ibmsflush() is issued on the socket.

v The queue is full and another send-type socket call is issued.

v The socket is closed.

v Another setibmsockopt() is issued.

Parameter

Description

s The socket descriptor.

Returned Value

If successful, ibmsflush() returns 0.

If unsuccessful, ibmsflush() returns -1 and sets errno to one of the following values:

Error Code Description

EBADF The s parameter is not a valid socket descriptor.

Example

The following is an example of the ibmsflush() call.

 char buffer[1000];

 int rc, sizeofbuf;

 struct ibm_bulkmode_struct mybulkstr;

 /* Create, bind, etc done for socket sd */

 .

 .

 .

 mybulkstr.b_onoff = 1;

 mybulkstr.b_max_receive_queue_size = 0;

 mybulkstr.b_max_send_queue_size = 2100;

 mybulkstr.b_move_data = 1;

 rc = setibmsockopt(sd, SOL_SOCKET, SO_BULKMODE,

 (char *)&mybulkstr, sizeof(mybulkstr));

ibmsflush

918 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

strcpy(buffer, "Buffer info that fills up to 1000");

 sizeofbuf = 1000;

 write(sd, buffer, sizeofbuf);

 strcpy(buffer, "More buffer info that fills up to 1000");

 sizeofbuf = 1000;

 write(sd, buffer, sizeofbuf);

 strcpy(buffer, "Even more buffer info that fills up to 1000");

 sizeofbuf = 1000;

 write(sd, buffer, sizeofbuf);

 /* Issue ibmsflush() to make sure everything in buffer has been sent.*/

 rc = ibmsflush(sd);

 .

 .

 .

Related Information

v “sys/socket.h” on page 89

v “getibmsockopt() — Get the Options Associated with a Bulk Mode Socket” on

page 790

v “setibmsockopt() — Set IBM Specific Options Associated with a Socket” on page

1796

ibmsflush

Chapter 3. Part 3. Library Functions 919

iconv() — Code Conversion

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <iconv.h>

size_t iconv(iconv_t cd, char **__restrict__ inbuf,

 size_t *__restrict__ inbytesleft, char **__restrict__ outbuf,

 size_t *__restrict__ outbytesleft);

General Description

Converts a sequence of characters, indirectly pointed to by inbuf, from one encoded

character set into a sequence of corresponding characters in another encoded

character set. The resulting character sequence is then stored into the array

indirectly pointed to by outbuf. The encoded character sets are those specified in

the iconv_open() call that returned the conversion descriptor, cd. If the descriptor

refers to the state-dependent encoding, then before it is first used, the cd descriptor

is in its initial shift state.

The inbuf argument points to a variable that points to the first character in the input

buffer. inbytesleft indicates the number of bytes to the end of the buffer to be

converted. The outbuf argument points to a variable that points to the first character

in the output buffer. outbytesleft indicates the number of available bytes to the end

of the buffer.

If the output character set refers to the state-dependent encoding—if it contains the

multibyte characters with shift-states—the conversion descriptor cd is placed in its

initial state by a call for which inbuf is a NULL pointer, or for which inbuf points to a

NULL pointer. When iconv() is called in this way, and if outbuf is not a NULL pointer

or a pointer to a NULL pointer, and outbytesleft points to a positive value, iconv()

places in the output buffer the byte sequence to change the output buffer to the

initial shift state. If the output buffer is not large enough to hold the entire reset

sequence, iconv() fails, and sets errno to E2BIG. Subsequent calls with inbuf as

other than a NULL pointer or a pointer to a NULL pointer cause conversion from the

current state of the conversion descriptor.

If a sequence of input bytes does not form a valid character in the specified

encoded character set, conversion stops after the previous successfully converted

character, and iconv() sets errno to EILSEQ. If the input buffer ends with an

incomplete character or shift sequence, conversion stops after the previous

successfully converted bytes, and iconv() sets errno to EINVAL. If the output buffer

is not large enough to hold the entire converted input, conversion stops just before

the input bytes that would cause the output buffer to overflow.

The variable pointed to by inbuf is updated to point to the byte following the last

byte of a successfully converted character. The value pointed to by inbytesleft is

decremented to reflect the number of bytes still not converted in the input buffer.

The variable pointed to by outbuf is updated to point to the byte following the last

iconv

920 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|
|
|

|
|
|
|
|
|
|

byte of converted output data. The value pointed to by outbytesleft is decremented

to reflect the number of bytes still available in the output buffer. For state-dependent

encoding, the conversion descriptor is updated to reflect the shift state in effect at

the end of the last successfully converted byte sequence.

If iconv() encounters a character in the input buffer that is valid, but for which a

conversion is not defined in the conversion descriptor, cd, then iconv() performs a

nonidentical conversion on this character. The conversion is implementation-
defined.

The <iconv.h>header file declares the iconv_t type that is a pointer to the object

capable of storing the information about the converters used to convert characters

in one coded character set to another. For state-dependent encoding, the object

must be capable of storing the encoded information about the current shift state.

Special Considerations for Bidirectional Language Support

If the _BIDION environment variable is set to TRUE, iconv() performs bidirectional

layout transformation to the converted characters. The required attributes for

bidirectional layout transformation can be specified using the environment variable

_BIDIATTR (eg. export _BIDIATTR=″@ls typeoftext=visual:implicit,

orientation=ltr:ltr,numerals=nominal:national″). For a detailed description of the

bidirectional layout transformation, see “Bidirectional Language Support” in z/OS XL

C/C++ Programming Guide. If the environment variable _BIDIATTR is not set, the

default values will be used.

iconv() can perform bidirectional layout transformation while converting the data

from the fromCodePage to the toCodePage. Bidirectional layout transformation will

take place only if bidirectional language support is activated, see “iconv_open() —

Allocate Code Conversion Descriptor” on page 925 for more information about

activating bidirectional layout transformation. In case iconv encounters any error in

input or output buffers in the bidirectional part it will bypass the bidirectional layout

transformation and continue its normal function as usual.

Special Behavior for POSIX C

In the POSIX environment, a conversion descriptor returned from a successful

iconv_open() may be used safely within a single thread. In addition, it may be

opened on one thread, used on a second thread (iconv()), and closed

(iconv_open()) on a third thread. However, you must ensure correct cross-thread

sequencing and synchronization (that is: iconv_open(), followed by optional iconv()

calls, followed by iconv_close()). The use of a shared conversion descriptor by

iconv() across multiple threads may result in undefined behavior.

See “z/OS XL C/C++ applications with z/OS UNIX System Services C functions” on

page 13 for more information about using POSIX support.

Returned Value

If successful, iconv() updates the variables pointed to by the arguments to reflect

the extent of the conversion and returns the number of nonidentical conversions

performed.

iconv

Chapter 3. Part 3. Library Functions 921

If the entire string in the input buffer is converted, the value pointed to by inbytesleft

will be 0. If the input conversion is stopped because of any conditions mentioned

above, the value pointed to by inbytesleft will be nonzero and errno is set to

indicate the condition.

If an error occurs, iconv() returns (size_t)−1 and sets errno to one of the following

values:

Error Code Description

EBADF cd is not a valid descriptor.

ECUNNOENV

 A CUN_RS_N0_UNI_ENV error was issued by Unicode Conversion

Services.

 Refer to z/OS Support for Unicode: Using Unicode Services

documentation for user action.

ECUNNOCONV

 A CUN_RS_NO_CONVERSION error was issued by Unicode

Conversion Services.

 Refer to z/OS Support for Unicode: Using Unicode Services

documentation for user action.

ECUNNOTALIGNED

 A CUN_RS_TABLE_NOT_ALIGNED error was issued by Unicode

Conversion Services.

 Refer to z/OS Support for Unicode: Using Unicode Services

documentation for user action.

ECUNERR

 Function iconv() encountered an unexpected error while using

Unicode Conversion Services.

 Refer to message EDC6258 for additional information.

EILSEQ Input conversion stopped due to an input byte that does not belong

to the input codeset.

EINVAL Input conversion stopped due to an incomplete character or shift

sequence at the end of the input buffer.

E2BIG Input conversion stopped due to lack of space in the output buffer.

Example

CELEBI01

/* CELEBI01

 This example converts an array of characters coded in encoded character

 set IBM−1047 to an array of characters coded in encoded character set

 IBM−037.

 Input is in inbuf, output will be in outbuf.

 */

#include <iconv.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

iconv

922 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|

|
|

|

|
|

|
|

|

|
|

|
|

|

|
|

|

||
|

||
|

||

main ()

{

 char *inptr; /* Pointer used for input buffer */

 char *outptr; /* Pointer used for output buffer */

 char inbuf[20] =

 "ABCDEFGH!@#$1234";

 /* input buffer */

 unsigned char outbuf[20]; /* output buffer */

 iconv_t cd; /* conversion descriptor */

 size_t inleft; /* number of bytes left in inbuf */

 size_t outleft;/* number of bytes left in outbuf */

 int rc; /* return code of iconv() */

 if ((cd = iconv_open("IBM−037", "IBM−1047")) == (iconv_t)(−1)) {

 fprintf(stderr, "Cannot open converter from %s to %s\n",

 "IBM−1047", "IBM−037");

 exit(8);

 }

 inleft = 16;

 outleft = 20;

 inptr = inbuf;

 outptr = (char*)outbuf;

 rc = iconv(cd, &inptr, &inleft, &outptr, &outleft);

 if (rc == −1) {

 fprintf(stderr, "Error in converting characters\n");

 exit(8);

 }

 iconv_close(cd);

}

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “iconv.h” on page 49

v “locale.h” on page 57

v “iconv_close() — Deallocate Code Conversion Descriptor” on page 924

v “iconv_open() — Allocate Code Conversion Descriptor” on page 925

v “setlocale() — Set Locale” on page 1811

iconv

Chapter 3. Part 3. Library Functions 923

iconv_close() — Deallocate Code Conversion Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <iconv.h>

int iconv_close(iconv_t cd);

General Description

Deallocates the conversion descriptor cd and all other associated resources

allocated by the iconv_open() function. For an illustration of using iconv_open(), see

“Example” on page 922.

Returned Value

If successful, iconv_close() returns 0.

If unsuccessful, iconv_close() returns −1 and sets errno to one of the following

values:

Error Code Description

EBADF cd is not a valid descriptor.

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “iconv.h” on page 49

v “locale.h” on page 57

v “iconv() — Code Conversion” on page 920

v “iconv_open() — Allocate Code Conversion Descriptor” on page 925

v “setlocale() — Set Locale” on page 1811

iconv_close

924 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

iconv_open() — Allocate Code Conversion Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <iconv.h>

iconv_t iconv_open(const char *tocode, const char *fromcode);

General Description

Performs all the initialization needed to convert characters from the encoded

character set specified in the array pointed to by the fromcode argument to the

encoded character set specified in the array pointed to by the tocode argument.

The conversion descriptor relates the two encoded character sets.

For state-dependent encodings, the conversion descriptor will be in an

encoded-character-set-dependent initial shift state, ready for immediate use with

iconv(). The conversion descriptor remains valid until it is closed with iconv_close().

Settings of fromcode, tocode, and their permitted combinations are

implementation-dependent.

Note:

The iconv() family of functions has been modified to utilize character

conversion services provided by Unicode Services. iconv_open(), iconv() and

iconv_close()’s function interfaces will remain unchanged with the exception

of the addition of four new errno values and two new environment variables

described in the following paragraphs. There are differences in externals

between the iconv() family of functions and Unicode Services. However, the

differences in externals will be managed by the iconv() family of functions

except where noted in the z/OS XL C/C++ Compiler and Run-Time Migration

Guide for the Application Programmer. All conversions listed in tables 74 and

table 75 in the section of the z/OS XL C/C++ Programming Guide entitled

“Code Set Converters Supplied” will continue to work as they do today.

However, Unicode Services supports conversions between thousands of

additional character sets not listed in tables 74 and table 75 of the z/OS XL

C/C++ Programming Guide. A complete list of conversions supported by

Unicode Services can be found in tables 25 an tables 26 in the z/OS

Support for Unicode: Using Unicode Services. To set up a conversion using

iconv_open() for any of the character sets listed in tables 25 an tables 26,

the user needs to use a character string representing the CCSID’s for

fromcode/tocode. For example, to set up a conversion from CCSID 00256 to

CCSID 00870 using conversion technique R, the user would set the

_ICONV_TECHNIQUE environment variable to R and call iconv_open() as

follows:

cd = iconv_open(“00870”, “00256”);

iconv_open

Chapter 3. Part 3. Library Functions 925

||||

|
|
|

||

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

and continue to use iconv() and iconv_close() as in previous releases.

iconv() uses the following environment variables.

_ICONV_UCS2 Tells iconv_open(Y, X) what type of conversion

method to setup when there is a choice between

″direct″ conversion from X to Y and ″indirect″ X to

UCS-2 to Y.

_ICONV_UCS2_PREFIX Tells iconv_open() what z/OS dataset name prefix

to use to find UCS-2 tables if they cannot be found

in the HFS.

_ICONV_MODE Selects the behavior mode for iconv_open(), iconv()

and iconv_close()..

_ICONV_TECHNIQUE This is the technique value used while using

Unicode Conversion Services. For more information

regarding the Unicode Conversion Services

technique value, refer to Chapter 3 - Creating a

Unicode Environment section of the z/OS Support

for Unicode: Using Unicode Services.

For illustration of using iconv_close(), see “Example” on page 922.

Special Considerations for Bidirectional Language Support

Performs all the initialization needed to activate the bidirectional layout

transformation to be used by iconv. The following three conditions must be satisfied

to enable the bidirectional layout transformation:

1. The _BIDION environment variable must be set to TRUE.

2. The current locale environment at iconv_open() time must be an Arabic or

Hebrew locale (eg. Ar_AA or Iw_IL).

3. The conversion code set must be an Arabic or Hebrew code set.

Conversion code sets differ in the following three cases:

1. Case fromCodeSet is UCS-2 and toCodeSet is single byte code set. In this

case toCodeSet must be an Arabic or Hebrew code set.

2. Case fromCodeSet is single byte code set and toCodeSet is UCS-2. In this

case fromCodeSet must be an Arabic or Hebrew code set.

3. Case both fromCodeSet and toCodeSet are single byte code sets. In this case

toCodeSet must be an Arabic or Hebrew code set.

iconv_open() checks for the existence of the environment variable _BIDIATTR to

get the bidirectional layout transformation attributes. It will use default values in

case _BIDIATTR is not defined, is unset, or in case of the existence of some

erroneous values in the _BIDIATTR environment variable. The default values are

code set dependent according to the Arabic or Hebrew code set used. For the

Arabic 420 code set the default values will be: orientation RTL, type of text visual,

shaping shaped, numerals national and swapping on. For the Hebrew 424 code set

the default values will be: orientation RTL, type of text visual and swapping on. For

the rest of the Arabic code sets the default values will be: orientation RTL, type of

text implicit, shaping nominal, numerals national and swapping on.

iconv_open() uses the following environment variables.

_BIDION Tells iconv_open() whether to activate bidirectional handling of the

iconv_open

926 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

||
|

||
|
|
|
|
|

converted data or not. _BIDION can be assigned either the value

TRUE, if you want to turn on bidirectional layout transformation, or

the value FALSE, if you want to turn off the BiDi layout

transformation. Bidirectional layout transformation can also be

turned off if the variable_BIDION is not defined in the environment.

_BIDIATTR Holds the bidirectional layout transformation attributes which will be

used later by iconv, _BIDIATTR will be read only in iconv_open()

time. The _BIDIATTR environment variable is in the form of

input/output pairs separated by colon, at the beginning of the string

there is an @ that identifies the beginning of the attributes list, then

followed by the attributes in the form of

<attribute_name1>=<input1>:<output1>,

<attribute_name2>=<input2>:<output2> (eg. export

_BIDIATTR="@ls

typeoftext=visual:implicit,orientation=ltr:ltr,

numerals=nominal:national").

Returned Value

If successful, iconv_open() returns a conversion descriptor.

If unsuccessful, iconv_open() returns (iconv_t)−1 and sets errno to one of the

following values:

Error Code Description

EINVAL The conversion between encoded character sets specified is not

supported.

ECUNNOENV

 A CUN_RS_N0_UNI_ENV error was issued by Unicode Conversion

Services.

 Refer to z/OS Support for Unicode: Using Unicode Services for

user action.

ECUNNOCONV

 A CUN_RS_NO_CONVERSION error was issued by Unicode

Conversion Services.

 Refer to z/OS Support for Unicode: Using Unicode Services for

user action.

ECUNNOTALIGNED

 A CUN_RS_TABLE_NOT_ALIGNED error was issued by Unicode

Conversion Services.

 Refer to z/OS Support for Unicode: Using Unicode Services for

user action.

ECUNERR

 Function iconv() encountered an unexpected error while using

Unicode Conversion Services.

 Refer to message EDC6258 for additional information.

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

iconv_open

Chapter 3. Part 3. Library Functions 927

|

|
|

|
|

|

|
|

|
|

|

|
|

|
|

|

|
|

|

v “iconv.h” on page 49

v “locale.h” on page 57

v “iconv() — Code Conversion” on page 920

v “iconv_close() — Deallocate Code Conversion Descriptor” on page 924

v “setlocale() — Set Locale” on page 1811

iconv_open

928 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

if_freenameindex() — free the memory allocated by if_nameindex()

Standards

 Standards / Extensions C or C++ Dependencies

RFC2553

Single UNIX Specification, Version 3

both z/OS V1R4

Format

#define _OPEN_SYS_SOCK_IPV6

#include <net/if.h>

void if_freenameindex(struct if_nameindex *ptr);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <net/if.h>

void if_freenameindex(struct if_nameindex *ptr);

General Description

The if_freenameindex() function frees the memory allocated by if_nameindex(). The

ptr argument must be a pointer that was returned by if_nameindex().

Returned Value

No return value is defined.

Related Information

v “if_indextoname() — map a network interface index to its corresponding name”

on page 930

v “if_nameindex() — return all network interface names and indexes” on page 931

v “if_nametoindex() — map a network interface name to its corresponding index”

on page 932

if_freenameindex

Chapter 3. Part 3. Library Functions 929

||||

|
|
||

|

|
|
|

if_indextoname() — map a network interface index to its

corresponding name

Standards

 Standards / Extensions C or C++ Dependencies

RFC2553

Single UNIX Specification, Version 3

both z/OS V1R4

Format

#define _OPEN_SYS_SOCK_IPV6

#include <net/if.h>

char *if_indextoname(unsigned int ifindex, char *ifname);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <net/if.h>

char *if_indextoname(unsigned int ifindex, char *ifname);

General Description

The if_indextoname() function maps an interface index to its corresponding interface

name. When this function is called, ifname must point to a buffer of at least

IF_NAMESIZE bytes into which the interface name corresponding to interface index

ifindex is returned. Otherwise, the function shall return a NULL pointer and set errno

to indicate the error.

Returned Value

Error Code Description

EINVAL The ifindex parameter was zero, or the ifname parameter was

NULL, or both.

ENOMEM Insufficient storage is available to obtain the information for the

interface name.

ENXIO The ifindex does not yield an interface name.

Related Information

v “if_freenameindex() — free the memory allocated by if_nameindex()” on page

929

v “if_nameindex() — return all network interface names and indexes” on page 931

v “if_nametoindex() — map a network interface name to its corresponding index”

on page 932

if_indextoname()

930 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|

if_nameindex() — return all network interface names and indexes

Standards

 Standards / Extensions C or C++ Dependencies

RFC2553

Single UNIX Specification, Version 3

both z/OS V1R4

Format

#define _OPEN_SYS_SOCK_IPV6

#include <net/if.h>

struct if_nameindex *if_nameindex(void);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <net/if.h>

struct if_nameindex *if_nameindex(void);

General Description

The if_nameindex() function returns an array of if_nameindex structures, one

structure per interface. The end of the array is indicated by a structure with an

if_index of zero and an if_name of NULL.

The if_nameindex structure holds the information about a single interface and is

defined as a result of including the <net/if.h> header.

struct if_nameindex {

 unsigned int if_index; /* 1, 2, ... */

 char *if_name; /* null terminated name: "le0", ... */

};

The memory used for this array of structures along with the interface names pointed

to by the if_name members is obtained dynamically. This memory is freed by calling

the if_freenameindex() function.

Return Value

When successful, if_nameindex() returns a pointer to an array of if_nameindex

structures. Upon failure, if_nameindex() returns NULL and sets errno to one of the

following:

Error Code Description

ENOMEM Insufficient storage is available to supply the array.

Related Information

v “if_freenameindex() — free the memory allocated by if_nameindex()” on page

929

v “if_indextoname() — map a network interface index to its corresponding name”

on page 930

v “if_nametoindex() — map a network interface name to its corresponding index”

on page 932

if_nameindex

Chapter 3. Part 3. Library Functions 931

||||

|
|
||

|

|
|
|

if_nametoindex() — map a network interface name to its

corresponding index

Standards

 Standards / Extensions C or C++ Dependencies

RFC2553

Single UNIX Specification, Version 3

both z/OS V1R4

Format

#define _OPEN_SYS_SOCK_IPV6

#include <net/if.h>

unsigned int if_nametoindex(const char *ifname);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <net/if.h>

unsigned int if_nametoindex(const char *ifname);

General Description

The if_nametoindex() function returns the interface index corresponding to the

interface name ifname.

Return Value

When successful, if_nametoindex() returns the interface index corresponding to the

interface name ifname. Upon failure, if_nametoindex() returns zero and sets errno

to one of the following:

Error Code Description

EINVAL Non-valid parameter was specified. The ifname parameter was

NULL.

ENOMEM Insufficient storage is available to obtain the information for the

interface name.

ENXIO The specified interface name provided in the ifname parameter

does not exist.

Related Information

v “if_freenameindex() — free the memory allocated by if_nameindex()” on page

929

v “if_indextoname() — map a network interface index to its corresponding name”

on page 930

v “if_nameindex() — return all network interface names and indexes” on page 931

if_nametoindex

932 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|

ilogb(), ilogbf(), ilogbl() — Integer Unbiased Exponent

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

int ilogb(double x);

C99

#define _ISOC99_SOURCE

#include <math.h>

int ilogbf(float x);

int ilogbl(long double x);

General Description

The ilogb() functions returns the unbiased exponent of its argument x as an integer.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

ilogb X X

ilogbf X X

ilogbl X X

Returned Value

If successful, the ilogb() functions return the unbiased exponent of x as an integer.

If x is 0, the value FP_ILOGB0 is returned.

if x is a NaN, ilogb() will return FP_ILOGBNAN

if x is infinity, ilogb() will return INT_MAX

If the correct value is greater than {INT_MAX}, {INT_MAX} is returned and a domain

error occurs.

If the correct value is less than {INT_MIN}, {INT_MIN} is returned and a domain

error occurs.

Special Behavior for hex

ilogb

Chapter 3. Part 3. Library Functions 933

||||

|
|
|

||

|

|

|
|

|
|

This function will return the unbiased exponent minus 1 (Because hex

representation has no hidden bit, this treatment is needed to satisfy the logb()

inequality).

Error Code Description

EDOM The x argument is zero, NaN, or ±inf, or the correct value is not

representable as an integer.

Related Information

v “math.h” on page 60

v “logb(), logbf(), logbl() — Unbiased Exponent” on page 1128

ilogb

934 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||

||
|

ilogbd32(), ilogbd64(), ilogbd128() — Integer Unbiased Exponent

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

int ilogbd32(_Decimal32 x);

int ilogbd64(_Decimal64 x);

int ilogbd128(_Decimal128 x);

int ilogb(_Decimal32 x); /* C++ only */

int ilogb(_Decimal64 x); /* C++ only */

int ilogb(_Decimal128 x); /* C++ only */

General Description

Returns the unbiased exponent of its argument x as an integer. For typical

numbers, the value returned is the logarithm of |x| rounded down (toward -INF) to

the nearest integer value.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, these functions return the unbiased exponent of x as an integer.

If x is equal to 0.0, ilogb() will return _FP_DEC_ILOGB0 (= -INT_MAX).

If x is a NaN or infinity, ilogb() will return INT_MAX.

Example

/* CELEBI11

 This example illustrates the ilogbd128() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal128 x = −12345.678901DL;

 int y;

 y = ilogbd128(x);

 printf("The result of ilogbd128(%DDf) is %d\n", x, y);

}

ilogbd32, ilogbd64, ilogbd128

Chapter 3. Part 3. Library Functions 935

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “math.h” on page 60

v “frexpd32(), frexpd64(), frexpd128() — Extract Mantissa and Exponent of the

Decimal Floating-Point Value” on page 680

v “ilogb(), ilogbf(), ilogbl() — Integer Unbiased Exponent” on page 933

v “logbd32(), logbd64(), logbd128() — Unbiased Exponent” on page 1130

ilogbd32, ilogbd64, ilogbd128

936 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|

imaxabs() — Absolute value for intmax_t

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <inttypes.h>

intmax_t imaxabs(intmax_t j);

Compile requirement

Function imaxabs() requires long long to be available.

General Description

The imaxabs() function computes the absolute value of j. When the input value is

INTMAX_MIN, the value is undefined. The imaxabs() function is similar to llabs()

and labs(). The only difference being that the return value and the argument passed

in are of type intmax_t.

Returned Value

The imaxabs function returns the absolute value of j.

Example

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdio.h>

int main(void)

{

 intmax_t a = -1234;

 intmax_t b = imaxabs(a);

 printf("%jd \n", b);

}

Output:

1234

Related Information

v inttypes.h

v labs()

v llabs()

imaxabs

Chapter 3. Part 3. Library Functions 937

||||

|
|
||

|

imaxdiv() — quotient and remainder for intmax_t

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <inttypes.h>

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

Compile requirement

Function imaxdiv() requires long long to be available.

General Description

The imaxdiv() function computes numer / denom and numer % denom in a single

operation. The imaxdiv function is similar to lldiv() and ldiv(). The only difference

being that the return value is of type imaxdiv_t and those being passed in are of

type intmax_t.

Returned Value

imaxdiv() returns a structure of type imaxdiv_t comprising both the quotient and the

remainder. If either part of the result cannot be represented, the behavior is

undefined. if the denominator is zero, a divide by zero exception is raised.

Example

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdio.h>

int main(void)

{

 intmax_t num = 45;

 intmax_t den = 7;

 imaxdiv_t res;

 printf("Original numerator: %jd and denominator: %jd "

 ,num,den);

 res = imaxdiv(num,den);

 printf("Quotient: %jd Remainder: %jd\n"

 , res.quot,res.rem);

}

Output

Original numerator: 45 and denominator: -7 Quotient: -6 Remainder: 3

Related Information

v inttypes.h

v ldiv()

v lldiv()

imaxdiv

938 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

ImportWorkUnit() — WLM Import Service

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both OS/390 V2R9

Format

#include <sys/__wlm.h>

int ImportWorkUnit(wlmxtok_t *exporttoken,

 wlmetok_t *enclavetoken,

 unsigned int *conntoken);

General Description

Imports an enclave that has been previously exported using the ExportWorkUnit()

function. The caller must invoke UnDoImportWorkUnit() when it no longer needs

access to the enclave.

The ImportWorkUnit() function uses the following parameters:

*enclavetoken Points to a work unit export token that was returned from a call to

ExportWorkUnit().

*exporttoken Points to a data field of type wlmetok_t where the ImportWorkUnit()

function is to return the WLM work unit enclave token.

*conntoken Specifies the connect token that represents the WLM connection.

Returned Value

If successful, ImportWorkUnit() returns 0.

If unsuccessful, ImportWorkUnit() returns −1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained a value that is not correct.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

A WLM service failed. Use __errno2() to obtain the WLM service

reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class, if the

BPX.WLMSERVER class is defined. If BPX.WLMSERVER is not

defined, the calling process is not defined as a superuser (UID=0).

ImportWorkUnit

Chapter 3. Part 3. Library Functions 939

Related Information

v “sys/__wlm.h” on page 91

v “ExportWorkUnit() — WLM Export Service” on page 503

v “UnDoExportWorkUnit() — WLM Undo Export Service” on page 2301

v “UnDoImportWorkUnit() — WLM Undo Import Service” on page 2303

v For more information, see z/OS MVS Programming: Workload Management

Services, SA22-7619

ImportWorkUnit

940 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

index() — Search for Character

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <strings.h>

char *index(const char *string, int c);

General Description

The index() function locates the first occurrence of c (converted to an unsigned

char) in the string pointed to by string. The character c can be the NULL character

(\0); the ending NULL is included in the search.

The string argument to the function must contain a NULL character (\0) marking the

end of the string.

The index() function is identical to “strchr() — Search for Character” on page 2020.

Note: The index() function has been moved to the Legacy Option group in Single

UNIX Specification, Version 3 and may be withdrawn in a future version. The

strchr() function is preferred for portability.

Returned Value

If successful, index() returns a pointer to the first occurrence of c (converted to an

unsigned character) in the string pointed to by string.

If unsuccessful because c was not found, index() returns a NULL pointer.

There are no errno values defined.

Related Information

v “strings.h” on page 86

v “memchr() — Search Buffer” on page 1205

v “rindex() — Search for Character” on page 1688

v “strchr() — Search for Character” on page 2020

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

v “strstr() — Locate Substring” on page 2062

index

Chapter 3. Part 3. Library Functions 941

||||

|
|
||

|

|
|
|

inet6_opt_append() — Add an Option with Length ″len″ and Alignment

″align″

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

int inet6_opt_append(void *extbuf, socklen_t extlen, int offset,

 uint8_t type, socklen_t len, uint8_t align,

 void **databufp);

General Description

inet6_opt_append() returns the updated total length after adding an option with

length len and alignment align. If extbuf is not NULL, it inserts any necessary

padding and sets the type and length fields. A pointer to the location for the option

content in databufp is then returned.

offset should be the length returned by inet6_opt_init() or the previous

inet6_opt_append(). type is the 8-bit option type and len is the length of the option

data (excluding the option type and option length fields).

Returned Value

If successful, inet6_opt_append() returns the updated total length of the extension

header.

Upon failure, returns -1 and errno is set to one of the following:

EINVAL If one of the following is true:

v extbuf is NULL and extlen is non-zero;

v extbuf is non-NULL and extlen is not a positive multiple of 8;

v offset is less than the size of the empty extension header;

v type is not valid (specifies one of the PAD options);

v len is less than 0 or greater than 255;

v align is not 1, 2, 4, or 8;

v align is greater than len;

v new updated total length would exceed extlen (extbuf is non-NULL);

v databufp is NULL (extbuf is non-NULL).

Usage Note

1. The option, type, must have a value from 2 to 255 (0 and 1 are reserved for the

Pad1 and PadN options).

2. The option data length must have a value between 0 and 255, including the

values 0 and 255. It is the length of the option data that follows.

3. The align parameter must have a value of 1, 2, 4, or 8 and can not exceed the

value of len.

inet6_opt_append

942 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

4. Once inet6_opt_append() has been called, the application can use databufp

directly or use inet6_opt_set_val() to specify the content of the option.

Related Information

v “netinet/in.h” on page 68

v “inet6_opt_find() — Search for an Option Specified by the Caller” on page 944

v “inet6_opt_finish() — Return the Updated Total Length of Extension Header” on

page 946

v “inet6_opt_get_val() — Extract Data Items in the Data Portion of the Option” on

page 947

v “inet6_opt_init() — Return the Number of Bytes for Empty Extension Header” on

page 949

v “inet6_opt_next() — Parse Received Option Headers Returning the Next Option”

on page 950

v “inet6_opt_set_val() — Insert Data Items into the Data Portion of the Option” on

page 952

inet6_opt_append

Chapter 3. Part 3. Library Functions 943

inet6_opt_find() — Search for an Option Specified by the Caller

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

int inet6_opt_find(void *extbuf, socklen_t extlen, int offset,

 uint8_t type, socklen_t *lenp, void **databufp);

General Description

inet6_opt_find() is similar to inet6_opt_next(), except it lets the caller specify the

option type to be searched for.

Returned Value

If successful, inet6_opt_find() returns the updated ″previous″ total length computed

by advancing past the option that was returned and past any options that did not

match the type.

Upon failure, returns -1 and errno is set to one of the following:

EINVAL If one of the following is true:

v extbuf is NULL;

v extlen is not a positive multiple of 8;

v offset is less than 0 or greater than or equal to extlen;

v lenp or databufp is NULL;

v the option was not located;

v the extension header is malformed.

Usage Note

The returned ″previous″ length can be passed to subsequent calls of

inet6_opt_find() for finding the next occurrence of the same option type.

Related Information

v “netinet/in.h” on page 68

v “inet6_opt_append() — Add an Option with Length ″len″ and Alignment ″align″”

on page 942

v “inet6_opt_finish() — Return the Updated Total Length of Extension Header” on

page 946

v “inet6_opt_get_val() — Extract Data Items in the Data Portion of the Option” on

page 947

v “inet6_opt_init() — Return the Number of Bytes for Empty Extension Header” on

page 949

v “inet6_opt_next() — Parse Received Option Headers Returning the Next Option”

on page 950

inet6_opt_find

944 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “inet6_opt_set_val() — Insert Data Items into the Data Portion of the Option” on

page 952

inet6_opt_find

Chapter 3. Part 3. Library Functions 945

inet6_opt_finish() — Return the Updated Total Length of Extension

Header

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

int inet6_opt_finish(void *extbuf, socklen_t extlen, int offset);

General Description

inet6_opt_finish() returns the updated total length taking into account the final

padding of the extension header to make it a multiple of 8 bytes. If extbuf is not

NULL the function also initializes the option by inserting a Pad1 or PadN option of

the proper length.

Returned Value

If successful, inet6_opt_finish() returns the total length of the extension header

including the final padding.

Upon failure, returns -1 and errno is set to one of the following:

EINVAL If one of the following is true:

v extbuf is NULL and extlen is non-zero;

v extbuf is non-NULL and extlen is not a positive multiple of 8;

v extbuf is non-NULL and offset is greater than extlen;

v offset is less than the size of the empty extension header.

Usage Note

offset should be the length returned by inet6_opt_init() or inet6_opt_append().

Related Information

v “netinet/in.h” on page 68

v “inet6_opt_append() — Add an Option with Length ″len″ and Alignment ″align″”

on page 942

v “inet6_opt_find() — Search for an Option Specified by the Caller” on page 944

v “inet6_opt_get_val() — Extract Data Items in the Data Portion of the Option” on

page 947

v “inet6_opt_init() — Return the Number of Bytes for Empty Extension Header” on

page 949

v “inet6_opt_next() — Parse Received Option Headers Returning the Next Option”

on page 950

v “inet6_opt_set_val() — Insert Data Items into the Data Portion of the Option” on

page 952

inet6_opt_finish

946 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

inet6_opt_get_val() — Extract Data Items in the Data Portion of the

Option

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

int inet6_opt_get_val(void *databuf, int offset,

 void *val, socklen_t vallen);

General Description

inet6_opt_get_val() extracts data items of various sizes in the data portion of the

option.

Returned Value

If successful, inet6_opt_get_val() returns the offset for the next field (offset + vallen)

that can be used when extracting option content with multiple fields.

Upon failure, returns -1 and sets errno to one of the following:

EINVAL If one of the following is true:

v databuf is NULL;

v val is null;

v offset is less than 0;

v offset + vallen is greater than the option length.

Usage Note

1. databuf should be a pointer returned by inet6_opt_next() or inet6_opt_find().

2. val should point to the destination for the extracted data.

3. offset specifies from where in the data portion of the option the value should be

extracted; the first byte after the option type and length is accessed by

specifying an offset of zero.

Related Information

v “netinet/in.h” on page 68

v “inet6_opt_append() — Add an Option with Length ″len″ and Alignment ″align″”

on page 942

v “inet6_opt_find() — Search for an Option Specified by the Caller” on page 944

v “inet6_opt_finish() — Return the Updated Total Length of Extension Header” on

page 946

v “inet6_opt_init() — Return the Number of Bytes for Empty Extension Header” on

page 949

v “inet6_opt_next() — Parse Received Option Headers Returning the Next Option”

on page 950

inet6_opt_get_val

Chapter 3. Part 3. Library Functions 947

v “inet6_opt_set_val() — Insert Data Items into the Data Portion of the Option” on

page 952

inet6_opt_get_val

948 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

inet6_opt_init() — Return the Number of Bytes for Empty Extension

Header

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

int inet6_opt_init(void *extbuf, socklen_t extlen);

General Description

inet6_opt_init() returns the number of bytes needed for the empty extension header.

If extbuf is not NULL, the extension header is initialized to have the correct length

field and the extlen value must be a positive, non-zero, multiple of 8, or the function

will fail.

Returned Value

If successful, inet6_opt_init() returns the number of bytes needed for the empty

extension header.

Upon failure, returns -1 and errno is set to one of the following:

EINVAL If one of the following is true:

v extbuf is NULL and extlen is non-zero;

v extbuf is non-NULL and extlen is not a positive multiple of 8.

Related Information

v “netinet/in.h” on page 68

v “inet6_opt_append() — Add an Option with Length ″len″ and Alignment ″align″”

on page 942

v “inet6_opt_find() — Search for an Option Specified by the Caller” on page 944

v “inet6_opt_finish() — Return the Updated Total Length of Extension Header” on

page 946

v “inet6_opt_get_val() — Extract Data Items in the Data Portion of the Option” on

page 947

v “inet6_opt_next() — Parse Received Option Headers Returning the Next Option”

on page 950

v “inet6_opt_set_val() — Insert Data Items into the Data Portion of the Option” on

page 952

inet6_opt_init

Chapter 3. Part 3. Library Functions 949

inet6_opt_next() — Parse Received Option Headers Returning the Next

Option

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

int inet6_opt_next(void *extbuf, socklen_t extlen, int offset,

 uint8_t *typep, socklen_t *lenp, void **databufp);

General Description

inet6_opt_next() parses received option extension headers and returns the next

option.

Returned Value

If successful, inet6_opt_next() returns the updated ″previous″ length computed by

advancing past the option that was returned. This returned ″previous″ length can

then be passed to subsequent calls to inet6_opt_next(). This function does not

return any PAD1 or PADN options.

Upon failure, returns -1 and errno is set to one of the following:

EINVAL If one of the following is true:

v extbuf is NULL;

v extlen is not a positive multiple of 8;

v offset is less than 0 or greater than or equal to extlen;

v typep, lenp, or databufp is NULL;

v there are no more options;

v the extension header is malformed.

Usage Note

1. extbuf and extlen specifies the extension header.

2. offset should either be zero (for the first option) or the length returned by a

previous call to inet6_opt_next() or inet6_opt_find(). It specifies the position to

continue scanning the extension buffer. The next option is returned by updating

typep, lenp, and databufp.

3. typep points to the option type field.

4. lenp stores the length of the option data (excluding the option type and option

length fields).

5. databufp points to the data field of the of the option.

Related Information

v netinet/in.h

v inet6_opt_init() — Return the Number of Bytes for Empty Extension Header

inet6_opt_next

950 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v inet6_opt_append() — Add an Option with Length ″len″ and Alignment ″align″

v inet6_opt_finish() — Return the Updated Total Length of Extension Header

v inet6_opt_set_val() — Insert Data Items into the Data Portion of the Option

v inet6_opt_find() — Search for an Option Specified by the Caller

v inet6_opt_get_val() — Extract Data Items in the Data Portion of the Option

v “netinet/in.h” on page 68

v “inet6_opt_append() — Add an Option with Length ″len″ and Alignment ″align″”

on page 942

v “inet6_opt_find() — Search for an Option Specified by the Caller” on page 944

v “inet6_opt_finish() — Return the Updated Total Length of Extension Header” on

page 946

v “inet6_opt_get_val() — Extract Data Items in the Data Portion of the Option” on

page 947

v “inet6_opt_init() — Return the Number of Bytes for Empty Extension Header” on

page 949

v “inet6_opt_set_val() — Insert Data Items into the Data Portion of the Option” on

page 952

inet6_opt_next

Chapter 3. Part 3. Library Functions 951

inet6_opt_set_val() — Insert Data Items into the Data Portion of the

Option

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

int inet6_opt_set_val(void *databuf, int offset,

 void *val, socklen_t vallen);

General Description

inet6_opt_set_val() inserts items of various sizes in the data portion of the option.

Returned Value

If successful, inet6_opt_set_val() returns the offset for the next field (offset + vallen)

that can be used when composing option content with multiple fields.

Upon failure, returns -1 and errno is set to one of the following:

EINVAL If one of the following is true:

v databuf is NULL;

v val is NULL;

v offset is less than 0;

v offset + vallen is greater than the option length.

Usage Note

1. databuf should be a pointer returned by inet6_opt_append().

2. val should point to the data to be inserted.

3. offset specifies where in the data portion of the option the value should be

inserted; the first byte after the option type and length is accessed by specifying

an offset of 0.

Related Information

v “netinet/in.h” on page 68

v “inet6_opt_append() — Add an Option with Length ″len″ and Alignment ″align″”

on page 942

v “inet6_opt_find() — Search for an Option Specified by the Caller” on page 944

v “inet6_opt_finish() — Return the Updated Total Length of Extension Header” on

page 946

v “inet6_opt_get_val() — Extract Data Items in the Data Portion of the Option” on

page 947

v “inet6_opt_init() — Return the Number of Bytes for Empty Extension Header” on

page 949

inet6_opt_set_val

952 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “inet6_opt_next() — Parse Received Option Headers Returning the Next Option”

on page 950

inet6_opt_set_val

Chapter 3. Part 3. Library Functions 953

inet6_rth_add() — Add an IPv6 Address to End of the Routing Header

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

int inet6_rth_add(void *bp, const struct in6_addr *addr);

General Description

inet6_rth_add() adds the IPv6 address pointed to by addr to the end of the routing

header that is being constructed.

Returned Value

If successful, inet6_rth_add() returns 0 and the segleft member of the routing

header is updated to account for the new address.

Upon failure, returns -1 and errno is set to one of the following:

EINVAL If one of the following is true:

v bp is NULL;

v the routing header indicates an unsupported header type;

v the routing header contains a non-valid number of segments for the type;

v there is not enough room to add the address.

Related Information

v “netinet/in.h” on page 68

v “inet6_rth_getaddr() — Return Pointer to the IPv6 Address Specified” on page

955

v “inet6_rth_init() — Initialize an IPv6 Routing Header Buffer” on page 956

v “inet6_rth_reverse() — Reverse the Order of the Addresses” on page 957

v “inet6_rth_segments() — Return Number of Segments Contained in Header” on

page 958

v “inet6_rth_space() — Return Number of Bytes for a Routing Header” on page

959

inet6_rth_add

954 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

inet6_rth_getaddr() — Return Pointer to the IPv6 Address Specified

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

struct in6_addr *inet6_rth_getaddr(const void *bp, int index);

General Description

inet6_rth_getaddr() returns a pointer to the IPv6 address specified by index in the

routing header described by bp.

Returned Value

If successful, inet6_rth_getaddr() returns a pointer to the IPv6 address.

Upon failure, returns NULL and errno is set to one of the following:

EINVAL If one of the following is true:

v bp is NULL;

v the routing header indicates an unsupported header type;

v the routing header contains a non-valid number of segments;

v index is less than 0 or greater than or equal to the number of segments.

Usage Note

1. To obtain the number of segments in the routing header, a call to

inet6_rth_segments() should be made first.

2. index must have a value between 0 and one less than the value returned by

inet6_rth_segments().

Related Information

v “netinet/in.h” on page 68

v “inet6_rth_add() — Add an IPv6 Address to End of the Routing Header” on page

954

v “inet6_rth_init() — Initialize an IPv6 Routing Header Buffer” on page 956

v “inet6_rth_reverse() — Reverse the Order of the Addresses” on page 957

v “inet6_rth_segments() — Return Number of Segments Contained in Header” on

page 958

v “inet6_rth_space() — Return Number of Bytes for a Routing Header” on page

959

inet6_rth_getaddr

Chapter 3. Part 3. Library Functions 955

inet6_rth_init() — Initialize an IPv6 Routing Header Buffer

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

void *inet6_rth_init(void *bp, socklen_t bp_len,

 int type, int segments);

General Description

inet6_rth_init() initializes the buffer pointed to by bp to contain a routing header of

the specified type and sets ip6r_len based on the segments parameter.

Returned Value

When successful, inet6_rth_init() returns the pointer to the buffer, bp. This is then

used as the first argument to the inet6_rth_add() function.

Upon failure, returns NULL and errno is set to one of the following:

EINVAL If one of the following is true::

v bp is NULL;

v type indicates an unsupported header type;

v segments is not valid for the type;

v the buffer is not large enough, bp_len is too small.

Usage Note

1. The caller must allocate the buffer; its size can be determined by calling

inet6_rth_space().

2. Any cmsghdr fields must be initialized when the application uses ancillary data.

Related Information

v “netinet/in.h” on page 68

v “inet6_rth_add() — Add an IPv6 Address to End of the Routing Header” on page

954

v “inet6_rth_getaddr() — Return Pointer to the IPv6 Address Specified” on page

955

v “inet6_rth_reverse() — Reverse the Order of the Addresses” on page 957

v “inet6_rth_segments() — Return Number of Segments Contained in Header” on

page 958

v “inet6_rth_space() — Return Number of Bytes for a Routing Header” on page

959

inet6_rth_init

956 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

inet6_rth_reverse() — Reverse the Order of the Addresses

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

int inet6_rth_reverse(const void *in, void *out);

General Description

inet6_rth_reverse() takes a routing header, pointed to by in, and writes a new

routing header that sends datagrams along the reverse of that route. It reverses the

order of the addresses and sets the segleft member in the new routing header to

the number of segments required to send the datagram back to where it originated.

Both arguments are allowed to point to the same buffer (the reversal can occur in

place).

Returned Value

If successful, inet6_rth_reverse() returns 0.

Upon failure, returns -1 and errno is set to one of the following:

EINVAL If one of the following is true:

v in is NULL or out is NULL;

v the input routing header indicates an unsupported header type;

v the input routing header contains a non-valid number of segments;

v in and out overlap, but in and out are not the same buffer.

Related Information

v “netinet/in.h” on page 68

v “inet6_rth_add() — Add an IPv6 Address to End of the Routing Header” on page

954

v “inet6_rth_getaddr() — Return Pointer to the IPv6 Address Specified” on page

955

v “inet6_rth_init() — Initialize an IPv6 Routing Header Buffer” on page 956

v “inet6_rth_segments() — Return Number of Segments Contained in Header” on

page 958

v “inet6_rth_space() — Return Number of Bytes for a Routing Header” on page

959

inet6_rth_reverse

Chapter 3. Part 3. Library Functions 957

inet6_rth_segments() — Return Number of Segments Contained in

Header

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

int inet6_rth_segments(const void *bp);

General Description

inet6_rth_segments() returns the number of segments (addresses) contained in the

routing header described by bp.

Returned Value

If successful, inet6_rth_segments() returns the number of segments or 0, if there

are none in the header.

Upon failure, returns -1 and errno is set to one of the following:

EINVAL If one of the following is true:

v bp is NULL;

v the routing header indicates an unsupported header type;

v the routing header contains a non-valid number of segments.

Related Information

v “netinet/in.h” on page 68

v “inet6_rth_add() — Add an IPv6 Address to End of the Routing Header” on page

954

v “inet6_rth_getaddr() — Return Pointer to the IPv6 Address Specified” on page

955

v “inet6_rth_init() — Initialize an IPv6 Routing Header Buffer” on page 956

v “inet6_rth_reverse() — Reverse the Order of the Addresses” on page 957

v “inet6_rth_space() — Return Number of Bytes for a Routing Header” on page

959

inet6_rth_segments

958 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

inet6_rth_space() — Return Number of Bytes for a Routing Header

Standards

 Standards / Extensions C or C++ Dependencies

RFC3542 both z/OS V1R7

Format

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

socklen_t inet6_rth_space(int type, int segments);

General Description

inet6_rth_space() calculates the number of bytes required to hold a routing header

for the specified type containing the specified number of segments (addresses).

Returned Value

If successful, inet6_rth_space() returns the number of bytes, space required, for the

routing header.

Upon failure, returns 0 and errno is set to one of the following:

EINVAL If one of the following is true:

v type indicates an unsupported header type;

v segments is not valid for the type.

Usage Note

1. This function returns the size but does not allocate the space required for the

ancillary data. This allows an application to allocate a larger buffer, if other

ancillary data objects are desired, because all the ancillary data objects must be

specified to sendmsg() as a single msg_control buffer.

2. For an IPv6 Type 0 routing header, the number of segments must be between 0

and 127, inclusive. When the application uses ancillary data it must pass the

returned length to CMSG_SPACE() to determine how much memory is needed

for the ancillary data object (including the cmsghdr structure).

Related Information

v “netinet/in.h” on page 68

v “inet6_rth_add() — Add an IPv6 Address to End of the Routing Header” on page

954

v “inet6_rth_getaddr() — Return Pointer to the IPv6 Address Specified” on page

955

v “inet6_rth_init() — Initialize an IPv6 Routing Header Buffer” on page 956

v “inet6_rth_reverse() — Reverse the Order of the Addresses” on page 957

v “inet6_rth_segments() — Return Number of Segments Contained in Header” on

page 958

inet6_rth_space

Chapter 3. Part 3. Library Functions 959

inet_addr() — Translate an Internet Address into Network Byte Order

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <arpa/inet.h>

in_addr_t inet_addr(const char *cp);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned long inet_addr(char *cp);

General Description

The inet_addr() function interprets character strings representing host addresses

expressed in standard dotted-decimal notation and returns host addresses suitable

for use as an Internet address.

To provide an ASCII input/output format for applications using this function, define

the feature test macro __LIBASCII as described 24.

Parameter

Description

cp A character string in standard dotted-decimal (.) notation.

Values specified in standard dotted-decimal notation take one of the following

forms:

a.b.c.d

a.b.c

a.b

a

When a 4-part address is specified, each part is interpreted as a byte of data and

assigned, from left to right, to one of the 4 bytes of an Internet address.

When a three-part address is specified, the last part is interpreted as a 16-bit

quantity and placed in the two rightmost bytes of the network address. This makes

the three-part address format convenient for specifying class-B network addresses

as 128.net.host.

When a two-part address is specified, the last part is interpreted as a 24-bit quantity

and placed in the three rightmost bytes of the network address. This makes the

two-part address format convenient for specifying class-A network addresses as

net.host.

inet_addr

960 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

When a one-part address is specified, the value is stored directly in the network

address space without any rearrangement of its bytes.

Numbers supplied as address parts in standard dotted-decimal notation can be

decimal, hexadecimal, or octal. Numbers are interpreted in C language syntax. A

leading 0x implies hexadecimal; a leading 0 implies octal. A number without a

leading 0 implies decimal.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The inet_addr() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, inet_addr() returns the Internet address in network byte order.

If the Internet address is returned in error—for example, not in the correct

format—INADDR_NONE is the returned value. INADDR_NONE is defined in the

netinet/in.h include file.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “inet_makeaddr() — Create an Internet Host Address” on page 963

v “inet_netof() — Get the Network Number from the Internet Host Address” on

page 965

v “inet_network() — Get the Network Number from the Decimal Host Address” on

page 966

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 968

v “inet_ntop() — Convert Internet Address Format from Binary to Text” on page 970

v “inet_pton() — Convert Internet Address Format from Text to Binary” on page 972

inet_addr

Chapter 3. Part 3. Library Functions 961

inet_lnaof() — Translate a Local Network Address into Host Byte Order

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <arpa/inet.h>

in_addr_t inet_lnaof(struct in_addr in);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned long inet_lnaof(struct in_addr in);

General Description

The inet_lnaof() function breaks apart the Internet host address and returns the

local network address portion.

Parameter

Description

in The host Internet address.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

The local network address is returned in host byte order.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “inet_makeaddr() — Create an Internet Host Address” on page 963

v “inet_netof() — Get the Network Number from the Internet Host Address” on

page 965

v “inet_network() — Get the Network Number from the Decimal Host Address” on

page 966

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 968

inet_lnaof

962 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

inet_makeaddr() — Create an Internet Host Address

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <arpa/inet.h>

struct in_addr inet_makeaddr(in_addr_t net, in_addr_t lna);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

struct in_addr inet_makeaddr(unsigned long net, unsigned long lna);

General Description

The inet_makeaddr() function takes a network number and a local network address

and constructs an Internet address.

Parameter

Description

net The network number.

lna The local network address.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

The Internet address is returned in network byte order.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “inet_lnaof() — Translate a Local Network Address into Host Byte Order” on page

962

v “inet_netof() — Get the Network Number from the Internet Host Address” on

page 965

v “inet_network() — Get the Network Number from the Decimal Host Address” on

page 966

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 968

v “inet_ntop() — Convert Internet Address Format from Binary to Text” on page 970

inet_makeaddr

Chapter 3. Part 3. Library Functions 963

v “inet_pton() — Convert Internet Address Format from Text to Binary” on page 972

inet_makeaddr

964 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

inet_netof() — Get the Network Number from the Internet Host Address

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <arpa/inet.h>

in_addr_t inet_netof(struct in_addr in);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned long inet_netof(struct addr_in in);

General Description

The inet_netof() function breaks apart the Internet host address and returns the

network number portion.

Parameter

Description

in The Internet address in network byte order.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

The network number is returned in host byte order.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “inet_lnaof() — Translate a Local Network Address into Host Byte Order” on page

962

v “inet_makeaddr() — Create an Internet Host Address” on page 963

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 968

v “inet_ntop() — Convert Internet Address Format from Binary to Text” on page 970

v “inet_pton() — Convert Internet Address Format from Text to Binary” on page 972

inet_netof

Chapter 3. Part 3. Library Functions 965

inet_network() — Get the Network Number from the Decimal Host

Address

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <arpa/inet.h>

in_addr_t inet_network(const char *cp);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned long inet_network(char cp);

General Description

The inet_network() function interprets character strings representing addresses

expressed in standard dotted-decimal notation and returns numbers suitable for use

as a network number.

Parameter

Description

cp A character string in standard, dotted-decimal (.) notation.

Note: The input value is handled as an octal value when there are 3 integers within

the dotted-decimal notation. For example: the input value of

inet_network(″40.001.016.000″) validly returns 0x28010e00 (40.1.14.0) since

the 016 is treated as an octet.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The inet_network() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

The network number is returned in host byte order.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/socket.h” on page 89

inet_network

966 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “sys/types.h” on page 90

v “inet_lnaof() — Translate a Local Network Address into Host Byte Order” on page

962

v “inet_makeaddr() — Create an Internet Host Address” on page 963

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 968

v “inet_ntop() — Convert Internet Address Format from Binary to Text” on page 970

v “inet_pton() — Convert Internet Address Format from Text to Binary” on page 972

inet_network

Chapter 3. Part 3. Library Functions 967

inet_ntoa() — Get the Decimal Internet Host Address

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <arpa/inet.h>

char *inet_ntoa(struct in_addr in);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

char *inet_ntoa(struct in_addr in);

General Description

The inet_ntoa() function returns a pointer to a string expressed in the

dotted-decimal notation. inet_ntoa() accepts an Internet address expressed as a

32-bit quantity in network byte order and returns a string expressed in

dotted-decimal notation.

Parameter Description

in The host Internet address.

To provide an ASCII input/output format for applications using this function, define

feature test macro __LIBASCII as described 24.

Note: The inet_ntoa() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

Returns a pointer to the Internet address expressed in dotted-decimal notation. The

storage pointed to exists on a per-thread basis and is overwritten by subsequent

calls.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/socket.h” on page 89

inet_ntoa

968 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

v “sys/types.h” on page 90

v “inet_addr() — Translate an Internet Address into Network Byte Order” on page

960

v “inet_lnaof() — Translate a Local Network Address into Host Byte Order” on page

962

v “inet_makeaddr() — Create an Internet Host Address” on page 963

v “inet_netof() — Get the Network Number from the Internet Host Address” on

page 965

v “inet_network() — Get the Network Number from the Decimal Host Address” on

page 966

v “inet_ntop() — Convert Internet Address Format from Binary to Text” on page 970

v “inet_pton() — Convert Internet Address Format from Text to Binary” on page 972

inet_ntoa

Chapter 3. Part 3. Library Functions 969

inet_ntop() — Convert Internet Address Format from Binary to Text

Standards

 Standards / Extensions C or C++ Dependencies

RFC2553

Single UNIX Specification, Version 3

both z/OS V1R2

Format

#define _OPEN_SYS_SOCK_IPV6

#include <arpa/inet.h>

const char *inet_ntop(int af, const void *src, char *dst, socklen_t size);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <arpa/inet.h>

const char *inet_ntop(int af, const void *__restrict__ src,

 char * __restrict__ dst, socklen_t size);

General Description

The inet_ntop() function converts from an Internet address in binary format,

specified by src, to standard text format, and places the result in dst, when size, the

space available in dst, is sufficient. The argument af specifies the family of the

Internet address. This can be AF_INET or AF_INET6.

The argument src points to a buffer holding an IPv4 Internet address if the af

argument is AF_INET, or an IPv6 Internet address if the af argument is AF_INET6.

The address must be in network byte order.

The argument dst points to a buffer where the function will store the resulting text

string. The size argument specifies the size of this buffer. The application must

specify a non-NULL dst argument. For IPv6 addresses, the buffer must be at least

46 bytes. For IPv4 addresses, the buffer must be at least 16 bytes.

In order to allow applications to easily declare buffers of the proper size to store

IPv4 and IPv6 addresses in string form, the following two constants are defined in

<netinet/in.h>:

#define INET_ADDRSTRLEN 16

#define INET6_ADDRSTRLEN 46

Note: The inet_ntop() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, inet_ntop() returns a pointer to the buffer containing the converted

address.

If unsuccessful, inet_ntop() returns NULL and sets errno to one of the following

values:

Error Code Description

inet_ntop

970 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|

|
|
|

EAFNOSUPPORT

The address family specified in af is unsupported.

ENOSPC The destination buffer size is too small.

Note: For Enhanced ASCII usage, the inet_ntop() function has a dependency on

the level of the Enhanced ASCII Extensions. See “Enhanced ASCII Support ”

on page 2495 for details.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/socket.h” on page 89

v “inet_addr() — Translate an Internet Address into Network Byte Order” on page

960

v “inet_makeaddr() — Create an Internet Host Address” on page 963

v “inet_netof() — Get the Network Number from the Internet Host Address” on

page 965

v “inet_network() — Get the Network Number from the Decimal Host Address” on

page 966

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 968

v “inet_pton() — Convert Internet Address Format from Text to Binary” on page 972

inet_ntop

Chapter 3. Part 3. Library Functions 971

inet_pton() — Convert Internet Address Format from Text to Binary

Standards

 Standards / Extensions C or C++ Dependencies

RFC2553

Single UNIX Specification, Version 3

both z/OS V1R2

Format

#define _OPEN_SYS_SOCK_IPV6

#include <arpa/inet.h>

int inet_pton(int af, const char *src, void *dst);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <arpa/inet.h>

int inet_pton(int af, const char *__restrict__ src, void *__restrict__ dst);

General Description

The inet_pton() function converts an Internet address in its standard text format into

its numeric binary form. The argument af specifies the family of the address.

Note: AF_INET and AF_INET6 address families are currently supported.

The argument src points to the string being passed in. The argument dst points to a

buffer into which inet_pton() stores the numeric address. The address is returned in

network byte order. The caller must ensure that the buffer pointed to by dst is large

enough to hold the numeric address.

If the af argument is AF_INET, inet_pton() accepts a string in the standard IPv4

dotted-decimal form:

ddd.ddd.ddd.ddd

where ddd is a 1 to 3 digit decimal number between 0 and 255.

If the af argument is AF_INET6, the src string must be in one of the following

standard IPv6 text forms:

1. The preferred form is x:x:x:x:x: x:x: x:x:, where the x’s are the hexadecimal

values of the eight 16-bit pieces of the address. Leading zeros in individual

fields can be omitted, but there should be at least one numeral in every field.

2. A string of contiguous zero fields in the preferred form can be shown as :: The ::

can only appear once in an address. Unspecified addresses (0:0:0:0:0:0:0:0:)

may be represented simply as ::.

3. A third form that is sometimes more convenient when dealing with a mixed

environment of IPv4 and IPv6 is x:x:x:x:x:x:d.d.d.d., where x’s are the

hexadecimal values of the six high-order 16-bit pieces of the address, and the

d’s are the decimal values of the four low-order 8-bit pieces of the address

(standard IPv4 representation).

Notes:

inet_pton

972 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

v A more extensive description of the IPv6 standard representations can be found

in RFC2373.

v The inet_pton() function has a dependency on the level of the Enhanced ASCII

Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, inet_pton() returns 1 and stores the binary form of the Internet

address in the buffer pointed to by dst.

If unsuccessful because the input buffer pointed to by src is not a valid string,

inet_pton() returns 0.

If unsuccessful because the af argument is unknown, inet_pton() returns -1 and

sets errno to one of the following values:

Error Code Description

EAFNOSUPPORT

The address family specified in af is unsupported.

Related Information

v “arpa/inet.h” on page 34

v “sys/socket.h” on page 89

v “inet_addr() — Translate an Internet Address into Network Byte Order” on page

960

v “inet_makeaddr() — Create an Internet Host Address” on page 963

v “inet_netof() — Get the Network Number from the Internet Host Address” on

page 965

v “inet_network() — Get the Network Number from the Decimal Host Address” on

page 966

v “inet_ntoa() — Get the Decimal Internet Host Address” on page 968

v “inet_ntop() — Convert Internet Address Format from Binary to Text” on page 970

inet_pton

Chapter 3. Part 3. Library Functions 973

initgroups() — Initialize the Supplementary Group ID List for the

Process

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS

#include <sys/types.h>

#include <grp.h>

int initgroups(const char *user, const gid_t basegid);

General Description

The initgroups() function obtains the supplementary group membership of user, and

sets the current process supplementary group IDs to that list. The basegid is also

included in the supplementary group IDs list.

The caller of this function must be a superuser or must specify the password of the

target user name specified on the initgroups() call - issue the passwd() function

before initgroups().

Returned Value

If successful, initgroups() returns 0.

If unsuccessful, initgroups() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL The number of supplementary groups for the specified user plus the

basegid group exceeds the maximum number of groups allowed, or

a non-valid user is specified.

EMVSERR An MVS environmental or internal error occurred.

EMVSSAF2ERR

The Security Authorization Facility (SAF) had an error.

EPERM The caller is not authorized, only authorized users are allowed to

alter the supplementary group IDs list.

Related Information

v “grp.h” on page 48

v “sys/types.h” on page 90

v “getgroupsbyname() — Get Supplementary Group IDs by User Name” on page

777

v “setgroups() — Set the Supplementary Group ID List for the Process” on page

1792

initgroups

974 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

initstate() — Initialize Generator for random()

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

char *initstate(unsigned seed, char *state, size_t size);

General Description

The initstate() function allows a state array, pointed to by the state argument, to be

initialized for future use in calls to the random() functions by the calling thread. The

size argument, which specifies the size in bytes of the state array, is used by the

initstate() function to decide how sophisticated a random-number generator to use;

the larger the state array, the more random the numbers. Values for the amount of

state information are 8, 32, 64, 128, and 256 bytes. While other amounts are

rounded down to the nearest known value. The seed argument specifies a starting

point for the random-number sequence and provides for restarting at the same

point. The initstate() function returns a pointer to the previous state information

array.

Returned Value

If successful, initstate() returns a pointer to the previous state array.

If unsuccessful, initstate() returns a NULL pointer.If initstate() is called with size less

than 8, it will return NULL.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “random() — A Better Random-Number Generator” on page 1601

v “setstate() — Change Generator for random()” on page 1854

v “srandom() — Use Seed to Initialize Generator for random()” on page 2004

initstate

Chapter 3. Part 3. Library Functions 975

||||

|
|
||

|

|
|
|
|
|
|
|
|
|
|

|
|

insque() — Insert an Element into a Doubly-linked List

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <search.h>

void insque(void *element, void *pred);

General Description

The insque() function inserts the element pointed to by element into a doubly-linked

list immediately after the element pointed to by pred. The function operates on

pointers to structures which have a pointer to their successor in the list as their first

element, and a pointer to their predecessor as the second. The application is free to

define the remaining contents of the structure, and manages all storage itself. To

insert the first element into a linear (non-circular) list, an application would call

insque(element, NULL);. To insert the first element into a circular list, the application

would set the element’s forward and back pointers to point to the element.

Returned Value

insque() returns no values.

Related Information

v “search.h” on page 77

v “remque() — Remove an Element from a Doubly-linked List” on page 1663

insque

976 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

ioctl() — Control Device

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

Terminals

#include <sys/ioctl.h>

int ioctl(int fildes int cmd, ... /* arg */);

Sockets

#define _XOPEN_SOURCE_EXTENDED 1

/** OR **/

#define _OE_SOCKETS

#include <sys/ioctl.h>

#include <net/rtrouteh.h>

#include <net/if.h>

int ioctl(int fildes, int cmd, ... /* arg */);

STREAMS

#define _XOPEN_SOURCE_EXTENDED 1

#include <stropts.h>

int ioctl(int fildes int cmd, ... /* arg */);

General Description

ioctl() performs a variety of control functions on devices. The cmd argument and an

optional third argument (with varying type) are passed to and interpreted by the

device associated with fildes.

The cmd argument selects the control function to be performed and will depend on

the device being addressed.

The arg argument represents additional information that is needed by this specific

device to perform the requested function. The type of arg depends upon the

particular control request, but it is either an integer or a pointer to a device-specific

data structure.

ioctl() information is divided into the following section s:

v Terminals

v Sockets

v STREAMS

v ACLs

Terminals

The following ioctl() commands are used with terminals:

Command Description

ioctl

Chapter 3. Part 3. Library Functions 977

||||

|
|
||

|

TIOCSWINSZ Set window size. Used as the second operand in an ioctl() against

a terminal. The window size information pointed to by the third

operand is copied into an area in the kernel associated with the

terminal, and a SIGWINCH signal is generated against the

foreground process group.

TIOCGWINSZ Get window size. Used as the second operand in an ioctl() against

a terminal. The current window size is returned in the area pointed

to by the third operand - a winsize structure.

The winsize structure is the third operand in an ioctl() call when you use

TIOCSWINSZ or TIOCGWINSZ. The structure contains four unsigned short

integers:

Field Description

ws_row Number of rows in the window, in characters.

ws_col Number of columns in the window, in characters. This assumes

single-byte characters. Multibyte characters may take more room.

ws_xpixel Horizontal size of the window, in pixels.

ws_ypixel Vertical size of the window, in pixels.

Sockets

The following ioctl() commands are used with sockets:

Command Description

FIONBIO Sets or clears nonblocking I/O for a socket. arg is a pointer to an

integer. If the integer is 0, nonblocking I/O on the socket is cleared.

Otherwise, the socket is set for nonblocking I/O.

FIONREAD Gets the number of immediately readable bytes for the socket. arg

is a pointer to an integer. Sets the value of the integer to the

number of immediately readable characters for the socket.

FIONWRITE Returns the number of bytes that can be written to the connected

peer AF_UNIX stream socket before the socket blocks or returns

EWOULDBLOCK. The number of bytes returned is not guaranteed

unless there is serialization by the using applications.

FIOGETOWN Returns the PID that has been set that designates the recipient of

signals.

FIOSETOWN Sets the PID to be used when sending signals

 FIOGETOWN and FIOSETOWN are equivalent to the F_GETOWN

and F_SETOWN commands of fctl(). For information on the values

for pid, refer to that function. This function is only valid for AF_INET

stream sockets.

SECIGET Gets the peer socket’s security identity values for an AF_UNIX

connected stream socket. The MVS user ID, effective UID, and

effective GID of the peer process are returned in the seci structure,

which is mapped by BPXYSECI. This option is valid only for the

AF_UNIX domain.

SECIGET_T Returns both the process and, if available, the task level security

information of the peer for an AF_UNIX stream connected to the

socket. The task level security information is from the task that

issued the connect() or accept(). The security information is

ioctl

978 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

returned in a struct __sect_s as defined in <sys/ioctl.h>. The

security information is not available until accept() completes. The

availability of the peer’s task level security data is determined by

the task level userid length field. If zero, the peer does not have

task level security data.

SIOCADDRT Adds a routing table entry. arg is a pointer to a rtentry structure, as

defined in <net/rtrouteh.h>. The routing table entry, passed as an

argument, is added to the routing tables. This option is valid only for

the AF_INET domain.

SIOCATMARK Queries whether the current location in the data input is pointing to

out-of-band data. arg is a pointer to an integer. SIOCATMARK sets

the argument to 1 if the socket points to a mark in the data stream

for out-of-band data; otherwise, it sets the argument to 0. Refer to

recv(), recvfrom() and recvmsg() for more information on receiving

out-of-band data.

SIOCDELRT Deletes a routing table entry. arg is a pointer to a rtentry structure,

as defined in <net/rtrouteh.h>. If it exists, the routing table entry

passed as an argument is deleted from the routing tables. This

option is valid only for the AF_INET domain.

SIOCGIFADDR

Gets the network interface address. arg is a pointer to an ifreq

structure, as defined in <net/if.h>. The interface address is returned

in the argument. This option is valid only for the AF_INET domain.

SIOCGIFBRDADDR

Gets the network interface broadcast address. arg is a pointer to an

ifreq structure, as defined in <net/if.h>. The interface broadcast

address is returned in the argument. This option is valid only for the

AF_INET domain.

SIOCGIFCONF

Gets the network interface configuration. arg is a pointer to an

ifconf structure, as defined in <net/if.h>. The interface configuration

is returned in the buffer pointed to by the ifconf structure. The

returned data’s length is returned in the field that had originally

contained the length of the buffer. This option is valid only for the

AF_INET domain.

SIOCGIFCONF6

Gets the name, address, and other information about the IPv6

network interfaces that are configured. This is similar to the

SIOCGIFCONF command for IPv4.

 A struct __net_ifconf6header_s is passed as the argument of the

ioctl. This structure specifies the buffer where the configuration

information is to be written and is returned with the number of

entries and entry length of each struct, and __net_ifconf6header_s

that was written to the output buffer. These structures are defined in

<sys/ioctl.h>.

 If __nif6h_buflen and __nif6h_buffer are both zero, a query function

is performed and the header is returned with:

__nif6h_version

The maximum supported version.

ioctl

Chapter 3. Part 3. Library Functions 979

|
|
|
|

|
|
|
|
|
|

|
|

|
|

Note: If the version number is supplied (not zero), the entry

length returned will be for the specified version. (If it

is supported)

__nif6h_entries

The total number of entries that will be output.

__nif6h_entrylen

The length of each individual entry.

If a call to get information fails with either

errno = ERANGE, or

errno = EINVAL and __nif6h_version has changed

The call was converted into a query function and the header has

been filled in as described above. In these cases, the content of the

output buffer is undefined.

 If Common INET is configured and multiple TCP/IP stacks are

attached to the socket, the output from each stack that is enabled

for IPv6 will be concatenated in the output buffer and the header

will contain the total number of entries returned from all the stacks.

The version returned with the query function will be the highest

version supported by all the stacks.

 This ioctl can be issued on an AF_INET or AF_INET6 socket.

Error Code Description

EAFNOSUPPORT

No IPv6 enabled TCP/IP stacks are active.

EINVAL The input version number is not supported.

ERANGE The buffer is too small to contain all of the IPv6

network interface entries.

SIOCGIFDSTADDR

Gets the network interface destination address. arg is a pointer to

an ifreq structure, as defined in <net/if.h>. The interface destination

(point-to-point) address is returned in the argument. This option is

valid only for the AF_INET domain.

SIOCGIFFLAGS

Gets the network interface flags. arg is a pointer to an ifreq

structure, as defined in <net/if.h>. The interface flags are returned

in the argument. This option is valid only for the AF_INET domain.

SIOCGIFMETRIC

Gets the network interface routing metric. arg is a pointer to an

ifreq structure, as defined in <net/if.h>. The interface routing metric

is returned in the argument. This option is valid only for the

AF_INET domain.

SIOCGIFNETMASK

Gets the network interface network mask. arg is a pointer to an

ifreq structure, as defined in <net/if.h>. The interface network mask

is returned in the argument. This option is valid only for the

AF_INET domain.

SIOCGSPLXFQDN

Gets the fully qualified domain name for a given server and domain

ioctl

980 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|
|
|
|
|

|

||

|
|

||

||
|

name in a sysplex. This is an special purpose command to support

applications that have registered with WorkLoad Manager (WLM)

for connection optimization services using the Domain Name

System (DNS). ’arg’ is a pointer to sysplexFqDn structure, as

defined in <ezbzsdnc.h>. sysplexFqDn contains pointer to

sysplexFqDnData structure, as defined in <ezbzsdnc.h>.

 sysplexFqDnData structure contains server name(input), group

name(input) and fully qualified domain name(output).

 ioctl() with the SIOCGSPLXFQDN command will fail if:

Error Code Description

EFAULT Write user storage failed

EINVAL One of the following:

v Group name required

v Buffer length not valid

v Socket call parameter error

ENXIO One of the following:

v Sysplex address not found

v Res not found In DNS

v Time out

v Time Unexpected Error

 Example

 The following is an example of the ioctl() call used with

SIOCGSPLXFQDN.

 #include <ezbzsdnc.h>

 sysplexFqDn splxFqDn;

 sysplexFqDnData splxData;

 int rc;

 splxFqDn.splxVersion = splxDataVersion;

 splxFqDn.splxBufLen = sizeof(sysplexFqDnData);

 splxFqDn.splxBufAddr = &splxData;

 /* Assign values to splxData.groupName, */

 /* splxData.serverName if required */

 .

 .

 /* Get the fully qualified domain name */

 rc = ioctl(s,SIOCGSPLXFQDN, (char *) &splxFqDn);

 /* splxData.domainName contains the fully*/

 /* qualified domain name. */

SIOCSECENVR

 Used to SET or GET the security environment for a server socket.

arg points to a struct __seco_s where element __seco_argument is

set to 1 for a SET and 2 for a GET request.

 When used with the SET argument, the AF_UNIX stream socket

server will designate the server socket as one that requires the full

security environment of the connecting client to be available before

the connect will complete successfully. During connect processing,

connect obtains the security environment of the connector and

anchors it off the connector’s socket for use by the server. If the

ioctl

Chapter 3. Part 3. Library Functions 981

security environment cannot be obtained during connect

processing, the connect will fail. This command has no effect on

sockets that do not become server sockets.

 When used with the GET argument, the AF_UNIX stream socket

server will copy the previously SET security environment from the

connector’s address space to the server’s address space so it can

be used as input on calls to the security product. This command

has meaning only for server sockets that previously issued

SIOCSECENVR with the SET argument.

SIOCSIFMETRIC

Sets the network interface routing metric. arg is a pointer to an

ifreq structure, as defined in <net/if.h>. SIOCSIFMETRIC sets the

interface routing metric to the value passed in the argument. This

option is valid only for the AF_INET domain.

SIOCSVIPA Defines or deletes a dynamic VIPA. arg is a pointer to a dvreq

structure as defined in <ezbzdvpc.h>. This option is valid only for

the AF_INET domain.

SIOCTIEDESTHRD

Associates (ties) or disassociates (unties) a descriptor with a

thread. arg is a pointer to an int. When *arg is 1, the descriptor is

tied to the calling thread. When *arg is 0, the descriptor is untied

from the calling thread. If the task should terminate before the

descriptor is closed or untied from the task, UNIX file system thread

termination processing will close the descriptor. This command can

be used on both heavy weight and medium weight threads.

SIOCGIFCONF6

 Gets the name, address, and other information about the IPV6

network interfaces that are configured. This is similar to the

SIOCGIFCONF command for IPV4.

 A struct _NET_IFCONF6HEADER_S is passed as the argument of

the IOCTL. This structure specifies the buffer where the

configuration information is to be written and is returned with the

number of entries and entry length of each struct

_NET_IFCONF6ENTRY_S that was written to the output buffer.

These structures are defined in <sys/ioctl.h>.

 If _NIF6H_BUFLEN and _NIF6H_BUFFER are both zero, a query

function is performed and the header is returned with

_NIF6H_VERSION. The maximum supported version note. If the

version number is supplied (not zero), the entry length returned will

be for the specified version if it is supported.

 _NIF6H_ENTRIES is the total number of entries that will be

outputed. _NIF6H_ENTRYLEN is the length of each individual entry.

 If a call to get information fails with either ERRNO = ERANGE or

ERRNO = EINVAL and _INF6H_VERSION has changed, the call

was converted into a query function and the header has been filled

in as described above. In these cases, the content of the output

buffer is undefined.

 If common INET is configured and multiple TCP/IP stacks are

attached to the socket, the output from each stack that is enabled

for IPV6 will be concatenated in the output buffer and the header

ioctl

982 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

will contain the total number of entries returned from all the stacks.

The version returned with the query function will be the highest

version supported by all the stacks.

 This IOCTL can be issued on an AF_INET or AF_INET6 socket.

Error Code Description

EAFNOSUPPORT

No IPV6 enabled TCP/IP stacks are active.

EINVAL The input version number is not supported.

ERANGE The buffer is too small to contain all of the IPV6

network interface and entries.

 Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Terminal and Sockets Returned Value

If successful, ioctl() returns 0.

If unsuccessful, ioctl() returns -1 and sets errno to one of the following values:

Error Code Description

EBADF The fildes parameter is not a valid socket descriptor.

EINVAL The request is not valid or not supported.

EIO The process group of the process issuing the function is an

orphaned, background process group, and the process issuing the

function is not ignoring or blocking SIGTTOU.

EMVSPARM Incorrect parameters were passed to the service.

ENODEV The device is incorrect. The function is not supported by the device

driver.

ENOTTY An incorrect file descriptor was specified. The file type was not

character special.

Example

The following is an example of the ioctl() call.

int s;

int dontblock;

int rc; ...
/* Place the socket into nonblocking mode */

dontblock = 1;

rc = ioctl(s, FIONBIO, (char *) &dontblock); ...

STREAMS

The following ioctl() commands are used with STREAMS:

L_PUSH Pushes the module whose name is pointed to by arg onto the top

of the current STREAM, just below the STREAM head. It then calls

the open() function of the newly-pushed module.

ioctl

Chapter 3. Part 3. Library Functions 983

ioctl() with the I_PUSH command will fail if:

Error Code Description

EINVAL Non-valid module name.

ENXIO Open function of new module failed.

ENXIO Hang-up received on fildes

L_POP Removes the module just below the STREAM pointed to by fildes.

The arg argument should be 0 in an I_POP request.

 ioctl() with the I_POP command will fail if:

Error Code Description

EINVAL No module present in the STREAM.

ENXIO Hang-up received on fildes.

L_LOOK Retrieves the name of the module just below the STREAM head of

the STREAM pointed to by fildes and places it in a character string

pointed to by arg. The buffer pointed to by arg should be at least

FMNAMESZ+1 bytes long, where FMNAMESZ is defined in

<stropts.h>.

 ioctl() with the I_LOOK command will fail if:

Error Code Description

EINVAL No module present in the STREAM.

L_FLUSH This request flushes read and/or write queues, depending on the

value of arg. Valid arg values are:

FLUSHR Flush all read queues.

FLUSHW Flush all write queues.

FLUSHRW Flush all read and all write queues.

ioctl() with the I_FLUSH command will fail if:

Error Code Description

EAGAIN or ENOSR

Unable to allocate buffers for flush message.

EINVAL Non-valid arg value.

ENXIO Hang-up received on fildes.

I_FLUSHBAND

Flushes a particular band of messages. The arg argument points to

a bandinfo structure. The bi_flag member may be one of

FLUSHER, FLUSHW, or FLUSHRW as described above. The bi_pri

member determines the priority band to be flushed.

I_SETSIG Requests that the STREAMS implementation send the SIGPOLL

signal to the calling process when a particular event has occurred

on the STREAM associated with fildes. I_SETIG supports an

asynchronous processing capability in STREAMS. The value of arg

is a bitmask that specifies the events for which the process should

be signaled. It is the bitwise OR of any combination of the following

constants:

S_RDNORM A normal (priority band set to 0) message has

ioctl

984 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

arrived at the head of a STREAM head read queue.

A signal will be generated even if the message is of

zero length.

S_RDBAND A message with a nonzero priority band has arrived

at the head of a STREAM head read queue. A

signal will be generated even if the message is of

zero length.

S_INPUT A message, other than a high-priority message, has

arrived at the head of a STREAM head read queue.

A signal will be generated even if the message is of

zero length.

S_HIPRI A high-priority message is present on a STREAM

head read queue. A signal will be generated even if

the message is of zero length.

S_OUTPUT The write queue for normal data (priority band 0)

just below the STREAM head is no longer full. This

notifies the process that there is room on the queue

for sending (or writing) normal data downstream.

S_WRNORM Same as S_OUTPUT.

S_WRBAND The write queue for a nonzero priority band just

below the STREAM head is no longer full. This

notifies the process that there is no room on the

queue for sending (or writing) priority data

downstream.

S_MSG A STREAMS signal message that contains the

SIGPOLL signal has reached the front of the

STREAM head read queue.

S_ERROR Notification of an error condition has reached the

STREAM head.

S_HANGUP When used in conjunction with S_RDBAND,

SIGURG is generated instead of SIGPOLL when a

priority message reaches the front of the STREAM

head read queue.

If arg is 0, the calling process will be unregistered and will not

receive further SIGPOLL signals for the STREAM associated with

fildes.

 Processes that wish to receive SIGPOLL signals must explicitly

register to receive them using I_SETSIG. If several processes

register to receive this signal for the same event on the same

STREAM, each process will be signaled when the event occurs.

 ioctl() with the I_SETSIG command will fail if:

Error Code Description

EAGAIN There were insufficient resources to store the signal

request.

EINVAL The value of arg is not valid.

EINVAL The value of arg is 0 and the calling process is not

registered to receive the SIGPOLL signal.

ioctl

Chapter 3. Part 3. Library Functions 985

I_GETSIG Returns the events for which the calling process is currently

registered to be sent a SIGPOLL signal. The events are returned as

a bitmask in an int pointed to by arg, where the events are those

specified in the description of I_SETSIG above.

 ioctl() with the I_GETSIG command will fail if:

Error Code Description

EINVAL Process is not registered to receive the SIGPOLL

signal.

I_FIND This request compares the names of all modules currently present

in the STREAM to the name pointed to by arg, and returns 1 if the

name module is present in the STREAM, or returns 0 if the named

module is not present.

 ioctl() with the I_FIND command will fail if:

Error Code Description

EINVAL arg does not contain a valid module name.

I_PEEK This request allows a process to retrieve the information in the first

message on the STREAM head read queue without taking the

message off the queue. It is analogous to getmsg() except that this

command does not remove the message from the queue. The arg

argument points to a strpeek structure.

 The maxlen member in the ctlbuf and databuf strbuf structure must

be set to the number of bytes of control information and/or data

information, respectively, to retrieve. The flags member may be

marked RS_HIPRI or 0, as described by getmsg() - getpmsg(). If

the process sets flags to RS_HIPRI, for example, I_PEEK will only

look for a high-priority message on the STREAM head read queue.

 I_PEEK returns 1 if a message was retrieved, and returns 0 if no

message was found on the STREAM head read queue, or if the

RS_HIPFI flag was set in flags and a high-priority message was not

present on the STREAM head read queue. It does not wait for a

message to arrive. On return, ctlbuf specifies information in the

control buffer, databuf specifies information in the data buffer, and

flags contains the value RS_HIPRI or 0.

I_SRDOPT Sets the read mode using the value of the argument arg. Read

modes are described in read(). Valid arg flags are:

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscarded mode.

The bitwise inclusive-OR of RMSGD and RMSGN will return

EINVAL. The bitwise inclusive-OR of RNORM and either RMSGD or

RMSGN will result in the other flag overriding RNORM which is the

default.

 In addition, treatment of control messages by the STREAM head

may be changed by setting any of the following flag in arg:

RPROTNORM Fail read() with EBADMSG if a message containing

a control part is at the front of the STREAM head

read queue.

ioctl

986 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

RPROTDAT Deliver the control part of a message as data when

a process issues a read().

RPROTDIS Discard the control part of a message, delivery any

data portion, when a process issues a read().

 ioctl() with the I_SRDOPT command will fail if:

Error Code Description

EINVAL The arg argument is not valid.

I_GRDOPT Returns the current read mode setting, as described above, in an

int pointed to by the argument arg. Read modes are described in

read().

I_NREAD Counts the number of data bytes in the data part of the first

message on the STREAM head read queue and places this value

in the init pointed to by arg. The return value for the command is

the number of messages on the STREAM head read queue. For

example, if 0 is returned in arg, but the ioctl() return value is greater

than 0, this indicates that a zero-length message is next on the

queue.

I_FDINSERT Creates a message from specified buffer(s), adds information about

another STREAM, and sends the message downstream. The

message contains a control part and an optional data part. The data

and control parts to be sent are distinguished by placement in

separate buffers, as described below. The arg argument points to a

strfdinsert structure.

 The len member in the ctlbuf strbuf structure must be set to the

size of a pointer plus the number of bytes of control information to

be sent with the message. The fildes member specifies the file

descriptor of the other STREAM, and the offset member, which

must be suitably aligned for use as a pointer, specifies the offset

from the start of the control buffer where I_FDINSERT will store a

pointer whose interpretation is specific to the STREAM end. The

len member in the databuf strbuf structure must be set to the

number of bytes of data information to be sent with the message, or

0 if no data part is to be sent.

 The flags member specifies the type of message to be created. A

normal message is created if flags is set to 0, and a high-priority

message is created if flags is set to RS_HIPRI. For non-priority

messages, I_FDINSERT will block if the STREAM write queue is

full due to internal flow control conditions. For priority messages,

I_FDINSERT does not block on this condition. For non-priority

messages, I_FDINSERT does not block when the write queue is full

and O_NONBLOCK is set. Instead, it fails and sets errno to

EAGAIN.

 I_FDINSERT also blocks, unless prevented by lack of internal

resources, waiting for the availability of message blocks in the

STREAM, regardless of priority or whether O_NONBLOCK has

been specified. No partial message is sent.

 ioctl() with the I_FDINSERT command will fail if:

Error Code Description

EAGAIN A non-priority message is specified, the

ioctl

Chapter 3. Part 3. Library Functions 987

O_NONBLOCK flag is set, and the STREAM write

queue is full due to internal flow control conditions.

EAGAIN or ENOSR

Buffers can not be allocated for the message that is

to be created.

EINVAL One of the following:

v The fd member of the strfdinsert structure is not

a valid, open STREAM file descriptor.

v The size of a pointer plus offset is greater than

the len member for the buffer specified through

ctlptr

v the offset member does not specify a

properly-aligned location in the data buffer.

v An undefined value is stored in flags

ENXIO Hang-up received for fd or fildes.

ERANGE The len member for the buffer specified through

databuf does not fall within the range specified by

the maximum and minimum packet sizes of the

topmost STREAM module or the len member for

the buffer specified through databuf is larger than

the maximum configured size of the data part of a

message; or the len member for the buffer specified

through ctlbuf is larger than the maximum

configured size of the control part of a message.

I_STR Constructs an internal STREAMS ioctl() message from the data

pointed to by arg, and sends that message downstream.

 This mechanism is provided to send ioctl() requests to downstream

modules and drivers. It allows information to be sent with ioctl(),

and returns to the process any information sent upstream by the

downstream recipient. I_STR blocks until the system responds with

either a positive or negative acknowledgement message, or until

the request ″times out″ after some period of time. If the request

times out, it fails with errno set to ETIME.

 At most, one I_STR can be active on a STREAM. Further I_STR

calls will block until the active I_STR completes at the STREAM

head. The default timeout interval for these requests is 15 seconds.

The O_NONBLOCK flag has no effect on this call.

 To send requests downstream, arg must point to a strioctl

structure.

 The ic_cmd member is the internal ioctl() command intended for a

downstream module or driver and ic_timeout is the number of

seconds (-1 = infinite, 0 = use implementation-dependent timeout

interval, >0 = as specified) an I_STR request will wait for

acknowledgement before timing out. ic_len member has two uses:

on input, it contains the length of the data argument passed in, and

on return from the command, it contains the number of bytes being

returned to the process (the buffer pointed to by ic_dp should be

large enough to contain the maximum amount of data that any

module or the driver in the STREAM can return.)

ioctl

988 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The STREAM head will convert the information pointed to by the

strioctl structure to an internal ioctl() command message and send

it downstream.

 ioctl() with the I_STR command will fail if:

Error Code Description

EAGAIN or ENOSR

Unable to allocate buffers for the ioctl() message.

EINVAL This ic_len member is less than 0 or larger than the

maximum configured size of the data part of a

message, or ic_timeout is less than -1.

ENXIO Hang-up received on fildes.

ETIME A downstream ioctl() timed out before

acknowledgement was received.

 An I_STR can also fail while waiting for an acknowledgement if a

message indicating an error or a hang-up is received at the

STREAM head. In addition, an error code can be returned in the

positive or negative acknowledgement message, in the event the

ioctl() command sent downstream fails. For these cases, I_STR

fails with errno set to the value in the message.

I_SWROPT Sets the write mode using the value of the argument arg. Valid bit

settings for arg are:

SNDZERO Send a zero-length message downstream when a

write() if 0 bytes occurs. To not send a zero-length

message when a write() of 0 bytes occurs, this bit

must not be set in arg (for example, arg would be

set to 0).

ioctl() with the I_SWROPT command will fail if:

Error Code Description

EINVAL arg is not the above value.

I_GWROPT Returns the current write mode setting as described above, in the

int that is pointed to by the argument arg.

I_SENDFD I_SENDFD creates a new reference to the open file description

associated with the file descriptor arg and writes a message on the

STREAMS-based pipes fildes containing the reference, together

with the user ID and group ID of the calling process.

 ioctl() with the I_SENDFD command will fail if:

Error Code Description

EAGAIN The sending STREAM is unable to allocate a

message block to contain the file pointer; or the

read queues of the receiving STREAM head is full

and cannot accept the message sent by

I_SENDFD.

EBADF The arg argument is not a valid, open file

descriptor.

EINVAL The fildes argument is not connected to a STREAM

pipe.

ioctl

Chapter 3. Part 3. Library Functions 989

ENXIO Hang-up received on fildes.

I_RECVFD Retrieves the reference to an open file description from a message

within a STREAMS-based pipe using the I_SENDFD command,

and allocates a new file descriptor in the calling process that refers

to this open file description. The arg argument is a pointer to an

strrecvfd data structure as defined in <stropts.h>.

 The fd member is a file descriptor. The uid and gid members are

the effective user ID and effective group ID, respectively, of the

sending process.

 If O_NONBLOCK is not set I_RECVFD blocks until a message is

present at the STREAM head. If O_NONBLOCK is set, I_RECVFD

fails with errno set to EAGAIN if no message is present at the

STREAM head.

 If the message at the STREAM head is a message sent by an

I_SENDFD, a new file descriptor is allocated for the open file

descriptor referenced in the message. The new file descriptor is

placed in the fd member of the strrecvfd structure pointed to by

arg.

 ioctl() with the I_RECVFD command will fail if:

Error Code Description

EAGAIN A message is not present at the STREAM head

read queue and the O_NONBLOCK flag is set.

EBADMSG The message at the STREAM head read queue is

not a message containing a passed file descriptor.

EMFILE The process has the maximum number of file

descriptors currently open that is allowed.

ENXIO Hang-up received on fildes.

I_LIST This request allows the process to list all the module names on the

STREAM, up to and including the topmost driver names. If arg is a

NULL pointer, the return value is the number of modules, including

the driver, that are on the STREAM pointed to by fildes. This lets

the process allocate enough space for the module names.

Otherwise, it should point to an str_list structure.

 The sl_nmods member indicates the number of entries the process

has allocated in the array. Upon return, the sl_modlist member of

the str_list structure contains the list of module names. The

number of entries that have been filled into the sl_modlist array is

found in the sl_nmode member (the number includes the number

of module including the driver). The return value from ioctl() is 0.

The entries are filled in starting at the top of the STREAM and

continuing downstream until either the end of the STREAM is

reached, or the number of requested modules (sl_nmods) is

satisfied.

 ioctl() with the I_LIST command will fail if:

Error Code Description

EAGAIN or ENOSR

Unable to allocate buffers.

EINVAL The sl_nmods member is less than 1.

ioctl

990 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

I_ATMARK This request allows the process to see if the message at the head

of the STREAM head read queue is marked by some module

downstream. The arg argument determines how the checking is

done when there may be multiple marked messages on the

STREAM head read queue. It may take on the following values:

 ANYMARK Check if the message is marked.

 LASTMARK Check if the message is the last one marked on the

queue.

 The bitwise inclusive-OR of the flags ANYMARK and LASTMARK is

permitted.

 The return value is 1 if the mark condition is satisfied and 0

otherwise.

 ioctl() with the I_ATMARK command will fail if:

 EINVAL Non-valid arg value.

I_CKBAND Check if he message of a given priority band exists on the

STREAM head read queue. This returns 1 if a message of the

given priority exists, 0 if no message exists, or -1 on error. arg

should be of type int.

 ioctl() with the I_CKBAND command will fail if :

 EINVAL Non-valid arg value.

I_GETBAND Return the priority band of the first message on the STREAM head

read queue in the integer referenced by arg.

 ioctl() with the I_GETBAND command will fail if:

 ENODATA No message on the STREAM head read queue.

I_CANPUT Check if a certain band is writable. arg is set to the priority band in

question. The return value is 0 if the band is flow-controlled, 1 if the

band is writable, or -1 on error.

 ioctl() with the I_CANPUT command will fail if:

 EINVAL Non-valid arg value.

I_SETCLTIME This request allows the process to set the time the STREAM head

will delay when a STREAM is closing and there is data on the write

queues. Before closing each module or driver, if there is a data on

its write queue, the STREAM head will delay for the specified

amount of time to allow the data to drain. If, after the delay, data is

still present, it will be flushed. The arg argument is a pointer to an

integer specifying the number of milliseconds to delay, rounded up

to the nearest valid value. If I_SETCLTIME is not performed on a

STREAM, an implementation-dependent default timeout interval is

used.

 ioctl() with the I_SETCLTIME command will fail if:

 EINVAL Non-valid arg value.

I_GETCLTIME This request returns the close time delay in the integer pointed to

by arg

Multiplexed STREAMS Configurations

ioctl

Chapter 3. Part 3. Library Functions 991

The following four commands are used for connecting and disconnecting

multiplexed STREAMS configurations. These commands use an

implementation-dependent default timeout interval.

I_LINK Connects two STREAMS, where fildes is the file descriptor of the

STREAM connected to the multiplexing driver, and arg is the file

descriptor of the STREAM connected to another driver. The

STREAM designated by arg gets connected below the multiplexing

driver. I_LINK requires the multiplexing driver to the send an

acknowledgement message to the STREAM head regarding the

connection. This call returns a multiplexer ID number (an identifier

used to disconnect the multiplexer; see (I_UNLINK) on success,

and -1 on failure.

 ioctl() with the I_LINK command will fail if:

Error Code Description

EAGAIN or ENOSR

Unable to allocate STREAMS storage to perform

the I_LINK.

EBADF The arg argument is not a valid, open file

descriptor.

EINVAL The fildes does not support multiplexing; or arg is

not a STREAM or is already connected downstream

from a multiplexer, or the specified I_LINK operation

would connect the STREAM head in more than one

place in the multiplexed STREAM.

ENXIO Hang-up received on fildes.

ETIME Time out before acknowledgement message was

received at STREAM head.

 An I_LINK can also fail while waiting for the multiplexing driver to

acknowledge the request, if a message indicating an error or a

hang-up is received at the STREAM head of fildes. In addition, an

error code can be returned in the positive or negative

acknowledgement message. For these cases, I_LINK fails with

errno set to the value in the message.

I_UNLINK Disconnects the two STREAMs specified by fildes and arg. fildes is

the file descriptor of the STREAM connected to the multiplexing

driver. The arg argument is the multiplexer ID number that was

returned by the I_LINK ioctl() command when a STREAM was

connected downstream from the multiplexing driver. If arg is

MUXID_ALL, then all STREAMs that were connected to fildes are

disconnected. As in I_LINK, this command requires

acknowledgement.

 ioctl() with the I_UNLINK command will fail if:

Error Code Description

EAGAIN or ENOSR

Unable to allocate buffers for the acknowledgement

message.

EINVAL Non-valid multiplexer ID number.

ENXIO Hang-up received on fildes.

ioctl

992 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ETIME Time out before acknowledgement message was

received at STREAM head.

 An I_UNLINK can also fail while waiting for the multiplexing driver

to acknowledge the request if a message indicating an error or a

hang-up is received at the STREAM head of fildes In addition, an

error code can be returned in the positive or negative

acknowledgement message. For these cases, I_UNLINK fails with

errno set to the value in the message.

I_PLINK Creates a persistent connection between two STREAMs, where

fildes is the file descriptor of the STREAM connected to another

driver. This call creates a persistent connection which can exist

even if the file descriptor fildes associated with the upper STREAM

to the multiplexing driver is closed. The STREAM designated by arg

gets connected using a persistent connection below the multiplexing

driver. I_PLINK requires the multiplexing driver to send an

acknowledgement message to the STREAM head. This call returns

a multiplexer ID number (an identifier that may be used to

disconnect the multiplexer, see I_PUNLINK) on success, and -1 on

failure.

 ioctl() with the I_PLINK command will fail if:

Error Code Description

EAGAIN or ENOSR

Unable to allocate STREAMS storage to perform

the I_PLINK.

EBADF The arg argument is not valid, open file descriptor.

EINVAL The fildes argument does not support multiplexing;

or arg is not a STREAM or is already connected

downstream from a multiplexer; or the specified

I_PLINK operation would connect the STREAM

head in more than one place in the multiplexed

STREAM.

ENXIO Hang-up received on fildes.

ETIME Time out before acknowledgement message was

received at STREAM head.

 An I_PLINK can also fail while waiting for the multiplexing driver to

acknowledge the request, if a message indicating an error or a

hang-up is received at the STREAM head of fildes In addition, an

error code can be returned in the positive or negative

acknowledgement message. For these cases, I_PLINK fails with

errno set to the value in the message.

I_PUNLINK Disconnects the two STREAMs specified by fildes and arg from a

persistent connection. The fildes argument is the file descriptor of

the STREAM connected to the multiplexing driver. The arg

argument is the multiplexer ID number that was returned by the

I_PLINK ioctl() command when a STREAM was connected

downstream from the multiplexing driver. If arg is MUXID_ALL then

all STREAMs which are persistent connections to fildes are

disconnected. As in I_PLINK, this command requires the

multiplexing driver to the acknowledge the request.

ioctl

Chapter 3. Part 3. Library Functions 993

ioctl() with the I_PUNLINK command will fail if:

Error Code Description

EAGAIN or ENOSR

Unable to allocate buffers for the acknowledgement

message.

EINVAL Non-valid multiplexer ID number.

ENXIO Hang-up received on fildes.

ETIME Time out before acknowledgement message was

received at STREAM head.

 An I_PUNLINK can also fail while waiting for the multiplexing driver

to acknowledge the request if a message indicating an error or a

hang-up is received at the STREAM head of fildes. In addition, an

error code can be returned in the positive or negative

acknowledgement message. For these cases, I_PUNLINK fails with

errno set to the value in the message.

STREAMS Returned Value

If successful, ioctl() returns a value other than -1 that depends upon the STREAMS

device control function.

If unsuccessful, ioctl() returns -1 and sets errno to one of the following values.

Note: It is impossible for ioctl() to perform any STREAMS type commands

successfully, since z/OS UNIX services do not provide any STREAMS-based

files. The function will always return -1 with errno set to indicate the failure.

See “open() — Open a File” on page 1313 for more information.

Under the following general conditions, ioctl() will fail if:

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

EINTR A signal was caught during the ioctl() operation.

EINVAL The STREAM or multiplexer referenced by fildes is linked (directly

or indirectly) downstream from a multiplexer.

 If an underlying device driver detects an error, ioctl() will fail if:

Error Code Description

EINVAL The cmd or arg argument is not valid for this device.

EIO Some physical I/O error has occurred.

ENODEV The fildes argument refers to a valid STREAMS device, but the

corresponding device driver does not support ioctl().

ENOTTY The fildes argument is not associated with a STREAMS device that

accepts control functions.

ENXIO The cmd or arg argument is not valid for this device driver, but the

service requested can not be performed on this particular

sub-device.

ioctl

994 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If a STREAM is connected downstream from a multiplexer, any ioctl() command

except I_UNLINK and I_PUNLINK will set errno to EINVAL.

ACLs

The following ioctl() commands are used with ACLs:

Command Description

SETFACL Set ACL. Used to set information into an Access Control List. arg

specifies the user buffer containing the input ACL which is mapped

by struct ACL_buf followed immediately by an array of struct

ACL_entrys. arglen specifies the combined length of the struct

ACL_buf and the array of struct ACL_entrys. See z/OS UNIX

System Services Programming: Assembler Callable Services

Reference for more information about ACL_buf and the ACL_entrys.

GETFACL Get ACL. Used to retrieve information from an Access Control List.

arg specifies the user buffer into which the requested ACL will be

returned. The data is mapped by struct ACL_BUF followed

immediately by an array of struct ACL_entrys. See z/OS UNIX

System Services Programming: Assembler Callable Services

Reference for more information about ACL_buf and the ACL_entrys.

Arglen specifies the combined length of the struct ACL and the

array of struct ACL_entrys in the user buffer.

ACLs Returned Value

If successful, ioctl() returns 0.

If unsuccessful, ioctl() returns -1 and sets errno to one of the following values:

Error Code Description

EBADF The fildes parameter is not a valid file descriptor.

EINVAL The request is not valid or not supported.

EMVSPARM Incorrect parameters were passed to the service.

ENODEV The device is incorrect. The function is not supported by the device

driver.

Example

The following is an example of the ioctl() call.

int s;

int rc;

int acllen;

ext_acl_t aclbufp;

s = open("datafile", O_RDWR);

acllen = sizeof struct ACL_buf + (1024 * sizeof ACL_entry);

aclbufp = (ext_acl_t) malloc(acllen);

rc = ioctl(s, GETFACL, acllen, aclbufp)

Related Information

v “net/if.h” on page 65

v “net/rtrouteh.h” on page 65

v “stropts.h” on page 86

v “sys/ioctl.h” on page 87

v “close() — Close a File” on page 299

v “fcntl() — Control Open File Descriptors” on page 527

ioctl

Chapter 3. Part 3. Library Functions 995

v “getmsg(), getpmsg() — Receive Next Message from a STREAMS File” on page

805

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

v “poll() — Monitor Activity on File Descriptors and Message Queues” on page

1353

v “putmsg(), putpmsg() — Send a Message on a STREAM” on page 1571

v “read() — Read From a File or Socket” on page 1602

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “write() — Write Data on a File or Socket” on page 2464

ioctl

996 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__ipdbcs() — Retrieve the List of Requested DBCS Tables to Load

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <__ftp.h>

struct __ipdbcss *__ipdbcs(void);

General Description

The __ipdbcs() function determines the values that IP address resolution

initialization found in the resolver configuration data set for the keywords

LoadDBCSTables. If the LoadDBCSTables keywords are not found in the resolver

configuration data set, the structure returned has a count of zero and each element

in the structure list points to a NULL string.

Returned Value

If successful, __ipdbcs() returns a NULL-terminated character string containing the

complete structure __ipdbcss with each entry in __ip_dbcs_list[] initialized either to

a valid name or to a NULL string. The number of valid names, up to the maximum

of 8, is placed in __ipdbcsnum. If no table names are specified then __ipdbcsnum

is set to zero.

If unsuccessful, __ipdbcs() returns NULL and stores one of the following error

values in h_errno. __ipdbcs() is only unsuccessful if IP Address Resolution

initialization fails to complete.

Error Code Description

NO_RECOVERY

An error occurred that will continue to fail if tried again. Storage

could not be obtained for this thread to contain the _res structure.

TRY_AGAIN An error occurred while initializing the __res_state structure name

selected, which can be retried.

Related Information

v “__ftp.h” on page 48

v “__ipdspx() — Retrieve the Data Set Prefix Specified” on page 999

v “__ipmsgc() — Determine the Case to Use for FTP Messages” on page 1001

__ipdbcs

Chapter 3. Part 3. Library Functions 997

__ipDomainName() — Retrieve the Resolver Supplied Domain Name

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both OS/390 V2R9

Format

#include <__ftp.h>

char *__ipDomainName(void);

General Description

Lets an application get the values which IP address resolution initialization

established for the domain name (supplied by keywords Domain or DomainOrigin).

Returned Value

If successful, __ipDomainName() returns the NULL-terminated character string

which is the name found for the domain name or a NULL string if no domain name

was found in the IP address resolution initialization.

If unsuccessful, __ipDomainName() returns NULL and stores one of the following

error values in h_errno. The __ipDomainName() function is only unsuccessful if IP

address resolution initialization fails to complete.

Error Code Description

NO_RECOVERY

An error occurred that will continue to fail if tried again. Storage

could not be obtained for this thread to contain the _res structure.

TRY_AGAIN An error occurred while initializing the __res_state structure name

selected, which can be retried.

Related Information

v “__ftp.h” on page 48

v “__ipdbcs() — Retrieve the List of Requested DBCS Tables to Load” on page

997

v “__ipdspx() — Retrieve the Data Set Prefix Specified” on page 999

v “__iphost() — Retrieve the Resolver Supplied Hostname” on page 1000

v “__ipmsgc() — Determine the Case to Use for FTP Messages” on page 1001

v “__ipnode() — Retrieve the Resolver Supplied Node Name” on page 1002

v “__iptcpn() — Retrieve the Resolver Supplied Jobname or Userid” on page 1003

__ipDomainName

998 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__ipdspx() — Retrieve the Data Set Prefix Specified

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <__ftp.h>

char *__ipdspx(void);

General Description

The __ipdspx() function determines the value that IP address resolution initialization

found in the resolver configuration data set for the keyword DataSetPrefix. If no

DataSetPrefix keyword is found in the resolver configuration data set, then the

default value is returned.

Returned Value

If successful, __ipdspx() returns the NULL-terminated character string that was

supplied in the configuration data set. If the configuration data set did not supply a

value for the keyword DataSetPrefix, then __ipdspx() returns the string TCPIP.

If unsuccessful, __ipdspx() returns NULL and stores one of the following error

values in h_errno. __ipdspx() is only unsuccessful if IP Address Resolution

initialization fails to complete.

Error Code Description

NO_RECOVERY

An error occurred that will continue to fail if tried again. Storage

could not be obtained for this thread to contain the _res structure.

TRY_AGAIN An error occurred while initializing the __res_state structure name

selected, which can be retried.

Related Information

v “__ftp.h” on page 48

v “__ipdbcs() — Retrieve the List of Requested DBCS Tables to Load” on page

997

v “__ipmsgc() — Determine the Case to Use for FTP Messages” on page 1001

__ipdspx

Chapter 3. Part 3. Library Functions 999

__iphost() — Retrieve the Resolver Supplied Hostname

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <__ftp.h>

char *__iphost(void);

General Description

The __iphost() function lets an application determine the values that IP address

resolution initialization found in the resolver configuration data set for the keyword

HOSTname. If the keyword is not found in the resolver configuration data set, the

char string returned will be a NULL string.

Returned Value

If successful, __iphost() returns the NULL-terminated character string, which is the

name supplied on the HOSTname keyword found in the resolver configuration file.

If unsuccessful, __iphost() returns NULL and stores one of the following error

values in h_errno. __iphost() is only unsuccessful if IP Address Resolution

initialization fails to complete.

Error Code Description

NO_RECOVERY

An error occurred that will continue to fail if tried again. Storage

could not be obtained for this thread to contain the _res structure.

TRY_AGAIN An error occurred while initializing the __res_state structure name

selected, which can be retried.

Related Information

v “__ftp.h” on page 48

v “__ipdbcs() — Retrieve the List of Requested DBCS Tables to Load” on page

997

v “__ipdspx() — Retrieve the Data Set Prefix Specified” on page 999

v “__ipmsgc() — Determine the Case to Use for FTP Messages” on page 1001

v “__ipnode() — Retrieve the Resolver Supplied Node Name” on page 1002

v “__iptcpn() — Retrieve the Resolver Supplied Jobname or Userid” on page 1003

__iphost

1000 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__ipmsgc() — Determine the Case to Use for FTP Messages

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <__ftp.h>

int __ipmsgc(void);

General Description

The __ipmsgc() function determines the value that IP address resolution

initialization found in the resolver configuration data set for the keyword

MessageCase. If no MessageCase keyword is found in the resolver configuration

data set, then the default value is returned.

The init argument returned is one of the following set of symbols defined in the

__ftp.h header file, each one stands for a message case selection.

__MIXED Represents mixed case value selected for the messages FTP will

send.

__UPPER Represents uppercase value selected for the messages FTP will

send.

Returned Value

__ipmsgc() is always successful and returns either the value of the __MIXED or the

value of __UPPER for all requests. __MIXED is the default value.

Related Information

v “__ftp.h” on page 48

v “__ipdbcs() — Retrieve the List of Requested DBCS Tables to Load” on page

997 “__ipdspx() — Retrieve the Data Set Prefix Specified” on page 999

__ipmsgc

Chapter 3. Part 3. Library Functions 1001

__ipnode() — Retrieve the Resolver Supplied Node Name

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <__ftp.h>

char *__ipnode(void);

General Description

The __ipnode() function lets an application determine the values that IP address

resolution initialization found as the NodeID name used by the VMCF platform. If

the VMCF nodeID name is not found, the char string returned will be a NULL string.

Returned Value

If successful, __ipnode() returns the NULL-terminated character string, which is the

name found for the VMCF platform.

If unsuccessful, __ipnode() returns NULL and stores one of the following error

values in h_errno. __ipnode() is only unsuccessful if IP Address Resolution

initialization fails to complete.

Error Code Description

NO_RECOVERY

An error occurred that will continue to fail if tried again. Storage

could not be obtained for this thread to contain the _res structure.

TRY_AGAIN An error occurred while initializing the __res_state structure name

selected, which can be retried.

Related Information

v “__ftp.h” on page 48

v “__ipdbcs() — Retrieve the List of Requested DBCS Tables to Load” on page

997

v “__ipdspx() — Retrieve the Data Set Prefix Specified” on page 999

v “__iphost() — Retrieve the Resolver Supplied Hostname” on page 1000

v “__ipmsgc() — Determine the Case to Use for FTP Messages” on page 1001

v “__iptcpn() — Retrieve the Resolver Supplied Jobname or Userid” on page 1003

__ipnode

1002 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__iptcpn() — Retrieve the Resolver Supplied Jobname or Userid

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <__ftp.h>

char *__iptcpn(void);

General Description

The __iptcpn() function lets an application determine the values that IP address

resolution initialization found in the resolver configuration data set for either of the

keywords TCPIPuserid or TCPIPjobname, whichever is the last one read. If neither

keyword is found in the resolver configuration data set, the char string returned will

be a NULL string.

Returned Value

If successful, __iptcpn() returns the NULL-terminated character string which is the

name supplied on the TCPIPuserid or TCPIPjobname keyword found in the resolver

configuration file.

If unsuccessful, __iptcpn() returns NULL and stores one of the following error

values in h_errno. __iptcpn() is only unsuccessful if IP Address Resolution

initialization fails to complete.

Error Code Description

NO_RECOVERY

An error occurred that will continue to fail if tried again. Storage

could not be obtained for this thread to contain the _res structure.

TRY_AGAIN An error occurred while initializing the __res_state structure name

selected, which can be retried.

Related Information

v “__ftp.h” on page 48

v “setibmopt() — Set IBM TCP/IP Image” on page 1794

__iptcpn

Chapter 3. Part 3. Library Functions 1003

isalnum() to isxdigit() — Test Integer Value

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <ctype.h>

int isalnum(int c);

int isalpha(int c);

int iscntrl(int c);

int isdigit(int c);

int isgraph(int c);

int islower(int c);

int isprint(int c);

int ispunct(int c);

int isspace(int c);

int isupper(int c);

int isxdigit(int c);

General Description

The functions listed above, which are all declared in ctype.h, test a given integer

value. The valid integer values for c are those representable as an unsigned char or

EOF.

The functions in ctype.h are also available as macros. For better performance, the

macro forms are recommended over the functional forms.

However, to get the functional forms, do one or more of the following:

v For C only: do not include ctype.h.

v Specify #undef, for example, #undef islower

v Surround the call statement by parentheses, for example, (islower)(’a’)

Here are descriptions of each function in this group.

isalnum() Test for an upper- or lowercase letter, or a decimal digit, as defined

in the alnum locale source file and in the alnum class of the

LC_CTYPE category of the current locale.

isalpha() Test for an alphabetic character, as defined in the alpha locale

source file and in the alpha class of the LC_CTYPE category of the

current locale.

iscntrl() Test for any control character, as defined in the cntrl locale source

file and in the cntrl class of the LC_CTYPE category of the current

locale.

isdigit() Test for a decimal digit, as defined in the digit locale source file

and in the digit class of the LC_CTYPE category of the current

locale.

isalnum to isxdigit

1004 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

isgraph() Test for a printable character excluding space, as defined in the

graph locale source file and in the graph class of the LC_CTYPE

category of the current locale.

islower() Test for a lowercase character, as defined in the lower locale

source file and in the lower class of the LC_CTYPE category of the

current locale.

isprint() Test for a printable character including space, as defined in the

print locale source file and in the print class of the LC_CTYPE

category of the current locale.

ispunct() Test for any nonalphanumeric printable character, excluding space,

as defined in the punct locale source file and in the punct class of

the LC_CTYPE category of the current locale.

isspace() Test for a white space character, as defined in the space locale

source file and in the space class of the LC_CTYPE category of the

current locale.

isupper() Test for an uppercase character, as defined in the upper locale

source file and in the upper class of the LC_CTYPE category of the

current locale.

isxdigit() Test for a hexadecimal digit, as defined in the xdigit locale source

file and in the xdigit class of the LC_CTYPE category of the

current locale.

The space, uppercase, and lowercase characters can be redefined by their

respective class of the LC_CTYPE in the current locale. The LC_CTYPE category

is discussed in the “Internationalization: Locales and Character Sets” in z/OS XL

C/C++ Programming Guide.

To provide an ASCII input/output format for applications using these functions,

define the feature test macro __LIBASCII as described 24.

Returned Value

If the integer satisfies the test condition, these functions return nonzero.

If the integer does not satisfy the test condition, these functions return 0.

Example

CELEBI02

/* CELEBI02

 This example analyzes all characters between code 0x0 and

 code UPPER_LIMIT.

 The output of this example is a 256−line table showing the

 characters from 0 to 255, and a notification of whether they

 have the attributes tested.

 */

#include <stdio.h>

#include <ctype.h>

#define UPPER_LIMIT 0xFF

int main(void)

{

 int ch;

isalnum to isxdigit

Chapter 3. Part 3. Library Functions 1005

for (ch = 0; ch <= UPPER_LIMIT; ++ch)

 {

 printf("%3d ", ch);

 printf("%#04x ", ch);

 printf(" %c", isprint(ch) ? ch : ' ');

 printf("%3s ", isalnum(ch) ? "Alphanumeric" : " ");

 printf("%2s ", isalpha(ch) ? "Alphabetic" : " ");

 printf("%2s", iscntrl(ch) ? "Control" : " ");

 printf("%2s", isdigit(ch) ? "Digit" : " ");

 printf("%2s", isgraph(ch) ? "Graphic" : " ");

 printf("%2s ", islower(ch) ? "Lower" : " ");

 printf("%3s", ispunct(ch) ? "Punctuation" : " ");

 printf("%2s", isspace(ch) ? "Space" : " ");

 printf("%3s", isprint(ch) ? "Printable" : " ");

 printf("%2s ", isupper(ch) ? "Upper" : " ");

 printf("%2s ", isxdigit(ch) ? "Hex" : " ");

 putchar('\n');

 }

}

Related Information

v “ctype.h” on page 39

v “isblank() — Test for Blank Character Classification” on page 1016

v “iswalnum() to iswxdigit() — Test Wide Integer Value” on page 1039

v “setlocale() — Set Locale” on page 1811

v “tolower(), toupper() — Convert Character Case” on page 2228

isalnum to isxdigit

1006 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

isascii() — Test for 7-bit US-ASCII Character

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

_XOPEN_SOURCE

#define _XOPEN_SOURCE

#include <ctype.h>

int isascii(int c);

_ALL_SOURCE

#define _ALL_SOURCE

#include <ctype.h>

int isascii(int c);

General Description

Special Behavior for _XOPEN_SOURCE

The isascii() function tests whether c is a 7-bit US-ASCII character code. The

isascii() function is defined on all integer values.

Special Behavior for _ALL_SOURCE

The isascii() function tests whether the character with EBCDIC encoding c in the

current locale is a member of the set of POSIX Portable Characters and POSIX

Control Characters shown below.

Returned Value

Special Behavior for _XOPEN_SOURCE

isascii() returns nonzero if c is a 7-bit US-ASCII character code between 0 and

hexadecimal 007F inclusive; otherwise it returns 0.

Special Behavior for _ALL_SOURCE

isascii() returns nonzero if c is the EBCDIC encoding in the current locale for a

character in the set of POSIX Portable Characters and Control Characters;

otherwise it returns 0.

Following is a list of the symbolic names, IBM-1047 EBCDIC code page encodings,

and ISO8859-1 ASCII encodings for the set of POSIX Portable Characters and

POSIX Control Characters. Cases where EBCDIC character encodings vary across

EBCDIC Country Extended Code Pages (CECPs) are noted.

isascii

Chapter 3. Part 3. Library Functions 1007

||||

|
|
|

||

|

Table 35. Characters for which isascii() returns nonzero

Character (Symbolic Name) IBM-1047 Encoding (Hex) ISO8859-1 Encoding (Hex)

<NUL> 00 00

<SOH> 01 01

<STX> 02 02

<ETX> 03 03

<EOT> 37 04

<ENQ> 2D 05

<ACK> 2E 06

<BEL> <alert> 2F 07

<BS> <backspace> 16 08

<HT> <tab> 05 09

<NL> <newline> 15 0A

<VT> <vertical-tab> 0B 0B

<FF> <form-feed> 0C 0C

<CR> <carriage-return> 0D 0D

<SO> 0E 0E

<SI> 0F 0F

<DLE> 10 10

<DC1> 11 11

<DC2> 12 12

<DC3> 13 13

<DC4> 3C 14

<NAK> 3D 15

<SYN> 32 16

<ETB> 26 17

<CAN> 18 18

 19 19

<SUB> 3F 1A

<ESC> 27 1B

<IFS/IS4> 1C 1C

<IGS/IS3> 1D 1D

<IRS/IS2> 1E 1E

<IUS/ITB/IS1> 1F 1F

<space> 40 20

<exclamation-mark> 5A (cecp variant) 21

<quotation-mark> 7F 22

<number-sign> 7B (cecp variant) 23

<dollar-sign> 5B (cecp variant) 24

<percent-sign> 6C 25

<ampersand> 50 26

<apostrophe> 7D 27

isascii

1008 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 35. Characters for which isascii() returns nonzero (continued)

Character (Symbolic Name) IBM-1047 Encoding (Hex) ISO8859-1 Encoding (Hex)

<left-parenthesis> 4D 28

<right-parenthesis> 5D 29

<asterisk> 5C 2A

<plus-sign> 4E 2B

<comma> 6B 2C

<hyphen> 60 2D

<period> 4B 2E

<slash> 61 2F

<zero> F0 30

<one> F1 31

<two> F2 32

<three> F3 33

<four> F4 34

<five> F5 35

<six> F6 36

<seven> F7 37

<eight> F8 38

<nine> F9 39

<colon> 7A 3A

<semicolon> 5E 3B

<less-than-sign> 4C 3C

<equals-sign> 7E 3D

<greater-than-sign> 6E 3E

<question-mark> 6F 3F

<commercial-at> 7C (cecp variant) 40

<A> C1 41

 C2 42

<C> C3 43

<D> C4 44

<E> C5 45

<F> C6 46

<G> C7 47

<H> C8 48

<I> C9 49

<J> D1 4A

<K> D2 4B

<L> D3 4C

<M> D4 4D

<N> D5 4E

<O> D6 4F

isascii

Chapter 3. Part 3. Library Functions 1009

Table 35. Characters for which isascii() returns nonzero (continued)

Character (Symbolic Name) IBM-1047 Encoding (Hex) ISO8859-1 Encoding (Hex)

<P> D7 50

<Q> D8 51

<R> D9 52

<S> E2 53

<T> E3 54

<U> E4 55

<V> E5 56

<W> E6 57

<X> E7 58

<Y> E8 59

<Z> E9 5A

<left-square-bracket> AD (cecp variant) 5B

<backslash> E0 (cecp variant) 5C

<right-square-bracket> BD (cecp variant) 5D

<circumflex> 5F (cecp variant) 5E

<underscore> 6D 5F

<grave-accent> 79 (cecp variant) 60

<a> 81 61

 82 62

<c> 83 63

<d> 84 64

<e> 85 65

<f> 86 66

<g> 87 67

<h> 88 68

<i> 89 69

<j> 91 6A

<k> 92 6B

<l> 93 6C

<m> 94 6D

<n> 95 6E

<o> 96 6F

<p> 97 70

<q> 98 71

<r> 99 72

<s> A2 73

<t> A3 74

<u> A4 75

<v> A5 76

<w> A6 77

isascii

1010 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 35. Characters for which isascii() returns nonzero (continued)

Character (Symbolic Name) IBM-1047 Encoding (Hex) ISO8859-1 Encoding (Hex)

<x> A7 78

<y> A8 79

<z> A9 7A

<left-brace> C0 (cecp variant) 7B

<vertical-line> 4F (cecp variant) 7C

<right-brace> D0 (cecp variant) 7D

<tilde> A1 (cecp variant) 7E

 07 7F

Related Information

v “ctype.h” on page 39

v “toascii() — Translate Integer to a 7-bit ASCII Character” on page 2220

isascii

Chapter 3. Part 3. Library Functions 1011

isastream() — Test a File Descriptor

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stropts.h>

int isastream(int fildes);

General Description

The isastream() function tests whether filedes, an open file descriptor, is associated

with a STREAMS-based file.

Returned Value

If successful, isastream() returns 1 if fildes refers to a STREAMS-based file and 0 if

not.

If unsuccessful, isastream() returns -1 and sets errno to one of the following values.

Note: z/OS UNIX services do not supply any STREAMS devices or pseudodevices.

It is impossible for isastream() to return 1 since there are no

STREAMS-based file descriptors. It will return 0 unless fildes is not a valid

open file descriptor, in which case it will return -1 with errno set to indicate

the failure. See “open() — Open a File” on page 1313

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

Related Information

v “stropts.h” on page 86

isastream

1012 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

isatty() — Test if Descriptor Represents a Terminal

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int isatty(int fildes);

General Description

Determines if a file descriptor, fildes, is associated with a terminal.

isatty() only works in an environment where either a controlling terminal exists, or

stdin and stderr refer to tty devices. Specifically, it does not work in a TSO

environment.

Returned Value

isatty() returns 1 if the given file descriptor is a terminal, or 0 otherwise.

Special Behavior for XPG4

isatty() returns 1 if the given file descriptor is a terminal, or 0 otherwise and sets

errno to one of the following values:

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

ENOTTY The fildes argument is not associated with a terminal.

Example

CELEBI03

/* CELEBI03

 This example determines if a file descriptor is

 associated with a terminal.

 */

#define _POSIX_SOURCE

#include <unistd.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

void check_fd(int fd) {

 printf("fd %d is ", fd);

 if (!isatty(fd))

 printf("NOT ");

 puts("a tty");

isatty

Chapter 3. Part 3. Library Functions 1013

||||

|
|
|
|

||

|

}

main() {

 int p[2], fd;

 char fn[]="temp.file";

 if (pipe(p) != 0)

 perror("pipe() error");

 else {

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 check_fd(0);

 check_fd(fileno(stderr));

 check_fd(p[1]);

 check_fd(fd);

 close(fd);

 unlink(fn);

 }

 close(p[0]);

 close(p[1]);

 }

}

Output

fd 0 is a tty

fd 2 is a tty

fd 4 is NOT a tty

fd 5 is NOT a tty

Related Information

v “unistd.h” on page 96

v “ttyname() — Get the Name of a Terminal” on page 2272

isatty

1014 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__isBFP() — Determine Application Floating-Point Format

Standards

 Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

Format

#include <_Ieee754.h>

int __isBFP(void);

General Description

The __isBFP() function determines the application floating-point mode.

Returned Value

__isBFP() returns 1 if the floating-point mode of the caller is IEEE, and returns 0 if

the floating-point mode of the caller is hexadecimal.

Related Information

v “_Ieee754.h” on page 49

v “fp_read_rnd() — Determine Rounding Mode” on page 647

v “fp_swap_rnd() — Swap Rounding Mode” on page 660

__isBFP

Chapter 3. Part 3. Library Functions 1015

isblank() — Test for Blank Character Classification

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment

Single UNIX Specification, Version 3

both

Format

#include <ctype.h>

int isblank(int c);

General Description

Tests whether the current LC_CTYPE locale category assigns c the blank character

attribute. The tab and space characters have the blank attribute in the POSIX locale

(with name “POSIX” or “C”).

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (for example, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

Note: The isblank() function has a dependency on the level of the Enhanced ASCII

Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

isblank() returns nonzero if the current LC_CTYPE locale category assigns c the

blank character attribute.

Otherwise, isblank() returns 0.

Example

/* This example tests if c is a blank type. */

#include <stdio.h>

#include <ctype.h>

#include <locale.h>

void check(char c) {

 if ((c != ’ ’) && (isprint(c)))

 printf(" %c is ", c);

 else

 printf("x%02x is ", c);

 if (!isblank(c))

 printf("not ");

 puts("a blank type character");

}

main() {

 printf("\nIn LC_CTYPE category of locale \ with name \"%s\":\n",

isblank

1016 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

setlocale(LC_CTYPE, NULL));

 check(’a’);

 check(’ ’);

 check(0x00);

 check(’\n’);

 check(’\t’);

}

Output

In LC_CTYPE category of locale with name “......”;

 a is not a blank type character

x40 is a blank type character

x00 is not a blank type character

x15 is not a blank type character

x05 is a blank type character

Related Information

v “ctype.h” on page 39

v “iswalnum() to iswxdigit() — Test Wide Integer Value” on page 1039

v “iswblank() — Test for Blank Character Classification” on page 1042

v “setlocale() — Set Locale” on page 1811

isblank

Chapter 3. Part 3. Library Functions 1017

iscics() — Verify Whether CICS is Running

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <cics.h>

int iscics(void);

General Description

Determines whether the program is running under CICS.

Returned Value

If your program is currently running under CICS, iscics() returns nonzero.

If not running under CICS, iscics() returns 0.

Example

CELEBI04

/* CELEBI04

 This example tests to see if the program is running under CICS.

 If not, it calls a subroutine ABCPGM; otherwise, it uses a CICS EXEC

 statement to invoke ABCPGM.

 */

#define _POSIX_SOURCE

#ifdef __cplusplus

 extern "OS" void ABCPGM(char *);

#else

 #pragma linkage(ABCPGM, 05)

 void ABCPGM(char *);

#endif

#include <stdio.h>

#include <cics.h>

#include <string.h>

#include <sys/wait.h>

#include <sys/types.h>

#include <unistd.h>

int main(void)

{

 char mydata[123];

 if (iscics() == 0)

 {

 /* not a CICS environment */

 ABCPGM(mydata);

 }

 else {

iscics

1018 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

/* this is a CICS environment */

 EXEC CICS, LINK PROGRAM,("ABCPGM "), COMMAREA(mydata);

 }

}

Related Information

v “cics.h” on page 35

iscics

Chapter 3. Part 3. Library Functions 1019

iscntrl() — Test for Control Classification

The information for this function is included in “isalnum() to isxdigit() — Test Integer

Value” on page 1004.

isdigit() — Test for decimal-digit classification

The information for this function is included in “isalnum() to isxdigit() — Test Integer

Value” on page 1004.

iscntrl

1020 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

isfinite() — Determines if its argument has a finite value

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int isfinite(real-floating x);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int isfinite(real-floating x);

int isfinite(decimal-floating x);

General Description

The isfinite() macro determines if its argument has a finite value.

 Function Hex IEEE

isfinite X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The isfinite() macro returns 1 if and only if its argument value is finite, else returns

0.

Special behavior in Hex

The isfinite() macro always returns 1.

Related Information

v “math.h” on page 60

isfinite

Chapter 3. Part 3. Library Functions 1021

||||

|
|
|

||

|

|
|

|
|

isgraph() — Test for Graphic Classification

The information for this function is included in “isalnum() to isxdigit() — Test Integer

Value” on page 1004.

id=isgraph

1022 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

isgreater() — Determines if X is greater than Y

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int isgreater(real-floating x, real-floating y);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int isgreater(real-floating x, real-floating y);

int isgreater(decimal-floating x, decimal-floating y);

General Description

The isgreater() macro determines whether the argument x is greater than y. It is

equivalent to (x) > (y), but no exception is raised if x or y are NaN.

 Function Hex IEEE

isgreater X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The isgreater() macro returns 1 if the value of x is greater than y, else returns 0.

Related Information

v “math.h” on page 60

isgreater

Chapter 3. Part 3. Library Functions 1023

||||

|
|
|

||

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

isgreaterequal() — Determines if X is greater than or equal to Y

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int isgreaterequal(real-floating x, real-floating y);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int isgreaterequal(real-floating x, real-floating y);

int isgreaterequal(decimal-floating x, decimal-floating y);

General Description

The isgreaterequal() macro determines whether the argument x is greater than or

equal to y. It is equivalent to (x) >= (y), but no exception is raised if x or y are NaN.

 Function Hex IEEE

isgreaterequal X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The isgreaterequal() macro returns 1 if the value of x is greater than or equal to y,

else returns 0.

Related Information

v “math.h” on page 60

isgreaterequal

1024 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

isinf() — Determines if X is) infinity

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int isinf(real-floating x);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int isinf(real-floating x);

int isinf(decimal-floating x);

General Description

The isinf() macro determines if its argument is plus or minus infinity.

 Function Hex IEEE

isinf X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The isinf() macro returns 1 if the argument is plus or minus infinity, else returns 0.

Special behavior in Hex

The isinf() macro returns zero.

Related Information

v “math.h” on page 60

isinf

Chapter 3. Part 3. Library Functions 1025

||||

|
|
|

||

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

isless() — Determines if X is less than Y

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int isless(real-floating x, real-floating y);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int isless(real-floating x, real-floating y);

int isless(decimal-floating x, decimal-floating y);

General Description

The isless() macro determines whether the argument x is less than y. It is

equivalent to (x) < (y), but no exception is raised if x or y are NaN.

 Function Hex IEEE

isless X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The isless() macro returns 1 if the value of x is less than y, else returns 0.

Related Information

v “math.h” on page 60

isless

1026 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

islessequal() — Determines if X is less than or equal to Y

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int islessequal(real-floating x, real-floating y);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int islessequal(real-floating x, real-floating y);

int islessequal(decimal-floating x, decimal-floating y);

General Description

The islessequal() macro determines whether the argument x is less than or equal to

y. It is equivalent to (x) <= (y), but no exception is raised if x or y are NaN.

 Function Hex IEEE

islessequal X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The islessequal() macro returns 1 if the value of x is less than or equal to y, else

returns 0.

Related Information

v “math.h” on page 60

islessequal

Chapter 3. Part 3. Library Functions 1027

||||

|
|
|

||

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

islessgreater() — Determines if X is less or greater than Y

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int islessgreater(real-floating x, real-floating y);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int islessgreater(real-floating x, real-floating y);

int islessgreater(decimal-floating x, decimal-floating y);

General Description

The islessgreater() macro determines whether the argument x is less or greater

than y. It is equivalent to (x) || (y), but no exception is raised if x or y are NaN.

 Function Hex IEEE

islessgreater X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The islessgreater() macro returns 1 if the value of x is less or greater than y, else

returns 0.

Related Information

v “math.h” on page 60

islessgreater

1028 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

islower() — Test for Lowercase

The information for this function is included in “isalnum() to isxdigit() — Test Integer

Value” on page 1004.

islower

Chapter 3. Part 3. Library Functions 1029

ismccollel() — Identify a Multicharacter Collating Element

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <collate.h>

int ismccollel(collel_t c);

General Description

Determines whether a character is a multicharacter collating element. A collating

element is a glyph, usually a character, that has a value used to define its order in

a collating sequence. A multicharacter collating element is a sequence of two or

more characters that are to be collated as one entity.

Returned Value

ismccollel() returns:

1 if collel_t represents a multicharacter collating element

0 if collel_t represents a single-character collating element

−1 if collel_t is out of range, or otherwise not valid

Example

CELEBI05

/* CELEBI05

 This example prints all of the collating elements in the

 collating sequence, by using the &ismc. function to determine

 if the collating element is a multi−character collating

 element.

 */

#include <collate.h>

#include <locale.h>

#include <stdio.h>

#include <wchar.h>

#include <wctype.h>

main(int argc, char *argv[]) {

 collel_t e, *rp;

 int i;

 setlocale(LC_ALL, "");

 i = collorder(&rp);

 for (; i−− > 0; rp++) {

 if (ismccollel(*rp))

 printf("'%s' ", colltostr(*rp));

 else if (iswprint(*rp))

 printf("'%lc' ", *rp);

 else

 printf("'%x' ", *rp);

 }

}

ismccollel

1030 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “collate.h” on page 36

v “cclass() — Return Characters in a Character Class” on page 243

v “collequiv() — Return a List of Equivalent Collating Elements” on page 308

v “collorder() — Return List of Collating Elements” on page 310

v “collrange() — Calculate the Range List of Collating Elements” on page 312

v “colltostr() — Return a String for a Collating Element” on page 314

v “getmccoll() — Get Next Collating Element from String” on page 804

v “getwmccoll() — Get Next Collating Element from Wide String” on page 893

v “maxcoll() — Return Maximum Collating Element” on page 1181

v “strtocoll() — Return Collating Element for String” on page 2064

ismccollel

Chapter 3. Part 3. Library Functions 1031

isnan() — Test for NaN

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _XOPEN_SOURCE

#include <math.h>

int isnan(double x);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int isnan(real-floating x);

int isnan(decimal-floating x);

General Description

The isnan() function tests whether x is NaN (not a number).

isnan() is available as a macro. For better performance, the macro form is

recommended over the functional form. To use the functional form, do one of the

following:

v Do not include math.h.

v Specify #undef isnan after the inclusion of math.h.

v Enclose the call statement in parentheses.

Note:

1. This function works in both IEEE binary floating-point and hexadecimal

floating-point formats. For hexadecimal floating-point isnan() always

returns 0, but for IEEE Binary Floating-Point, this function returns

nonzero if x is a NaN. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

2. The functional form is not available for IEEE decimal floating-point.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

For hexadecimal floating point numbers, isnan() always returns 0. For IEEE Decimal

Floating Point numbers and Binary Floating Point numbers, a non-zero value is

returned if x is a NAN.

There are no errno values defined.

isnan

1032 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

Related Information

v “math.h” on page 60

isnan

Chapter 3. Part 3. Library Functions 1033

isnormal() — Determines if X is normal

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int isnormal(real-floating x);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int isnormal(real-floating x);

int isnormal(decimal-floating x);

General Description

The isnormal() macro determines if its argument value is normal, that is, not zero,

infinity, subnormal or a NaN.

 Function Hex IEEE

isnormal X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The isnormal() macro returns 1 if the argument value is normal, else returns 0.

Special behavior in Hex

For normalized numbers, isnormal() returns one. For zero or an unnormalized

number, isnormal() returns zero.

Related Information

v “math.h” on page 60

isnormal

1034 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

__isPosixOn() — Test for Posix Run-time Option

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <unistd.h>

int __isPosixOn(void);

General Description

The __isPosixOn() function returns 1 if the kernel is active and the POSIX run-time

option is in effect for the calling process.

Returned Value

The __isPosixOn() function returns 1 if the POSIX run-time option is in effect for the

calling process and returns 0 otherwise.

If POSIX is in effect, then the kernel is active, although the kernel may be active

without POSIX being in effect.

There are no errno values defined.

Related Information

v “unistd.h” on page 96

__isPosixOn

Chapter 3. Part 3. Library Functions 1035

isprint() — Test for Printable Character Classification

The information for this function is included in “isalnum() to isxdigit() — Test Integer

Value” on page 1004.

ispunct() — Test for Punctuation Classification

The information for this function is included in “isalnum() to isxdigit() — Test Integer

Value” on page 1004.

isspace() — Test for Space Character Classification

The information for this function is included in “isalnum() to isxdigit() — Test Integer

Value” on page 1004.

isprint

1036 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

isunordered() — Determine if either X or Y is unordered

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

C/C++ DFP

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int isunordered(real-floating x, real-floating y);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int isunordered(real-floating x, real-floating y);

int isunordered(decimal-floating x, decimal-floating y);

General Description

The isunordered() macro determines if either x or y is unordered, that is if x or y is

a NaN.

 Function Hex IEEE

isunordered X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The isunordered() macro returns 1 if either x or y is unordered, else returns 0.

Special behavior in Hex

The isunordered() macro always returns 0.

Related Information

v “math.h” on page 60

isunordered

Chapter 3. Part 3. Library Functions 1037

||||

|
|
|

||

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

isupper() — Test for Uppercase Letter Classification

The information for this function is included in “isalnum() to isxdigit() — Test Integer

Value” on page 1004.

isupper

1038 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

iswalnum() to iswxdigit() — Test Wide Integer Value

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wctype.h>

int iswalnum(wint_t wc);

int iswalpha(wint_t wc);

int iswcntrl(wint_t wc);

int iswdigit(wint_t wc);

int iswgraph(wint_t wc);

int iswlower(wint_t wc);

int iswprint(wint_t wc);

int iswpunct(wint_t wc);

int iswspace(wint_t wc);

int iswupper(wint_t wc);

int iswxdigit(wint_t wc);

General Description

The functions listed above, which are all declared in wctype.h, test a given wide

integer value. These functions are sensitive to locale. For locale descriptions, see

“Internationalization: Locales and Character Sets” in z/OS XL C/C++ Programming

Guide. Here are descriptions of each function in this group.

iswalnum() Test for a wide alphanumeric character, as defined in the alnum

locale source file and in the alnum class of the LC_CTYPE category

of the current locale.

iswalpha() Test for a wide alphabetic character, as defined in the alpha locale

source file and in the alpha class of the LC_CTYPE category of the

current locale.

iswcntrl() Test for a wide control character, as defined in the cntrl locale

source file and in the cntrl class of the LC_CTYPE category of the

current locale.

iswdigit() Test for a wide decimal-digit character: 0 through 9, as defined in

the digit locale source file and in the digit class of the

LC_CTYPE category of the current locale.

iswgraph() Test for a wide printing character, not a space. as defined in the

graph locale source file and in the graph class of the LC_CTYPE

category of the current locale.

iswlower() Test for a wide lowercase letter, as defined in the lower locale

source file and in the lower class of the LC_CTYPE category of the

current locale.

iswprint() Test for any wide printing character, as defined in the print locale

source file and in the print class of the LC_CTYPE category of the

current locale.

iswalnum to iswxdigit

Chapter 3. Part 3. Library Functions 1039

||||

|
|
|
|
|

||

|

iswpunct() Test for a wide nonalphanumeric, nonspace character, as defined in

the punct locale source file and in the punct class of the

LC_CTYPE category of the current locale.

iswspace() Test for a wide white space character, as defined in the space

locale source file and in the space class of the LC_CTYPE category

of the current locale.

iswupper() Test for a wide uppercase letter, as defined in the upper locale

source file and in the upper class of the LC_CTYPE category of the

current locale.

iswxdigit() Test for a wide hexadecimal digit 0 through 9, a through f, or A

through F, as defined in the xdigit locale source file and in the

xdigit class of the LC_CTYPE category of the current locale.

The behavior of these wide-character function are affected by the LC_CTYPE

category of the current locale. The space, uppercase, and lowercase characters can

be redefined by their respective class of the LC_CTYPE in the current locale. If you

change the category, undefined results can occur.

Returned Value

If the wide integer satisfies the test value, these functions return nonzero.

If the wide integer does not satisfy the test value, these functions return 0.

The value for wc must be representable as a wide unsigned character. WEOF is a

valid input value.

Example

CELEBI06

/* CELEBI06

 This example tests for various wide integer values and prints a result.

 */

#include <stdio.h>

#include <wctype.h>

int main(void)

{

 wint_t wc;

 for (wc=0; wc <= 0xFF; wc++) {

 printf("%3d", wc);

 printf(" %#4x ", wc);

 printf("%3s", iswalnum(wc) ? "AN" : " ");

 printf("%2s", iswalpha(wc) ? "A" : " ");

 printf("%2s", iswcntrl(wc) ? "C" : " ");

 printf("%2s", iswdigit(wc) ? "D" : " ");

 printf("%2s", iswgraph(wc) ? "G" : " ");

 printf("%2s", iswlower(wc) ? "L" : " ");

 printf(" %c", iswprint(wc) ? wc : ' ');

 printf("%3s", iswpunct(wc) ? "PU" : " ");

 printf("%2s", iswspace(wc) ? "S" : " ");

 printf("%3s", iswprint(wc) ? "PR" : " ");

 printf("%2s", iswupper(wc) ? "U" : " ");

 printf("%2s", iswxdigit(wc) ? "X" : " ");

iswalnum to iswxdigit

1040 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

putchar('\n');

 }

}

Related Information

v “wctype.h” on page 100

iswalnum to iswxdigit

Chapter 3. Part 3. Library Functions 1041

iswblank() — Test for Blank Character Classification

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment

C99

Single UNIX Specification, Version 3

both

Format

#include <wctype.h>

int iswblank(wint_t wc);

C99

#define _ISOC99_SOURCE

#include <wctype.h>

int iswblank(wint_t wc);

General Description

Tests for a wide blank character.

The space, uppercase, and lowercase characters can be redefined by their

respective classes of the LC_CTYPE in the current locale.

For Use as a C Library Function

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name, __iswblk(), and the other as shown above. The name shown

above is exposed only when you use the compiler option LANGLVL(EXTENDED) or

define the _EXT feature test macro.

For Use as a z/OS UNIX Function

Define the _OPEN_SYS feature test macro.

Note: The iswblank() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If the wide integer satisfies the test value, iswblank() returns nonzero.

If the wide integer does not satisfy the test value, iswblank() returns 0.

The value for wc must be representable as a wide unsigned char. WEOF is a valid

input value.

The behavior of iswblank() is affected by the LC_CTYPE category of the current

locale. If you change the category, undefined results can occur.

iswblank

1042 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

Related Information

v “wctype.h” on page 100

v “isblank() — Test for Blank Character Classification” on page 1016

v “iswalnum() to iswxdigit() — Test Wide Integer Value” on page 1039

iswblank

Chapter 3. Part 3. Library Functions 1043

iswcntrl() — Test for Control Classification

The information for this function is included in “iswalnum() to iswxdigit() — Test

Wide Integer Value” on page 1039.

iswcntrl

1044 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

iswctype() — Test for Character Property

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wctype.h>

int iswctype(wint_t wc, wctype_t wc_prop);

General Description

Determines whether the wide character wc has the property wc_prop. If the value of

wc is neither WEOF nor any value of the wide character that corresponds to a

multibyte character, the behavior is undefined. If the value of wc_prop is not valid

(that is, not obtained by a previous call to wctype(), or wc_prop has been

invalidated by a subsequent call to setlocale() that has affected category

LC_CTYPE), the behavior is undefined.

These twelve strings are reserved for the standard (basic) character classes: alnum,

alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper, and xdigit.

The functions are shown below with their equivalent isw*() function:

iswctype(wc, wctype("alnum")); - iswalnum(wc);

iswctype(wc, wctype("alpha")); - iswalpha(wc);

iswctype(wc, wctype("blank")); - iswblank(wc);

iswctype(wc, wctype("cntrl")); - iswcntrl(wc);

iswctype(wc, wctype("digit")); - iswdigit(wc);

iswctype(wc, wctype("graph")); - iswgraph(wc);

iswctype(wc, wctype("lower")); - iswlower(wc);

iswctype(wc, wctype("print")); - iswprint(wc);

iswctype(wc, wctype("punct")); - iswpunct(wc);

iswctype(wc, wctype("space")); - iswspace(wc);

iswctype(wc, wctype("upper")); - iswupper(wc);

iswctype(wc, wctype("xdigit")); - iswxdigit(wc);

Returned Value

iswctype() returns nonzero (true) if the wide character wc has the property wc_prop.

Example

CELEBI07

/* CELEBI07

 This example test various wide characters for certain properties and

 prints the result.

 */

#include <stdio.h>

#include <wchar.h>

#include <wctype.h>

iswctype

Chapter 3. Part 3. Library Functions 1045

||||

|
|
|
|
|

||

|

int main(void)

{

 int wc;

 for (wc=0; wc <= 0xFF; wc++) {

 printf("%3d", wc);

 printf(" %#4x ", wc);

 printf("%3s", iswctype(wc, wctype("alnum")) ? "AN" : " ");

 printf("%2s", iswctype(wc, wctype("alpha")) ? "A" : " ");

 printf("%2s", iswctype(wc, wctype("cntrl")) ? "C" : " ");

 printf("%2s", iswctype(wc, wctype("digit")) ? "D" : " ");

 printf("%2s", iswctype(wc, wctype("graph")) ? "G" : " ");

 printf("%2s", iswctype(wc, wctype("lower")) ? "L" : " ");

 printf(" %c", iswctype(wc, wctype("print")) ? wc : ' ');

 printf("%3s", iswctype(wc, wctype("punct")) ? "PU" : " ");

 printf("%2s", iswctype(wc, wctype("space")) ? "S" : " ");

 printf("%3s", iswctype(wc, wctype("print")) ? "PR" : " ");

 printf("%2s", iswctype(wc, wctype("upper")) ? "U" : " ");

 printf("%2s", iswctype(wc, wctype("xdigit")) ? "X" : " ");

 putchar('\n');

 }

}

Related Information

v “wctype.h” on page 100

v “wctype() — Obtain Handle for Character Property Classification” on page 2435

iswctype

1046 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

iswdigit() — Test for Hexadecimal-Digit Classification

The information for this function is included in “iswalnum() to iswxdigit() — Test

Wide Integer Value” on page 1039.

iswgraph() — Test for Graphic Classification

The information for this function is included in “iswalnum() to iswxdigit() — Test

Wide Integer Value” on page 1039.

iswlower() — Test for Lowercase

The information for this function is included in “iswalnum() to iswxdigit() — Test

Wide Integer Value” on page 1039.

iswprint() — Test for Printable Character Classification

The information for this function is included in “iswalnum() to iswxdigit() — Test

Wide Integer Value” on page 1039.

iswpunct() — Test for Punctuation Classification

The information for this function is included in “iswalnum() to iswxdigit() — Test

Wide Integer Value” on page 1039.

iswspace() — Test for Space Character Classification

The information for this function is included in “iswalnum() to iswxdigit() — Test

Wide Integer Value” on page 1039.

iswupper() — Test for Uppercase Letter Classification

The information for this function is included in “iswalnum() to iswxdigit() — Test

Wide Integer Value” on page 1039.

iswxdigit() — Test for Hexadecimal-Digit Classification

The information for this function is included in “iswalnum() to iswxdigit() — Test

Wide Integer Value” on page 1039.

isxdigit() — Test for Hexadecimal-Digit Classification

The information for this function is included in “iswalnum() to iswxdigit() — Test

Wide Integer Value” on page 1039.

iswdigit

Chapter 3. Part 3. Library Functions 1047

itoa() — Convert int into a string

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R5

Format

#define _OPEN_SYS_ITOA_EXT

#include <stdlib.h>

char * itoa(int n, char * buffer, int radix);

General Description

The itoa() function coverts the integer n into a character string. The string is placed

in the buffer passed, which must be large enough to hold the output. The radix

values can be OCTAL, DECIMAL, or HEX. When the radix is DECIMAL, itoa()

produces the same result as the following statement:

(void) sprintf(buffer, "%d", n);

with buffer the returned character string. When the radix is OCTAL, itoa() formats

integer n into an unsigned octal constant. When the radix is HEX, itoa() formats

integer n into an unsigned hexadecimal constant. The hexadecimal value will

include lower case abcdef, as necessary.

Returned Value

String pointer (same as buffer) will be returned. When passed a non-valid radix

argument, function will return NULL and set errno to EINVAL.

Portability Considerations

This is a non-standard function. Even though the prototype given is commonly used

by compilers on other platforms, there is no guarantee that this function will behave

the same on all platforms, in all cases. You can use this function to help port

applications from other platforms, but you should avoid using it when writing new

applications, in order to ensure maximum portability.

Related Information

v “stdlib.h” on page 85

v “lltoa() — Convert long long into a string” on page 1114

v “ltoa() — Convert long into a string” on page 1168

v “ulltoa() — Convert unsigned long long into a string” on page 2288

v “ultoa() — Convert unsigned long into a string” on page 2289

v “utoa() — Convert unsigned int into a string” on page 2323

itoa

1048 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

JoinWorkUnit() — Join a WLM Work Unit

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

int JoinWorkUnit(wlmetok_t *enclavetoken);

General Description

The JoinWorkUnit function provides the ability for an application to join a WLM work

unit.

*enclavetoken Points to a work unit enclave token that was returned from a call to

either CreateWorkUnit() or ContinueWorkUnit().

Returned Value

If successful, JoinWorkUnit() returns 0.

If unsuccessful, JoinWorkUnit() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this function contained an address

that was not accessible to the caller.

EINVAL An argument of this function contained an incorrect

value.

EMVSSAF2ERR An error occurred in the security product.

EMVSWLMERROR The WLM join enclave failed. Use __errno2() to

obtain the WLM service reason code for the failure.

EPERM The calling thread’s address space is not permitted

to the BPX.WLMSERVER Facility class. The

caller’s address space must be permitted to the

BPX.WLMSERVER Facility class if it is defined. If

BPX.WLMSERVER is not defined, the calling

process is not defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “CheckSchEnv() — Check WLM Scheduling Environment” on page 278

v “ConnectServer() — Connect to WLM as a Server Manager” on page 332

v “ConnectWorkMgr() — Connect to WLM as a Work Manager” on page 334

v “ContinueWorkUnit() — Continue WLM Work Unit” on page 343

v “CreateWorkUnit() — Create WLM Work Unit” on page 369

v “DeleteWorkUnit() — Delete a WLM Work Unit” on page 415

v “DisconnectServer() — Disconnect from WLM Server” on page 421

v “LeaveWorkUnit() — Leave a WLM Work Unit” on page 1073

v “QueryMetrics() — Query WLM System Information” on page 1589

JoinWorkUnit

Chapter 3. Part 3. Library Functions 1049

v “QuerySchEnv() — Query WLM Scheduling Environment” on page 1591

JoinWorkUnit

1050 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

jrand48() — Pseudo-Random Number Generator

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

long int jrand48(unsigned short int x16v[3]);

General Description

The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions

generate uniformly distributed pseudo-random numbers using a linear congruential

algorithm and 48-bit integer arithmetic.

The functions drand48() and erand48() return nonnegative, double-precision,

floating-point values, uniformly distributed over the interval [0.0,1.0).

The functions lrand48() and nrand48() return nonnegative, long integers, uniformly

distributed over the interval [0,2**31).

The functions mrand48() and jrand48() return signed long integers, uniformly

distributed over the interval [-2**31,2**31).

The jrand48() function generates the next 48-bit integer value in a sequence of

48-bit integer values, X(i), according to the linear congruential formula:

X(n+1) = (aX(n) + c)mod(2**48) n>=0

The jrand48() function uses storage provided by the argument array, x16v[3], to

save the most recent 48-bit integer value in the sequence, X(i). The jrand48()

function uses x16v[0] for the low-order (rightmost) 16 bits, x16v[1] for the

middle-order 16 bits, and x16v[2] for the high-order 16 bits of this value.

The initial values of a, and c are:

a = 5deece66d (base 16)

c = b (base 16)

The values a and c, may be changed by calling the lcong48() function. The initial

values of a and c are restored if either the seed48() or srand48() function is called.

Special Behavior for z/OS UNIX Services

You can make the jrand48() function and other functions in the drand48 family

thread-specific by setting the environment variable _RAND48 to the value THREAD

before calling any function in the drand48 family.

jrand48

Chapter 3. Part 3. Library Functions 1051

||||

|
|
|

||

|

If you do not request thread-specific behavior for the drand48 family, C/370

serializes access to the storage for X(n), a and c by functions in the drand48 family

when they are called by a multithreaded application.

If thread-specific behavior is requested and the jrand48() function is called from

thread t, the jrand48() function generates the next 48-bit integer value in a

sequence of 48-bit integer values, X(t,i), for the thread according to the linear

congruential formula:

X(t,n+1) = (a(t)X(t,n) + c(t))mod(2**48) n>=0

The jrand48() function uses storage provided by the argument array, x16v[3], to

save the most recent 48-bit integer value in the sequence, X(t,i). The jrand48()

function uses x16v[0] for the low-order (rightmost) 16 bits, x16v[1] for the

middle-order 16 bits, and x16v[2] for the high-order 16 bits of this value.

The initial values of a(t) and c(t) on the thread t are:

a(t) = 5deece66d (base 16)

c(t) = b (base 16)

The values a(t) and c(t) may be changed by calling the lcong48() function from the

thread t. The initial values of a(t) and c(t) are restored if either the seed48() or

srand48() function is called from the thread.

Returned Value

jrand48() saves the generated 48-bit value, X(n+1), in storage provided by the

argument array, x16v[3]. jrand48() transforms the generated 48-bit value to a signed

long integer value on the interval [-2**31,2**31) and returns this transformed value.

Special Behavior for z/OS UNIX Services

If thread-specific behavior is requested for the drand48 family and the jrand48()

function is called on thread t, the jrand48() function saves the generated 48-bit

value, X(t,n+1), in storage provided by the argument array, x16v[3]. The jrand48()

function transforms the generated 48-bit value to a signed long integer value on the

interval [-2**31,2**31) and returns this transformed value.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “erand48() — Pseudo-Random Number Generator” on page 476

v “lcong48() — Pseudo-Random Number Initializer” on page 1065

v “lrand48() — Pseudo-Random Number Generator” on page 1150

v “mrand48() — Pseudo-Random Number Generator” on page 1251

v “nrand48() — Pseudo-Random Number Generator” on page 1307

v “seed48() — Pseudo-Random Number Initializer” on page 1712

v “srand48() — Pseudo-Random Number Initializer” on page 2005

jrand48

1052 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

j0(), j1(), jn() — Bessel Functions of the First Kind

Standards

 Standards / Extensions C or C++ Dependencies

SAA

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double j0(double x);

double j1(double x);

double jn(int n, double x);

Compiler Option

LANGLVL(SAA), LANGLVL(SAAL2), or LANGLVL(EXTENDED)

General Description

The j0(), j1(), and jn() functions are Bessel functions of the first kind, for orders 0, 1,

and n, respectively. Bessel functions are solutions to certain types of differential

equations. The argument x must be positive. The argument n should be greater

than or equal to 0. If n is less than 0, there will be a negative exponent in the result.

Note: This function works in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

If successful, the calculated value is returned.

For j0(), j1(), y0(), or y1(), if the absolute value of x is too large, the function sets

errno to ERANGE to indicate a value that is out of range, and returns 0.

Special Behavior for IEEE

If x is negative, y0(), y1(), and yn() return the value NaNQ. If x is 0, y0(), y1(), and

yn() return the value -HUGE_VAL. In all cases, errno remains unchanged.

Example

CELEBJ01

/* CELEBJ01

 This example computes y to be the order 0 Bessel function of

 the first kind for x, and z to be the order 3 Bessel function

 of the second kind for x.

 */

#include <math.h>

Bessel j functions

Chapter 3. Part 3. Library Functions 1053

||||

|
|
|
|

||

|

#include <stdio.h>

int main(void)

{

 double x, y, z;

 x = 4.27;

 y = j0(x); /* y = −0.3660 is the order 0 bessel */

 /* function of the first kind for x */

 z = yn(3,x); /* z = −0.0875 is the order 3 bessel */

 /* function of the second kind for x */

 printf("x = %f\n y = %f\n z = %f\n", x, y, z);

}

Related Information

v “math.h” on page 60

v “erf(), erfc(), erff(), erfl(), erfcf(), erfcl() — Calculate Error and Complementary

Error Functions” on page 478

v “gamma() — Calculate Gamma Function” on page 736

v “y0(), y1(), yn() — Bessel Functions of the Second Kind” on page 2480

Bessel j functions

1054 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

kill() — Send a Signal to a Process

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _POSIX_SOURCE

#include <signal.h>

int kill(pid_t pid, int sig);

General Description

Sends a signal to a process or process group. A process has permission to send a

signal if the real or effective user ID of the sender is the same as the real or

effective user ID of the intended recipient. A process can also send signals if it has

appropriate privileges. If _POSIX_SAVED_IDS is defined in the unistd.h header file,

the saved set user ID of the intended recipient is checked instead of its effective

user ID.

Regardless of user ID, a process can always send a SIGCONT signal to a process

that is a member of the same session (same session ID) as the sender.

You can use either signal() or sigaction() to specify how a signal will be handled

when kill() is invoked.

A process can use kill() to send a signal to itself. If the signal is not blocked or

ignored, at least one pending unblocked signal is delivered to the sender before

kill() returns. If there are no other pending unblocked signals, the delivered signal is

sig.

pid can be used to specify these processes:

pid_t pid; Specifies the processes that the caller wants to send a signal to:

v If pid is greater than 0, kill() sends its signal to the process

whose ID is equal to pid.

v If pid is equal to 0, kill() sends its signal to all processes whose

process group ID is equal to that of the sender, except for those

that the sender does not have appropriate privileges to send a

signal to.

v If pid is −1, kill() returns −1.

v Special Behavior for XPG4.2: If pid is −1, kill() sends the signal,

sig, to all processes, except for those to which the sender does

not have appropriate privileges to send a signal.

v If pid is less than −1, kill() sends its signal to all processes

whose process group ID is equal to the absolute value of pid,

except for those that the sender does not have appropriate

privileges to send a signal to.

kill

Chapter 3. Part 3. Library Functions 1055

||||

|
|
|
|

||

|

int sig; The signal that should be sent to the processes specified by pid.

(For a list of signals, see Table 47 on page 1881.) This must be 0

or one of the signals defined in the signal.h header file. If sig is 0,

kill() performs error checking but does not send a signal. You can

code sig as 0 to check whether the pid argument is valid.

This function is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information. You can use it to pass SIGIOERR.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

kill() returns 0 if it has permission to send sig to any of the processes specified by

pid.

If kill() fails to send a signal, it returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL The value of sig is incorrect or is not the number of a supported

signal.

EPERM The caller does not have permission to send the signal to any

process specified by pid.

ESRCH There are no processes or process groups corresponding to pid.

Example

CELEBK01

/* CELEBK01 */

#define _POSIX_SOURCE

#include <signal.h>

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

#include <sys/wait.h> /*FIX: used to be <wait.h>*/

main() {

 sigset_t sigset;

 int p[2], status;

 char c='z';

 pid_t pid;

 if (pipe(p) != 0)

 perror("pipe() error");

 else {

 if ((pid = fork()) == 0) {

 sigemptyset(&sigset);

 puts("child is letting parent know he's ready for signal");

 write(p[1], &c, 1);

 puts("child is waiting for signal");

 sigsuspend(&sigset);

 exit(0);

 }

 puts("parent is waiting for child to say he's ready for signal");

 read(p[0], &c, 1);

 puts("child has told parent he's ready for signal");

kill

1056 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

kill(pid, SIGTERM);

 wait(&status);

 if (WIFSIGNALED(status))

 if (WTERMSIG(status) == SIGTERM)

 puts("child was ended with a SIGTERM");

 else

 printf("child was ended with a %d signal\n", WTERMSIG(status));

 else puts("child was not ended with a signal");

 close(p[0]);

 close(p[1]);

 }

}

Output

parent is waiting for child to say he’s ready for signal

child is letting parent know he’s ready for signal

child is waiting for signal

child has told parent he’s ready for signal

child was ended with a SIGTERM

Related Information

v “signal.h” on page 77

v “unistd.h” on page 96

v “bsd_signal() — BSD Version of signal()” on page 218

v “getpid() — Get the Process ID” on page 826

v “killpg() — Send a Signal to a Process Group” on page 1058

v “pthread_kill() — Send a Signal to a Thread” on page 1474

v “raise() — Raise Signal” on page 1595

v “setsid() — Create Session, Set Process Group ID” on page 1841

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigignore() — Set Disposition to Ignore a Signal” on page 1910

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigrelse() — Remove a Signal from a Thread” on page 1932

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

kill

Chapter 3. Part 3. Library Functions 1057

killpg() — Send a Signal to a Process Group

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

int killpg(pid_t pgrp, int sig);

General Description

The killpg() function sends a signal to a process group.

A process has permission to send a signal if the real or effective user ID of the

sender is the same as the real or effective user ID of the intended recipient. A

process can also send signals if it has appropriate privileges. If

_POSIX_SAVED_IDS is defined in the <unistd.h> include file, the saved set user ID

of the intended recipient is checked instead of its effective user ID.

Regardless of user ID, a process can always send a SIGCONT signal to a process

group that is a member of the same session (same session ID) as the sender.

pid_t pgrp; Specifies the process group that the caller wants to send a signal

to:

v If pgrp is greater than one, killpg() sends the signal, sig, to the

process whose process group ID is equal to pgrp and which the

sender has appropriate privileges to send a signal.

v If pgrp is equal to or less than one, killpg() returns a −1 and sets

errno to EINVAL.

int sig; The signal that should be sent to the processes specified by pid.

(For a list of signals, see Table 47 on page 1881.) This must be

zero, or one of the signals defined in the <signal.h> include file. If

sig is zero, killpg() performs error checking but doesn’t really send a

signal. You can code sig as zero to check whether the pid argument

is valid.

This function is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

If successful, killpg() returns 0 if it has permission to send sig to any of the

processes in the process group ID specified by pgrp.

If unsuccessful, killpg() returns −1 and sets errno to one of the following values:

killpg

1058 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

Error Code Description

EINVAL The value of sig is incorrect or is not the number of a supported

signal, or the value of pgrp is less than or equal to one.

EPERM The caller does not have permission to send the signal to any

process in the process group ID specified by pgrp.

ESRCH There are no process groups corresponding to pgrp.

Related Information

v “signal.h” on page 77

v “bsd_signal() — BSD Version of signal()” on page 218

v “getpgid() — Get Process Group ID” on page 823

v “getpid() — Get the Process ID” on page 826

v “kill() — Send a Signal to a Process” on page 1055

v “raise() — Raise Signal” on page 1595

v “setsid() — Create Session, Set Process Group ID” on page 1841

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigignore() — Set Disposition to Ignore a Signal” on page 1910

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigrelse() — Remove a Signal from a Thread” on page 1932

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

killpg

Chapter 3. Part 3. Library Functions 1059

labs() — Calculate Long Absolute Value

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

long int labs(long int n);

General Description

Calculates the absolute value of its long integer argument n. The result is undefined

when the argument is equal to LONG_MIN, the smallest available long integer (-2 147

483 648). The value LONG_MIN is defined in the limits.h header file.

Returned Value

Returns the absolute value of the long integer argument n.

Example

CELEBL01

/* CELEBL01

 This example computes y as the absolute value of

 the long integer −41567.

 */

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 long x, y;

 x = −41567L;

 y = labs(x);

 printf("The absolute value of %ld is %ld\n", x, y);

}

Output

The absolute value of -41567 is 41567

Related Information

v “stdlib.h” on page 85

v “abs(), absf(), absl() — Calculate Integer Absolute Value” on page 118

v “fabs(), fabsf(), fabsl() — Calculate Floating-Point Absolute Value” on page 511

labs

1060 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

__lchattr() — Change the Attributes of a File or Directory when they

point to a symbolic or external link.

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R5

Format

#define _OPEN_SYS_FILE_EXT 1

#include <sys/stat.h>

int __lchattr (char *pathname, attrib_t *attributes, int attributes_len);

General Description

The __lchattr() function modifies the attributes that are associated with a file. The

pathname specifies a symbolic or external link (a pointer to another file, directory, or

data set).

The __lchattr() service changes the attributes of the symbolic link itself, provided

the attributes requested can apply to a symbolic link. Only the owner and security

label can be changed for a symbolic link, all other attributes do not apply and will

be ignored.

The attributes argument is the address of an attrib_t structure which is used to

identify the attributes to be modified and the new values desired. The attrib_t type is

an f_attributes structure as defined in <sys/stat.h> for use with the __lchattr()

function. For proper behavior, the user should ensure that this structure has been

initialized to zeros before it is populated. The f_attributes structure is defined as

indicated in Table 23 on page 267.

Returned Value

If successful, __lchattr() returns 0.

If unsuccessful, __lchattr() returns -1 and sets errno to one of the following values:

EACCES

The calling process did not have appropriate permissions. Possible reasons

include:

v The calling process was attempting to set access time or modification

time to current time, and the effective UID of the calling process does not

match the owner of the file; the process does not have write permission

for the file; or the process does not have appropriate privileges.

v The calling process was attempting to truncate the file, and it does not

have write permission for the file.

EFBIG

The calling process was attempting to change the size of a file, but the

specified length is greater than the maximum file size limit for the process.

EINVAL

The attributes structure containing the requested changes is not valid.

__lchattr

Chapter 3. Part 3. Library Functions 1061

ELOOP

A loop exists in symbolic links that were encountered during resolution of

the pathname argument. This error is issued if more than 24 symbolic links

are detected in the resolution of pathname.

ENAMETOOLONG

pathname is longer than 1023 characters, or a component of the pathname

is longer than 255 characters (Filename truncation is not supported).

ENOENT

No file named pathname was found.

ENOTDIR

Some component of pathname is not a directory.

EPERM

The operation is not permitted for one of the following reasons:

v The calling process was attempting to change the mode or the file

format, but the effective UID of the calling process does not match the

owner of the file, and the calling process does not have appropriate

privileges.

v The calling process was attempting to change the owner, but it does not

have appropriate privileges.

v The calling process was attempting to change the general attribute bits,

but it does not have write permission for the file.

v The calling process was attempting to set a time value (not current time),

but the effective user ID does not match the owner of the file, and it does

not have appropriate privileges.

v The calling process was attempting to set the change time or reference

time to current time, but it does not have write permission for the file.

v The calling process was attempting to change auditing flags, but the

effective UID of the calling process does not match the owner of the file,

and the calling process does not have appropriate privileges.

v The calling process was attempting to change the Security Auditor’s

auditing flags, but the user does not have auditor authority.

v Attributes indicate that the security label is to be set, and one or more of

the following conditions applies:

– The calling process does not have RACF SPECIAL authorization and

appropriate privileges.

– The security label currently associated with the file is already set.

EROFS

pathname specifies a file that is on a read-only file system.

Related Information

v “sys/stat.h” on page 89

v “__fchattr() — Change the Attributes of a File or Directory by File Descriptor” on

page 516

v “__chattr() — Change the Attributes of a File or Directory” on page 267

__lchattr

1062 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

lchown() — Change Owner and Group of a File

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int lchown(const char *path, uid_t owner, gid_t group);

General Description

The lchown() function has the same effect as chown() except in the case where the

named file is a symbolic link. In this case lchown() changes the ownership of the

symbolic link file itself, while chown() changes the ownership of the file or directory

to which the symbolic link refers.

Returned Value

If successful, lchown() returns 0.

If unsuccessful, lchown() returns -1 and sets errno to one of the following values:

Error Code Description

EACCES Search permission is denied on a component of the path prefix of

path.

EINVAL The owner or group id is not a value supported by the

implementation.

ELOOP Too many symbolic links were encountered in resolving path

ENAMETOOLONG

The length of a pathname exceeds PATH_MAX or a pathname

component is longer than NAME_MAX.

ENOENT A component of path does not name an existing file or path is an

empty string.

ENOTDIR A component of the path prefix of path is not a directory.

EOPNOTSUPP

The path argument names a symbolic link and the implementation

does not support setting the owner or group of a symbolic link.

EPERM The effective user ID does not match the owner of the file and the

process does not have appropriate privileges.

EROFS The file resides on a read-only file system.

The lchown() function may fail if:

Error Code Description

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading or writing to the file system.

lchown

Chapter 3. Part 3. Library Functions 1063

||||

|
|
||

|

ENAMETOOLONG

Pathname resolution of a symbolic link produced an intermediate

result whose length exceeds PATH_MAX.

Related Information

v “unistd.h” on page 96

v “chown() — Change the Owner or Group of a File or Directory” on page 283

v “symlink() — Create a Symbolic Link to a Pathname” on page 2107

lchown

1064 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

lcong48() — Pseudo-Random Number Initializer

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

void lcong48(unsigned short int param[7]);

General Description

The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions

generate uniformly distributed pseudo-random numbers using a linear congruential

algorithm and 48-bit integer arithmetic.

The lcong48(), seed48(), and srand48() functions are initialization functions, one of

which should be invoked before either the drand48(), lrand48() or mrand48()

function is called.

The drand48(), lrand48() and mrand48() functions generate a sequence of 48-bit

integer values, X(i), according to the linear congruential formula:

X(n+1) = (aX(n) + c)mod(2**48) n>=0

The initial values of X, a, and c are:

X(0)= 1

a = 5deece66d (base 16)

c = b (base 16)

C/370 provides storage to save the most recent 48-bit integer value of the

sequence, X(i). This storage is shared by the drand48(), lrand48() and mrand48()

functions. The lcong48() function is used to reinitialize the most recent 48-bit value

in this storage. The lcong48() function replaces the low-order (rightmost) 16 bits of

this storage with param[0], the middle-order 16 bits with param[1], and the

high-order 16 bits with param[2].

The values a and c, may also be changed by calling the lcong48() function. The

lcong48() function replaces the low-order (rightmost) 16 bits of a with param[3], the

middle-order 16 bits with param[4], and the high-order 16 bits with param[5]. The

lcong48() function replaces c with param[6].

Special Behavior for z/OS UNIX Services

You can make the lcong48() function and other functions in the drand48 family

thread-specific by setting the environment variable _RAND48 to the value THREAD

before calling any function in the drand48 family.

If you do not request thread-specific behavior for the drand48 family, C/370

serializes access to the storage for X(n), a and c by functions in the drand48 family

when they are called by a multithreaded application.

lcong48

Chapter 3. Part 3. Library Functions 1065

||||

|
|
|

||

|

If thread-specific behavior is requested, calls to the drand48(), lrand48() and

mrand48() functions from thread t generate a sequence of 48-bit integer values,

X(t,i), according to the linear congruential formula:

X(t,n+1) = (a(t)X(t,n) + c(t))mod(2**48) n>=0

C/370 provides thread-specific storage to save the most recent 48-bit integer value

of the sequence, X(t,i). When the lcong48() function is called from thread t, it

reinitializes the most recent 48-bit value in this storage. The lcong48() function

replaces the low-order (rightmost) 16 bits of this storage with param[0], the

middle-order 16 bits with param[1], and the high-order 16 bits with param[2].

The lcong48() function may also be used to change values of a(t) and c(t) for the

thread t. The lcong48() function replaces the low-order (rightmost) 16 bits of a(t)

with param[3], the middle-order 16 bits with param[4], and the high-order 16 bits

with param[5]. The lcong48() function replaces c(t) with param[6].

Returned Value

After lcong48() has used values from the argument array, param[7], to change the

values of a and c and to reinitialized storage for the most recent 48-bit integer value

in the sequence, X(i), it returns.

Special Behavior for z/OS UNIX Services

If thread-specific behavior is requested for the drand48 family and lcong48() is

called on thread t, it uses the argument array, param[7], to change the values of

a(t) and c(t) and to reinitialize storage for the most recent 48-bit integer value in the

sequence, X(t,i), for the thread. Then it returns.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “erand48() — Pseudo-Random Number Generator” on page 476

v “jrand48() — Pseudo-Random Number Generator” on page 1051

v “lrand48() — Pseudo-Random Number Generator” on page 1150

v “mrand48() — Pseudo-Random Number Generator” on page 1251

v “nrand48() — Pseudo-Random Number Generator” on page 1307

v “seed48() — Pseudo-Random Number Initializer” on page 1712

v “srand48() — Pseudo-Random Number Initializer” on page 2005

lcong48

1066 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ldexp(), ldexpf(), ldexpl() — Multiply by a Power of Two

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double ldexp(double x, int exp);

float ldexp(float x, int exp); /* C++ only */

long double ldexp(long double x, int exp); /* C++ only */

float ldexpf(float x, int exp);

long double ldexpl(long double x, int exp);

General Description

Calculates the value of x*(2exp).

Returned Value

Returns the calculated value.

Otherwise, if the correct calculated value is outside the range of representable

values, ±HUGE_VAL is returned, according to the sign of the value. The value

ERANGE is stored in errno to indicate that the result was out of range.

Special Behavior for XPG4.2

Error Code Description

ERANGE The result underflowed. ldexp() returns 0.0.

Example

CELEBL02

/* CELEBL02

 This example computes y = 1.5*&lpar.2**5&rpar.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y;

 int p;

 x = 1.5;

 p = 5;

ldexp, ldexpf, ldexpl

Chapter 3. Part 3. Library Functions 1067

||||

|
|
|
|
|
|
|

||

|

y = ldexp(x,p);

 printf("%lf times 2 to the power of %d is %Lf\n", x, p, y);

}

Output

1.500000 times 2 to the power of 5 is 48.000000

Related Information

v “math.h” on page 60

v “frexp(), frexpf(), frexpl() — Extract Mantissa and Exponent of the Floating-Point

Value” on page 678

v “modf(), modff(), modfl() — Extract Fractional and Integral Parts of Floating-Point

Value” on page 1237

ldexp, ldexpf, ldexpl

1068 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ldexpd32(), ldexpd64(), ldexpd128() — Multiply by a Power of Ten

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 ldexpd32(_Decimal32 x, int exp);

_Decimal64 ldexpd64(_Decimal64 x, int exp);

_Decimal128 ldexpd128(_Decimal128 x, int exp);

_Decimal32 ldexp(_Decimal32 x, int exp); /* C++ only */

_Decimal64 ldexp(_Decimal64 x, int exp); /* C++ only */

_Decimal128 ldexp(_Decimal128 x, int exp); /* C++ only */

General Description

Calculates the value of x*10exp.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

Returns the calculated value.

Otherwise, if the correct calculated value is outside the range of representable

values, ±HUGE_VAL_D32, ±HUGE_VAL_D64, or ±HUGE_VAL_D128 is returned,

according to the sign of the value. The value ERANGE is stored in errno to indicate

that the result was out of range.

Example

/* CELEBL19

 This example illustrates the ldexpd32() function.

 This example computes y = 1.5*10**5

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal32 x, y;

 int p;

 x = 1.5DF;

 p = 5;

ldexpd32, ldexpd64, ldexpd128

Chapter 3. Part 3. Library Functions 1069

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

y = ldexpd32(x, p);

 printf("%Hf times 10 to the power of %d is %Hf\n", x, p, y);

}

Related Information

v “math.h” on page 60

v “frexpd32(), frexpd64(), frexpd128() — Extract Mantissa and Exponent of the

Decimal Floating-Point Value” on page 680

v “ldexp(), ldexpf(), ldexpl() — Multiply by a Power of Two” on page 1067

v “modfd32(), modfd64(), modfd128() — Extract Fractional and Integral Parts of

Decimal Floating-Point Value” on page 1239

ldexpd32, ldexpd64, ldexpd128

1070 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|
|
|
|
|

ldiv() — Compute Quotient and Remainder of Integral Division

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

ldiv_t ldiv(long int numerator, long int denominator);

General Description

Calculates the quotient and remainder of the division of numerator by denominator.

Returned Value

Returns a structure of type ldiv_t, containing both the quotient long int quot and

the remainder long int rem.

If the value cannot be represented, the returned value is undefined. If denominator

is 0, a divide by 0 exception is raised.

Example

CELEBL03

/* CELEBL03

 This example uses the &ldiv. function to calculate the

 quotients and remainders for a set of two dividends and two

 divisors.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 long int num[2] = {45,−45};

 long int den[2] = {7,−7};

 ldiv_t ans; /* ldiv_t is a struct type containing two long ints:

 'quot' stores quotient; 'rem' stores remainder */

 short i,j;

 printf("Results of long division:\n");

 for (i = 0; i < 2; i++)

 for (j = 0; j < 2; j++)

 {

 ans = ldiv(num[i], den[j]);

 printf("Dividend: %6ld Divisor: %6ld", num[i], den[j]);

 printf(" Quotient: %6ld Remainder: %6ld\n", ans.quot, ans.rem);

 }

}

ldiv

Chapter 3. Part 3. Library Functions 1071

||||

|
|
|
|
|

||

|

Output

Results of long division:

Dividend: 45 Divisor: 7 Quotient: 6 Remainder: 3

Dividend: 45 Divisor: -7 Quotient: -6 Remainder: 3

Dividend: -45 Divisor: 7 Quotient: -6 Remainder: -3

Dividend: -45 Divisor: -7 Quotient: 6 Remainder: -3

Related Information

v “stdlib.h” on page 85

v “div() — Calculate Quotient and Remainder” on page 423

ldiv

1072 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

LeaveWorkUnit() — Leave a WLM Work Unit

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

int LeaveWorkUnit(wlmetok_t *enclavetoken);

General Description

The LeaveWorkUnit() function provides the ability for an application to leave a WLM

work unit.

*enclavetoken Points to a work unit enclave token that was returned from a call to

CreateWorkUnit() or ContinueWorkUnit().

Returned Value

If successful, LeaveWorkUnit() returns 0.

If unsuccessful, LeaveWorkUnit() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained an incorrect value.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

The WLM leave enclave failed. Use __errno2() to obtain the WLM

service reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class if it is defined.

If BPX.WLMSERVER is not defined, the calling process is not

defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “CheckSchEnv() — Check WLM Scheduling Environment” on page 278

v “ConnectServer() — Connect to WLM as a Server Manager” on page 332

v “ConnectWorkMgr() — Connect to WLM as a Work Manager” on page 334

v “ContinueWorkUnit() — Continue WLM Work Unit” on page 343

v “CreateWorkUnit() — Create WLM Work Unit” on page 369

v “DeleteWorkUnit() — Delete a WLM Work Unit” on page 415

v “DisconnectServer() — Disconnect from WLM Server” on page 421

v “JoinWorkUnit() — Join a WLM Work Unit” on page 1049

v “QueryMetrics() — Query WLM System Information” on page 1589

LeaveWorkUnit

Chapter 3. Part 3. Library Functions 1073

v “QuerySchEnv() — Query WLM Scheduling Environment” on page 1591

LeaveWorkUnit

1074 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__le_cib_get() — Get Condition Information Block

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both AMODE 64

Format

#include <__le_api.h>

struct cib *__le_cib_get(void);

General Description

Returns the Condition Information Block (CIB) structure associated with the current

signal.

Notes:

1. This function is valid when called while a Language Environment exception

handler is running.

2. This function is valid when called while a POSIX(OFF) signal catcher is running.

3. This function is valid when called while a POSIX(ON) signal catcher is running,

if the signal is generated and caught immediately to the same thread.

__le_cib_get() will fail if called from POSIX(ON) signal catchers that are driven

as a result of signals generated by another thread or process. It may also fail

when called from a catcher, if the caught signal is from the same thread but was

delayed by blocking or by other signals being delivered at the same time.

Returned Value

If there is an active condition the returned value is a pointer to the currently active

CIB. If there is more than one active condition, the returned CIB will be for the most

recent (most deeply nested) condition.

NULL is returned there is no active CIB, and the errno will be set to EMVSERR.

Error Code Description

EMVSERR No active CIB is available.

__le_cib_get

Chapter 3. Part 3. Library Functions 1075

__le_condition_token_build() — Build a Language Environment

Condition Token

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both AMODE 64

Format

#include <__le_api.h>

void *__le_condition_token_build(_INT2 * c_1, _INT2 * c_2,

 _INT2 * format, _INT2 * severity,

 _INT2 * control, _CHAR3 facility_ID,

 _INT4 * i_s_info,

 _FEEDBACK * cond_token,

 _FEEDBACK * fc);

General Description

Dynamically constructs a 16–byte Language Environment condition token. The

condition token is only to be used to retrieve messages from a Language

Environment message file.

Parameter Description

c_1 c_1 is a 2–byte binary integer representing the value of the first 2

bytes of the 4–byte condition_ID. c_1 and c_2 make up the

condition_ID portion of the condition token.

c_2 c_2 is a 2–byte binary integer representing the value of the second

2 bytes of the 4–byte condition_ID.

 For format 1, this is the Msg_No; for format 2, the cause_code.

format A 2–byte binary integer defining the format of the condition_ID

portion of the token.

severity A 2–byte binary integer indicating the condition’s severity. In both

format 1 and 2 conditions, this field is used to test the condition’s

severity. For format 1 conditions, the value of this field is the same

as the severity value specified in the condition_ID.

Possible severity Values:

0 = Information only, if entire token is 0 there is no

 information.

1 = Warning

2 = Error

3 = Severe Error

4 = Critical Error

control A 2–byte binary integer containing flags describing or controlling

various aspects of condition handling. Valid values for the control

field are 1 and 0. 1 indicates the facility_ID assigned by IBM, 0

indicates the facility_ID assigned by the user.

facility_ID A 3 character field containing three alphanumeric characters (A-Z,

__le_condition_token_build

1076 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

a-z, and 0-9) identifying the product or component of a product

generating this condition or feedback information, for example,

CEE.

 The facility_ID is associated with the repository of the run-time

messages. If a unique ID is required (for IBM and non-IBM

products), an ID can be obtained by contacting an IBM project

office.

 If you creat a new facility_ID to use with a message table, created

using the CEEBLDTX utility, be aware that the facility_ID must be

part of the Language Environment message table name. For more

information about the CEEBLDTX utility, see z/OS Language

Environment Programming Guide. It is important to follow the

naming guidelines below in order to have a module name that does

not cause your application to abend.

 First, begin a non-IBM assigned product facility_ID with letters J

through Z. (See the control parameter above to indicate whether

the facility_ID has been assigned by IBM.) Secondly, special

characters, including blank spaces, cannot be used in a facility_ID.

Lastly, there are no other constraints (besides the alphanumeric

requirement) on a non-IBM assigned facility_ID.

i_s_info A fullword binary integer identifying the ISI, that contains insert

data.

cond_token A 16–byte representation of the constructed condition token.

fc A 16–byte Feedback Code indicating the results of this function.

 Table 36. Resulting Feedback Codes:

Code Severity Message

Number

Message Text

CEE000 0 - - The function completed successfully.

CEE0CH 3 401 A non-valid case code case-code was

passed to routine routine-name.

CEE0CI 3 402 A non-valid control code control-code was

passed to routine routine-name.

CEE0CJ 3 403 A non-valid severity code severity-code was

passed to routine routine-name.

CEE0CK 3 404 Facility ID, facility-id, with non-alphanumeric

characters was passed to routine

routine-name.

CEE0E4 1 452 An invalid facility ID facility-id was passed to

routine routine-name.

Application Usage

1. The structure of the condition token (type _FEEDBACK) is described in the

″__le_api.h″ header file shipped with Language Environment. You can assign

values directly to the fields of the token in the header file without using the

__le_condition_token_build() function.

2. This condition token is only to be used to retrieve messages from a Language

Environment message table.

__le_condition_token_build

Chapter 3. Part 3. Library Functions 1077

Related Information

v “__le_api.h” on page 55

__le_condition_token_build

1078 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__le_msg_add_insert() — Add Insert to a Language Environment

Message

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both AMODE 64

Format

#include <__le_api.h>

void *__le_msg_add_insert(_FEEDBACK * cond_token,

 _INT4 * insert_seq_num,

 _VSTRING * insert_data,

 _FEEDBACK * fc);

General Description

Copies message insert data and loads the address of that data into the Instance

Specific Information (ISI) associated with the condition being processed. The

number of ISIs per thread is limited to 15.

Parameter Description

cond_token A 16–byte condition token that defines the condition for which the

q_data_token is retrieved.

insert_seq_num

A 4–byte integer that contains the insert sequence number (such as

insert 1 insert 2). It corresponds to an insert number specified with

an :ins. tag in the message source file created by the CEEBLDTX

utility. For more information about the CEEBLDTX utility see z/OS

Language Environment Programming Guide.

insert_data A halfword-prefixed length string, used without truncation, that

represents the insert data. DBCS strings must be enclosed within

shift-out (0x0E) and shift-in (0x0F) characters.

Note: The maximum size for an individual insert item is 254 bytes.

fc A 16–byte Feedback Code indicating the results of this function.

 Table 37. Resulting Feedback Codes:

Code Severity Message

Number

Message Text

CEE000 0 - - The function completed successfully.

CEE0EB 3 459 Not enough storage was available to create

a new Instance Specific Information block.

CEE0EC 1 460 Multiple instances of the condition token

with message number message-number

and facility ID facility-id were detected.

CEE0ED 3 461 The maximum number of unique message

insert blocks was reached. This condition

token had it’s I_S_info field set to 1.

__le_msg_add_insert

Chapter 3. Part 3. Library Functions 1079

Table 37. Resulting Feedback Codes: (continued)

CEE0EE 3 462 Instance Specific Information for the

condition token with message number

message-number and facility ID facility-id

could not be found.

CEE0EF 3 463 The maximum size for an insert data item

was exceeded be located.

CEE0H9 3 553 An internal error was detected in creating

the inserts for a condition.

Application Usage

z/OS UNIX System Services consideration – In multithreaded applications,

__le_msg_add_insert() applies to message insert data for only the invoking thread.

Related Information

v “__le_api.h” on page 55

v “__le_msg_get() — Get a Language Environment Message” on page 1081

v “__le_msg_get_and_write() — Get and output a Language Environment

Message” on page 1083

v “__le_msg_write() — Output a Language Environment Message to stderr” on

page 1085

__le_msg_add_insert

1080 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__le_msg_get() — Get a Language Environment Message

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both AMODE 64

Format

#include <__le_api.h>

void *__le_msg_get(_FEEDBACK * cond_token,

 _CHAR80 message_area,

 _INT4 * msg_index,

 _FEEDBACK * fc);

General Description

Retrieves, formats, and stores, in a passed message area, a Language

Environment message corresponding to a user supplied condition token. The caller

can later retrieve the message to modify or to write as output.

Parameter Description

cond_token A 16–byte condition token supplied by the invoker.

message_area A fixed-length 80 character string, where the message is placed.

Note: The message is left-justified and padded on the right with

blanks.

msg_index A 4–byte binary integer returned to the invoker.

 The msg_index should be set to zero on the first invocation of

__le_msg_get(). If a message is too large to be contained in the

message_area, msg_index is returned as an index into the

message. This index is used on subsequent invocations to retrieve

the remaining portion of the message. Feedback Code is also

returned, indicating the message has been truncated. When the

entire message is returned, msg_index is zero.

 msg_idex contains different results based on the length of the

message.

v If a message contains fewer than 80 characters, the entire

message is returned on the first invocation. msg_index contains

0.

v If a message contains exactly 80 characters, the entire message

is returned on the first invocation. msg_index contains 0.

v If the message is more than 80 characters it is split into

segments. The msg_index does not contain the cumulative index

for the entire message returned, but contains only the index of

the segment that was just returned. It is up to the user to

maintain the cumulative count if needed. When a message is too

long, the following can occur:

– If a message contains more than 80 characters and at least

one blank is contained in the first 80 characters, the string up

to and including the last blank is returned on the first

invocation.

__le_msg_get

Chapter 3. Part 3. Library Functions 1081

– If the 80th character is non-blank (even if the 81st character is

a blank), msg_index contains the index of the last blank

(something less than 80), and the next invocation starts with

the next character.

– If the 80th character is a blank, msg_index contains 80 and

the next invocation starts with the 81st character, blank or

non-blank.

– If a message contains more than 80 characters and at least

the first 80 are all non-blank, the first 80 are returned. The

next invocation does not add any blanks and starts with the

81st character. msg_index contains 80.

fc A 16–byte Feedback Code indicating the results of this function.

 Table 38. Resulting Feedback Codes:

Code Severity Message

Number

Message Text

CEE000 0 - - The function complete successfully.

CEE036 3 102 An unrecognized condition token was

passed to the function and could not be

used.

CEE0E2 3 450 The message inserts for the condition token

with message number message-number

and facility ID facility-id could not be

located.

CEE0E6 3 454 The message number message-number

could not be found for facility ID facility-id.

CEE0E7 1 455 The message with message number

message-number and facility ID facility-id

was truncated.

CEE0EA 1 458 The message repository repository-name

could not be located.

Application Usage

z/OS UNIX System Services consideration – In multithreaded applications,

__le_msg_get() affects only the invoking thread. However, __le_msg_get() uses the

NATLANG value of the enclave. Any subsequent calls to __le_msg_get(), for a

given condition, use the NATLANG value in effect at the time of the first invocation.

Related Information

v “__le_api.h” on page 55

v “__le_msg_add_insert() — Add Insert to a Language Environment Message” on

page 1079

v “__le_msg_get_and_write() — Get and output a Language Environment

Message” on page 1083

v “__le_msg_write() — Output a Language Environment Message to stderr” on

page 1085

__le_msg_get

1082 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__le_msg_get_and_write() — Get and output a Language Environment

Message

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both AMODE 64

Format

#include <__le_api.h>

void *__le_msg_get_and_write(_FEEDBACK * cond_token,

 _INT4 * destination_code,

 _FEEDBACK * fc);

General Description

Retrieves, formats, and stores, in a passed message area, a Language

Environment message corresponding to a user supplied condition token. The caller

can later retrieve the message to modify or to write as output.

Parameter Description

cond_token A 16–byte condition token supplied by the invoker.

destination_code

A 4–byte binary integer written to ’stderr’. The only acceptable value

for is 2.

fc A 16–byte Feedback Code indicating the results of this function.

 Table 39. Resulting Feedback Codes:

Code Severity Message

Number

Message Text

CEE000 0 - - The function completed successfully.

CEE0E2 3 450 The message inserts for the condition token

with message number message-number

and facility ID facility-id could not be

located.

CEE0E3 3 451 An invalid destination code destination-code

was passed to routine routine.

CEE0E6 3 454 The message number message-number

could not be found for facility ID facility-id.

CEE0E9 1 457 The message file destination ddname could

not be located.

CEE0EA 1 458 The message repository repository-name

could not be located.

CEE3CT 3 3,485 An internal message service error occurred

while locating the message number within a

message file.

CEE3CU 3 3,486 An internal message service error occurred

while formatting a message.

__le_msg_get_and_write

Chapter 3. Part 3. Library Functions 1083

Table 39. Resulting Feedback Codes: (continued)

CEE3CV 3 3,487 An internal message service error occurred

while locating a message number within the

ranges specified in the repository.

Application Usage

z/OS UNIX System Services consideration – In multithreaded applications,

__le_msg_get_and_write() affects only the invoking thread. When multiple threads

write to ’stderr’ the output is interwoven by line. To group lines of output, serialize

’stderr’ access (for example, by using a mutex).

Related Information

v “__le_api.h” on page 55

v “__le_msg_add_insert() — Add Insert to a Language Environment Message” on

page 1079

v “__le_msg_get() — Get a Language Environment Message” on page 1081

v “__le_msg_write() — Output a Language Environment Message to stderr” on

page 1085

__le_msg_get_and_write

1084 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__le_msg_write() — Output a Language Environment Message to

stderr

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both AMODE 64

Format

#include <__le_api.h>

void *__le_msg_write(_VSTRING * message_string,

 _INT4 * destination_code,

 _FEEDBACK * fc);

General Description

Writes a user-defined Language Environment message string to ’stderr’.

Parameter Description

message_string

A halfword-prefixed printable character string containing a message.

DBCS characters must be enclosed within shift-out (0x0F) and

shift-in (0x0E) characters.

 Insert data cannot be placed in the message with __le_msg_write().

The halfword-prefixed message string must contain only printable

characters and be a length greater than zero. Unpredictable results

will occur if the byte following the halfword prefix is 0x00.

destination_code

A 4–byte binary integer written to ’stderr’. The only acceptable value

is 2.

fc A 16–byte Feedback Code indicating the results of this function.

 Table 40. Resulting Feedback Codes:

Code Severity Message

Number

Message Text

CEE000 0 - - The function completed successfully.

CEE0E3 3 451 An invalid destination code destination-code

was passed to routine routine.

CEE0E9 3 457 The message file destination ddname could

not be located.

Application Usage

z/OS UNIX System Services consideration – In multithreaded applications,

__le_msg_write() affects only the invoking thread. When multiple threads write to

’stderr’ the output is interwoven by line. To group lines of output, serialize ’stderr’

access (for example, by using a mutex).

Related Information

v “__le_api.h” on page 55

__le_msg_write

Chapter 3. Part 3. Library Functions 1085

v “__le_msg_add_insert() — Add Insert to a Language Environment Message” on

page 1079

v “__le_msg_get() — Get a Language Environment Message” on page 1081

v “__le_msg_get_and_write() — Get and output a Language Environment

Message” on page 1083

__le_msg_write

1086 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__le_debug_set_resume_mch() — Move the resume cursor to a

predefined location represented by a machine state

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both AMODE 64

Format

#include <__le_api.h>

void __le_debug_set_resume_mch(__mch_t * position,

 _FEEDBACK * fc);

General Description

Moves the resume cursor to a predefined location represented by the machine

state.

Parameter Description

position A pointer to a valid machine state block to which the resume cursor

is moved.

fc A 16–byte Feedback Code indicating the results of this function.

 Table 41. Resulting Feedback Codes:

Code Severity Message

Number

Message Text

CEE000 0 - - The function completed successfully.

CEE07V 3 255 Position parameter not a machine state

Related Information

v “__le_api.h” on page 55

__le_debug_set_resume_mch

Chapter 3. Part 3. Library Functions 1087

__le_traceback() – call chain traceback service

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both z/OS V1.9

AMODE 64

Format

#include <__le_api.h>

void __le_traceback(int cmd, void* cmd_parms, _FEEDBACK *fc);

General Description

The __le_traceback() function assists in tracing the call chain. It identifies the

language, program unit, entry point, current location, caller’s DSA, and other

information from the address of a DSA for a program unit. This is essential for

creating meaningful traceback messages.

 Argument Description

int cmd The following __le_traceback() commands are used

Command Description

__TRACEBACK_FIELDS

Information that can be used to create a

traceback message is returned in

individual fields.

void* cmd_parms A pointer to a structure that contains additional command

specific parameters. For the command

__TRACEBACK_FIELDS, this parameter must point to a

__tf_parms_t

__le_traceback

1088 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||

|
|

|

|
|
|

|

|
|
|
|

|||

||

||

|
|
|
|

||
|
|
|

Argument Description

_FEEDBACK* fc A 16-byte feedback code is returned in this parameter.

The following symbolic conditions can result from this

service:

CEE000

Severity: 0

Msg_No: N/A

Message: The service completed successfully.

CEE310

Severity: 3

Msg_No: 3104

Message: Information could not be successfully extracted

for this DSA. It is likely that the dsaptr parameter does

not point to an actual DSA or save area.

CEE316

Severity: 2

Msg_No: 3110

Message: The cmd parameter is not a valid command for

__le_traceback().

CEE3NS

Severity: 1

Msg_No: 3836

Message: A statement number is not available for this

DSA. DWARF data in the load module is corrupted.

CEE3NT

Severity: 1

Msg_No: 3837

Message: Statement numbers are not available. The

explicit DLL load of DLL CDAEQED failed with feadback

code feedback-code.

CEE3NU

Severity: 1

Msg_No: 3838

Message: Statement numbers are not available. The

explicit DLL load of DLL CDAEQDPI failed with feadback

code feedback-code.

CEE3NV

Severity: 1

Msg_No: 3839

Message: Statement numbers are not available. The

explicit DLL load of DLL CELQDSNF failed with feadback

code feedback-code.

__le_traceback

Chapter 3. Part 3. Library Functions 1089

||

||

|
|

|

|

|

|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

The __tf_parms_s structure is defined as follows:

typedef struct __tf_string_s {

 size_t __tf_bufflen;

 char* __tf_buff;

} __tf_string_t;

typedef struct __tf_parms_s {

 /**/

 /* Input */

 /**/

 void* __tf_dsa_addr;

 void* __tf_caa_addr;

 void* __tf_call_instruction;

 /**/

 /* Output related to input DSA */

 /**/

 void* __tf_ pu_addr;

 void* __tf_ entry_addr;

 struct __cib* __tf_cib_addr;

 uint8_t __tf_member_id;

 int __tf_is_main:1;

 int :23;

 int :32;

 __tf_string_t __tf_pu_name;

 __tf_string_t __tf_entry_name;

 __tf_string_t __tf_statement_id;

 /**/

 /* Output related to caller’s DSA */

 /**/

 void* __tf_caller_dsa_addr;

 void* __tf_caller_call_instruction;

} __tf_parms_t;

The following are members of the structure:

 void* __tf_dsa_addr The address of the DSA for the current

routine in the traceback. When this field is

zero on input, the address of the DSA for the

caller of __le_traceback() will be used and

the address will be returned. No attempt is

made to verify that the input is a DSA.

Incorrect input can lead to unpredictable

results.

void* __tf_caa_addr The address of the CAA associated with the

DSA. When this field is zero on input, the

address of the CAA for the current thread will

be used and the address will be returned. No

attempt is made to verify that the input is a

CAA. Incorrect input can lead to

unpredictable results.

__le_traceback

1090 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|||
|
|
|
|
|
|
|

||
|
|
|
|
|
|

void* __tf_call_instruction The address of the instruction that caused

transfer out of the routine. This is either the

address of a BASR, BRAS or BRASL

instruction if transfer was made by

subroutine call, or the address of the

interrupted statement if transfer was caused

by an exception. When multiple calls are

made to __le_traceback() to scan the call

chain, the callers_call_instruction (described

below) returned from the previous call can be

used here. If the address is not known, this

field should be set to zero. When this field is

zero on input and the address can be

determined, it will be returned.

void* __tf_pu_addr The address of the start of the program unit

for the routine associated with the DSA is

returned in this field. If the program unit

address cannot be determined, this field is

set to zero.

void* __tf_entry_addr The address of the entry point into the

routine associated with the DSA is returned

in this field. If the entry point address cannot

be determined, this parameter is set to zero.

struct __cib* __tf_cib_addr The address of the CIB (struct __cib)

associated with the DSA, if an exception

occurred, is returned in this field. If no

exception occurred, this field is set to zero.

Note that if an exception caused transfer out

of the routine, the state of the registers after

the last instruction ran in the routine is saved

in the CIB, rather than in the DSA.

uint8_t __tf_member_id The member identifier for the routine

associated with the DSA will be returned in

this field. If the member ID cannot be

determined, this field is set to negative one.

int __tf_is_main:1 In this field, one of the following values is

returned:

v 0 The routine associated with the DSA is

not the main program.

v 1 The routine associated with the DSA is

the main program.

__le_traceback

Chapter 3. Part 3. Library Functions 1091

||
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|

||
|
|
|

||
|
|
|
|
|
|
|

||
|
|
|

||
|

|
|

|
|

__tf_string_t __tf_pu_name A structure that will be used to return the

name of the program unit containing the

routine associated with the DSA. The

structure has the following fields:

char* __tf_buff

The address of a buffer in which the

entry point name will be returned.

The name will be returned in the

buffer as a null terminated string.

size_t __tf_bufflen

The size of the buffer

If the program unit name cannot be

determined, the buffer is set to a null string.

If the program unit name cannot fit within the

supplied string, it is truncated. (Truncation of

DBCS preserves even byte count and SI/SO

pairing.) If __tf_buff is NULL or __tf_bufflen

is zero, the program unit name is not

returned.

__tf_string_t __tf_entry_name A structure that will be used to return the

name of the entry point into the routine

associated with the DSA. The structure has

the following fields:

char* __tf_buff

The address of a buffer in which the

entry point name will be returned.

The name will be returned in the

buffer as a null terminated string.

size_t __tf_bufflen

The size of the buffer

If the entry point name cannot be

determined, the buffer is set to a null string.

If the entry point name cannot fit within the

supplied string, it is truncated. (Truncation of

DBCS preserves even byte count and SI/SO

pairing.) If __tf_buff is NULL or __tf_bufflen

is zero, the entry point name is not returned

__le_traceback

1092 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

||
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

__tf_string_t __tf_statement_id A structure that will be used to return the

identifier of the statement containing the

instruction which caused transfer out of the

routine associated with the DSA. The

structure has the following fields:

char* __tf_buff

The address of a buffer in which the

entry point name will be returned.

The name will be returned in the

buffer as a null terminated string.

size_t __tf_bufflen

The size of the buffer

If the statement id cannot be determined, the

buffer is set to a null string. If the statement

id cannot fit within the supplied string, it is

truncated. (Truncation of DBCS preserves

even byte count and SI/SO pairing.) If

__tf_buff is NULL or __tf_bufflen is zero, the

statement id is not returned

void* __tf_callers_dsa_addr The address of the DSA for the caller is

returned in this field. If the address of the

caller’s DSA cannot be determined or is not

valid (points to inaccessible storage), then

this field is set to zero.

void* __tf_callers_call_instruction The address of the instruction that caused

transfer out of the caller is returned in this

field. This is either the address of a BASR,

BRAS or BRASL instruction if transfer was

made by subroutine call, or the address of

the interrupted statement if transfer was

caused by an exception. If the address

cannot be determined, this parameter is set

to zero.

Example

#include <__le_api.h>

#include <stdlib.h>

int main() {

 __tf_parms_t tbck_parms;

 char pu_name[256];

 char entry_name[256];

 char statement_id[256];

 _FEEDBACK fc;

 int rc;

 tbck_parms.__tf_pu_name. __tf_bufflen = sizeof(pu_name);

 tbck_parms.__tf_entry_name. __tf_bufflen = sizeof(entry_name);

 tbck_parms.__tf_statement_id. __tf_bufflen = sizeof(statement_id);

 tbck_parms.__tf_pu_name. __tf_buff = pu_name;

 tbck_parms.__tf_entry_name. __tf_buff = entry_name;

 tbck_parms.__tf_statement_id. __tf_buff = statement_id;

 tbck_parms.__tf_dsa_addr = 0;

 tbck_parms.__tf_caa_addr = 0;

 tbck_parms.__tf_call_instruction = 0;

__le_traceback

Chapter 3. Part 3. Library Functions 1093

||
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

||
|
|
|
|

||
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

do {

 _le_traceback(__TRACEBACK_FIELDS, &tbck_parms, &fc);

 if (fc.tok_sev >= 2) {

 printf("Error: __le_traceback() failed.\n");

 break;

 }

 printf("Entry=%s Offset=%c%x Line=%s\n",

 tbck_parms.__tf_entry_name.__tf_buff,

 tbck_parms.__tf_call_instruction

 < tbck_parms.__tf_entry_addr ? ’-’ : ’+’,

 abs((int)((long)tbck_parms.__tf_call_instruction

 - (long)tbck_parms.__tf_entry_addr)),

 tbck_parms.__tf_statement_id.__tf_buff

);

 tbck_parms.__tf_dsa_addr = tbck_parms.__tf_caller_dsa_addr;

 tbck_parms.__tf_call_instruction =

 tbck_parms.__tf_caller_call_instruction;

 } while (!tbck_parms.__tf_is_main);

 return 0;

}

Output

Entry=main Offset=+da Line=28

Entry=CELQINIT Offset=+134c Line=

Related Information

v “__le_api.h” on page 55

__le_traceback

1094 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

lfind() — Linear Search Routine

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <search.h>

void *lfind(const void *key, const void *base, size_t *nelp,

 size_t width, int (*compar)(const void *, const void *));

General Description

The lfind() function is the same as a lsearch() except that if the entry is not found, it

is not added to the table. Instead, a NULL pointer is returned.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, lfind() cannot receive a

C++ function pointer as the comparator argument. If you attempt to pass a C++

function pointer to lfind(), the compiler will flag it as an error. You can pass a C or

C++ function to lfind() by declaring it as extern ″C″.

Returned Value

If the searched-for entry is found, lfind() returns a pointer to it.

If not found, lfind() returns a NULL pointer.

No errors are defined.

Related Information

v “search.h” on page 77

v “bsearch() — Search Arrays” on page 220

v “hsearch() — Search Hash Tables” on page 911

v “lsearch() — Linear Search and Update” on page 1160

v “tsearch() — Binary Tree Search” on page 2257

lfind

Chapter 3. Part 3. Library Functions 1095

||||

|
|
|

||

|

lgamma(), lgammaf(), lgammal() — Log Gamma Function

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <math.h>

double lgamma(double x);

extern int signgam;

int *__signgam(void);

C99

#define _ISOC99_SOURCE

#include <math.h>

double lgamma(double x);

float lgammaf(float x);

long double lgammal(long double x);

General Description

The lgamma() function computes the

where

is defined as

The sign of

is returned in the external integer signgam. The argument x may not be a

non-positive integer.

In a multithreaded process, each thread has its own instance of the signgam

variable. Threads access their instances of the variable by calling the __signgam()

function. See “__signgam() — Return signgam Reference” on page 1923. The

log (x)
e

(x)

e dtt-t (x - 1)

(x)

lgamma

1096 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

math.h header (see “math.h” on page 60) redefines the string “signgam” to an

invocation of the __signham function. The actual signgam external variable is used

to store the signgam value for the IPT.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

lgamma X X

lgammaf X X

lgammal X X

Returned Value

If successful, lgamma() returns the above function of its argument.

lgamma() will fail under the following conditions:

v If the result overflows, the function will return HUGE_VAL and set errno to

ERANGE.

v If x is a non-positive integer and _XOPEN_SOURCE is defined, lgamma() returns

HUGE_VAL and sets errno to EDOM.

v If x is a non-positive integer and _ISOC99_SOURCE is defined, lgamma()

returns HUGE_VAL and sets errno to ERANGE.

Note: If both _XOPEN_SOURCE and _ISOC99_SOURCE are defined, the

_ISOC99_SOURCE behavior will take precedence.

Example

/*

 This example uses lgamma() to calculate ln(|G(x)|), where x = 42.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x=42, g_at_x;

 g_at_x = exp(lgamma(x)); /* g_at_x = 3.345253e+49 */

 printf ("The value of G(%4.2f) is %7.2e\n", x, g_at_x);

}

Output

The value of G(42.00) is 3.35e+49

Related Information

v “math.h” on page 60

v “exp(), expf(), expl() — Calculate Exponential Function” on page 498

v “isnan() — Test for NaN” on page 1032

v “__signgam() — Return signgam Reference” on page 1923

lgamma

Chapter 3. Part 3. Library Functions 1097

__librel() — Query Release Level

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <stdlib.h>

int __librel(void);

General Description

Provides the release level of the z/OS XL C/C++ library. To use this function, you

must compile with LANGLVL(EXTENDED).

Returned Value

Returns the z/OS XL C/C++ Specific Library release level that your z/OS XL C or

z/OS XL C++ program is using. The value is meant to be printed in a hexadecimal

format. The first byte of the value returned contains the product and version,

second byte the release, and the third and fourth bytes contain the modification

level. For C programs running under the C/370 Specific Library (the common library

version), the product designation is 0.

The following diagram shows the formats of the 32-bit int returned by the versions

of __librel().

The C/370 V2R2 version of __librel() returns 0x02020000

 ||||||

 ||||--- Mod level

 ||----- Release

 ------- Version

In this case, the high-order 8 bits are used to return the version number.

The OS/390 R8 version of __librel() returns 0x22080000

 ||||||

 ||||--- Mod level

 ||----- Release level

 |------ Version level

 ------- Product 2 (OS/390)

The OS/390 R9 version of __librel() returns 0x22090000

 ||||||

 ||||--- Mod level

 ||----- Release level

 |------ Version level

 ------- Product 2 (OS/390)

The OS/390 R10 version of __librel() returns 0x220A0000

 ||||||

 ||||--- Mod level

 ||----- Release level

 |------ Version level

 ------- Product 2 (OS/390)

__librel

1098 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Note: When running under z/OS 1.1, __librel() returns the same value as for

OS/390 R10.

The z/OS 1.2 version of __librel() returns 0x41020000

 ||||||

 ||||---Mod level

 ||-----Release level

 |------Version level

 -------Product 4 (z/OS)

The z/OS 1.3 version of __librel() returns 0x41030000

 ||||||

 ||||---Mod level

 ||-----Release level

 |------Version level

 -------Product 4 (z/OS)

The z/OS 1.4 version of __librel() returns 0x41040000

 ||||||

 ||||---Mod level

 ||-----Release level

 |------Version level

 -------Product 4 (z/OS)

The z/OS 1.5 version of __librel() returns 0x41050000

 ||||||

 ||||---Mod Level

 ||-----Release level

 |------Version level

 -------Product 4 (z/OS)

The z/OS 1.6 version of __librel() returns 0x41060000

 ||||||

 ||||---Mod Level

 ||-----Release level

 |------Version level

 -------Product 4 (z/OS)

The z/OS 1.7 version of __librel() returns 0x41070000

 ||||||

 ||||---Mod Level

 ||-----Release level

 |------Version level

 -------Product 4 (z/OS)

The z/OS 1.8 version of __librel() returns 0x41080000

 ||||||

 ||||---Mod Level

 ||-----Release level

 |------Version level

 -------Product 4 (z/OS)

The z/OS 1.9 version of __librel() returns 0x41090000

 ||||||

 ||||---Mod Level

 ||-----Release level

 |------Version level

 -------Product 4 (z/OS)

In these cases, these 8 bits are divided into two fields. The first 4 bits contain the

product number and the second 4 bits contain the version number.

Note: When running under z/OS.e, __librel() returns the same value as for z/OS.

__librel

Chapter 3. Part 3. Library Functions 1099

|
|
|
|
|
|
|

Example

CELEBL04

/* CELEBL04

 This example calls the __librel() function that returns

 the library release level your program is currently

 using in the following hexadecimal format 0xPVRRMMMM.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 printf("The current release of the library is: %X\n",__librel());

}

Output

The current release of the library is: 41090000

Related Information

v “stdlib.h” on page 85

__librel

1100 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

link() — Create a Link to a File

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int link(const char *oldfile, const char *newname);

General Description

Provides an alternative pathname for the existing file, so that the file can be

accessed by either the old or the new name. link() creates a link from the pathname

newname to an existing file, with the pathname oldfile. The link can be stored in the

same directory as the original file or in a completely different one.

Links are allowed to files only, not to directories.

This is a hard link, which ensures the existence of a file even after its original name

has been removed.

If link() successfully creates the link, it increments the link count of the file. The link

count tells how many links there are to the file. At the same time, link() updates the

change time of the file, and the change time and modification time of the directory

that contains newname (that is, the directory that holds the link). If link() fails, the

link count is not incremented.

If oldfile names a symbolic link, link() creates a link that refers to the file that results

from resolving the pathname contained in the symbolic link. If newname names a

symbolic link, link() fails and sets errno to EEXIST.

Returned Value

If successful, link() returns 0.

If unsuccessful, link() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The process did not have appropriate permissions to create the

link. Possible reasons include no search permission on a pathname

component of oldfile or newname, no write permission on the

directory intended to contain the link, or no permission to access

oldfile.

EEXIST Either newname refers to a symbolic link, or a file or directory with

the name newname already exists.

EINVAL Either oldfile or newname is incorrect, because it contains a NULL.

ELOOP A loop exists in symbolic links. This error is issued if the number of

link

Chapter 3. Part 3. Library Functions 1101

||||

|
|
|
|

||

|

symbolic links encountered during resolution of oldfile or newname

is greater than POSIX_SYMLOOP.

EMLINK oldfile already has its maximum number of links. The maximum

number of links to a file is given by LINK_MAX, which you can

determine by using pathconf() or fpathconf().

ENAMETOOLONG

oldfile or newname is longer than PATH_MAX, or a component of

one of the pathnames is longer than NAME_MAX while

_POSIX_NO_TRUNC is in effect. For symbolic links, the length of

the pathname string substituted for a symbolic link in oldfile or

newname exceeds PATH_MAX. The PATH_MAX and NAME_MAX

values can be determined using pathconf().

ENOENT A pathname component of oldfile or newname does not exist, or

oldfile itself does not exist, or one of the two arguments is an empty

string.

ENOSPC The directory intended to contain the link cannot be extended to

contain another entry.

ENOTDIR A pathname component of one of the arguments is not a directory.

EPERM oldfile is the name of a directory, and links to directories are not

supported.

EROFS Creating the link would require writing on a read-only file system.

EXDEV oldfile and newname are on different file systems.

Example

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

main() {

 char fn[]="link.example.file";

 char ln[]="link.example.link";

 int fd;

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(fd);

 if (link(fn, ln) != 0) {

 perror("link() error");

 unlink(fn);

 }

 else {

 unlink(fn);

 unlink(ln);

 }

 }

}

Related Information

v “unistd.h” on page 96

v “rename() — Rename File” on page 1666

link

1102 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “symlink() — Create a Symbolic Link to a Pathname” on page 2107

v “unlink() — Remove a Directory Entry” on page 2312

link

Chapter 3. Part 3. Library Functions 1103

listen() — Prepare the Server for Incoming Client Requests

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int listen(int socket, int backlog);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

int listen(int socket, int backlog);

General Description

The listen() function applies only to stream sockets. It indicates a readiness to

accept client connection requests, and creates a connection request queue of

length backlog to queue incoming connection requests. Once full, additional

connection requests are rejected.

Parameter

Description

socket The socket descriptor.

backlog

Defines the maximum length for the queue of pending connections.

The listen() call indicates a readiness to accept client connection requests. It

transforms an active socket into a passive socket. Once called, socket can never be

used as an active socket to initiate connection requests. Calling listen() is the third

of four steps that a server performs to accept a connection. It is called after

allocating a stream socket with socket(), and after binding a name to socket with

bind(). It must be called before calling accept().

If the backlog is less than 0, backlog is set to 0. If the backlog is greater than

SOMAXCONN, as defined in sys/socket.h, backlog is set to SOMAXCONN.

For AF_UNIX sockets, this value is variable and can be set in the application. For

AF_INET and AF_INET6 sockets, the value cannot exceed the maximum number of

connections allowed by the installed TCP/IP.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

listen

1104 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

Returned Value

If successful, listen() returns 0.

If unsuccessful, listen() returns -1 and sets errno to one of the following values:

Error Code Description

EBADF The socket parameter is not a valid socket descriptor.

EDESTADDRREQ

The socket is not bound to a local address, and the protocol does

not support listening on an unbound socket.

EINVAL An invalid argument was supplied. The socket is not named (a

bind() has not been done), or the socket is ready to accept

connections (a listen() has already been done). The socket is

already connected.

ENOBUFS Insufficient system resources are available to complete the call.

ENOTSOCK The descriptor is for a file, not for a socket.

EOPNOTSUPP

The socket parameter is not a socket descriptor that supports the

listen() call.

Related Information

v “sys/socket.h” on page 89

v “accept() — Accept a New Connection on a Socket” on page 120

v “bind() — Bind a Name to a Socket” on page 211

v “connect() — Connect a Socket” on page 325

v “socket() — Create a Socket” on page 1970

listen

Chapter 3. Part 3. Library Functions 1105

llabs() — Calculate Absolute Value of Long Long Integer

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

C99

Single UNIX Specification, Version 3

both OS/390 V2R10

Format

#include <stdio.h>

long long llabs(long long int n);

Compile Requirement

Use of this function requires the long long data type. See z/OS XL C/C++ Language

Reference for information on how to make long long available.

General Description

Calculates the absolute value of its long long integer argument n. The result is

undefined when the argument is equal to LONGLONG_MIN, the smallest available long

long integer (-9 223 372 036 854 775 808). The value LONGLONG_MIN is defined in

the limits.h header file.

Returned Value

Returns the absolute value of the long long integer argument n.

Related Information

v “stdio.h” on page 82

v “stdlib.h” on page 85

v “limits.h” on page 55

v “labs() — Calculate Long Absolute Value” on page 1060

llabs

1106 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

lldiv() — Compute Quotient and Remainder of Integral Division for

Long Long Type

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

C99

Single UNIX Specification, Version 3

both OS/390 V2R10

Format

#include <stdio.h>

long long lldiv(long long numer, long long denom);

Compile Requirement

Use of this function requires the long long data type. See z/OS XL C/C++ Language

Reference for information on how to make long long available.

General Description

Calculates the quotient and remainder of the division of numerator by denominator.

Returned Value

Returns a structure of type lldiv_t, containing both the quotient long long quot

and the remainder long long rem.

If the value cannot be represented, the returned value is undefined. If denominator

is 0, a divide by 0 exception is raised.

Example

 /*

 This example uses the

 lldiv() function to calculate the quotients and

 remainders for a set of two dividends and two divisors.

 */

 #define _LONG_LONG 1

 #include <stdio.h>

 #include <stdlib.h>

 int main(void)

 {

 long long num[2] = {45,-45};

 long long den[2] = {7,-7};

 lldiv_t ans; /* lldiv_t is a struct type containing

 two long long int fields:

 ’quot’ stores quotient; ’rem’ stores remainder */

 short i,j;

 printf("Results of long division:\n");

 for (i = 0; i < 2; i++)

 for (j = 0; j < 2; j++)

 {

 ans = lldiv(num[i], den[j]);

 printf("Dividend: %6lld Divisor: %6lld", num[i], den[j]);

lldiv

Chapter 3. Part 3. Library Functions 1107

||||

|
|
|

||

|

printf(" Quotient: %6lld Remainder: %6lld\n", ans.quot,

 ans.rem);

 }

 }

Output

 Results of long division:

 Dividend: 45 Divisor: 7 Quotient: 6 Remainder: 3

 Dividend: 45 Divisor: -7 Quotient: -6 Remainder: 3

 Dividend: -45 Divisor: 7 Quotient: -6 Remainder: -3

 Dividend: -45 Divisor: -7 Quotient: 6 Remainder: -3

Related Information

v “stdio.h” on page 82

v “stdlib.h” on page 85

v “div() — Calculate Quotient and Remainder” on page 423

v “ldiv() — Compute Quotient and Remainder of Integral Division” on page 1071

lldiv

1108 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

llround(), llroundf(), llroundl() — Round to the Nearest Integer

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

long long int llround(double x);

long long int llroundf(float x);

long long int llroundl(long double x);

Compile Requirement

Use of this function requires the long long data type. See z/OS XL C/C++ Language

Reference for information on how to make long long available.

General Description

The llround() family of functions round x to the nearest integer, rounding halfway

cases away from zero, regardless of the current rounding mode.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

llround X X

llroundf X X

llroundl X X

Returned Value

If successful, they return the rounded integer. If the correct value is positive or

negative and too large to represent as a long long, a domain error will occur and

an unspecified value is returned.

Example

/*

 * This program illustrates the use of llround() function

 *

 */

#define _ISOC99_SOURCE

#include <math.h>

#include <_Ieee754.h> /* fpc functions */

#include <stdio.h>

void main() {

 _FP_fpcreg_t save_rmode;

llround, llroundf, llroundl

Chapter 3. Part 3. Library Functions 1109

||||

|
|
||

|

long long int rnd2nearest;

 double number;

 printf("Illustrates the llround() function\n\n");

 save_rmode.rmode = _RMODE_RZ;

 __fpc_sm(save_rmode.rmode); /* set rounding mode to round to zero */

 number=501.1;

 rnd2nearest = llround(number);

 printf ("llround(%.1f) = %lli\n",number, rnd2nearest);

 number=1.5;

 rnd2nearest = llround(number);

 printf ("llround(%.1f) = %lli\n",number, rnd2nearest);

 number=-2.5;

 rnd2nearest = llround(number);

 printf ("llround(%.1f) = %lli\n",number, rnd2nearest);

}

Output

Illustrates the llround() function

llround(501.1) = 501

llround(1.5) = 2

llround(-2.5) = -3

Related Information

v “math.h” on page 60

v “ceil(), ceilf(), ceill() — Round Up to Integral Value” on page 251

v “floor(), floorf(), floorl() — Round Down to Integral Value” on page 609

v “lrint(), lrintf(), lrintl() and llrint(), llrintf(), llrintl() — Round the Argument to the

Nearest Integer” on page 1152

v “lround(), lroundf(), lroundl() — Round a Decimal Floating-point Number to its

Nearest Integer” on page 1157

v “nearbyint(), nearbyintf(), nearbyintl() — Round the Argument to the Nearest

Integer” on page 1287

v “rint(), rintf(), rintl() — Round to Nearest Integral Value” on page 1689

v “round(), roundf(), roundl() — Round to the Nearest Integer” on page 1695

v “trunc(), truncf(), truncl() — Truncate an integer value” on page 2251

llround, llroundf, llroundl

1110 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

llroundd32(), llroundd64(), llroundd128() — Round to the Nearest

Integer

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

long long int llroundd32(_Decimal32 x);

long long int llroundd64(_Decimal64 x);

long long int llroundd128(_Decimal128 x);

long long int llround(_Decimal32 x); /* C++ only */

long long int llround(_Decimal64 x); /* C++ only */

long long int llround(_Decimal128 x); /* C++ only */

Note:

Use of this function requires the long long data type. See z/OS XL C/C++

Language Reference for information on how to make long long available.

General Description

The llround() family of functions round x to the nearest integer, rounding halfway

cases away from zero, regardless of the current rounding mode.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, they return the rounded integer. If the correct value is positive or

negative and too large to represent as a long long, a domain error will occur and an

unspecified value is returned.

Example

/* CELEBL21

 This example illustrates the llroundd32() function.

*/

#pragma strings(readonly)

#define __STDC_WANT_DEC_FP__

#include <fenv.h>

#include <math.h>

#include <stdio.h>

/* pass back printable rounding mode */

llroundd32, llroundd64, llroundd128

Chapter 3. Part 3. Library Functions 1111

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

static

char *rm_str(int rm)

{

 char *s = "undetermined";

 switch (rm)

 {

 case FE_DEC_TONEAREST :

 s = "FE_DEC_TONEAREST" ; break;

 case FE_DEC_TOWARDZERO :

 s = "FE_DEC_TOWARDZERO" ; break;

 case FE_DEC_UPWARD :

 s = "FE_DEC_UPWARD" ; break;

 case FE_DEC_DOWNWARD :

 s = "FE_DEC_DOWNWARD" ; break;

 case FE_DEC_TONEARESTFROMZERO :

 s = "FE_DEC_TONEARESTFROMZERO" ; break;

 case _FE_DEC_TONEARESTTOWARDZERO :

 s = "_FE_DEC_TONEARESTTOWARDZERO" ; break;

 case _FE_DEC_AWAYFROMZERO :

 s = "_FE_DEC_AWAYFROMZERO" ; break;

 case _FE_DEC_PREPAREFORSHORTER :

 s = "_FE_DEC_PREPAREFORSHORTER" ; break;

 }

 return s;

}

/* Try out one passed−in number with rounding mode */

static try_rm(int rm, _Decimal32 d32)

{

 long long int ll;

 (void)fe_dec_setround(rm);

 ll = llroundd32(d32);

 printf("llroundd32(%+.2HF) = %+lld − rounding mode = %s\n",

 d32 , ll, rm_str(rm)

);

 return;

}

int main()

{

 try_rm(FE_DEC_TONEAREST , 501.50DF);

 try_rm(FE_DEC_TOWARDZERO , 501.50DF);

 try_rm(FE_DEC_UPWARD , −501.51DF);

 try_rm(FE_DEC_DOWNWARD , −501.49DF);

 try_rm(FE_DEC_TONEARESTFROMZERO , 500.50DF);

 try_rm(_FE_DEC_TONEARESTTOWARDZERO, −501.50DF);

 try_rm(_FE_DEC_AWAYFROMZERO , 500.49DF);

 try_rm(_FE_DEC_PREPAREFORSHORTER , 501.50DF);

 return 0;

}

Related Information

v “math.h” on page 60

v “ceild32(), ceild64(), ceild128() — Round Up to Integral Value” on page 253

v “floord32(), floord64(), floord128() — Round Down to Integral Value” on page 611

llroundd32, llroundd64, llroundd128

1112 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

v “llround(), llroundf(), llroundl() — Round to the Nearest Integer” on page 1109

v “lrintd32(), lrintd64(), lrintd128() and llrintd32(), llrintd64(), llrintd128() — Round

the Argument to the Nearest Integer” on page 1154

v “lroundd32(), lroundd64(), lroundd128() — Round a Floating-point Number to its

Nearest Integer” on page 1158

v “nearbyintd32(), nearbyintd64(), nearbyintd128() — Round the Argument to the

Nearest Integer” on page 1289

v “rintd32(), rintd64(), rintd128() — Round to Nearest Integral Value” on page 1690

v “roundd32(), roundd64(), roundd128() — Round to the Nearest Integer” on page

1696

v “truncd32(), truncd64(), truncd128() — CTruncate an integer value” on page 2252

llroundd32, llroundd64, llroundd128

Chapter 3. Part 3. Library Functions 1113

|
|
|
|
|
|
|
|
|
|
|

lltoa() — Convert long long into a string

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R5

Format

#define _OPEN_SYS_ITOA_EXT

#include <stdlib.h>

char * lltoa(int64_t ll, char * buffer, int radix);

Compile Requirement

Use of this function requires the long long data type. See z/OS XL C/C++ Language

Reference for information on how to make long long available.

General Description

The lltoa() function coverts the int64_t ll into a character string. The string is placed

in the buffer passed, which must be large enough to hold the output. The radix

values can be OCTAL, DECIMAL, or HEX. When the radix is DECIMAL, lltoa()

produces the same result as the following statement:

(void) sprintf(buffer, "%lld", ll);

with buffer the returned character string. When the radix is OCTAL, lltoa() formats

int64_t ll into an unsigned octal constant. When the radix is HEX, lltoa() formats

int64_t ll into an unsigned hexadecimal constant. The hexadecimal value will

include lower case abcdef, as necessary.

Returned Value

String pointer (same as buffer) will be returned. When passed an invalid radix

argument, function will return NULL and set errno to EINVAL.

Portability Considerations

This is a non-standard function. Even though the prototype given is commonly used

by compilers on other platforms, there is no guarantee that this function will behave

the same on all platforms, in all cases. You can use this function to help port

applications from other platforms, but you should avoid using it when writing new

applications, in order to ensure maximum portability.

Related Information

v “stdlib.h” on page 85

v “itoa() — Convert int into a string” on page 1048

v “ltoa() — Convert long into a string” on page 1168

v “ulltoa() — Convert unsigned long long into a string” on page 2288

v “ultoa() — Convert unsigned long into a string” on page 2289

v “utoa() — Convert unsigned int into a string” on page 2323

lltoa

1114 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

localdtconv() — Date/Time Formatting Convention Inquiry

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <locale.h>

struct dtconv *localdtconv(void);

General Description

Determines the date/time format information of the current locale.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

Returned Value

Returns the address of the dtconv structure:

struct dtconv {

 char *abbrev_month_names[12]; /* Abbreviated month names */

 char *month_names[12]; /* full month names */

 char *abbrev_day_names[7]; /* Abbreviated day names */

 char *day_names[7]; /* full day names */

 char *date_time_format; /* date and time format */

 char *date_format; /* date format */

 char *time_format; /* time format */

 char *am_string; /* AM string */

 char *pm_string; /* PM string */

 char *time_format_ampm; /* long date format */

 char *iso_std8601_2000; /* ISO 8601:2000 std date format*/

};

The dtconv structure is an IBM extension that stores values from the LC_TIME

category of the current locale. It is initialized by the setlocale() function and copied

to the user-supplied dtconv when localdtconv() is called.

The dtconv structure can be overwritten by subsequent calls to localdtconv() and

setlocale() with LC_ALL or LC_TIME.

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

localdtconv

Chapter 3. Part 3. Library Functions 1115

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localeconv() — Query Numeric Conventions” on page 1117

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “setlocale() — Set Locale” on page 1811

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

v “tzset() — Set the Time Zone” on page 2279

localdtconv

1116 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

localeconv() — Query Numeric Conventions

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <locale.h>

struct lconv *localeconv(void);

General Description

Sets the components of a structure having type struct lconv to values appropriate

for the current locale. The structure may be overwritten by another call to

localeconv() or by calling setlocale() and passing LC_ALL, LC_MONETARY, or

LC_NUMERIC.

For a list of the elements in the lconv structure, see Table 9 on page 57.

Pointers to strings with a value of ″″ indicate that the value is not available in the C

locale or is of 0 length. char types with a value of UCHAR_MAX indicate that the

value is not available in the current locale.

Returned Value

Returns a pointer to the structure.

Example

CELEBL06

/* CELEBL06

 This example prints out the default decimal point for your locale and

 then the decimal point for the Fr_CA locale.

 */

#include <stdio.h>

#include <locale.h>

int main(void)

{

 char * string;

 struct lconv * mylocale;

 mylocale = localeconv();

 /* Display default decimal point */

 printf("Default decimal point is a %s\n",

 mylocale−>decimal_point);

 if (NULL != (string = setlocale(LC_ALL, "Fr_CA.IBM−1047")))

 {

 mylocale = localeconv();

 /* A comma is set to be the decimal point

 when the locale is Fr_CA.IBM−1047 */

localeconv

Chapter 3. Part 3. Library Functions 1117

||||

|
|
|
|
|

||

|

printf("French−speaking Canadian decimal point is a %s\n",

 mylocale−>decimal_point);

 }

 else {

 printf("setlocale(LC_ALL, Fr_CA.IBM−1047) returned <NULL>\n");

 }

 return 0;

}

Output

Default decimal-point is a .

French-speaking Canadian decimal-point is a ,

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “setlocale() — Set Locale” on page 1811

localeconv

1118 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

localtime() — Convert Time and Correct for Local Time

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <time.h>

struct tm *localtime(const time_t *timeval);

General Description

Converts the calendar time pointed to by timeval to a broken-down time expressed

in local time. Calendar time is usually obtained by a call to the time() function.

Returned Value

Returns a pointer to a tm structure containing the broken-down time, expressed as

a local time, and corresponding to the calendar time pointed to by timeval. If the

calendar time cannot be converted, localtime() returns a NULL pointer. See “time.h”

on page 93 for a description of the fields of the tm structure.

Error Code

Description

EOVERFLOW

The result cannot be represented.

 Notes:

v This function is sensitive to time zone information which is provided by:

– The TZ environmental variable when POSIX(ON) and TZ is correctly defined,

or by the _TZ environmental variable when POSIX(OFF) and _TZ is correctly

defined.

– The LC_TOD category of the current locale if POSIX(OFF) or TZ is not

defined.

The time zone external variables tzname, timezone, and daylight declarations

remain feature test protected in time.h.

v The ctime(), localtime(), and mktime() functions now return Coordinated Universal

Time (UTC) unless customized locale information is made available, which

includes setting the timezone_name variable.

v In POSIX you can supply the necessary information by using environment

variables.

v In non-POSIX applications, you can supply customized locale information by

setting time zone and daylight information in LC_TOD.

v By customizing the locale, you allow the time functions to preserve both time and

date, correctly adjusting for daylight time on a given date.

localtime

Chapter 3. Part 3. Library Functions 1119

||||

|
|
|
|
|
|

||

|

|
|

|
|

v The gmtime() and localtime() functions may use a common, statically allocated

structure for the conversion. Each call to one of these functions will alter the

result of the previous call.

v Calendar time returned by the time() function begins at the epoch, which was at

00:00:00 Coordinated Universal Time (UTC), January 1, 1970.

v The localtime() function converts calendar time (that is, seconds elapsed since

the epoch) to broken-down time, expressed as local time, using time zone

information.

Such information is provided as follows:

– For a POSIX program, time zone information is provided by the TZ

environment variable or the current LC_TOD locale category. The localtime()

function calls the tzset() function to parse the TZ environment variable. If

tzset() cannot find the TZ environment variable or cannot parse it, tzset()

obtains time zone information for the localtime() function from the current

LC_TOD locale category. See “z/OS XL C/C++ applications with z/OS UNIX

System Services C functions” on page 13 for more information about using

POSIX support.

– For all other C and C++ applications, time zone information is provided by the

current LC_TOD locale category.

See “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide for a description of LC_TOD, which is a nonstandard, z/OS XL

C/C++ proprietary locale category.

Example

CELEBL07

/* CELEBL07

 This example queries the system clock and displays the local time.

 */

#include <time.h>

#include <stdio.h>

int main(void)

{

 struct tm *newtime;

 time_t ltime;

 time(<ime);

 newtime = localtime(<ime);

 printf("The date and time is %s", asctime(newtime));

}

Output

This output would occur if the local time is 3:00 p.m. June 16, 2001):

The date and time is Fri Jun 16 15:00:00 2001

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

localtime

1120 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

v “tzset() — Set the Time Zone” on page 2279

localtime

Chapter 3. Part 3. Library Functions 1121

localtime_r() — Convert Time Value to Broken-Down Local Time

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <time.h>

struct tm *localtime_r(const time_t *__restrict__ clock,

 struct tm *__restrict__ result);

General Description

The localtime_r() function converts the calendar time pointed to by clock into a

broken-down time stored in the structure to which result points. The localtime_r()

function also returns a pointer to that same structure.

Unlike localtime(), the reentrant version is not required to set tzname.

Returned Value

If successful, localtime_r() returns a pointer to the structure pointed to by the

argument result.

If an error is detected, localtime() returns a null pointer and set errno to indicate the

error.

Error Code

Description

EOVERFLOW

The result cannot be represented.

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

v “tzset() — Set the Time Zone” on page 2279

localtime_r

1122 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|

|
|

|
|

|
|

lockf() — Record Locking on Files

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int lockf(int filedes, int function, off_t size);

General Description

The lockf() function allows sections of a file to be locked with advisory-mode locks.

Calls to lockf() from other processes which attempt to lock the locked file section

will either return an error value or block until the section becomes unlocked. All the

locks for a process are removed when the process terminates. Record locking with

lockf() is supported for regular files.

The filedes argument is an open file descriptor. The file descriptor must have been

opened with a write-only permission (O_WRONLY) or with read/write permission

(O_RDWR) to establish a lock with this function.

The function argument is a control value which specifies the action to be taken. The

permissible values for function are defined in <unistd.h> as follows:

Function Description

--

F_ULOCK unlock locked sections

F_LOCK lock a section for exclusive use

F_TLOCK test and lock a section for exclusive use

F_TEST test a section for locks by other processes

F_TEST detects if a lock by another process is present on the specified section;

F_LOCK and F_TLOCK both lock a section of a file if the section is available;

F_ULOCK removes locks from a section of the file.

The size argument is the number of contiguous bytes to be locked or unlocked. The

section to be locked or unlocked starts at the current offset in the file and extends

forward for a positive size or backward for a negative size (the preceding bytes up

to but not including the current offset). If size is 0, the section from the current offset

through the largest possible file offset is locked (that is, from the current offset

through the present or any future End Of File (EOF)). An area need not be

allocated to the file to be locked because locks may exist past the End Of File.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or

be contained by a previously locked section for the same process. When this

occurs, or if adjacent locked sections would occur, the sections are combined into a

single locked section. If the request would cause the number of locks to exceed a

system-imposed limit, the request will fail.

lockf

Chapter 3. Part 3. Library Functions 1123

||||

|
|
||

|

F_LOCK and F_TLOCK requests differ only by the action taken if the section is not

available. F_LOCK blocks the calling process until the section is available.

F_TLOCK makes the function fail if the section is already locked by another

process.

File locks are released on first close by the locking process of any file descriptor for

the file.

F_ULOCK requests may release (wholly or in part) one or more locked sections

controlled by the process. Locked sections will be unlocked starting at the current

file offset through size bytes or to the End Of File (EOF) if size is (off_t)0. When all

of a locked section is not released (that is, when the beginning or end of the area to

be unlocked falls within a locked section), the remaining portions of that section are

still locked by the process. Releasing the center portion of a locked section will

cause the remaining locked beginning and end portions to become two separate

locked sections. If the request would cause the number of locks in the system to

exceed a system-imposed limit, the request will fail.

A potential for deadlock occurs if a process controlling a locked section is blocked

by accessing another process’s locked section. If the system detects that a

deadlock would occur, lockf() will fail with an EDEADLK error.

Locks obtained by lockf() are controlled by the same facility controlling locks

obtained by fcntl().

The interaction between fcntl() and lockf() locks is unspecified.

Blocking on a section is interrupted by any signal.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, lockf() returns 0.

If unsuccessful, existing locks are not changed, lockf() returns −1, and sets errno to

one of the following values:

Error Code Description

EACCES or EAGAIN

The function argument is F_TLOCK or F_TEST and the section is

already locked by another process

EBADF The filedes argument is not a valid open file descriptor; or function

is F_LOCK or F_TLOCK and filedes is not a valid file descriptor

open for writing.

EDEADLK The function argument is F_LOCK and a deadlock is detected.

EINTR A signal was caught during execution of the function.

lockf

1124 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EOVERFLOW The offset of the first, or if size is not 0 then the last, byte in the

requested section cannot be represented correctly in an object of

type off_t.

Related Information

v “unistd.h” on page 96

lockf

Chapter 3. Part 3. Library Functions 1125

log(), logf(), logl() — Calculate Natural Logarithm

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double log(double x);

float log(float x); /* C++ only */

long double log(long double x); /* C++ only */

float logf(float x);

long double logl(long double x);

General Description

Calculates the natural logarithm (base e) of x, for x greater than 0.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Returns the computed value.

If x is negative, the function sets errno to EDOM and returns −HUGE_VAL. If x is

0.0, the function returns −HUGE_VAL and sets errno to ERANGE. If the correct

value would cause an underflow, 0 is returned and the value ERANGE is stored in

errno.

Special Behavior for IEEE

If x greater than 0, the function returns the natural logarithm (base e) of x.

If x is negative, the function sets errno to EDOM and returns NaNQ. If x is 0.0, the

function returns −HUGE_VAL and errno remains unchanged.

Example

CELEBL08

/* CELEBL08

 This example calculates the natural logarithm of 1000.0.

 */

#include <math.h>

#include <stdio.h>

int main(void)

log

1126 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|
|

||

|

{

 double x = 1000.0, y;

 y = log(x);

 printf("The natural logarithm of %lf is %lf\n", x, y);

}

Output

The natural logarithm of 1000.000000 is 6.907755

Related Information

v “math.h” on page 60

v “exp(), expf(), expl() — Calculate Exponential Function” on page 498

v “log10(), log10f(), log10l() — Calculate Base 10 Logarithm” on page 1138

v “pow(), powf(), powl() — Raise to Power” on page 1362

log

Chapter 3. Part 3. Library Functions 1127

logb(), logbf(), logbl() — Unbiased Exponent

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both z/OS V1R7 for

logbf(), logbl()

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double logb(double x);

C99

#define _ISOC99_SOURCE

#include <math.h>

float logbf(float x);

long double logbl(long double x);

General Description

Returns the exponent of its argument x, as a signed integer value in floating-point

mode. If x is subnormal, it is treated as a normalized number.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

logb X X

logbf X X

logbl X X

Returned Value

If successful, logb() returns the exponent of x.

logb() will fail under the following condition: If x is equal to 0.0, logb() will return

−HUGE_VAL and set errno to EDOM.

Example

/*

 * This program illustrates the use of logb() function

 *

 */

#define _ISOC99_SOURCE

#include <math.h>

#include <float.h> /* Needed for FLT_RADIX */

#include <stdio.h>

void main() {

logb

1128 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||
|

|

int i;

 union {

 double number;

 unsigned char uchars [sizeof(double)];

 } dblval;

 double logbx;

 printf("Illustrates the logb() function");

 #ifdef __BFP__

 printf(" (IEEE version)\n\n");

 #else

 printf(" (HFP version)\n\n");

 #endif

 /* generate the smallest possible double number */

 for (i=0; i<sizeof(double); i++)

 dblval.uchars[i] = 0;

 dblval.uchars[1] = 0x10;

 logbx = logb(dblval.number);

 printf("x = %g\n",dblval.number);

 printf("logb(x) = %f\n\n", logbx);

 printf("pow(FLT_RADIX, logb(x)) should equal x\n");

 printf("pow(%d,%f) = %g\n",FLT_RADIX, logbx, pow(FLT_RADIX, logbx));

}

Output

Illustrates the logb() function (IEEE version)

x = 2.22507e-308

logb(x) = -1022.000000

pow(FLT_RADIX, logb(x)) should equal x

pow(2,-1022.000000) = 2.22507e-308

Related Information

v “math.h” on page 60

v “ilogb(), ilogbf(), ilogbl() — Integer Unbiased Exponent” on page 933

logb

Chapter 3. Part 3. Library Functions 1129

logbd32(), logbd64(), logbd128() — Unbiased Exponent

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 logbd32(_Decimal32 x);

_Decimal64 logbd64(_Decimal64 x);

_Decimal128 logbd128(_Decimal128 x);

_Decimal32 logb(_Decimal32 x); /* C++ only */

_Decimal64 logb(_Decimal64 x); /* C++ only */

_Decimal128 logb(_Decimal128 x); /* C++ only */

General Description

Returns the unbiased exponent of its argument x as a signed integer value in

decimal floating-point mode. For typical numbers, the value returned is the

logarithm of |x| rounded down (toward -INF) to the nearest integer value.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, these functions return the unbiased exponent of x as a signed integer

value in decimal floating-point mode.

These functions will fail under the following condition: If x is equal to 0.0,

-HUGE_VAL_D32, -HUGE_VAL_D64, or -HUGE_VAL_D128 is returned and errno is

set to EDOM.

Example

/* CELEBL24

 This program illustrates the use of logbd32() function

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

void main()

{

 _Decimal32 x, logbx;

 printf("Illustrates the logbd32() function\n");

logbd32, logbd64, logbd128

1130 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* Generate the smallest possible positive _Decimal32 number */

 x = strtod32("0000001.E−101", NULL);

 logbx = logbd32(x);

 printf("x = %Hg\n" , x);

 printf("logb(x) = %Hf\n\n", logbx);

 printf("powd32(10.0, logb32(x)) should equal x\n");

 printf("powd32(%Hf, %Hf) = %Hg\n",

 10.0DF, logbx, powd32(10.0DF, logbx));

}

Related Information

v “math.h” on page 60

v “ilogbd32(), ilogbd64(), ilogbd128() — Integer Unbiased Exponent” on page 935

v “logb(), logbf(), logbl() — Unbiased Exponent” on page 1128

logbd32, logbd64, logbd128

Chapter 3. Part 3. Library Functions 1131

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

logd32(), logd64(), logd128() — Calculate Natural Logarithm

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 logd32(_Decimal32 x);

_Decimal64 logd64(_Decimal64 x);

_Decimal128 logd128(_Decimal128 x);

_Decimal32 log(_Decimal32 x); /* C++ only */

_Decimal64 log(_Decimal64 x); /* C++ only */

_Decimal128 log(_Decimal128 x); /* C++ only */

General Description

Calculates the natural logarithm (base e) of x, for x greater than 0.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If x greater than 0, the function returns the natural logarithm (base e) of x.

If x is negative, the function sets errno to EDOM and returns NaNQ. If x is 0.0, the

function returns -HUGE_VAL_D32, -HUGE_VAL_D64, or -HUGE_VAL_D128 and

errno remains unchanged.

Example

/* CELEBL22

 This example illustrates the logd64() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal64 x = 1000.0DD, y;

 y = logd64(x);

 printf("The natural logarithm of %Df is %Df\n", x, y);

}

logd32, logd64, logd128

1132 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “math.h” on page 60

v “expd32(), expd64(), expd128() — Calculate Exponential Function” on page 500

v “log(), logf(), logl() — Calculate Natural Logarithm” on page 1126

v “log10d32(), log10d64(), log10d128() — Calculate Base 10 Logarithm” on page

1140

v “powd32(), powd64(), powd128() — Raise to Power” on page 1364

logd32, logd64, logd128

Chapter 3. Part 3. Library Functions 1133

|
|
|
|
|
|
|

__login() — Create a New Security Environment for Process

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R6

Format

#define _OPEN_SYS

#include <unistd.h>

int __login(int function_code,

 int identity_type,

 int identity_length,

 void *identity,

 int pass_length,

 char *pass,

 int certificate_length,

 char *certificate,

 int option_flags);

General Description

The __login() function provides a way for a process to change its identity so as to

be different than the address space identity and create a new security environment

for the process. Once changed the process should not revert back to a previous

identity and security environment. The following rules apply:

v Any single-threaded process can issue a __login to change its security

environment.

v If the process is in a multiproc/multiuser environment and there is no task level

security associated with the process, then the new security environment will be

associated with the process.

v If the process is in a multiproc/multiuser environment and there is task level

security associated with the process, then the old security environment will be

replaced by the new security environment.

The function has the following parameters:

Parameter Description

function_code Specifies the function. Specify __LOGIN_CREATE, as defined in

the unistd.h header file, to create a process level security

environment for the caller’s process.

identity_type Specifies the format of the the user identity being provided in

*identity. Specify __LOGIN_USERID, as defined in the unistd.h

header file. The user ID identity is in the format of a

1-to-8-character userid and is passed as input.

identity_length Specifies the length of the identity as defined by identity_type.

*identity Specifies the user identity as defined by identity_type.

pass_length Specifies the length of the password defined by pass.

*pass Specifies a user password or pass ticket.

certificate_length

Is not used presently and must be set to zero.

__login

1134 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

certificate Is not used presently and must point to void.

option_flags Specifies options used to tailor request. Must be set to 0.

Usage Notes:

1. The intent of the __login() service is to provide a way for a process to change

its identity so as to be different than the address space identity. The process

should either terminate or select a new user ID, but should not try to revert back

to the original identity. The user could issue the __login() again with the original

user identity, but the task would retain its own security environment and not

share the the security environment at the address space level.

2. A security manager supporting multiproc/multiuser environment must be

installed and operational.

Returned Value

If successful, __login() returns 0.

If unsuccessful, __login() returns -1 and sets errno to one of the following values:

Error Code Description

EACCES Permission is denied.

EINVAL A parameter is invalid.

EMVSERR An MVS environmental error or internal occurred.

EMVSEXPIRE The password for the specified resource has expired.

EMVSSAF2ERR

An error occurred in the security product. The userid has been

revoked or is unable to use the application.

ENOSYS The function is not implemented or installed.

EPERM The operation was not permitted. Calling process may not be

authorized in BPX.DAEMON facility class. The function is not

supported in an address space where a load was done from an

uncontrolled library. A required password was not specified.

ESRCH The USERID cannot become an OMVS process. The userid

provided is not defined to the security manager or doesn’t have an

OMVS segment defined.

Related Information

v “unistd.h” on page 96

__login

Chapter 3. Part 3. Library Functions 1135

log1p(), log1pf(), log1pl() — Natural Log of x + 1

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double log1p(double x);

C99

#define _ISOC99_SOURCE

#include <math.h>

float log1pf(float x);

long double log1pl(long double x);

General Description

Computes

The value of x must be greater than -1.0.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

log1p X X

log1pf X X

log1pl X X

Returned Value

If successful, log1p() returns the value of the above function of x.

log1p() will fail under the following conditions:

v If x is less than −1.0, log1p() will return −HUGE_VAL and set errno to EDOM.

v If x is equal to −1.0, log1p() will return −HUGE_VAL and set errno to ERANGE.

Special Behavior for IEEE

If successful, log1p() returns the

Log (1.0 + x)e

log1p

1136 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

The value of x must be greater than -1.0.

log1p() will fail under the following conditions:

v If x is less than −1.0, log1p() will return NaNQ and set errno to EDOM.

v If x is equal to −1.0, log1p() will return −HUGE_VAL and errno remains

unchanged.

Related Information

v “math.h” on page 60

v “log(), logf(), logl() — Calculate Natural Logarithm” on page 1126

Log (1.0 + x)e

log1p

Chapter 3. Part 3. Library Functions 1137

log10(), log10f(), log10l() — Calculate Base 10 Logarithm

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double log10(double x);

float log10(float x); /* C++ only */

long double log10(long double x); /* C++ only */

float log10f(float x);

long double log10l(long double x);

General Description

Calculates the base 10 logarithm of the positive value of x.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Returns the computed value.

If x is negative, the function sets errno to EDOM and returns −HUGE_VAL. If x is 0,

the function returns −HUGE_VAL, and sets errno to ERANGE. If the correct value

would cause an underflow, 0 is returned and the value ERANGE is stored in errno.

Special Behavior for IEEE

If successful, the function returns the base 10 logarithm of the positive value of x.

If x is negative, the function sets errno to EDOM and returns NaNQ. If x is 0, the

function returns −HUGE_VAL and errno remains unchanged.

Example

CELEBL09

/* CELEBL09

 This example calculates the base 10 logarithm of 1000.0.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

log10, log10f, log10l

1138 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|
|

||

|

double x = 1000.0, y;

 y = log10(x);

 printf("The base 10 logarithm of %lf is %lf\n", x, y);

}

Output

The base 10 logarithm of 1000.000000 is 3.000000

Related Information

v “math.h” on page 60

v “exp(), expf(), expl() — Calculate Exponential Function” on page 498

v “log(), logf(), logl() — Calculate Natural Logarithm” on page 1126

v “pow(), powf(), powl() — Raise to Power” on page 1362

log10, log10f, log10l

Chapter 3. Part 3. Library Functions 1139

log10d32(), log10d64(), log10d128() — Calculate Base 10 Logarithm

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 log10d32(_Decimal32 x);

_Decimal64 log10d64(_Decimal64 x);

_Decimal128 log10d128(_Decimal128 x);

_Decimal32 log10(_Decimal32 x); /* C++ only */

_Decimal64 log10(_Decimal64 x); /* C++ only */

_Decimal128 log10(_Decimal128 x); /* C++ only */

General Description

Calculates the base 10 logarithm of the positive value of x.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, the function returns the base 10 logarithm of the positive value of x.

If x is negative, the function sets errno to EDOM and returns NaNQ. If x is 0, the

function returns -HUGE_VAL_D32, -HUGE_VAL_D64, or -HUGE_VAL_D128 and

errno remains unchanged.

Example

/* CELEBL23

 This example illustrates the log10d128() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal128 x = 1000.0DL, y;

 y = log10d128(x);

 printf("The base 10 logarithm of %DDf is %DDf\n", x, y);

}

log10d32, log10d64, log10d128

1140 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “math.h” on page 60

v “expd32(), expd64(), expd128() — Calculate Exponential Function” on page 500

v “logd32(), logd64(), logd128() — Calculate Natural Logarithm” on page 1132

v “log10(), log10f(), log10l() — Calculate Base 10 Logarithm” on page 1138

v “powd32(), powd64(), powd128() — Raise to Power” on page 1364

log10d32, log10d64, log10d128

Chapter 3. Part 3. Library Functions 1141

|
|
|
|
|
|

log2(), log2f(), log2l() — Calculate the Base-2 Logarithm

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R5

Format

#define _ISOC99_SOURCE

#include <math.h>

double log2(double x);

float log2f(float x);

long double log2l(long double x);

General Description

The log2 functions compute the base-2 logarithm of x.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

log2 X X

log2f X X

log2l X X

Returned Value

The log2 functions return log2 x.

A domain error occurs if x is less than zero. A range error may occur if x is zero.

Related Information

v “math.h” on page 60

log2

1142 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

longjmp() — Restore Stack Environment

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <setjmp.h>

void longjmp(jmp_buf env, int value);

General Description

Restores a stack environment previously saved in env by setjmp(). The setjmp()

and longjmp() functions provide a way to perform a nonlocal goto. They are often

used in signal handlers.

A call to setjmp() causes the current stack environment to be saved in env. A

subsequent call to longjmp() restores the saved environment, and returns control to

a point in the program corresponding to the setjmp() call. Execution resumes as if

the setjmp() call had just returned the given value of the value argument. All

variables that are accessible to the function that receives control contain the values

they had when longjmp() was called. The values of register variables are

unpredictable. Nonvolatile auto variables that are changed between calls to setjmp()

and longjmp() are also unpredictable.

Note: Ensure that the function that calls setjmp() does not return before you call

the corresponding longjmp() function. Calling longjmp() after the function

calling setjmp() returns causes unpredictable program behavior.

The value argument passed to longjmp() must be nonzero. If you give a 0 argument

for value, longjmp() substitutes a 1 in its place.

Notes:

1. If longjmp() is used to jump back into an XPLink routine, any alloca() requests

issued by the XPLink routine after the earlier setjmp() (or _setjmp(), sigsetjmp(),

getcontext(), etc.) was called and before longjmp() is called are backed out. All

storage obtained by these alloca() requests is freed before the XPLink routine is

resumed.

2. If longjmp() is used to jump back into a non-XPLink routine, alloca() requests

made after setjmp() (and so on) and before longjmp() are not backed out.

Special Behavior for POSIX

In a POSIX program, the signal mask is not saved. Thus, to save and restore a

stack environment that includes the current signal mask, use sigsetjmp() and

siglongjmp() instead of setjmp() and longjmp(). The sigsetjmp()—siglongjmp() pair,

the setjmp()—longjmp() pair, the _setjmp()—_longjmp() pair, and the

getcontext()—setcontext() pair cannot be intermixed. A stack environment saved by

longjmp

Chapter 3. Part 3. Library Functions 1143

||||

|
|
|
|
|
|

||

|

setjmp() can be restored only by longjmp(). See “z/OS XL C/C++ applications with

z/OS UNIX System Services C functions” on page 13 for more information about

using POSIX support.

Special Behavior for C++

If setjmp() and longjmp() are used to transfer control in a z/OS XL C++ program,

the behavior in terms of the destruction of automatic objects is undefined.

Additionally, if any automatic objects would be destroyed by a thrown exception

transferring control to another (destination) point in the program, then a call to

longjmp() at the throw point that transfers control to the same (destination) point

has undefined behavior. This applies to both z/OS XL C++ and z/OS XL C/C++

ILC modules. The use of setjmp() and longjmp() in conjunction with try(), catch(),

and throw() is also undefined.

Special Behavior for XPG4.2

In a program that was compiled with the feature test macro,

_XOPEN_SOURCE_EXTENDED, defined, another pair of functions,

_setjmp()—_longjmp() are available. These functions are, on this implementation,

functionally identical to setjmp()—longjmp(). Therefore it is possible, but not

recommended, to intermix the setjmp()—longjmp() pair with the

_setjmp()—_longjmp() pair.

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the Release 10 or later C compilers that are

to run with Language Environment Release 10 or later libraries and use the

jmp_buf, sigjmp_buf or ucontext_t types must not be compiled with C

headers from Language Environment 2.9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not definejmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Release 10 and later headers define a

larger jmp_buf, sigjmp_buf or ucontext_tarea that is required by setjmp(),

getcontext(), and related functions when they are called from an XPLINK

routine. If __XPLINK__ is not defined, the Release 10 and later headers define

a shorter jmp_buf, sigjmp_buf or ucontext_t area. The Language

Environment headers before Release 10 also define the shorter version of these

data areas. If an XPLINK function calls setjmp(), getcontext() or similar functions

with a short jmp_buf, sigjmp_buf or ucontext_t area, a storage overlay or

program check may occur when the C library tries to store past the end of the

passed-in (too short) data area.

Returned Value

longjmp() does not use the normal function call and return mechanisms; it returns

no values.

longjmp

1144 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Example

This example provides for saving the stack environment at this statement:

if(setjmp(mark) != 0) ...

When the system first performs the if statement, it saves the environment in mark

and sets the condition to FALSE because setjmp() returns a 0 when it saves the

environment. The program prints the message: setjmp has been called

The subsequent call to function p tests for a local error condition, which can cause

it to perform the longjmp() function. Then, control returns to the original setjmp()

function using the environment saved in mark. This time the condition is TRUE

because -1 is the returned value from the longjmp() function. The example then

performs the statements in the block and prints: longjmp has been called

It then performs the recover function and leaves the program.

/* Illustration of longjmp(). */

#include <stdio.h>

#include <setjmp.h>

jmp_buf mark;

void p(void);

void recover(void);

int main(void)

{

 if (setjmp(mark) != 0)

 {

 printf("longjmp has been called\n");

 recover();

 exit(1);

 }

 printf("setjmp has been called\n"); ...
 p(); ...
}

void p(void)

{

 int error = 0; ...
 error = 9; ...
 if (error != 0)

 longjmp(mark, -1); ...
}

void recover(void)

{ ...
}

Related Information

v “setjmp.h” on page 77

v “getcontext() — Get User Context” on page 750

v “_longjmp() — Nonlocal Goto” on page 1147

v “setcontext() — Restore User Context” on page 1778

longjmp

Chapter 3. Part 3. Library Functions 1145

v “setjmp() — Preserve Stack Environment” on page 1802

v “_setjmp() — Set Jump Point for a Nonlocal Goto” on page 1806

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

v “swapcontext() — Save and Restore User Context” on page 2101

longjmp

1146 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

_longjmp() — Nonlocal Goto

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <setjmp.h>

void _longjmp(jmp_buf env, int value);

General Description

The _longjmp() function restores a stack environment previously saved in env by

_setjmp(). The _setjmp() and _longjmp() functions provide a way to perform a

nonlocal goto. They are often used in signal handlers.

A call to _setjmp() causes the current stack environment to be saved in env.

A subsequent call to _longjmp() restores the saved environment and returns control

to a point in the program corresponding to the _setjmp() call. Execution resumes as

if the _setjmp() call had just returned the given value of the value argument. All

variables that are accessible to the function that receives control contain the values

they had when _longjmp() was called. The values of register variables are

unpredictable. Nonvolatile auto variables that are changed between calls to

_setjmp() and _longjmp() are also unpredictable.

The X/Open standard states that _longjmp() and _setjmp() are functionally identical

to longjmp() and setjmp(), respectively, with the addition restriction that _longjmp()

and _setjmp() do not manipulate the signal mask. However, on this implementation

longjmp() and setjmp() do not manipulate the signal mask. So on this

implementation _longjmp() and _setjmp() are literally identical to longjmp() and

setjmp(), respectively.

To save and restore a stack environment, including the current signal mask, use

sigsetjmp() and siglongjmp() instead of _setjmp() and _longjmp(), or setjmp() and

longjmp().

The _setjmp()—_longjmp() pair, the setjmp()—longjmp() pair, the

sigsetjmp()—siglongjmp() pair, and the getcontext()—setcontext() pair cannot be

intermixed. A stack environment saved by _setjmp() can be restored only by

_longjmp().

Notes:

1. However, on this implementation, since the _setjmp()—_longjmp() pair are

functionally identical to the setjmp()—longjmp() pair it is possible to intermix

them, but it is not recommended.

2. Ensure that the function that calls _setjmp() does not return before you call the

corresponding _longjmp() function. Calling _longjmp() after the function calling

_setjmp() returns causes unpredictable program behavior.

_longjmp

Chapter 3. Part 3. Library Functions 1147

||||

|
|
||

|

3. If longjmp() is used to jump back into an XPLink routine, any alloca() requests

issued by the XPLink routine after the earlier setjmp() (or _setjmp(), sigsetjmp(),

getcontext() and so on.) was called and before _longjmp() is called are backed

out. All storage obtained by these alloca() requests is freed before the XPLink

routine is resumed.

4. If longjmp() is used to jump back into a non-XPLink routine, alloca() requests

made after setjmp() (etc.) and before _longjmp() are not backed out.

The value argument passed to _longjmp() must be nonzero. If you give a zero

argument for value, _longjmp() substitutes a 1 in its place.

env An address for a jmp_buf structure

value The return value from _setjmp()

Special Behavior for C++

If _setjmp() and _longjmp() are used to transfer control in a z/OS XL C++ program,

the behavior in terms of the destruction of automatic objects is undefined.

Additionally, if any automatic objects would be destroyed by a thrown exception

transferring control to another (destination) point in the program, then a call to

_longjmp() at the throw point that transfers control to the same (destination) point

has undefined behavior. This applies both to z/OS XL C++ and z/OS XL C/C++

ILC modules. The use of _setjmp() and _longjmp() in conjunction with try(), catch(),

and throw() is also undefined.

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the Release 10 or later C compilers that are

to run with Language Environment Release 10 or later libraries and use the

jmp_buf, sigjmp_buf or ucontext_t types must not be compiled with C

headers from Language Environment 2.9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not definejmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Release 10 and later headers define a

larger jmp_buf, sigjmp_buf or ucontext_tarea that is required by setjmp(),

getcontext(), and related functions when they are called from an XPLINK

routine. If __XPLINK__ is not defined, the Release 10 and later headers define

a shorter jmp_buf, sigjmp_buf or ucontext_t area. The Language

Environment headers before Release 10 also define the shorter version of these

data areas. If an XPLINK function calls setjmp(), getcontext() or similar functions

with a short jmp_buf, sigjmp_buf or ucontext_t area, a storage overlay or

program check may occur when the C library tries to store past the end of the

passed-in (too short) data area.

Returned Value

_longjmp() does not use the normal function call and return mechanisms; it returns

no values. When _longjmp() completes, program execution continues as if the

corresponding invocation of _setjmp() had just returned the value specified by

value.

_longjmp

1148 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “setjmp.h” on page 77

v “getcontext() — Get User Context” on page 750

v “longjmp() — Restore Stack Environment” on page 1143

v “setcontext() — Restore User Context” on page 1778

v “setjmp() — Preserve Stack Environment” on page 1802

v “_setjmp() — Set Jump Point for a Nonlocal Goto” on page 1806

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

v “swapcontext() — Save and Restore User Context” on page 2101

_longjmp

Chapter 3. Part 3. Library Functions 1149

lrand48() — Pseudo-Random Number Generator

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

long int lrand48(void);

General Description

The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions

generate uniformly distributed pseudo-random numbers using a linear congruential

algorithm and 48-bit integer arithmetic.

The functions drand48() and erand48() return nonnegative, double-precision,

floating-point values, uniformly distributed over the interval [0.0,1.0).

The functions lrand48() and nrand48() return nonnegative, long integers, uniformly

distributed over the interval [0,2**31).

The functions mrand48() and jrand48() return signed long integers, uniformly

distributed over the interval [-2**31,2**31).

The lrand48() function generates the next 48-bit integer value in a sequence of

48-bit integer values, X(i), according to the linear congruential formula:

X(n+1) = (aX(n) + c)mod(2**48) n>=0

The initial values of X, a, and c are:

X(0) = 1

a = 5deece66d (base 16)

c = b (base 16)

C/370 provides storage to save the most recent 48-bit integer value of the

sequence, X(i). This storage is shared by the drand48(), lrand48() and mrand48()

functions. The value, X(n), in this storage may be reinitialized by calling the

lcong48(), seed48() or srand48() function. Likewise, the values of a and c, may be

changed by calling the lcong48() function. Thereafter, whenever the seed48() or

srand48() function is called to change X(n), the initial values of a and c are also

reestablished.

Special Behavior for z/OS UNIX Services

You can make the lrand48() function and other functions in the drand48 family

thread-specific by setting the environment variable _RAND48 to the value THREAD

before calling any function in the drand48 family.

lrand48

1150 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

If you do not request thread-specific behavior for the drand48 family, C/370

serializes access to the storage for X(n), a and c by functions in the drand48 family

when they are called by a multithreaded application.

If thread-specific behavior is requested, and the lrand48() function is called from

thread t, the lrand48() function generates the next 48-bit integer value in a

sequence of 48-bit integer values, X(t,i), for the thread t. The sequence of values

for a thread is generated according to the linear congruential formula:

X(t,n+1) = (a(t)X(t,n) + c(t))mod(2**48) n>=0

The initial values of X(t), a(t) and c(t) for the thread t are:

X(t,0) = 1

a(t) = 5deece66d (base 16)

c(t) = b (base 16)

C/370 provides storage which is specific to the thread t to save the most recent

48-bit integer value of the sequence, X(t,i), generated by the drand48(), lrand48() or

mrand48() function. The value, X(t,n), in this storage may be reinitialized by calling

the lcong48(), seed48() or srand48() function from the thread t. Likewise, the

values of a(t) and c(t) for thread t may be changed by calling the lcong48() function

from the thread. Thereafter, whenever the seed48() or srand48() function is called

from the thread t to change X(t,n), the initial values of a(t) and c(t) are also

reestablished.

Returned Value

lrand48() transforms the generated 48-bit value, X(n+1), to a nonnegative, long

integer value on the interval [0,2**31) and returns this transformed value.

Special Behavior for z/OS UNIX Services

If thread-specific behavior is requested for the drand48 family and lrand48() is

called on thread t, lrand48() transforms the generated 48-bit value, X(t,n+1), to a

nonnegative, long integer value on the interval [0,2**31) and returns this

transformed value.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “erand48() — Pseudo-Random Number Generator” on page 476

v “jrand48() — Pseudo-Random Number Generator” on page 1051

v “lcong48() — Pseudo-Random Number Initializer” on page 1065

v “mrand48() — Pseudo-Random Number Generator” on page 1251

v “nrand48() — Pseudo-Random Number Generator” on page 1307

v “seed48() — Pseudo-Random Number Initializer” on page 1712

v “srand48() — Pseudo-Random Number Initializer” on page 2005

lrand48

Chapter 3. Part 3. Library Functions 1151

lrint(), lrintf(), lrintl() and llrint(), llrintf(), llrintl() — Round the Argument

to the Nearest Integer

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

long int lrint(double x);

long int lrintf(float x);

long int lrintl(long double x);

long long int llrint(double x);

long long int llrintf(float x);

long long int llrintl(long double x);

Compile Requirement

The llrint() family of functions requires the long long data type. See z/OS XL C/C++

Language Reference for information on how to make long long available.

General Description

The lrint() and llrint() families of functions round their argument to the nearest

integer value according to the current rounding mode. If the rounded value is

outside the range of the return type, the numeric result is unspecified. A range error

may occur if the magnitude of x is too large.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

lrint X X

lrintf X X

lrintl X X

llrint X X

llrintf X X

llrintl X X

Returned Value

If successful, they return the rounded integer value. If the correct value is positive

or negative and too large to represent as a long (lrint() family) or long long (llrint()

family), a domain error will occur and an unspecified value is returned.

lrint, lrintf, lrintl, llrint, llrintf, llrintl

1152 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

|
|
|

||||

|||

|||

|||

|||

|||

|||
|

|

Example

/*

 * This program illustrates the use of lrint() function

 *

 * Note: To get the output shown in this book , this program

 * should be compiled using FLOAT(IEEE)

 *

 */

#define _ISOC99_SOURCE

#include <math.h>

#include <stdio.h>

#include <_Ieee754.h> /* save/get fpc functions */

char *RoundStr (_FP_rmode_t rm_type) {

 char *RndStr="undetermined";

 switch (rm_type) {

 case (_RMODE_RN):

 RndStr="round to nearest";

 break;

 case (_RMODE_RZ):

 RndStr="round toward zero";

 break;

 case (_RMODE_RP):

 RndStr="round toward +infinity ";

 break;

 case (_RMODE_RM):

 RndStr="round toward -infinity ";

 break;

 }

 return (RndStr);

}

void main() {

 _FP_fpcreg_t save_rmode, current_rmode;

 long int rnd2nearest;

 double number=500.99;

 printf("Illustrates the lrint() function\n");

 __fpc_rd(¤t_rmode); /* get current rounding mode */

 rnd2nearest = lrint(number);

 printf ("When rounding direction is %s:\n lrint(%.2f) = %li\n",RoundStr(current_rmode.rmode), number, rnd2nearest);

 save_rmode.rmode = _RMODE_RZ;

 __fpc_sm(save_rmode.rmode); /* set rounding mode to round to zero */

 rnd2nearest = lrint(number);

 printf ("When rounding direction is %s:\n lrint(%.2f) = %li\n",RoundStr(save_rmode.rmode), number, rnd2nearest);

}

Output

Illustrates the lrint() function

When rounding direction is round to nearest:

 lrint(500.99) = 501

When rounding direction is round toward zero:

 lrint(500.99) = 500

Related Information

v “math.h” on page 60

v “ceil(), ceilf(), ceill() — Round Up to Integral Value” on page 251

v “floor(), floorf(), floorl() — Round Down to Integral Value” on page 609

v “llround(), llroundf(), llroundl() — Round to the Nearest Integer” on page 1109

v “lround(), lroundf(), lroundl() — Round a Decimal Floating-point Number to its

Nearest Integer” on page 1157

v “nearbyint(), nearbyintf(), nearbyintl() — Round the Argument to the Nearest

Integer” on page 1287

v “rint(), rintf(), rintl() — Round to Nearest Integral Value” on page 1689

v “round(), roundf(), roundl() — Round to the Nearest Integer” on page 1695

v “trunc(), truncf(), truncl() — Truncate an integer value” on page 2251

lrint, lrintf, lrintl, llrint, llrintf, llrintl

Chapter 3. Part 3. Library Functions 1153

lrintd32(), lrintd64(), lrintd128() and llrintd32(), llrintd64(), llrintd128() —

Round the Argument to the Nearest Integer

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

long int lrintd32(_Decimal32 x);

long int lrintd64(_Decimal64 x);

long int lrintd128(_Decimal128 x);

long int lrint(_Decimal32 x); /* C++ only */

long int lrint(_Decimal64 x); /* C++ only */

long int lrint(_Decimal128 x); /* C++ only */

long long int llrintd32(_Decimal32 x);

long long int llrintd64(_Decimal64 x);

long long int llrintd128(_Decimal128 x);

long long int llrint(_Decimal32 x); /* C++ only */

long long int llrint(_Decimal64 x); /* C++ only */

long long int llrint(_Decimal128 x); /* C++ only */

Note:

Use of this function requires the long long data type. See z/OS XL C/C++

Language Reference for information on how to make long long available.

General Description

The lrint() and llrint() families of functions round their argument to the nearest

integer value according to the current rounding mode. If the rounded value is

outside the range of the return type, the numeric result is unspecified. A range error

may occur if the magnitude of x is too large.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, they return the rounded integer value. If the correct value is positive

or negative and too large to represent as a long (lrint() family) or long long (llrint()

family), a domain error will occur and an unspecified value is returned.

Example

/* CELEBL20

 This example illustrates the lrintd64() and llrintd128() functions.

*/

lrintd32, lrintd64, lrintd128, llrintd32, llrintd64, llrintd128

1154 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|

|

|
|

|
|

|

|
|
|

|

|
|
|
|
|

#pragma strings(readonly)

#define __STDC_WANT_DEC_FP__

#include <fenv.h>

#include <math.h>

#include <stdio.h>

/* pass back printable rounding mode */

static

char *rm_str(int rm)

{

 char *s = "undetermined";

 switch (rm)

 {

 case FE_DEC_TONEAREST :

 s = "FE_DEC_TONEAREST" ; break;

 case FE_DEC_TOWARDZERO :

 s = "FE_DEC_TOWARDZERO" ; break;

 case FE_DEC_UPWARD :

 s = "FE_DEC_UPWARD" ; break;

 case FE_DEC_DOWNWARD :

 s = "FE_DEC_DOWNWARD" ; break;

 case FE_DEC_TONEARESTFROMZERO :

 s = "FE_DEC_TONEARESTFROMZERO" ; break;

 case _FE_DEC_TONEARESTTOWARDZERO :

 s = "_FE_DEC_TONEARESTTOWARDZERO" ; break;

 case _FE_DEC_AWAYFROMZERO :

 s = "_FE_DEC_AWAYFROMZERO" ; break;

 case _FE_DEC_PREPAREFORSHORTER :

 s = "_FE_DEC_PREPAREFORSHORTER" ; break;

 }

 return s;

}

/* Try out one passed−in number with rounding mode */

static try_rm(int rm)

{

 long int l;

 long long int ll;

 _Decimal64 d64 = 500.01DD;

 _Decimal128 d128 = 500.99DL;

 (void)fe_dec_setround(rm);

 l = lrintd64(d64);

 ll = llrintd128(d128);

 printf(" lrintd64(%.2DF) = %ld − rounding mode = %s\n",

 d64 , l, rm_str(rm)

);

 printf("llrintd128(%.2DDF) = %lld − rounding mode = %s\n",

 d128, ll, rm_str(rm)

);

 return;

}

int main()

{

lrintd32, lrintd64, lrintd128, llrintd32, llrintd64, llrintd128

Chapter 3. Part 3. Library Functions 1155

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

try_rm(FE_DEC_TONEAREST);

 try_rm(FE_DEC_TOWARDZERO);

 try_rm(FE_DEC_UPWARD);

 try_rm(FE_DEC_DOWNWARD);

 try_rm(FE_DEC_TONEARESTFROMZERO);

 try_rm(_FE_DEC_TONEARESTTOWARDZERO);

 try_rm(_FE_DEC_AWAYFROMZERO);

 try_rm(_FE_DEC_PREPAREFORSHORTER);

 return 0;

}

Related Information

v “math.h” on page 60

v “ceild32(), ceild64(), ceild128() — Round Up to Integral Value” on page 253

v “floord32(), floord64(), floord128() — Round Down to Integral Value” on page 611

v “llroundd32(), llroundd64(), llroundd128() — Round to the Nearest Integer” on

page 1111

v “lroundd32(), lroundd64(), lroundd128() — Round a Floating-point Number to its

Nearest Integer” on page 1158

v “lrint(), lrintf(), lrintl() and llrint(), llrintf(), llrintl() — Round the Argument to the

Nearest Integer” on page 1152

v “nearbyintd32(), nearbyintd64(), nearbyintd128() — Round the Argument to the

Nearest Integer” on page 1289

v “rintd32(), rintd64(), rintd128() — Round to Nearest Integral Value” on page 1690

v “roundd32(), roundd64(), roundd128() — Round to the Nearest Integer” on page

1696

v “truncd32(), truncd64(), truncd128() — CTruncate an integer value” on page 2252

lrintd32, lrintd64, lrintd128, llrintd32, llrintd64, llrintd128

1156 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

lround(), lroundf(), lroundl() — Round a Decimal Floating-point Number

to its Nearest Integer

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R5

Format

#define _ISOC99_SOURCE#include <math.h>

long int lround(double x);

long int lroundf(float x);

long int lroundl(long double x);

General Description

The lround functions round x to the nearest integer value, rounding halfway cases

away from zero, regardless of the current rounding mode.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

lround X X

lroundf X X

lroundl X X

Returned Value

The lround functions return the rounded integer value of x.

If the rounded value is outside the range of the return type, the numeric result is

unspecified. A range error may occur if the magnitude of x is too large.

Related Information

v “math.h” on page 60

lround

Chapter 3. Part 3. Library Functions 1157

||||

|
|
||

|

lroundd32(), lroundd64(), lroundd128() — Round a Floating-point

Number to its Nearest Integer

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

long int lroundd32(_Decimal32 x);

long int lroundd64(_Decimal64 x);

long int lroundd128(_Decimal128 x);

long int lround(_Decimal32 x); /* C++ only */

long int lround(_Decimal64 x); /* C++ only */

long int lround(_Decimal128 x); /* C++ only */

General Description

The lround functions round x to the nearest integer value, rounding halfway cases

away from zero, regardless of the current rounding mode.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The lround functions return the rounded integer value of x.

If the rounded value is outside the range of the return type, the numeric result is

unspecified. A range error may occur if the magnitude of x is too large.

Example

/* CELEBL21

 This example illustrates the llroundd32() function.

*/

#pragma strings(readonly)

#define __STDC_WANT_DEC_FP__

#include <fenv.h>

#include <math.h>

#include <stdio.h>

/* pass back printable rounding mode */

static

char *rm_str(int rm)

{

 char *s = "undetermined";

lroundd32, llroundd64, llroundd128

1158 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

switch (rm)

 {

 case FE_DEC_TONEAREST :

 s = "FE_DEC_TONEAREST" ; break;

 case FE_DEC_TOWARDZERO :

 s = "FE_DEC_TOWARDZERO" ; break;

 case FE_DEC_UPWARD :

 s = "FE_DEC_UPWARD" ; break;

 case FE_DEC_DOWNWARD :

 s = "FE_DEC_DOWNWARD" ; break;

 case FE_DEC_TONEARESTFROMZERO :

 s = "FE_DEC_TONEARESTFROMZERO" ; break;

 case _FE_DEC_TONEARESTTOWARDZERO :

 s = "_FE_DEC_TONEARESTTOWARDZERO" ; break;

 case _FE_DEC_AWAYFROMZERO :

 s = "_FE_DEC_AWAYFROMZERO" ; break;

 case _FE_DEC_PREPAREFORSHORTER :

 s = "_FE_DEC_PREPAREFORSHORTER" ; break;

 }

 return s;

}

/* Try out one passed−in number with rounding mode */

static try_rm(int rm, _Decimal32 d32)

{

 long long int ll;

 (void)fe_dec_setround(rm);

 ll = llroundd32(d32);

 printf("llroundd32(%+.2HF) = %+lld − rounding mode = %s\n",

 d32 , ll, rm_str(rm)

);

 return;

}

int main()

{

 try_rm(FE_DEC_TONEAREST , 501.50DF);

 try_rm(FE_DEC_TOWARDZERO , 501.50DF);

 try_rm(FE_DEC_UPWARD , −501.51DF);

 try_rm(FE_DEC_DOWNWARD , −501.49DF);

 try_rm(FE_DEC_TONEARESTFROMZERO , 500.50DF);

 try_rm(_FE_DEC_TONEARESTTOWARDZERO, −501.50DF);

 try_rm(_FE_DEC_AWAYFROMZERO , 500.49DF);

 try_rm(_FE_DEC_PREPAREFORSHORTER , 501.50DF);

 return 0;

}

Related Information

v “math.h” on page 60

v “lround(), lroundf(), lroundl() — Round a Decimal Floating-point Number to its

Nearest Integer” on page 1157

lroundd32, llroundd64, llroundd128

Chapter 3. Part 3. Library Functions 1159

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

lsearch() — Linear Search and Update

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <search.h>

void *lsearch(const void *key, void *base, size_t *nelp,

 size_t width,

 int (*compar)(const void *, const void *));

General Description

The lsearch() function is a linear search routine. It returns a pointer into a table

indicating where an entry may be found. If the entry does not occur, it is added at

the end of the table. The key argument points to the entry to be sought in the table.

The base argument points to the first element in the table. The width argument is

the size of an element in bytes. The nelp argument points to an integer containing

the current number of elements in the table. The integer to which nelp points is

incremented if the entry is added to the table. The compar argument points to a

comparison function which the user must supply (strcmp(), for example). It is

called with two arguments that point to the elements being compared. The function

must return 0 if the elements are equal and nonzero otherwise.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, lsearch() cannot receive

a C++ function pointer as the comparator argument. If you attempt to pass a C++

function pointer to lsearch(), the compiler will flag it as an error. You can pass a C

or C++ function to lsearch() by declaring it as extern ″C″.

Returned Value

If the searched for entry is found, lsearch() returns a pointer to it.

If not found, lsearch() returns a pointer to the newly added element. A NULL pointer

is returned in case of error.

No errors are defined.

Related Information

v “bsearch() — Search Arrays” on page 220

v “hsearch() — Search Hash Tables” on page 911

v “lfind() — Linear Search Routine” on page 1095

v “tsearch() — Binary Tree Search” on page 2257

lsearch

1160 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

lseek() — Change the Offset of a File

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

off_t lseek(int fildes, off_t offset, int pos);

General Description

Changes the current file offset to a new position in an HFS file. The new position is

the given byte offset from the position specified by pos. After you have used lseek()

to seek to a new location, the next I/O operation on the file begins at that location.

lseek() lets you specify new file offsets past the current end of the file. If data is

written at such a point, read operations in the gap between this data and the old

end of the file will return bytes containing zeros. (In other words, the gap is

assumed to be filled with zeros.)

Seeking past the end of a file, however, does not automatically extend the length of

the file. There must be a write operation before the file is actually extended.

Special Behavior for POSIX C

For character special files, lseek() sets the file offset to the specified value. z/OS

UNIX services ignore the file offset value during the read/write processing to

character special files.

int fildes; The file whose current file offset you want to change.

off_t offset; The amount (positive or negative) the byte offset is to be changed.

The sign indicates whether the offset is to be moved forward

(positive) or backward (negative).

int pos; One of the following symbols (defined in the unistd.h header file):

SEEK_SET The start of the file

SEEK_CUR The current file offset in the file

SEEK_END The end of the file

See “z/OS XL C/C++ applications with z/OS UNIX System Services C functions” on

page 13 for more information about using POSIX support.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

lseek

Chapter 3. Part 3. Library Functions 1161

||||

|
|
|
|

||

|

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, lseek() returns the new file offset, measured in bytes from the

beginning of the file.

If unsuccessful, lseek() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINVAL pos contained something other than one of the three options, or the

combination of the pos values would have placed the file offset

before the beginning of the file.

EOVERFLOW The resulting file offset would be a value which cannot be

represented correctly in an object of type off_t.

ESPIPE fildes is associated with a pipe or FIFO special file.

Example

This fragment positions a file (that has at least 10 bytes) to an offset of 10 bytes

before the end of the file.

lseek(fildes,−10,SEEK_END);

Related Information

v “unistd.h” on page 96

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup() — Duplicate an Open File Descriptor” on page 449

v “fcntl() — Control Open File Descriptors” on page 527

v “fseek() — Change File Position” on page 693

v “fsetpos() — Set File Position” on page 701

v “open() — Open a File” on page 1313

v “read() — Read From a File or Socket” on page 1602

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “write() — Write Data on a File or Socket” on page 2464

lseek

1162 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

lstat() — Get Status of File or Symbolic Link

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX1_SOURCE 2

#include <sys/stat.h>

int lstat(const char *__restrict__ pathname, struct stat *__restrict__ buf);

General Description

Gets status information about a specified file and places it in the area of memory

pointed to by the buf argument. You do not need permissions on the file itself, but

you must have search permission on all directory components of the pathname.

If the named file is a symbolic link, lstat() returns information about the symbolic link

itself.

The information is returned in the following stat structure, defined in the sys/stat.h

header file.

 Table 42. Elements of stat Structure

Structure Description

mode_t st_mode A bit string indicating the permissions and privileges of the file.

Symbols are defined in the sys/stat.h header file to refer to bits in a

mode_t value; these symbols are listed in “chmod() — Change the

Mode of a File or Directory” on page 280.

ino_t st_ino The serial number of the file.

dev_t st_dev The numeric ID of the device containing the file.

nlink_t st_nlink The number of links to the file.

uid_t st_uid The numeric user ID of the file’s owner.

gid_t st_gid The numeric group ID of the file’s group.

off_t st_size For regular files, the file’s size in bytes. For symbolic links, the length

of the pathname contained therein not counting the trailing NULL. For

other kinds of files, the value of this field is unspecified.

time_t st_atime The most recent time the file was accessed.

time_t st_ctime The most recent time the status of the file was changed.

time_t st_mtime The most recent time the contents of the file were changed.

Values for time_t are given in terms of seconds that have elapsed since epoch.

If the named file is a symbolic link, lstat() updates the time-related fields before

putting information in the stat structure.

lstat

Chapter 3. Part 3. Library Functions 1163

||||

|
|
|

||

|

|
|
|
|

You can examine properties of a mode_t value from the st_mode field by using a

collection of macros defined in the sys/modes.h header file. If mode is a mode_t

value, and genvalue is an unsigned int value from the stat structure, then:

S_ISBLK(mode)

Is nonzero for block special files.

S_ISCHR(mode)

Is nonzero for character special files.

S_ISDIR(mode)

Is nonzero for directories.

S_ISEXTL(mode,genvalue)

Is nonzero for external links.

S_ISFIFO(mode)

Is nonzero for pipes and FIFO special files.

S_ISLNK(mode)

Is nonzero for symbolic links.

S_ISREG(mode)

Is nonzero for regular files.

S_ISSOCK(mode)

Is nonzero for sockets.

If lstat() successfully determines all this information, it stores it in the area indicated

by the buf argument.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, lstat() returns 0.

If unsuccessful, lstat() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The process does not have search permission on some component

of the pathname prefix.

EINVAL buf contains a NULL.

EIO Added for XPG4.2: An I/O error occurred while reading from the

file system.

ELOOP A loop exists in symbolic links. This error is issued if the number of

symbolic links encountered during resolution of the pathname

argument is greater than POSIX_SYMLOOP.

ENAMETOOLONG

pathname is longer than PATH_MAX characters or some

component of pathname is longer than NAME_MAX characters

lstat

1164 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined through pathconf().

ENOENT There is no file named pathname, or pathname is an empty string.

ENOTDIR A component of the pathname prefix is not a directory.

EOVERFLOW The file size in bytes or the number of blocks allocated to the file or

the file serial number cannot be represented correctly in the

structure pointed to by buf.

Note: Starting with z/OS V1.9, environment variable

_EDC_EOVERFLOW can be used to control behavior of

lstat() with respect to detecting an EOVERFLOW condition

for UNIX files. By default, lstat() will not set EOVERFLOW

when the file size can not be represented correctly in

structure pointed to by buf. When _EDC_EOVERFLOW is

set to YES, lstat() will check for an overflow condition.

Example

CELEBL12

/* CELEBL12

 This example provides status information for a file.

 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

#include <time.h>

main() {

 char fn[]="temp.file", ln[]="temp.link";

 struct stat info;

 int fd;

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(fd);

 if (link(fn, ln) != 0)

 perror("link() error");

 else {

 if (lstat(ln, &info) != 0)

 perror("lstat() error");

 else {

 puts("lstat() returned:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 printf("created: %s", ctime(&info.st_createtime));

 }

 unlink(ln);

lstat

Chapter 3. Part 3. Library Functions 1165

||
|
|

|
|
|
|
|
|
|

}

 unlink(fn);

 }

}

Output

lstat() returned:

 inode: 3022

 dev id: 1

 mode: 03000080

 links: 2

 uid: 25

 gid: 500

created: Fri Jun 16 15:00:00 2001

Related Information

v “sys/stat.h” on page 89

v “sys/types.h” on page 90

v “chmod() — Change the Mode of a File or Directory” on page 280

v “chown() — Change the Owner or Group of a File or Directory” on page 283

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup() — Duplicate an Open File Descriptor” on page 449

v “extlink_np() — Create an External Symbolic Link” on page 506

v “fcntl() — Control Open File Descriptors” on page 527

v “fstat() — Get Status Information about a File” on page 704

v “link() — Create a Link to a File” on page 1101

v “mkdir() — Make a Directory” on page 1217

v “mkfifo() — Make a FIFO Special File” on page 1220

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

v “read() — Read From a File or Socket” on page 1602

v “readlink() — Read the Value of a Symbolic Link” on page 1615

v “remove() — Delete File” on page 1661

v “stat() — Get File Information” on page 2008

v “symlink() — Create a Symbolic Link to a Pathname” on page 2107

v “unlink() — Remove a Directory Entry” on page 2312

v “utime() — Set File Access and Modification Times” on page 2317

v “write() — Write Data on a File or Socket” on page 2464

lstat

1166 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

l64a() — Convert Long to Base 64 String Representation

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

char *l64a(long value);

General Description

The l64a() function converts a long integer into its corresponding base 64 character

representation. In this notation, long integers are represented by up to 6 characters,

each character representing a digit in base 64 notation. The following characters

are used to represent digits:

Character Digit represented

. 0

/ 1

0-9 2-11

A-Z 12-37

a-z 38-63

Returned Value

l64a() returns a pointer to the base 64 representation of value. If value is zero,

l64a() returns a pointer to a NULL string.

l64a() returns a pointer to a static buffer, which will be overwritten by subsequent

calls. Buffers are allocated on a per-thread basis.

There are no errno values defined.

Related Information

v “stdlib.h” on page 85

v “a64l() — Convert Base 64 String Representation to Long Integer” on page 207

v “strtoul() — Convert String to Unsigned Integer” on page 2086

l64a

Chapter 3. Part 3. Library Functions 1167

||||

|
|
||

|

ltoa() — Convert long into a string

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R5

Format

#define _OPEN_SYS_ITOA_EXT

#include <stdlib.h>

char * ltoa(long l, char * buffer, int radix);

General Description

The ltoa() function coverts the long l into a character string. The string is placed in

the buffer passed, which must be large enough to hold the output. The radix values

can be OCTAL, DECIMAL, or HEX. When the radix is DECIMAL, ltoa() produces

the same result as the following statement:

(void) sprintf(buffer, "%ld", l);

with buffer the returned character string. When the radix is OCTAL, ltoa() formats

long l n into an unsigned octal constant. When the radix is HEX, ltoa() formats long

l into an unsigned hexadecimal constant. The hexadecimal value will include lower

case abcdef, as necessary

Returned Value

String pointer (same as buffer) will be returned. When passed an invalid radix

argument, function will return NULL and set errno to EINVAL.

Portability Considerations

This is a non-standard function. Even though the prototype given is commonly used

by compilers on other platforms, there is no guarantee that this function will behave

the same on all platforms, in all cases. You can use this function to help port

applications from other platforms, but you should avoid using it when writing new

applications, in order to ensure maximum portability.

Related Information

v “stdlib.h” on page 85

v “itoa() — Convert int into a string” on page 1048

v “lltoa() — Convert long long into a string” on page 1114

v “ulltoa() — Convert unsigned long long into a string” on page 2288

v “ultoa() — Convert unsigned long into a string” on page 2289

v “utoa() — Convert unsigned int into a string” on page 2323

ltoa

1168 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

makecontext() — Modify User Context

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ucontext.h>

void makecontext(ucontext_t *ucp, void (*func)(), int argc, ...);

General Description

The makecontext() function modifies the context specified by ucp, which has been

initialized using getcontext(). When this context is resumed using setcontext() or

swapcontext(), program execution continues by calling func(), passing it the

arguments that follow argc in the makecontext() call.

The value of argc must match the number of integer arguments passed to func(),

otherwise the behavior is undefined.

The uc_link member of ucontext_t is used to determine the context that will be

resumed when the context being modified by makecontext() returns. If the uc_link

member is not equal to 0, the process continues as if after a call to setcontext()

with the context pointed to by the uc_link member. If the uc_link member is equal

to 0, the process exits as if exit() were called. The uc_link member should be

initialized before the call to makecontext().

This function is supported only in a POSIX program.

This function is not supported in an AMODE 31 XPLINK environment (for example,

one which is in AMODE 31 and in which either the main() function was compiled

with the XPLINK option, or the XPLINK(ON) run-time option was specified).

The <ucontext.h> header file defines the ucontext_t type as a structure that

includes the following members:

mcontext_t uc_mcontext A machine-specific representation

 of the saved context.

ucontext_t *uc_link Pointer to the context that will

 be resumed when this context returns.

sigset_t uc_sigmask The set of signals that are blocked

 when this context is active.

stack_t uc_stack The stack used by this context.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, makecontext() cannot

receive C++ function pointers. If you attempt to pass a C++ function pointer to

makecontext(), the compiler will flag it as an error. To use the C++ makecontext()

function, you must ensure that all functions registered for makecontext() have C

linkage by declaring them as extern “C”. For example:

makecontext

Chapter 3. Part 3. Library Functions 1169

||||

|
|
||

|

C: void func(int, int);

 :

 makecontext(&context, func, 2, arg1, arg2);

C++: extern "C" void func();

 :

 makecontext(&context, func, 2, arg1, arg2);

Special Behavior for AMODE 64

The stack frame of the caller of makecontext() must exist when any future call to

setcontext() or swapcontext() is made that references the context.

Returned Value

makecontext() returns no values.

If unsuccessful, makecontext() sets errno to one of the following values:

Error Code Description

EINVAL The context being modified is using an alternate stack, and the

target function entry point is not a valid Language Environment or C

entry point.

 The argc argument specifies a value less than 0.

ENOMEM The ucp argument does not have enough stack left to complete the

operation. Or more than 15 arguments are passed to the target

function, and there is not enough storage to hold all of the

arguments.

Note: If the target function is in a DLL that has not yet been

loaded, then makecontext() cannot determine the size

requirement and assumes that the size required is

MINSIGSTKSZ. Therefore, in this case, the stack must be at

least the size indicated by MINSIGSTKSZ. If the size

required by the target function is more than MINSIGSTKSZ,

then you must load the DLL before invoking makecontext().

Example

This example creates a context in main with the getcontext() statement, then

modifies the context to have its own stack and to invoke the function func. It

invokes the function with the setcontext() statement. Since the uc_link member is

set to 0, the process exits when the function returns.

/* This example shows the usage of makecontext(). */

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

#include <stdio.h>

#include <ucontext.h>

#include <errno.h>

 #ifdef _LP64

 #define STACK_SIZE 2097152+16384 /* large enough value for AMODE 64 */

 #else

 #define STACK_SIZE 16384 /* AMODE 31 addressing */

 #endif

void func(int);

ucontext_t context, *cp = &context;

makecontext

1170 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|

int main(void) {

 int value = 1;

 getcontext(cp);

 context.uc_link = 0;

 if ((context.uc_stack.ss_sp = (char *) malloc(STACK_SIZE)) != NULL) {

 context.uc_stack.ss_size = STACK_SIZE;

 context.uc_stack.ss_flags = 0;

 errno = 0;

 makecontext(cp,func,1,value);

 if(errno != 0)

 perror("Error reported by makecontext()");

 return -1; /* Error occurred exit */

 }

 else {

 perror("not enough storage for stack");

 abort();

 }

 printf("context has been built\n");

 setcontext(cp);

 perror("returned from setcontext");

 abort();

}

void func(int arg) {

 printf("function called with value %d\n",arg);

 printf("process will exit when function returns\n");

 return();

}

Output

context has been built

function called with value 1

process will exit when function returns

Related Information

v “ucontext.h” on page 96

v “getcontext() — Get User Context” on page 750

v “setcontext() — Restore User Context” on page 1778

v “swapcontext() — Save and Restore User Context” on page 2101

makecontext

Chapter 3. Part 3. Library Functions 1171

malloc() — Reserve Storage Block

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

void *malloc(size_t size);

General Description

Reserves a block of storage of size bytes. Unlike the calloc() function, the content

of the storage allocated is indeterminate. The storage to which the returned value

points is always aligned for storage of any type of object. Under z/OS XL C only, if

4K alignment is required, use the __4kmalc() function. (This function is available to

C applications in stand-alone System Productivity Facility (SPF) applications.) The

library functions specific to the System Programming C (SPC) environment are

described in z/OS XL C/C++ Programming Guide.

Special Behavior for C++

The C++ keywords new and delete are not interoperable with calloc(), free(),

malloc(), or realloc().

Returned Value

If successful, malloc() returns a pointer to the reserved space. The storage space to

which the returned value points is always suitably aligned for storage of any type of

object.

If not enough storage is available, or if size was specified as 0, malloc() returns

NULL. If malloc() returns NULL because there is not enough storage, it sets errno

to one of the following values:

Error Code Description

ENOMEM Insufficient memory is available

Example

CELEBM01

/* CELEBM01

 This example prompts you for the number of array entries you

 want and then reserves enough space in storage for the entries.

 If &malloc. was successful, the example assigns values

 to the entries and prints out each entry; otherwise, it prints

 out an error.

 */

malloc

1172 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 long * array; /* start of the array */

 long * index; /* index variable */

 int i; /* index variable */

 int num; /* number of entries of the array */

 printf("Enter the size of the array\n");

 scanf("%i", &num);

 /* allocate num entries */

 if ((index = array = (long *)malloc(num * sizeof(long))) != NULL)

 {

 for (i = 0; i < num; ++i) /* put values in array */

 index++ = i; / using pointer notation */

 for (i = 0; i < num; ++i) /* print the array out */

 printf("array[%i] = %i\n", i, array[i]);

 }

 else { /* malloc error */

 printf("Out of storage\n");

 abort();

 }

}

Output

Enter the size of the array

array[0] = 0

array[1] = 1

array[2] = 2

array[3] = 3

array[4] = 4

Related Information

v “Using the System Programming C Facilities” in z/OS XL C/C++ Programming

Guide

v “stdlib.h” on page 85

v “calloc() — Reserve and Initialize Storage” on page 230

v “free() — Free a Block of Storage” on page 672

v “__malloc24() — Allocate 24–bit storage” on page 1174

v “__malloc31() — Allocate 31–bit storage” on page 1175

v “realloc() — Change Reserved Storage Block Size” on page 1620

malloc

Chapter 3. Part 3. Library Functions 1173

__malloc24() — Allocate 24–bit storage

Standards

 Standards / Extensions C or C++ Dependencies

both

Format

#include <stdlib.h>

void *__malloc24(size_t size);

General Description

Reserves a block of storage of size bytes from ’below-the-line’ storage (i.e., below

16M).

Returned Value

If successful, __malloc24() returns a pointer to the reserved space. The storage

space to which the returned value points is always suitably aligned for storage of

any type of object.

If not enough storage is available, or if size was specified as 0, __malloc24()

returns NULL. If __malloc24() returns NULL because there is not enough storage, it

sets errno to one of the following values:

Error Code Description

ENOMEM Insufficient memory is available

Related Information

v “Using the System Programming C Facilities” in z/OS XL C/C++ Programming

Guide

v “stdlib.h” on page 85

v “calloc() — Reserve and Initialize Storage” on page 230

v “free() — Free a Block of Storage” on page 672

v “malloc() — Reserve Storage Block” on page 1172

v “__malloc31() — Allocate 31–bit storage” on page 1175

v “realloc() — Change Reserved Storage Block Size” on page 1620

__malloc24

1174 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__malloc31() — Allocate 31–bit storage

Standards

 Standards / Extensions C or C++ Dependencies

both

Format

#include <stdlib.h>

void *__malloc31(size_t size);

General Description

Reserves a block of storage of size bytes from ’below-the-line’ storage (i.e., below

2G).

Returned Value

If successful, __malloc31() returns a pointer to the reserved space. The storage

space to which the returned value points is always suitably aligned for storage of

any type of object.

If not enough storage is available, or if size was specified as 0, __malloc31()

returns NULL. If __malloc31() returns NULL because there is not enough storage, it

sets errno to one of the following values:

Error Code Description

ENOMEM Insufficient memory is available

Related Information

v “Using the System Programming C Facilities” in z/OS XL C/C++ Programming

Guide

v “stdlib.h” on page 85

v “calloc() — Reserve and Initialize Storage” on page 230

v “free() — Free a Block of Storage” on page 672

v “malloc() — Reserve Storage Block” on page 1172

v “__malloc24() — Allocate 24–bit storage” on page 1174

v “realloc() — Change Reserved Storage Block Size” on page 1620

__malloc31

Chapter 3. Part 3. Library Functions 1175

__map_init() — Designate a Storage Area for Mapping Blocks

Standards

 Standards / Extensions C or C++ Dependencies

both POSIX(ON)

OS/390 V2R9

Format

#define _OPEN_SYS_MAP_EXTENTION

#include <sys/mman.h>

int __map_init(struct _Mmg_init *parmlist);

General Description

The __map_init() function allocates a map area in the private area of the calling

address space. This map area is propagated to child address spaces on fork, which

is the only way that multiple processes can share a map area. The application can

connect and disconnect blocks of storage in the map area, providing a very fast

way to connect up to persistent memory. The __map_init() function is meant to be

used by applications which need more shared memory or mmap storage than will fit

in the address space.

The application should set the following values in the _Mmg_init structure:

Element Description

_Mmg_numblks Set to the number of blocks to be contained in the

map area.

_Mmg_megsperblk Set to the size in megabytes of each block in the

map area.

_Mmg_token Set to an 8 character map token when successful.

This map token should be saved and must be used

as a parameter on calls to the __map_service()

function calls.

_Mmg_res01a Reserved, set to 0.

_Mmg_res01b Reserved, set to 0.

_Mmg_areaaddr As input, set to 0 if you want the address assigned

or set to the address of storage where you want the

map to begin. As output, this field contains the

actual address of the map area.

Usage Notes

v It is intended that the application call the __map_init() service once to create the

map area.

v The application then issues fork to create child processes which will inherit a

map area initialized to the hidden state.

v The initial process or the child (and grandchildren) process can then use the

__map_service to connect and disconnect blocks of storage which are persistent

until explicitly deleted.

v When the process which created the initial map area terminates, all further

activity against the map blocks is terminated. The map blocks are then deleted

when the last child process with an active map area terminates.

v There is no explicit call to delete the map area. This is unlike shared memory or

other IPC constructs.

__map_init

1176 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Returned Value

If successful, __map_init() returns NULL.

If unsuccessful, __map_init() returns −1 and sets errno to one of the following

values:

Error Code Description

EEXIST An attempt was made to create more than one map for the

process.

EFAULT The parmlist (_Mmg_init structure) has an argument that is not

accessible to the caller.

EINVAL One of the following occurred:

 The number of blocks (_Mmg_numblks) was zero or negative.

 The number of megabytes per block (_Mmg_Megsperblk) was

zero or negative.

 A reserved field contained nonzero data.

 The specified address (_Mmg_areaaddr) is not on a megabyte

multiple.

EMVSSAF2ERR

An error occurred in the security product. Use the __errno2()

function to retrieve the reason code to determine the exact reason

the error occurred.

ENOMEM The requested storage at location _Mmg_areaaddr or the size

requested could not be obtained. The storage is either not available

or your Region size is too small to contain the map area. Or, there

is insufficient free virtual storage in the address space to satisfy the

request.

EPERM The user is not authorized to use the __map_init() function. Callers

must be permitted to the BPX.MAP FACILITY class profile to use

this service.

Related Information

v “sys/mman.h” on page 87

v “__map_service() — Set Memory Mapping Service” on page 1178

__map_init

Chapter 3. Part 3. Library Functions 1177

__map_service() — Set Memory Mapping Service

Standards

 Standards / Extensions C or C++ Dependencies

both POSIX(ON)

OS/390 V2R9

Format

#define _OPEN_SYS_MAP_EXTENTION

#include <sys/mman.h>

int __map_service(struct _Mmg_service *parmlist, int count, *_Map_token_t);

General Description

The __map_service() function is used to manipulate the map area created by the

__map_init() function. The supported functions are defined under

_Mmg_servicetype below.

Before calling the __map_service() service, the application should set values in the

_Mmg_service structure as follows:

Element Description

_Mmg_servicetype

Set the type of service being requested for each memory block

defined in the array.

Request Description

_Mmg_newblock

Set for an allocation of a new data block in the

mapped area.

_Mmg_conn Set to request that a data block be connected at

the requested location in the map area.

_Mmg_disconn

Set to disconnect a data block from the map area.

_Mmg_free Set to free the storage backing a data block.

_Mmg_cntl Set to change the read or write permission settings

for a data block.
_Mmg_serviceIflag

Used for _Mmg_cntl to indicate read or write and all other bits set

to zero. For _Mmg_disconn to indicate if the backing storage is to

be freed after disconnect. For _Mmg_newblock the option of

_Mmg_NoConn can be set on to bypass the connect to the map

area block. The token returned will have to be saved and used for

connect services on a later call to make the block accessible. For

all other _Mmg_serviceItype requests, set all the bits to zero.

_Mmg_serviceOflag

Used for status of the request. When the request has been

successfully processed all the bits are set to zero. When processing

an list of requests and a failure occurs in _Mmg_Reqfail is set on

and further processing on the list is aborted. _Mmg_servicetype

requests, set all the bits to zero.

_Mmg_token This is returned as output for a _Mmg_newblock request and is

used as input for _Mmg_conn, and _Mmg_free. It is ignored for

_Mmg_disconn and _Mng_cntl.

__map_service

1178 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

_Mmg_res0b Reserved, set to 0.

_Mmg_blkaddr For _Mmg_newblock and _Mmg_conn this is input. It should be set

to an address within the map area (on a block multiple) where you

want to allocate a block or 0. If 0 is specified, the first available

block in the map area is used. On output, this field contains the

address within the map area that was assigned to the data block.

For _Mmg_disconn it is input only and contains the address of the

map block to be disconnected. For _Mng_cntl this field is required

and specifies the block to be use for the _Mmg_cntl option. For

_Mmg_free, _Mmg_cntl and _Mmg_newblock, when the option of

_Mmg_NoConn is set on, this field is ignored.

With count reflecting the number of _Mmg_service structures included in the array

structure supplied on parmlist parameter. With count a positive integer in the range

of 1-1000.

With _Map_token_t the 8 character token retrieved from the _Mmg_token field in a

_Mmg_service structure that returned successful from a __map_init() function call.

Usage Notes

v The __map_init and the __map_service functions are intended to be used in the

following manner:

– The initial process calls __map_init to create a map area large enough for the

biggest expected usage.

– The initial process forks worker processes which inherit the map area at the

same virtual address. By having the map area at the same virtual address,

storage blocks can be connected to the same block in map areas of different

worker processes and pointers can be used to point to data in this or other

blocks. This assumes they are always connected at the same location in the

map area.

– As worker processes perform their tasks, they can request new blocks of

storage to be created in the map area. Each block has a token associated

with it. This token allows other worker processes to connect to the same

block. In this respect, the map area acts like shared memory.

– The worker processes can connect as many blocks to their map area as will

fit.

– When the worker process has no further need for a data block, it can

disconnect it from the map area. After a delete request for a block, this block

is actually freed when the last worker process disconnects for this block.

– When a worker process is completely done with a data block, the storage can

be freed. This data is actually freed when the last worker process disconnects

from that block.

– Using these services, the application could create multiple gigabytes of

storage, of which only certain blocks are mapped into the worker processes at

a given time.

– This service is designed to perform the storage connects and disconnects

very fast. No data movement occurs.

– Storage blocks are initially connected in write mode. When a block is in write

mode, all worker processes which have the block connected, have the block

in write mode. If the block access is changed to read-only, then all worker

processes which have the block connected, have the block in read-only mode.

– If the initial process or a worker process forks, then the child process inherits

a map area initialized to the hidden state.

– Any areas within the map area which do not have a block connected are in

the hidden state. Any reference to storage in the hidden state will trigger a

SIGSEGV signal.

__map_service

Chapter 3. Part 3. Library Functions 1179

Returned Value

If successful, __map_service() returns 0.

If unsuccessful, __map_service() returns −1 and sets errno to one of the following

values:

Error Code Description

EEXIST A request was made to perform a service on a block but a map is

not currently active in the process.

EFAULT The parmlist (_Mmg_service structure) argument addresses either

could not be accessed or was in read-only storage and could not

be updated.

EINVAL For one of the following reasons:

 The block address provided is either not in the map area or it is

not on a map block boundary.

 A request was made to connect to a block or free the backing

storage for a block but the token provided does not match that

of any allocated block in the backing store.

 A request was made to disconnect from a block but the block is

not currently in the map area for this process.

 A newblock or connect request was specified for a map area

block that is already in use.

 A request was made to connect to a block in the backing store

that is currently marked to be freed. The connect is not

permitted.

 The count value was not a positive integer in the range of

1-1000.

ENOMEM A request to create a new block or connect to an existing block was

made but there are no unused blocks in the map area to satisfy the

request.

Related Information

v “sys/mman.h” on page 87

v “__map_init() — Designate a Storage Area for Mapping Blocks” on page 1176

__map_service

1180 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

maxcoll() — Return Maximum Collating Element

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <collate.h>

collel_t maxcoll(void);

General Description

Returns the largest possible value of a collating element in the current locale.

Related Information

v “collate.h” on page 36

v “cclass() — Return Characters in a Character Class” on page 243

v “collequiv() — Return a List of Equivalent Collating Elements” on page 308

v “collorder() — Return List of Collating Elements” on page 310

v “collrange() — Calculate the Range List of Collating Elements” on page 312

v “colltostr() — Return a String for a Collating Element” on page 314

v “getmccoll() — Get Next Collating Element from String” on page 804

v “getwmccoll() — Get Next Collating Element from Wide String” on page 893

v “ismccollel() — Identify a Multicharacter Collating Element” on page 1030

v “strtocoll() — Return Collating Element for String” on page 2064

maxcoll

Chapter 3. Part 3. Library Functions 1181

maxdesc() — Get Socket Numbers to Extend Beyond the Default

Range

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/types.h>

#include <sys/socket.h>

int maxdesc(int *totdesc, int *inetdesc);

General Description

The maxdesc() function reserves space in the address space for socket descriptor

numbers that will be activated as bulk mode sockets.

Parameter

Description

totdesc

A pointer to an integer containing a value 1 greater than the largest desired

socket number. The maximum allowed value is the hard limit returned by

getrlimit() for RLIMIT_NOFILE. This value is set by a BPXPRMnn parmlib

member on its MAXFILEPROC statement. If you specify a value in totdesc

greater than the hard limit (or a negative value), the largest socket number

will be set to this hard limit, not to the larger value of totdesc.

inetdesc

A pointer to an integer. This is defined to be compatible with previous

releases of the maxdesc() interface. The value has no purpose in this

implementation.

Set the integer pointed to by totdesc to 1 more than the desired maximum socket

number. If your program does not use sockets for bulk mode I/O, then you do not

need to use the maxdesc() function. If your program uses sockets for bulk mode I/O

then set the integer pointed to by totdesc to the range of socket descriptors your

application may use then add 1. Once this value is accepted, datagram sockets

assigned descriptors in this range may be activated for bulk mode I/O. AF_INET

address families are allowed to activate bulk mode I/O. You must call maxdesc()

before your program creates its first socket. Your program should use

getstablesize() to verify that the number of sockets was changed.

Note: Because maxdesc() gives a capability to alter the number of sockets in use

the size of the bit sets for the select() call must be increased at compile time.

To increase the size of the bit sets you must define FD_SETSIZE to be at

least as large a value as supplied in totdesc before including sys/types.h in

your program. The default size of FD_SETSIZE is 2048 sockets as specified

in sys/sys_time.h.

maxdesc

1182 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Returned Value

If successful, maxdesc() returns 0.

If unsuccessful, maxdesc() returns -1 and sets errno to one of the following values:

Error Code Description

EALREADY Your program called maxdesc() after creating a socket, after a call

to setibmsockopt(), or after a previous call to maxdesc().

EFAULT Using the totdesc parameter as specified results in an attempt to

access storage outside of the caller’s address space, or storage not

modifiable by the caller.

ENOMEM Your address space has insufficient storage.

Example

The following is an example of the maxdesc() call.

 int totdesc, inetdesc;

 totdesc = 100;

 inetdesc = 0;

 rc = maxdesc(&totdesc, &inetdesc)

If successful, your application can create 100 sockets, for address family AF_INET.

The socket numbers run from 0 through 99.

Related Information

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “close() — Close a File” on page 299

v “getstablesize() — Get the Socket Table Size” on page 870

v “getrlimit() — Get Current/Maximum Resource Consumption.” on page 846

v “listen() — Prepare the Server for Incoming Client Requests” on page 1104

v “open() — Open a File” on page 1313

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “setrlimit() — Control Maximum Resource Consumption” on page 1837

maxdesc

Chapter 3. Part 3. Library Functions 1183

mblen() — Calculate Length of Multibyte Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

int mblen(const char *string, size_t n);

General Description

Determines the length in bytes of the multibyte character pointed to by string. A

maximum of n bytes is examined.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. Changing the LC_CTYPE category invalidates the internal shift

state: undefined results can occur.

If the current locale supports EBCDIC DBCS characters, then the shift state is

updated where applicable. (See “Conforming to ANSI Standards” in z/OS XL C/C++

Language Reference.) The length returned may be up to 4 (for the shift-out

character, 2-byte code, and the shift-in character). If string is a NULL pointer, this

function resets itself to the initial state.

The function maintains the internal shift state that is altered by subsequent calls.

Returned Value

If string is NULL, mblen() returns:

v Nonzero when DBCS-host code (EBCDIC systems) is used

v Nonzero if multibyte encodings are state-dependent

v Zero otherwise

If string is not NULL, mblen() returns:

v Zero if string points to the NULL character

v The number of bytes comprising the multibyte character

v The value −1 if string does not point to a valid multibyte character

Example

 #include <locale.h>

 #include <stdlib.h>

 #include <stdio.h>

 int main(void)

 {

 char *mbs = "a"

 "\x0E" /* shift out */

 "\x44\x66" /* <j0158> */

 "\x44\x76" /* <j0159> */

mblen

1184 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

"\x42\x4e" /* <j0160> */

 "\x0F" /* shift in */

 "b";

 char *loc = setlocale(LC_ALL, "JA_JP.IBM-939");

 int n;

 if (!loc) /* setlocale() failure */

 {

 exit(8);

 }

 printf("We’re in the %s locale.\n", loc);

 n = mblen(NULL, MB_CUR_MAX);

 /**/

 /* n is nonzero, indicating state-dependent encoding; mblen() has */

 /* forced the internal shift state to "initial". */

 /**/

 printf("n = mblen(NULL, MB_CUR_MAX); ===> n = %s\n",

 n ? "NONZERO" : "ZERO");

 n = mblen(mbs, MB_CUR_MAX);

 /**/

 /* n is 1, ’a’ is a multibyte character of length 1, internal */

 /* shift state remains at "initial". */

 /**/

 printf("n = mblen(mbs, MB_CUR_MAX); ===> n = %d\n", n);

 n = mblen(mbs + 1, MB_CUR_MAX);

 /**/

 /* n is 3, ’shift out’ plus two byte character ’<j0158>’. The */

 /* internal state changes to "shift out". */

 /**/

 printf("n = mblen(mbs + 1, MB_CUR_MAX); ===> n = %d\n", n);

 n = mblen(mbs + 4, MB_CUR_MAX);

 /**/

 /* n is 2, two byte character ’<j0159>’. The internal shift */

 /* state remains "shift out" */

 /**/

 printf("n = mblen(mbs + 4, MB_CUR_MAX); ===> n = %d\n", n);

 n = mblen(mbs + 6, MB_CUR_MAX);

 /**/

 /* n is 3, two byte character ’<j0160>’ plus ’shift in’. The */

 /* internal shift state returns to "initial". */

 /**/

 printf("n = mblen(mbs + 6, MB_CUR_MAX); ===> n = %d\n", n);

 n = mblen(mbs + 9, MB_CUR_MAX);

 /**/

 /* n is 1, ’b’ is a multibyte character of length 1, internal */

 /* shift state remains at "initial". */

 /**/

 printf("n = mblen(mbs + 9, MB_CUR_MAX); ===> n = %d\n", n);

 n = mblen(mbs + 10, MB_CUR_MAX);

 /**/

 /* n is 0 (end of multibyte character string). */

 /**/

 printf("n = mblen(mbs + 10, MB_CUR_MAX); ===> n = %d\n", n);

 return 0;

 }

Output

mblen

Chapter 3. Part 3. Library Functions 1185

We’re in the JA_JP.IBM-939 locale.

 n = mblen(NULL, MB_CUR_MAX); ===> n = NONZERO

 n = mblen(mbs, MB_CUR_MAX); ===> n = 1

 n = mblen(mbs + 1, MB_CUR_MAX); ===> n = 3

 n = mblen(mbs + 4, MB_CUR_MAX); ===> n = 2

 n = mblen(mbs + 6, MB_CUR_MAX); ===> n = 3

 n = mblen(mbs + 9, MB_CUR_MAX); ===> n = 1

 n = mblen(mbs + 10, MB_CUR_MAX); ===> n = 0

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “stdlib.h” on page 85

v “mbrlen() — Calculate Length of Multibyte Character” on page 1187

v “mbrtowc() — Convert a Multibyte Character to a Wide Character” on page 1190

v “mbsrtowcs() — Convert a Multibyte String to a Wide-Character String” on page

1195

v “mbstowcs() — Convert Multibyte Characters to Wide Characters” on page 1197

v “mbtowc() — Convert Multibyte Character to Wide Character” on page 1199

v “setlocale() — Set Locale” on page 1811

v “strlen() — Determine String Length” on page 2043

v “wcrtomb() — Convert a Wide Character to a Multibyte Character” on page 2360

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

v “wcsrtombs() — Convert Wide-Character String to Multibyte String” on page 2390

v “wctomb() — Convert Wide Character to Multibyte Character” on page 2432

mblen

1186 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

mbrlen() — Calculate Length of Multibyte Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

size_t mbrlen(const char * __restrict__s, size_t n, mbstate_t * __restrict__ps);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

size_t mbrlen(const char *s, size_t n, mbstate_t *ps);

General Description

Calculates the number of bytes required to return to the initial shift state. This is

equivalent to

 mbrtowc((wchar_t *)0, s, n, ps != NULL ? ps : &internal);

where &internal is the address of the internal mbstate_t object for the mbrlen()

function.

mbrlen() is a restartable version of mblen(). That is, shift state information is passed

as one of the arguments, and is updated on exit. With mbrlen(), you can switch

from one multibyte string to another, provided that you have kept the shift-state

information.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the mbrlen()

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

Returned Value

If s is a NULL pointer, mbrlen() resets the shift state to the initial shift state and

returns 0.

If s is not a NULL pointer, mbrlen() returns the first of the following that applies.

0 If the next n or fewer bytes complete the valid multibyte character

that corresponds to the NULL wide character.

mbrlen

Chapter 3. Part 3. Library Functions 1187

||||

|
|
|

||

|

positive If the next n or fewer bytes complete the valid multibyte character;

the value returned is the number of bytes that complete the

multibyte character.

−2 If the next n bytes form an incomplete (but potentially valid)

multibyte character, and all n bytes have been processed; it is

unspecified whether this can occur when the value of n is less than

that of the MB_CUR_MAX macro.

Note: When a −2 value is returned, and n is at least

MB_CUR_MAX, the string would contain redundant shift-out

and shift-in characters. To continue processing the multibyte

string, increment the pointer by the value n, and call the

mbrtowc() function.

−1 If an encoding error occurs (when the next n or fewer bytes do not

contribute to the complete and valid multibyte character), the value

of the macro EILSEQ is stored in errno, but the conversion state

remains unchanged.

Example

CELEBM03

/* CELEBM03 */

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

int main(void)

{

 char mbs[5] = "a"; /* string containing the multibyte char */

 mbstate_t ss = 0; /* set shift state to the initial state */

 int length;

 /* Determine the length in bytes of a multibyte character pointed */

 /* to by mbs. */

 length = mbrlen(mbs, MB_CUR_MAX, &ss);

 printf(" length: %d \n", length);

 printf(" mbs:\"%s\"\n", mbs);

 printf("MB_CUR_MAX: %d \n", MB_CUR_MAX);

 printf(" ss: %d \n", ss);

}

Output

 length: 1

 mbs:"a"

MB_CUR_MAX: 4

 ss: 0

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “wchar.h” on page 98

v “mblen() — Calculate Length of Multibyte Character” on page 1184

v “mbrtowc() — Convert a Multibyte Character to a Wide Character” on page 1190

v “mbsrtowcs() — Convert a Multibyte String to a Wide-Character String” on page

1195

v “mbtowc() — Convert Multibyte Character to Wide Character” on page 1199

mbrlen

1188 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “setlocale() — Set Locale” on page 1811

v “wcrtomb() — Convert a Wide Character to a Multibyte Character” on page 2360

v “wcsrtombs() — Convert Wide-Character String to Multibyte String” on page 2390

mbrlen

Chapter 3. Part 3. Library Functions 1189

mbrtowc() — Convert a Multibyte Character to a Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

size_t mbrtowc(wchar_t * __restrict__pwc, const char * __restrict__s, size_t n, mbstate_t * __restrict__ps);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

size_t mbrtowc(wchar_t *pwc, const char *s, size_t n, mbstate_t *ps);

General Description

The mbrtowc() function is equivalent to mbrtowc(NULL,"",1,ps).

If s is a NULL pointer, the mbrtowc() function ignores the n and the pwc, and resets

the shift state, pointed to by ps, to the initial shift state.

If s is not a NULL pointer, mbrtowc() inspects at most n bytes, beginning with the

byte pointed to by s, and the shift state pointed to by ps, and determines the

number of bytes that is needed to complete the valid multibyte character.

When the multibyte character is completed, mbrtowc() determines the value of the

corresponding wide character and stores it in the object pointed to by pwc, so long

as pwc is not a NULL pointer. Finally, mbrtowc() stores the actual shift state in the

object pointed to by ps. If ps is a NULL pointer, mbrtowc() uses its own internal

object to track the shift state.

mbrtowc() is a restartable version of mbtowc(). That is, shift-state information is

passed as one of the arguments and is updated on exit. With mbrtowc(), you can

switch from one multibyte string to another, provided that you have kept the

shift-state information.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results may occur.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the mbrtowc()

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

mbrtowc

1190 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

Returned Value

If s is a NULL pointer, mbrtowc() resets the shift state to the initial shift state and

returns 0.

If s is not a NULL pointer, mbrtowc() returns one of the following, in the order

shown:

0 If the next n or fewer bytes complete the valid multibyte character

that corresponds to the NULL wide character.

positive integer

If the next n or fewer bytes complete the valid multibyte character;

the value returned is the number of bytes that complete the

multibyte character.

−2 If the next n bytes form an incomplete (but potentially valid)

multibyte character, and all n bytes have been processed. It is

unspecified whether this can occur when the value of n is less than

that of the MB_CUR_MAX macro.

Note: When a −2 value is returned, and n is at least

MB_CUR_MAX, the string would contain redundant shift-out

and shift-in characters. To continue processing the multibyte

string, increment the pointer by the value n, and call the

mbrtowc() function.

−1 If an encoding error occurs (when the next n or fewer bytes do not

contribute to the complete and valid multibyte character). The value

of the macro EILSEQ is stored in errno, but the conversion state is

unchanged.

Example

CELEBM04

/* CELEBM04 */

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

int main(void)

{

 wchar_t wc;

 char mbs[5] = "a"; /* string containing the multibyte char */

 mbstate_t ss = 0; /* set shift state to the initial state */

 int length;

 /* Determine the length of the multibyte character pointed to by */

 /* mbs. Store the multibyte character in the wchar_t object */

 /* called wc. */

 length = mbrtowc(&wc, mbs, MB_CUR_MAX, &ss);

 printf(" length: %d \n", length);

 printf(" wc:'%lc'\n", wc);

 printf(" mbs:\"%s\"\n", mbs);

 printf("MB_CUR_MAX: %d \n", MB_CUR_MAX);

 printf(" ss: %d \n", ss);

}

mbrtowc

Chapter 3. Part 3. Library Functions 1191

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “wchar.h” on page 98

v “mblen() — Calculate Length of Multibyte Character” on page 1184

v “mbrlen() — Calculate Length of Multibyte Character” on page 1187

v “mbsrtowcs() — Convert a Multibyte String to a Wide-Character String” on page

1195

v “setlocale() — Set Locale” on page 1811

v “wcrtomb() — Convert a Wide Character to a Multibyte Character” on page 2360

v “wcsrtombs() — Convert Wide-Character String to Multibyte String” on page 2390

mbrtowc

1192 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

mbsinit() — Test State Object for Initial State

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

int mbsinit(const mbstate_t *ps);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

int mbsinit(const mbstate_t *ps);

General Description

If ps is not a NULL pointer the mbsinit() function determines whether the pointer to

mbstate_t object describes an initial conversion state.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the mbsinit()

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

Returned Value

If ps is a NULL pointer or if the pointed-to object describes an initial conversion

state, mbsinit() returns nonzero.

Otherwise, mbsinit() returns 0.

Example

CELEBM05

/* CELEBM05

 This example checks the conversion state to see if it is in the

 initial state.

 */

#include "stdio.h"

#include "wchar.h"

#include "stdlib.h"

mbsinit

Chapter 3. Part 3. Library Functions 1193

||||

|
|
|

||

|

main() {

 char *string = "ABC";

 mbstate_t state = 0;

 wchar_t wc;

 int rc;

 rc = mbrtowc(&wc, string, MB_CUR_MAX, &state);

 if (mbsinit(&state))

 printf("In initial conversion state\n");

}

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “wchar.h” on page 98

v “mbrlen() — Calculate Length of Multibyte Character” on page 1187

v “mbrtowc() — Convert a Multibyte Character to a Wide Character” on page 1190

v “mbsrtowcs() — Convert a Multibyte String to a Wide-Character String” on page

1195

v “setlocale() — Set Locale” on page 1811

v “wcrtomb() — Convert a Wide Character to a Multibyte Character” on page 2360

v “wcsrtombs() — Convert Wide-Character String to Multibyte String” on page 2390

mbsinit

1194 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

mbsrtowcs() — Convert a Multibyte String to a Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

size_t mbsrtowcs(wchar_t *dst, const char **src, size_t len, mbstate_t *ps);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

size_t mbsrtowcs(wchar_t *dst, const char **src, size_t len, mbstate_t *ps);

General Description

Converts a sequence of multibyte characters that begins in the conversion state

described by ps from the array indirectly pointed to by src. It converts this sequence

into a sequence of corresponding wide characters, that, if dst is not a NULL pointer,

are then stored into the array pointed to by dst. Conversion continues up to and

including a terminating NULL character, and the terminating NULL wide character is

also stored. Conversion stops earlier in two cases: (1) when a sequence of bytes is

reached that does not form a valid multibyte character, or (2) if dst is not a NULL

pointer, when len codes have been stored into the array pointed to by dst. Each

conversion takes place as if by a call to the mbrtowc() function.

If dst is not a NULL pointer, the pointer object pointed to by src is assigned either a

NULL pointer (if conversion stopped because a terminating NULL character was

reached) or the address just past the last multibyte character converted. If

conversion stopped because a terminating NULL character was reached, the

resulting state is the initial state.

mbsrtowcs() is a restartable version of mbstowcs(). That is, shift-state information is

passed as on of the arguments and is updated on exit. With mbsrtowcs(), you can

switch from one multibyte string to another, provided that you have kept the

shift-state information.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the mbsrtowcs()

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

mbsrtowcs

Chapter 3. Part 3. Library Functions 1195

||||

|
|
|

||

|

Returned Value

If successful, mbsrtowcs() returns the number of multibyte characters converted, not

including the terminating NULL character, if any.

If the input string contains an invalid multibyte character, mbsrtowcs() returns

(size_t)−1 and sets errno to one of the following values:

Error Code Description

EILSEQ Encoding error (the conversion state is undefined).

Example

CELEBM06

/* CELEBM06 */

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#define SIZE 10

int main(void)

{

 wchar_t wcs[SIZE];

 char mbs[SIZE]="abcd"; /* string containing the multibyte char */

 char *ptr = mbs; /* pointer to the mbs string */

 int length;

 /* Determine the length of the multibyte string pointed to by */

 /* mbs. Store the multibyte characters in the wchar_t array */

 /* pointed to by wcs. */

 length = mbsrtowcs(wcs, (const char**)&ptr, SIZE, NULL);

 wcs[length] = L'\0';

 printf(" length: %d \n", length);

 printf(" wcs:\"%ls\"\n",wcs);

 printf(" mbs:\"%s\"\n",mbs);

 printf(" &mbs: %p \n", mbs);

 printf(" &ptr: %p \n", ptr);

}

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “wchar.h” on page 98

v “mblen() — Calculate Length of Multibyte Character” on page 1184

v “mbrlen() — Calculate Length of Multibyte Character” on page 1187

v “mbrtowc() — Convert a Multibyte Character to a Wide Character” on page 1190

v “mbstowcs() — Convert Multibyte Characters to Wide Characters” on page 1197

v “setlocale() — Set Locale” on page 1811

v “wcrtomb() — Convert a Wide Character to a Multibyte Character” on page 2360

v “wcsrtombs() — Convert Wide-Character String to Multibyte String” on page 2390

mbsrtowcs

1196 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

mbstowcs() — Convert Multibyte Characters to Wide Characters

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

size_t mbstowcs(wchar_t * __restrict__pwc, const char* __restrict__string, size_t n);

General Description

Determines the length of the sequence of the multibyte characters that start in the

initial shift state and that are pointed to by string. It then converts each of the

multibyte characters to a wchar_t, and stores no more than n codes in the array

pointed to by pwc. The conversion stops if either an invalid multibyte sequence is

encountered or if n codes have been converted.

Processing continues up to and including the terminating NULL character, and

characters that follow it are not processed. The terminating NULL character is

converted into a code with the value 0.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

If pwc is a null pointer, mbstowcs() will return the length required to convert the

entire array regardless of the value of n, but no values are stored.

Returned Value

If successful, mbstowcs() returns the number of pwc array elements modified (or

required if pwc is null) , not counting the terminating 0 code (the wchar_t 0 code).

Note that, if the return value is n, the resulting wchar_t array will not be

NULL-terminated.

If an invalid multibyte character is encountered, mbstowcs() returns (size_t)−1.

Example

CELEBM07

/* CELEBM07

 This example uses &mbstowcs. to convert a multibyte character

 string to a wide character string.

 */

#include <stdio.h>

#include <stdlib.h>

int main()

{

mbstowcs

Chapter 3. Part 3. Library Functions 1197

||||

|
|
|
|
|

||

|

|
|

|
|
|
|

char mbsin[8] = "\x50\x0e\x42\xf1\x0f\x50\x00";

 wchar_t wcsout[5];

 size_t wcssize;

 printf("mbsin is 0x%.2x 0x%.2x 0x%.2x 0x%.2x 0x%.2x 0x%.2x 0x%.2x\n",

 mbsin[0], mbsin[1], mbsin[2],

 mbsin[3], mbsin[4], mbsin[5],

 mbsin[6]);

 wcssize = mbstowcs(wcsout, mbsin, 5);

 printf("mbstowcs(wcsout, mbsin, 5); returned %d\n", wcssize);

 printf("wcsout is 0x%.4x 0x%.4x 0x%.4x 0x%.4x\n",

 wcsout[0], wcsout[1],

 wcsout[2], wcsout[3]);

}

Output

mbsin is 0x50 0x0e 0x42 0xf1 0x0f 0x50 0x00

mbstowcs(wcsout, mbsin, 5); returned 3

wcsout is 0x0050 0x42f1 0x0050 0x0000

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “stdlib.h” on page 85

v “mblen() — Calculate Length of Multibyte Character” on page 1184

v “mbsrtowcs() — Convert a Multibyte String to a Wide-Character String” on page

1195

v “mbtowc() — Convert Multibyte Character to Wide Character” on page 1199

v “setlocale() — Set Locale” on page 1811

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

v “wcstombs() — Convert Wide-Character String to Multibyte Character String” on

page 2416

mbstowcs

1198 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

mbtowc() — Convert Multibyte Character to Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

int mbtowc(wchar_t * __restrict__pwc, const char* __restrict__string, size_t n);

General Description

Converts a multibyte character to a wide character and returns the number of bytes

of the multibyte character. It first determines the length of the multibyte character

pointed to by string. It then converts the multibyte character to the corresponding

wide character and places the wide character in the location pointed to by pwc, if

pwc is not a NULL pointer. A maximum of n bytes is examined.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

If string is NULL, mbtowc() returns:

v Nonzero if the multibyte encoding in the current locale (LC_CTYPE) is

shift-dependent.

v 0 otherwise.

v The current shift state is set to the initial state.

Otherwise if string is not NULL, mbtowc() returns:

v The number of bytes comprising the converted multibyte character, if n or fewer

bytes form a valid multibyte character.

v 0 if string points to the NULL character.

v −1 if string does not point to a valid multibyte character, and the next n bytes do

not form a valid multibyte character.

If the current locale supports EBCDIC DBCS characters, the shift state is updated

where applicable. The length returned may be up to 4 characters long (for the

shift-out character, 2-byte code, and the shift-in character).

After the function is placed into its initial state, it interprets multibyte

characters—pointed to by string—accordingly. During the processing of

shift-dependent encoded characters, you cannot stop processing one string, then

move temporarily to processing another string, and return to the first, because the

state would be valid for the second string, not the place where you stopped in the

first string.

mbtowc

Chapter 3. Part 3. Library Functions 1199

||||

|
|
|
|
|

||

|

Example

/* This example uses mbtowc() to convert a multibyte character into a wide

 character.

 */

#include <stdio.h>

#include <stdlib.h>

int temp;

char string [6];

wchar_t arr[6];

int main(void)

{ /* Set string to point to a multibyte character. */ ...
 temp = mbtowc(arr, string, MB_CUR_MAX);

 printf("wide-character string: %ls",arr);

}

Related Information

v “Internationalization: Locales and Character Sets” in z/OS XL C/C++

Programming Guide

v “locale.h” on page 57

v “stdlib.h” on page 85

v “mblen() — Calculate Length of Multibyte Character” on page 1184

v “mbrtowc() — Convert a Multibyte Character to a Wide Character” on page 1190

v “mbstowcs() — Convert Multibyte Characters to Wide Characters” on page 1197

v “setlocale() — Set Locale” on page 1811

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

v “wctomb() — Convert Wide Character to Multibyte Character” on page 2432

mbtowc

1200 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

m_create_layout() — Create and Initialize a Layout Object (Bidi data)

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

C99

both z/OS V1R2

Format

#include <sys/layout.h>

LayoutObject m_create_layout(const AttrObject attrobj, const char *modifier);

General Description

The m_create_layout() function is part of the support for handling of bidirectional

(Bidi) conversion of data between Visual (MVS) and Implicit (z/OS UNIX) formats.

Initial support is for Arabic and Hebrew data.

The m_create_layout() function creates a LayoutObject associated with the locale

identified by attrobj. The LayoutObject is an opaque object containing all the data

and methods necessary to perform the layout operations on context-dependent or

directional characters of the locale identified by the attrobj.

The memory for the LayoutObject is allocated by m_create_layout(). The

LayoutObject created has default layout values. If the modifier argument is not

NULL, the layout values specified by the modifier will overwrite the default layout

values associated with the locale. Also, internal states maintained by the layout

transformation function across transformations are set to their initial values.

The attrobj argument is or may be an amalgam of many opaque objects. A locale

object is just one example of the type of object that can be attached to an attribute

object. The attrobj argument specifies a name that is usually associated with a

locale category. If attrobj is NULL, the LayoutObject created is associated with the

current locale as set by the setlocale() function.

The modifier argument can be used to announce a set of layout values when the

LayoutObject is created.

A LayoutObject created by m_create_layout() is deleted by calling the

m_destroy_layout() function.

Returned Value

If successful, m_create_layout() returns a LayoutObject for use in subsequent calls

to m_*_layout() functions.

If unsuccessful, m_create_layout() returns (LayoutObject)0 and sets errno to one of

the following values:

Error Code Description

EBADF The attribute object is invalid or the locale associated with the

attribute object is not available.

m_create_layout

Chapter 3. Part 3. Library Functions 1201

EINVAL The modifier string has a syntax error or it contains unknown layout

values.

ENOMEM Insufficient storage space is available.

Related Information

v “sys/layout.h” on page 87

v “m_destroy_layout() — Destroy a Layout Object (Bidi data)” on page 1203

v “m_getvalues_layout() — Query Layout Values of a Layout Object (Bidi data)” on

page 1215

v “m_setvalues_layout() — Set Layout Values of a Layout Object (Bidi data)” on

page 1253

v “m_transform_layout() — Layout Transformation for Character Strings (Bidi data)”

on page 1271

v “m_wtransform_layout() — Layout Transformation for Wide-Character Strings

(Bidi data)” on page 1279

v “setlocale() — Set Locale” on page 1811

m_create_layout

1202 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

m_destroy_layout() — Destroy a Layout Object (Bidi data)

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

C99

both z/OS V1R2

Format

#include <sys/layout.h>

int m_destroy_layout(const LayoutObject layoutobject);

General Description

The m_destroy_layout() function is part of the support for handling of bidirectional

(Bidi) conversion of data between Visual (MVS) and Implicit (z/OS UNIX) formats.

Initial support is for Arabic and Hebrew data.

The m_destroy_layout() function destroys a LayoutObject by deallocating the layout

object and all the associated resources previously allocated by the

m_create_layout() function.

Returned Value

If successful, m_destroy_layout() returns 0.

If unsuccessful, m_destroy_layout() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT Errors occurred while processing the request.

Related Information

v “sys/layout.h” on page 87

v “m_destroy_layout() — Destroy a Layout Object (Bidi data)”

v “m_getvalues_layout() — Query Layout Values of a Layout Object (Bidi data)” on

page 1215

v “m_setvalues_layout() — Set Layout Values of a Layout Object (Bidi data)” on

page 1253

v “m_transform_layout() — Layout Transformation for Character Strings (Bidi data)”

on page 1271

v “m_wtransform_layout() — Layout Transformation for Wide-Character Strings

(Bidi data)” on page 1279

m_destroy_layout

Chapter 3. Part 3. Library Functions 1203

memccpy() — Copy Bytes in Memory

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <string.h>

void *memccpy(void *__restrict__ s1, const void *__restrict__ s2, int c, size_t n);

General Description

The memccpy() function copies bytes from memory area s2 into memory area s1,

stopping after the first occurrence of byte c (converted to an unsigned char) is

copied, or after n bytes are copied, whichever comes first.

Returned Value

If successful, memccpy() returns a pointer to the byte after the copy of c in s1.

If c was not found in the first n bytes of s2, memccpy() returns a NULL pointer.

Related Information

v “string.h” on page 86

v “memchr() — Search Buffer” on page 1205

v “memcmp() — Compare Bytes” on page 1207

v “memcpy() — Copy Buffer” on page 1209

v “memmove() — Move Buffer” on page 1211

v “memset() — Set Buffer to Value” on page 1213

v “strchr() — Search for Character” on page 2020

memccpy

1204 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|
|

memchr() — Search Buffer

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

void *memchr(const void *buf, int c, size_t count);

General Description

The memchr() built-in function searches the first count bytes pointed to by buf for

the first occurrence of c converted to an unsigned character. The search continues

until it finds c or examines count bytes.

Returned Value

If successful, memchr() returns a pointer to the location of c in buf.

If c is not within the first count bytes of buf, memchr() returns NULL.

Example

CELEBM11

/* CELEBM11

 This example finds the first occurrence of "x" in

 the string that you provide.

 If it is found, the string that starts with that character is

 printed.

 If you compile this code as MYPROG, then it could be invoked

 like this, with exactly one parameter:

 MYPROG skixing

 */

#include <stdio.h>

#include <string.h>

int main(int argc, char ** argv)

{

 char * result;

 if (argc != 2)

 printf("Usage: %s string\n", argv[0]);

 else

 {

 if ((result = (char *)memchr(argv[1], 'x', strlen(argv[1]))) != NULL)

 printf("The string starting with x is %s\n", result);

 else

 printf("The letter x cannot be found in the string\n");

 }

}

memchr

Chapter 3. Part 3. Library Functions 1205

||||

|
|
|
|
|

||

|

Output

The string starting with x is xing

Related Information

v “string.h” on page 86

v “memccpy() — Copy Bytes in Memory” on page 1204

v “memcmp() — Compare Bytes” on page 1207

v “memcpy() — Copy Buffer” on page 1209

v “memmove() — Move Buffer” on page 1211

v “memset() — Set Buffer to Value” on page 1213

v “strchr() — Search for Character” on page 2020

memchr

1206 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

memcmp() — Compare Bytes

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

int memcmp(const void *buf1, const void *buf2, size_t count);

General Description

The memcmp() built-in function compares the first count bytes of buf1 and buf2.

The relation is determined by the sign of the difference between the values of the

leftmost first pair of bytes that differ. The values depend on EBCDIC encoding. This

function is not locale sensitive.

Returned Value

Indicates the relationship between buf1 and buf2 as follows:

Value Meaning

< 0 The contents of the buffer pointed to by buf1 less than the contents

of the buffer pointed to by buf2

= 0 The contents of the buffer pointed to by buf1 identical to the

contents of the buffer pointed to by buf2

> 0 The contents of the buffer pointed to by buf1 greater than the

contents of the buffer pointed to by buf2

Example

CELEBM12

/* CELEBM12

 This example compares first and second arguments passed to

 main to determine which, if either, is greater.

 */

#include <stdio.h>

#include <string.h>

int main(int argc, char ** argv)

{

 int len;

 int result;

 if (argc != 3)

 {

 printf("Usage: %s string1 string2\n", argv[0]);

 }

memcmp

Chapter 3. Part 3. Library Functions 1207

||||

|
|
|
|
|

||

|

else

 {

 /* Determine the length to be used for comparison */

 if (strlen(argv[1]) < strlen(argv[2]))

 len = strlen(argv[1]);

 else

 len = strlen(argv[2]);

 result = memcmp(argv[1], argv[2], len);

 printf("When the first %i characters are compared,\n", len);

 if (result == 0)

 printf("\"%s\" is identical to \"%s\"\n", argv[1], argv[2]);

 else if (result < 0)

 printf("\"%s\" is less than \"%s\"\n", argv[1], argv[2]);

 else

 printf("\"%s\" is greater than \"%s\"\n", argv[1], argv[2]);

 }

}

Output

If the program is passed the arguments firststring and secondstring, you would

obtain following:

When the first 11 characters are compared,

“firststring” is less than “secondstring”

Related Information

v “string.h” on page 86

v “memccpy() — Copy Bytes in Memory” on page 1204

v “memchr() — Search Buffer” on page 1205

v “memcpy() — Copy Buffer” on page 1209

v “memmove() — Move Buffer” on page 1211

v “memset() — Set Buffer to Value” on page 1213

v “strcmp() — Compare Strings” on page 2022

memcmp

1208 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

memcpy() — Copy Buffer

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

void *memcpy(void * __restrict__dest, const void * __restrict__src, size_t count);

General Description

The memcpy() built-in function copies count bytes from the object pointed to by src

to the object pointed to by dest. See “Built-in Functions” on page 107 for

information about the use of built-in functions. For memcpy(), the source characters

may be overlaid if copying takes place between objects that overlap. Use the

memmove() function to allow copying between objects that overlap.

Returned Value

memcpy() returns the value of dest.

Example

CELEBM13

/* CELEBM13

 This example copies the contents of source to target.

 */

#include <string.h>

#include <stdio.h>

#define MAX_LEN 80

char source[MAX_LEN] = "This is the source string";

char target[MAX_LEN] = "This is the target string";

int main(void)

{

 printf("Before memcpy, target is \"%s\"\n", target);

 memcpy(target, source, sizeof(source));

 printf("After memcpy, target becomes \"%s\"\n", target);

}

Output

Before memcpy, target is "This is the target string"

After memcpy, target becomes "This is the source string"

Related Information

v “string.h” on page 86

v “memccpy() — Copy Bytes in Memory” on page 1204

memcpy

Chapter 3. Part 3. Library Functions 1209

||||

|
|
|
|
|

||

|

v “memchr() — Search Buffer” on page 1205

v “memcmp() — Compare Bytes” on page 1207

v “memmove() — Move Buffer” on page 1211

v “memset() — Set Buffer to Value” on page 1213

v “strcpy() — Copy String” on page 2026

memcpy

1210 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

memmove() — Move Buffer

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

void *memmove(void *dest, const void *src, size_t count);

General Description

Copies count bytes from the object pointed to by src to the object pointed to by

dest. The memmove() function allows copying between possibly overlapping objects

as if the count bytes of the object pointed to by src must first copied into a

temporary array before being copied to the object pointed to by dest.

Returned Value

memmove() returns the value of dest.

Example

CELEBM14

/* CELEBM14

 This example copies the word shiny from position target + 2

 to position target + 8.

 */

#include <string.h>

#include <stdio.h>

#define SIZE 21

char target[SIZE] = "a shiny white sphere";

int main(void)

{

 char * p = target + 8; /* p points at the starting character

 of the word we want to replace */

 char * source = target + 2; /* start of "shiny" */

 printf("Before memmove, target is \"%s\"\n", target);

 memmove(p, source, 5);

 printf("After memmove, target becomes \"%s\"\n", target);

}

Output

Before memmove, target is "a shiny white sphere"

After memmove, target becomes "a shiny shiny sphere"

memmove

Chapter 3. Part 3. Library Functions 1211

||||

|
|
|
|
|

||

|

Related Information

v “string.h” on page 86

v “memccpy() — Copy Bytes in Memory” on page 1204

v “memchr() — Search Buffer” on page 1205

v “memcmp() — Compare Bytes” on page 1207

v “memcpy() — Copy Buffer” on page 1209

v “memset() — Set Buffer to Value” on page 1213

v “strcpy() — Copy String” on page 2026

memmove

1212 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

memset() — Set Buffer to Value

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

void *memset(void *dest, int c, size_t count);

General Description

The memset() built-in function sets the first count bytes of dest to the value c

converted to an unsigned int.

Returned Value

memset() returns the value of dest.

Example

CELEBM15

/* CELEBM15

 This example sets 10 bytes of the buffer to "A" and

 the next 10 bytes to "B".

 */

#include <string.h>

#include <stdio.h>

#define BUF_SIZE 20

#define HALF_BUF_SIZE BUF_SIZE/2

int main(void)

{

 char buffer[BUF_SIZE + 1];

 char *string;

 memset(buffer, 0, sizeof(buffer));

 string = (char *)memset(buffer,'A', HALF_BUF_SIZE);

 printf("\nBuffer contents: %s\n", string);

 memset(buffer+HALF_BUF_SIZE, 'B', HALF_BUF_SIZE);

 printf("\nBuffer contents: %s\n", buffer);

}

Output

Buffer contents: AAAAAAAAAA

Buffer contents: AAAAAAAAAABBBBBBBBBB

Related Information

v “string.h” on page 86

v “memccpy() — Copy Bytes in Memory” on page 1204

memset

Chapter 3. Part 3. Library Functions 1213

||||

|
|
|
|
|

||

|

v “memchr() — Search Buffer” on page 1205

v “memcmp() — Compare Bytes” on page 1207

v “memcpy() — Copy Buffer” on page 1209

v “memmove() — Move Buffer” on page 1211

memset

1214 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

m_getvalues_layout() — Query Layout Values of a Layout Object (Bidi

data)

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

C99

both z/OS V1R2

Format

#include <sys/layout.h>

int m_getvalues_layout(const LayoutObject layout_object, LayoutValues values,

 int *index_returned);

General Description

The m_getvalues_layout() function is part of the support for handling of bidirectional

(Bidi) conversion of data between Visual (MVS) and Implicit (z/OS UNIX) formats.

Initial support is for Arabic and Hebrew data.

The m_getvalues_layout() function is used to query the current setting of layout

values within a LayoutObject. The layout_object argument specifies a LayoutObject

returned by the m_create_layout() function. The values argument specifies the list

of layout values which are to be queried.

Each value element of a LayoutValueRec must point to a location where the layout

value is stored. For example, if a layout value is of type T, the argument must be of

type T*. The values are queried from the LayoutObject and represent its current

state.

If the layout value name has QueryValueSize OR-ed to it, instead of the value of

the layout value, only its size is returned. This option can be used by the caller to

determine the amount of memory needed to be allocated for the layout values

queried.

It is the user’s responsibility to manage the space allocation for the layout values

queried.

Returned Value

If successful, m_getvalues_layout() returns 0.

If any value cannot be queried, m_getvalues_layout() stores into index_returned the

(zero-based) index of the value causing the error. It returns -1 and sets errno to one

of the following values:

Error Code Description

EINVAL The layout value specified by index_returned is unknown or its

value is invalid or the argument layout_object is invalid.

Related Information

v “sys/layout.h” on page 87

m_getvalues_layout

Chapter 3. Part 3. Library Functions 1215

v “m_create_layout() — Create and Initialize a Layout Object (Bidi data)” on page

1201

v “m_destroy_layout() — Destroy a Layout Object (Bidi data)” on page 1203

v “m_setvalues_layout() — Set Layout Values of a Layout Object (Bidi data)” on

page 1253

v “m_transform_layout() — Layout Transformation for Character Strings (Bidi data)”

on page 1271

v “m_wtransform_layout() — Layout Transformation for Wide-Character Strings

(Bidi data)” on page 1279

m_getvalues_layout

1216 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

mkdir() — Make a Directory

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/stat.h>

int mkdir(const char *pathname, mode_t mode);

General Description

Creates a new, empty directory, pathname. The file permission bits in mode are

modified by the file creation mask of the process, and then used to set the file

permission bits of the directory being created. For more information on the file

creation mask, see “umask() — Set and Retrieve File Creation Mask” on page

2291.

The mode argument is created with one of the following symbols defined in the

sys/stat.h header file.

Any mode flags that are not defined will be turned off, and the function will be

allowed to proceed.

S_IRGRP Read permission for the file’s group.

S_IROTH Read permission for users other than the file owner.

S_IRUSR Read permission for the file owner.

S_IRWXG Read, write, and search or execute permission for the file’s group.

S_IRWXG is the bitwise inclusive-OR of S_IRGRP, S_IWGRP, and

S_IXGRP.

S_IRWXO Read, write, and search or execute permission for users other than

the file owner. S_IRWXO is the bitwise inclusive-OR of S_IROTH,

S_IWOTH, and S_IXOTH.

S_IRWXU Read, write, and search, or execute, for the file owner; S_IRWXG is

the bitwise inclusive-OR of S_IRUSR, S_IWUSR, and S_IXUSR.

S_ISGID Privilege to set group ID (GID) for execution. When this file is run

through an exec function, the effective group ID of the process is

set to the group ID of the file. The process then has the same

authority as the file owner, rather than the authority of the actual

invoker.

S_ISUID Privilege to set the user ID (UID) for execution. When this file is run

through an exec function, the effective user ID of the process is set

to the owner of the file. The process then has the same authority as

the file owner, rather than the authority of the actual invoker.

S_ISVTX Indicates shared text. Keep loaded as an executable file in storage.

mkdir

Chapter 3. Part 3. Library Functions 1217

||||

|
|
|
|

||

|

S_IWGRP Write permission for the file’s group.

S_IWOTH Write permission for users other than the file owner.

S_IWUSR Write permission for the file owner.

S_IXGRP Search permission (for a directory) or execute permission (for a file)

for the file’s group.

S_IXOTH Search permission for a directory, or execute permission for a file,

for users other than the file owner.

S_IXUSR Search permission (for a directory) or execute permission (for a file)

for the file owner.

The owner ID of the new directory is set to the effective user ID of the process. The

group ID of the new directory is set to the group ID of the owning directory.

mkdir() sets the access, change, and modification times for the new directory. It

also sets the change and modification times for the directory that contains the new

directory.

If pathname names a symbolic link, mkdir() fails.

Returned Value

If successful, mkdir() returns 0.

If unsuccessful, mkdir() does not create a directory, returns −1, and sets errno to

one of the following values:

Error Code Description

EACCES The process did not have search permission on some component

of pathname, or did not have write permission on the parent

directory of the directory to be created.

EEXIST Either the named file refers to a symbolic link, or there is already a

file or directory with the given pathname.

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOP (defined in the limits.h header file) symbolic

links are detected in the resolution of pathname.

EMLINK The link count of the parent directory has already reached

LINK_MAX (defined in the limits.h header file).

ENAMETOOLONG

pathname is longer than PATH_MAX characters or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined using pathconf().

ENOENT Some component of pathname does not exist, or pathname is an

empty string.

ENOSPC The file system does not have enough space to contain a new

directory, or the parent directory cannot be extended.

ENOTDIR A component of the pathname prefix is not a directory.

mkdir

1218 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EROFS The parent directory of the directory to be created is on a read-only

file system.

Example

CELEBM16

/* CELEBM16

 The following example creates a new directory.

 */

#define _POSIX_SOURCE

#include <sys/stat.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 char new_dir[]="new_dir";

 if (mkdir(new_dir, S_IRWXU|S_IRGRP|S_IXGRP) != 0)

 perror("mkdir() error");

 else if (chdir(new_dir) != 0)

 perror("first chdir() error");

 else if (chdir("..") != 0)

 perror("second chdir() error");

 else if (rmdir(new_dir) != 0)

 perror("rmdir() error");

 else

 puts("success!");

}

Related Information

v “limits.h” on page 55

v “sys/stat.h” on page 89

v “chdir() — Change the Working Directory” on page 273

v “chmod() — Change the Mode of a File or Directory” on page 280

v “stat() — Get File Information” on page 2008

v “umask() — Set and Retrieve File Creation Mask” on page 2291

mkdir

Chapter 3. Part 3. Library Functions 1219

mkfifo() — Make a FIFO Special File

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

General Description

Sets the access, change, and modification times for the new file. It also sets the

change and modification times for the directory that contains the new file.

mkfifo() creates a new FIFO special file, pathname. The file permission bits in mode

are changed by the file creation mask of the process, and then used to set the file

permission bits of the FIFO file being created. If pathname contains a symbolic link,

mkfifo() fails. For more information on the file creation mask, see “umask() — Set

and Retrieve File Creation Mask” on page 2291; for information about the file

permission bits, see “chmod() — Change the Mode of a File or Directory” on page

280.

The owner ID of the FIFO file is set to the effective user ID of the process. The

group ID of the FIFO file is set to the group ID of the owning directory. pathname

cannot end in a symbolic link.

Returned Value

If successful, mkfifo() returns 0.

If unsuccessful, mkfifo() does not create a FIFO file, returns −1, and sets errno to

one of the following values:

Error Code Description

EACCES The process does not have search permission on some component

of pathname, or does not have write permission on the parent

directory of the file to be created.

EEXIST Either the named file refers to a symbolic link, or there is already a

file or directory with the given pathname.

EINTR A signal is received while this open is blocked waiting for an open()

for read (if O_WRONLY was specified) or for an open() for write (if

O_RDONLY was specified).

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOP (defined in the limits.h header file) symbolic

links are detected in the resolution of pathname.

mkfifo

1220 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

EMLINK The link count of the parent directory has already reached the

maximum defined for the system.

ENAMETOOLONG

pathname is longer than PATH_MAX characters or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined using pathconf().

ENOENT Some component of pathname does not exist, or pathname is an

empty string.

ENOSPC The file system does not have enough space to contain a new file,

or the parent directory cannot be extended.

ENOTDIR A component of the pathname prefix is not a directory.

EROFS The parent directory of the FIFO file is on a read-only file system.

Example

CELEBM17

/* CELEBM17

 This example uses mkfifo() to create a FIFO specail file named

 temp.fifo and then writes and reads from the file before closing it.

 */

#define _POSIX_SOURCE

#include <sys/stat.h>

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

main() {

 char fn[]="temp.fifo";

 char out[20]="FIFO's are fun!", in[20];

 int rfd, wfd;

 if (mkfifo(fn, S_IRWXU) != 0)

 perror("mkfifo() error");

 else {

 if ((rfd = open(fn, O_RDONLY|O_NONBLOCK)) < 0)

 perror("open() error for read end");

 else {

 if ((wfd = open(fn, O_WRONLY)) < 0)

 perror("open() error for write end");

 else {

 if (write(wfd, out, strlen(out)+1) == −1)

 perror("write() error");

 else if (read(rfd, in, sizeof(in)) == −1)

 perror("read() error");

 else printf("read '%s' from the FIFO\n", in);

 close(wfd);

 }

 close(rfd);

 }

 unlink(fn);

 }

}

Output

read ’FIFO’s are fun!’ from the FIFO

mkfifo

Chapter 3. Part 3. Library Functions 1221

Related Information

v “limits.h” on page 55

v “sys/stat.h” on page 89

v “chmod() — Change the Mode of a File or Directory” on page 280

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

v “stat() — Get File Information” on page 2008

v “umask() — Set and Retrieve File Creation Mask” on page 2291

mkfifo

1222 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

mknod() — Make a Directory or File

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

z/OS UNIX

both

Format

_OPEN_SYS

#define _OPEN_SYS

#include <sys/stat.h>

int mknod(const char *path, mode_t mode, rdev_t dev_identifier);

_XOPEN_SOURCE_EXTENDED 1

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev_identifier);

General Description

Creates a new directory, regular file, character special file, or FIFO special file

(named pipe), with the pathname specified in the path argument.

The first byte of the mode argument determines the file type of the file:

S_IFCHR Character special file

S_IFFIFO FIFO special file

S_IFREG Regular file

S_IFDIR Directory file

The file permission bits of the new file are initialized with the remaining bits in mode

and changed by the file creation mask of the process. For more information on

these symbols, refer to “chmod() — Change the Mode of a File or Directory” on

page 280.

dev_identifier applies only to a character special file. It is ignored for the other file

types. dev_identifier contains a value representing the device major and device

minor numbers. The major number is contained in the high-order 16 bits; it identifies

a device driver supporting a class of devices, such as interactive terminals. The

minor number is contained in the low-order 16 bits of dev_identifier; it identifies a

specific device within the class referred to by the device major number. With z/OS

UNIX services, the device major numbers are:

1 Master pseudoterminal

2 Slave pseudoterminal

3 /dev/tty

4 /dev/null

5 /dev/fdn

mknod

Chapter 3. Part 3. Library Functions 1223

||||

|
|
|

||

|

6 Sockets

7 OCSRTY

8 OCSADMIN

9 ″/dev/console″

Device major numbers 1,2 and 7: The device minor numbers range between 0

and one less than the maximum number of pseudoterminal pairs defined by the

installation.

Device major numbers 3,4,6,8 and 9: The device minor number is ignored.

Device major number 5: The device minor number value represents the file

descriptor to be referred to. For example, device minor 0 refers to file descriptor 0.

When it completes successfully, mknod() marks for update the following fields of the

file: st_atime, st_ctime, and st_mtime. It also marks for update the st_ctime and

st_mtime fields of the directory that contains the new file.

Returned Value

If successful, mknod() returns 0.

If unsuccessful, mknod() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES Search permission is denied on a component of path, or write

permission is denied on the parent directory of the file to be

created.

EEXIST A file by that name already exists.

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOP (defined in the limits.h header file) symbolic

links are detected in the resolution of path.

EMLINK The link count of the parent directory has already reached the

maximum defined for the system.

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined through pathconf().

ENOENT A component of path was not found, or no path was specified.

ENOSPC The file system does not have enough space to contain a new

directory, or the parent directory cannot be extended.

ENOTDIR A component of path is not a directory

EPERM Added for XPG4.2: The invoking process does not have

appropriate privileges and the file type is not FIFO-special.

EROFS The file named in path cannot be created, because it would reside

on a read-only file system.

mknod

1224 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Example

CELEBM18

/* CELEBM18 */

#include <sys/stat.h>

#include <unistd.h>

#include <stdio.h>

#define master 0x00010000

main() {

 char fn[]="char ec";

 if (mknod(fn, S_IFCHR|S_IRUSR|S_IWUSR, master|0x0001) != 0)

 perror("mknod() error");

 else if (unlink(fn) != 0)

 perror("unlink() error");

}

Related Information

v “limits.h” on page 55

v “sys/stat.h” on page 89

v “mkdir() — Make a Directory” on page 1217

v “mkfifo() — Make a FIFO Special File” on page 1220

v “open() — Open a File” on page 1313

mknod

Chapter 3. Part 3. Library Functions 1225

mkstemp() — Make a Unique Filename

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

int mkstemp(char *template);

General Description

The mkstemp() function replaces the contents of the string pointed to by template

with a unique file name, and returns a file descriptor for the file open for reading

and writing. The function thus prevents any possible race condition between testing

whether the file exists and opening it for use. The string in template should look like

a file name with six trailing ’X’s; mkstemp() replaces each ’X’ with a character from

the portable file name character set. The characters are chosen such that the

resulting name does not duplicate the name of an existing file. This function is

supported only in a POSIX program.

Returned Value

If successful, mkstemp() returns an open file descriptor.

If no suitable file could be created, mkstemp() returns -1.

There are no errno values defined.

Related Information

v “stdlib.h” on page 85

v “mktemp() — Make a Unique Filename” on page 1227

mkstemp

1226 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

mktemp() — Make a Unique Filename

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

char *mktemp(char *template);

General Description

The mktemp() function replaces the contents of the string pointed by template by a

unique filename and returns template. The application must initialize template to be

a filename with six trailing ’X’s; mktemp() replaces each ’X’ with a single-byte

character from the portable filename character set.

This function is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

Note: The mktemp() function has been moved to the Legacy Option group in

Single UNIX Specification, Version 3 and may be withdrawn in a future

version. The mkstemp() function is preferred for portability and greater

reliability.

Returned Value

If successful, mktemp() returns a pointer to template.

If a unique name cannot be created, mktemp() sets template to a NULL string.

There are no errno values defined.

Related Information

v “stdlib.h” on page 85

v “mkstemp() — Make a Unique Filename” on page 1226

mktemp

Chapter 3. Part 3. Library Functions 1227

||||

|
|
||

|

|
|
|
|

mktime() — Convert Local Time

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <time.h>

time_t mktime(struct tm *tmptr);

General Description

Converts broken-down time, expressed as a local time, in the tm structure pointed

to by tmptr, to calendar time. Calendar time is the number of seconds since epoch,

which was at 00:00:00 Coordinated Universal Time (UTC), January 1, 1970.

The tm structure is described in Table 19 on page 94.

The values of the structure members passed to mktime() are not restricted to the

ranges described in time.h. The values of tm_wday and tm_yday are ignored and

are assigned their correct values on return.

On the successful completion of the function, all the members of the structure

pointed to by time are set to represent the specified time with their values forced

into the ranges described in time.h. The values of tm_wday are set after the values

of tm_mon and tm_year are determined.

If an application uses localtime() to determine local time, localtime() will determine if

daylight savings applies (assuming DST info is available) and will correctly set the

tm_isdst flag. If the application wants to determine seconds from Epoch

corresponding to a tm structure returned by localtime(), it should not modify the

tm_isdst flag set by localtime().

If an application sets tm_isdst = 0 before calling mktime(), it is asserting that

daylight savings does not apply, regardless of the system DST start and end dates.

Likewise, if the application has set a value for tm_isdst to be greater than 0, it is

asserting that the time represented by the tm structure has been shifted for daylight

savings. Therefore, mktime() unshifts the time in determining seconds since Epoch.

Setting tm_isdst to -1 tells the mktime() function to determine whether daylight

savings time applies. If so, mktime() returns tm_isdst greater than 0. If not, it returns

tm_isdst of 0 unless DST information is not available on the system, in which case

mktime() returns tm_isdst of -1.

Your time zone may not be using a Daylight Savings Time, perhaps because the TZ

environment variable does not specify a daylight savings time name or perhaps

mktime

1228 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

because DSTNAME is unspecified in the current LC_TOD locale category. In such a

case, if you code tm_isdst=1 and call mktime(), (time-t)-1 is returned to indicate

an error.

Returned Value

If successful, mktime() returns the calendar time corresponding to broken-down

time, expressed as local time, using the tm structure, which is pointed to by tmptr.

If mktime() cannot convert the broken-down time to a calendar time, it returns

(time_t)-1 to indicate an error, such as time before January 1, 1970 (UTC).

Error Code

Description

EOVERFLOW

The result cannot be represented.

 Notes:

v The ctime(), localtime(), and mktime() functions now return Coordinated Universal

Time (UTC) unless customized locale information is made available, which

includes setting the timezone_name variable.

v In POSIX you can supply the necessary information by using environment

variables.

v In non-POSIX applications, you can supply customized locale information by

setting time zone and daylight information in LC_TOD.

v By customizing the locale, you allow the time functions to preserve both time and

date, correctly adjusting for daylight time on a given date.

v The mktime() functions fails when a result overflows the time_t object used to

return the number of seconds elapsed from the time in tmptr back to the start of

the standard epoch. In 31-bit, the last year that mktime() supports is 2037. In

64-bit, the time_t grows from 4 bytes to 8 bytes in length, so that mktime() can

accommodate dates further into the future. The upper bound in 64-bit is set to

the year 9999.

Example

CELEBM19

/* CELEBM19

 This example prints the day of the week that is 40 days and

 16 hours from the current date.

 */

#include <stdio.h>

#include <time.h>

char *wday[] = { "Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday" };

int main(void)

{

 time_t t1, t3;

 struct tm *t2;

 t1 = time(NULL);

 t2 = localtime(&t1);

 t2 −> tm_mday += 40;

 t2 −> tm_hour += 16;

 t3 = mktime(t2);

mktime

Chapter 3. Part 3. Library Functions 1229

|
|

|
|

printf("40 days and 16 hours from now, it will be a %s \n",

 wday[t2 −> tm_wday]);

}

Output

40 days and 16 hours from now, it will be a Sunday

Related Information

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

v “tzset() — Set the Time Zone” on page 2279

mktime

1230 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__mlockall() — Lock the Address Space of a Process

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SOURCE_EXTENDED 2

#include <sys/mman.h>

int __mlockall(int flags);

General Description

The function__mlockall() causes all of the pages mapped by the address space of a

process to be memory resident until unlocked or until the process exits or execs

another process image. The flags argument determines whether the pages are to

be locked or unlocked.

Flags Meaning

BPX_SWAP Lock the current pages mapped for this address space.

BPX_NONSWAP

Unlock the current pages previously locked.

Returned Value

If successful, __mlockall() returns 0.

If unsuccessful, __mlockall() returns -1 and no change is made to the memory state

of the address space.

Note: This function will return a EINVAL with an errno2() of 09300be if the kernel is

not available.

Related Information

v “sys/mman.h” on page 87

__mlockall

Chapter 3. Part 3. Library Functions 1231

mmap() — Map Pages of Memory

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

z/OS UNIX

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off);

General Description

The mmap() function establishes a mapping between a process’ address space and

a file, shared memory object, or typed memory object. The format of the call is as

follows:

pa=mmap(addr, len, prot, flags, fildes, off);

The mmap() function establishes a mapping between the process’s address space

at an address pa for len bytes and the file associated with the file descriptor fildes

at offset off for len bytes. The value of pa is an unspecified function of the argument

addr and values of flags, further described below. A successful mmap() call returns

pa as its results. The address ranges covered by [pa, pa + len] and [off, off + len]

must be legitimate for the possible (not necessarily current) address space of a

process and the file, respectively.

If the size of the mapped file changes after the call to mmap(), the effect of

references to portions of the mapped region that correspond to added or removed

portions of the file is unspecified.

The mmap() function is supported for regular files. Support for any other type of file

is unspecified.

The prot argument determines whether read, write, execute, or some combination

of accesses are permitted to the pages being mapped. The protection options are

defined in <sys/mman.h>:

PROT_READ page can be read

PROT_WRITE page can be written

PROT_EXEC page can be executed

PROT_NONE page can be accessed

Implementations need not enforce all combinations of access permissions.

However, write shall only be permitted when PROT_WRITE has been set.

The flags argument provides other information about the handling of the mapped

pages. The options are defined in <sys/mman.h>:

MAP_SHARED

Share changes

mmap

1232 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

MAP_PRIVATE

Changes are private

MAP_FIXED Interpret addr exactly

__MAP_MEGA

Map in megabyte increments

The MAP_PRIVATE and MAP_SHARED flags control the visibility of write

references to the memory region. Exactly one of these flags must be specified. The

mapping type is retained across a fork.

If MAP_SHARED is set in flags, write references to the memory region by the

calling process may change the file and are visible in all MAP_SHARED mappings

of the same portion of the file by any process.

If MAP_PRIVATE is set in flags, write references to the memory region by the

calling process do not change the file and are not visible to any process in other

mappings of the same portion of the file.

All changes to the mapped data made by processes that have mapped the memory

region using MAP_SHARED are shared and are visible to all other processes that

have mapped the same file-offset range.

When MAP_FIXED is set in the flags argument, the implementation is informed that

the value of pa must be addr, exactly. If MAP_FIXED is set, mmap() may return

(void*)-1 and set errno to EINVAL. If a MAP_FIXED request is successful, the

mapping established by mmap() replaces any previous mappings for the process’s

pages in the range [pa, pa + len].

When MAP_FIXED is not set, the implementation uses addr in an unspecified

manner to arrive to pa. The pa so chosen will be an area of the address space

which the implementation deems suitable for a mapping of len bytes to the file. All

implementation interpret an addr value of 0 as granting the implementation

complete freedom in selecting pa, subject to constraints described below. A nonzero

value of addr is taken to be a suggestion of a process address near which the

mapping should be placed. When the implementation selects a value for pa, it

never places a mapping at address 0, nor does it replace any extant mapping, nor

map into dynamic memory allocation areas.

The off argument is constrained to be aligned and sized according to the value

returned by sysconf() when passed_SC_PAGESIZE or_SC_PAGE_SIZE. When

MAP_FIXED is specified, the argument addr must also meet these constraints. The

implementation performs mapping operations over whole pages. Thus, while the

argument len need not meet a size or alignment constraint, the implementation will

include, in any mapping operation, any partial page specified by the range [pa, pa +

len].

The implementation always zero-fills any partial page at the end of a memory

region. Further, the implementation never writes out any modified portions of the

last page of a file that are beyond the end of the mapped portion of the file. If the

mapping established by mmap() extends into pages beyond the page containing the

last byte of the file, an application references to any of the pages in the mapping

that are beyond the last page results in the delivery of a SIGBUS or SIGSEGV

signal.

mmap

Chapter 3. Part 3. Library Functions 1233

The mmap() function adds an extra reference to the file associated with the file

descriptor fildes which is not removed by a subsequent close() on that file

descriptor. This reference is removed when there are not more mappings to the file.

The st_atime field of the mapped file may be marked for update at any time

between the mmap() call and the corresponding munmap() call. The initial read or

write reference to a mapped region will cause the file’s set_atime field to be marked

for update if it has not already been marked for update.

The st_ctime and st_mtime fields of a file that is mapped with MAP_SHARED and

PROT_WRITE, will be marked for update at stime point in the interval between a

write reference to the mapped region and the next call to msync() with MS_ASYNC

or MS_SYNC for that portion of the file by any process. If there is no such call,

these fields may be marked for update at any time after a write reference if the

underlying file is modified as a result.

If a memory mapped region is not unmapped before the process terminates,

process termination will not automatically write out to disk any modified data in the

mapped region. Modified private data in a MAP_PRIVATE region will be discarded.

If the map region is MAP_SHARED, the modified data will continue to reside in the

cache (if the same file-offset range is being shared) and may ultimately be written

out to disk by another process using the msync() service. However, if no other

processes map the same file-offset range as MAP_SHARED, the modified data is

discarded.

There may be implementation-dependent limits on the number of memory regions

that can be mapped (per process or per system). If such a limit is imposed, whether

the number of memory regions that can be mapped by a process is decreased by

the use of shmat() is implementation-dependent.

Specification of the __MAP_MEGA option results in the system allocating storage to

map the file in megabyte increments. This option should only be used for large files.

Any file over half a megabyte in size will likely achieve better performance by using

this option. When using this option, mmaps and munmaps are in megabyte ranges

on megabyte boundaries.

When __MAP_MEGA is specified, all changes to the mapped data are shared.

Modifications to the mapped data are visible to all other processes that map the

same file-offset range. That is, __MAP_MEGA behaves much like MAP_SHARED.

__MAP_MEGA is mutually exclusive with MAP_PRIVATE and MAP_SHARED.

Specification of __MAP_MEGA with either MAP_PRIVATE or MAP_SHARED will

result in the request failing with errno set to EINVAL.

The __MAP_MEGA option may be specified with MAP_FIXED.

Map_address parameter: If the map address is not zero and __MAP_MEGA has

been specified, then for non MAP_FIXED requests, the kernel will attempt to create

the mapping at the map_address, truncated to the nearest megabyte boundary. If

unsuccessful, it will proceed as if a map_address of zero were specified. For

MAP_FIXED requests, the value of map_address must be multiples of the segment

size (megabyte multiples). If not, the mmap request fails with errno set to EINVAL.

Map_length parameter: When __MAP_MEGA is specified, mapping operations are

performed over whole segments (megabyte chunks). If the length is not a multiple

of the segment size, the entire trailing portion of the last segment will also be

mapped into the user storage.

mmap

1234 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

File_Descriptor: The file descriptor identifies the file being mapped. If an attempt is

made to map a file that is already mapped but was mapped with a different

specification of __MAP_MEGA, then the current request fails with errno set to

EINVAL-MMapTypeMismatch. That is, at any point in time a file may be mapped

with the __MAP_MEGA option or without the __MAP_MEGA option but not both

ways at the same time.

For a __MAP_MEGA mapping, if this is the first map to the file represented by the

specified file descriptor then whether the file was opened for read or for write will

determine what protection options may be specified for the file by this mmap and

any future mmaps and mprotects, by this or any other process mapping to the

same file. If the file was opened for read but not write then only PROT_READ,

PROT_EXEC or PROT_NONE will be allowed. If the file was opened for write, then

any of the protection options will be allowed. Only regular files may be mapped.

Note also that remote files accessed through NFS or DFS may not be mapped.

Protect_options: The specification made for Protect_options has a global effect

when the file is mapped with the __MAP_MEGA option. The Protect_option

specified immediately effects all processes currently mapped to the same file-offset

range.

 Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, mmap() returns the address pa at which the mapping was placed.

If unsuccessful, mmap() returns MAP_FAILED and sets errno to one of the following

values:

Error Code Description

EACCES The fildes argument is not open for read, regardless of the

protection specified, or fildes is not open for write and

PROT_WRITE was specified for a MAP_SHARED type mapping.

EBADF The fildes argument is not a valid open file descriptor.

EINVAL The addr argument (if MAP_FIXED was specified) or off is not a

multiple of the page size as returned by sysconf(), or are

considered invalid by the implementation.

 The value of flags is invalid (neither MAP_PRIVATE nor

MAP_SHARED is set).

EMFILE The number of mapped regions would exceed an

implementation-dependent limit (per process or per system).

ENODEV The fildes argument refers to a file whose type is not supported by

mmap().

ENOMEM MAP_FIXED was specified, and the range [addr, addr + range

[addr, addr + len], rounding len] exceeds that allowed for the

mmap

Chapter 3. Part 3. Library Functions 1235

|
|

||

||
|
|

||

||
|
|

|
|

||
|

||
|

||
|

address space for a process; or if MAP_FIXED was not specified

and there is insufficient room in the address space to effect the

mapping.

ENXIO Address in the range [off, off + len] are invalid for fildes

EOVERFLOW The file is a regular file and the value of off plus len exceeds the

offset maximum established in the open file.

Note: Starting with z/OS V1.9, environment variable

_EDC_EOVERFLOW can be used to control behavior of

mmap() with respect to detecting an EOVERFLOW condition

for UNIX files. By default, mmap() will not set EOVERFLOW

when the offset maximum is exceeded associated with fildes.

When _EDC_EOVERFLOW is set to YES, mmap() will check

for an overflow condition.

Related Information

v “sys/mman.h” on page 87

v “exec Functions” on page 486

v “fcntl() — Control Open File Descriptors” on page 527

v “fork() — Create a New Process” on page 632

v “lockf() — Record Locking on Files” on page 1123

v “mprotect() — Set Protection of Memory Mapping” on page 1249

v “msync() — Synchronize Memory with Physical Storage” on page 1269

v “munmap() — Unmap Pages of Memory” on page 1275

v “shmat() — Shared Memory Attach Operation” on page 1864

v “sysconf() — Determine System Configuration Options” on page 2111

mmap

1236 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

||

||
|

|
|
|
|
|
|
|

|

modf(), modff(), modfl() — Extract Fractional and Integral Parts of

Floating-Point Value

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double modf(double x, double *intptr);

float modf(float x, int *intptr); /* C++ only */

long double modf(long double x, int *intptr); /* C++ only */

float modff(float x, int *intptr);

long double modfl(long double x, int *intptr);

General Description

Breaks down the floating-point value x into fractional and integral parts. The integral

part is stored as double, in the object pointed to by intptr. Both the fractional and

integral parts are given the same sign as x.

Returned Value

Returns the signed fractional portion of x.

Example

CELEBM20

/* CELEBM20

 This example breaks the floating−point number −14.876 into

 its fractional and integral components.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y, d;

 x = −14.876;

 y = modf(x, &d);

 printf("x = %lf\n", x);

 printf("Integral part = %lf\n", d);

 printf("Fractional part = %lf\n", y);

}

Output

modf, modff, modfl

Chapter 3. Part 3. Library Functions 1237

||||

|
|
|
|
|
|
|

||

|

x = -14.876000

Integral part = -14.000000

Fractional part = -0.876000

Related Information

v “math.h” on page 60

v “fmod(), fmodf(), fmodl() — Calculate Floating-Point Remainder” on page 619

v “frexp(), frexpf(), frexpl() — Extract Mantissa and Exponent of the Floating-Point

Value” on page 678

v “ldexp(), ldexpf(), ldexpl() — Multiply by a Power of Two” on page 1067

modf, modff, modfl

1238 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

modfd32(), modfd64(), modfd128() — Extract Fractional and Integral

Parts of Decimal Floating-Point Value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 modfd32(_Decimal32 x, _Decimal32 *p);

_Decimal64 modfd64(_Decimal64 x, _Decimal64 *p);

_Decimal128 modfd128(_Decimal128 x, _Decimal128 *p);

_Decimal32 modf(_Decimal32 x, _Decimal32 *p); /* C++ only */

_Decimal64 modf(_Decimal64 x, _Decimal64 *p); /* C++ only */

_Decimal128 modf(_Decimal128 x, _Decimal128 *p); /* C++ only */

General Description

Breaks down the decimal floating-point value x into fractional and integral parts. The

integral part is stored in the object point to by p. Both the fractional and integral

parts are given the same sign as x.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The lround functions return the signed fractional portion of x.

If the rounded value is outside the range of the return type, the numeric result is

unspecified. A range error may occur if the magnitude of x is too large.

Example

/* CELEBM24

 This example illustrates the modfd128() function.

 This example breaks the floating−point number −14.876 into

 its fractional and integral components.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal128 x, y, d;

 x = −14.876DL;

modfd32, modfd64, modfd128

Chapter 3. Part 3. Library Functions 1239

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

y = modfd128(x, &d);

 printf("Number = %DDf\n", x);

 printf("Integral part = %DDf\n", d);

 printf("Fractional part = %DDf\n", y);

}

Related Information

v “math.h” on page 60

v “frexpd32(), frexpd64(), frexpd128() — Extract Mantissa and Exponent of the

Decimal Floating-Point Value” on page 680

v “ldexpd32(), ldexpd64(), ldexpd128() — Multiply by a Power of Ten” on page

1069

v “modf(), modff(), modfl() — Extract Fractional and Integral Parts of Floating-Point

Value” on page 1237

modfd32, modfd64, modfd128

1240 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|

|
|
|
|
|
|
|
|

mount() — Make a File System Available

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <sys/stat.h>

int mount(const char *path, char *filesystem,

 char *filesystype, mtm_t mtm,

 int parmlen, char *parm);

General Description

Adds a file system to the hierarchical file system (HFS). The same file system

cannot be mounted at more than one place in the hierarchical file system.

In order to mount a file system, the caller must be an authorized program, or must

be running for a user with appropriate privileges.

path The mount point directory that the file system is to be mounted to.

filesystem The name of the file system to be mounted; it must be unique

within the system. For a hierarchical file system (HFS) data set, this

is a 1-to-44-character MVS data set name specified as all

uppercase letters.

 This name is terminated with NULL characters.

filesystype The name for the file system that will perform the mount. This

8-character name must match the TYPE operand on a

FILESYSTYPE statement in the BPXPRMxx parmlib member for

the file system.

mtm A flag field that specifies the mount mode and additional mount

options:

MTM_RDONLY

Mount the file system as a read-only file system.

MTM_RDWR Mount the file system as a read/write file system.

MTM_NOSUID

The SETUID and SETGID mode flags will be

ignored for programs that reside in this file system.

MTM_SYNCHONLY

The mount must be completed synchronously or fail

if it cannot.

parmlen Length of the parm argument. The maximum length is 1024

characters. For a hierarchical file system (HFS) data set, this is not

specified.

parm A parameter passed to the physical file system that performs the

mount. This parameter may not be required. The form and content

of the parm are determined by the physical file system. A

hierarchical file system (HFS) data set does not require a parm.

mount

Chapter 3. Part 3. Library Functions 1241

Returned Value

If successful, mount() returns 0.

If the mount() is proceeding asynchronously, it returns 1.

If unsuccessful, mount() returns −1 and sets errno to one of the following values:

Error Code Description

EBUSY The specified file system is unavailable.

EINVAL A parameter was incorrectly specified. Verify filesystype and mtm.

Another possible reason for this error is that the mount point is the

root of a file system or that the file system is already mounted.

EIO An I/O error occurred.

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOP (defined in the limits.h header file) symbolic

links are detected in the resolution of pathname.

ENOENT The mount point does not exist.

ENOMEM There is not enough storage available to save the information

required for this file system.

ENOTDIR The mount point is not a directory.

EPERM Superuser authority is required to issue a mount.

Example

CELEBM21

/* CELEBM21

 This example adds a file system to the hierarchical

 file system.

 */

#define _OPEN_SYS

#include <sys/stat.h>

#include <stdio.h>

#include <unistd.h>

main() {

 char mount_point[]="/new_fs";

 char HFS[]="POSIX.NEW.HFS";

 char filesystype[9]="HFS ";

 setvbuf(stdout, NULL, _IOLBF, 0);

 puts("before mount()");

 system("df −Pk");

 if (mount(mount_point, HFS, filesystype, MTM_RDWR, 0, NULL) != 0)

 perror("mount() error");

 else {

 puts("After mount()");

 system("df −Pk");

 if (umount(HFS, MTM_UMOUNT) != 0)

 perror("umount() error");

 }

}

Output

mount

1242 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

before mount()

Filesystem 1024-blocks Used Available Capacity Mounted on

POSIX.ROOT.FS 9600 8660 940 90% /

After mount()

Filesystem 1024-blocks Used Available Capacity Mounted on

POSIX.NEW.HFS 200 20 180 10% /new_fs

POSIX.ROOT.FS 9600 8660 940 90% /

Related Information

v “limits.h” on page 55

v “sys/stat.h” on page 89

v “umount() — Remove a Virtual File System” on page 2293

v “w_getmntent() — Get Information on Mounted File Systems” on page 2438

v “w_statfs() — Get the File System Status” on page 2476

mount

Chapter 3. Part 3. Library Functions 1243

__mount() — Make a File System Available

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R9

Format

#define _OPEN_SYS

#include <sys/stat.h>

#include <sys/mntent.h>

int __mount(struct mnte2 *mnte, char *sysname);

General Description

Adds a file system to the hierarchical file system. The same file system cannot be

mounted at more than one place in the hierarchical file system.

In order to mount a file system, the caller must be an authorized program or must

be running for a user with appropriate privileges.

Element Description

To mount or change the mount of an HFS file in a sysplex, the application should

set values in mnte as follows:

mnt2h_cbid The mnte2 control block ID. Initialize it to ″MNT2″.

mnt2h_cblen The mnte2 size. Initialize it to the size of struct mnte2.

mh2_cursor Contains the internal cursor. This should be set to 0 initially, and

must be left unchanged for subsequent calls.

mnth_devno This element contains the device number, if needed.

mh_bodylen The mnte2 size of w_mntent2. Must be initialized to the sizeof the

w_mntent2 body.

rsvd This field must be set to all zeros.

mnt2_fstype The file system type.

mnt2_mode File system mount mode. A flag field that specifies the mount mode

and additional mount options:

mntentfsaunmount

If it is 1 after the file system is mounted, the

filesystem will be unmounted when a system leaves

the sysplex. If it is 0, then the setting of

mntentfsnoautomove will be used. See

mntentfsnoautomove below. This option can be

changed after the file is mounted by changing this

bit and setting the request bit, mntentnewauto, to 1

before calling __mount(). If changed to 0, also set

mntentfsnoautomove to indicate automove or no

move.

mntentfsclient If it is 0, then the file system is a sysplex client. If it

is 1, then the file system is not a sysplex client.

__mount

1244 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Note: Note that mntentfsclient is not an input

parameter.

mntentfsnoautomove

If it is 0 after the file system is mounted, it can be

moved automatically. If it is 1 after the file system is

mounted, it will not be moved automatically. The

mode can be reversed after the file is mounted

(when mntentfsaunmount is 0) by changing this bit

and setting the request bit, mnte2ntnewauto, to 1

before calling __mount().

Note: The setting of this bit only applies if

mntentfsaunmount is 0.

mntentfsmodenosec

If it is 1, then the file system will not enforce

security checks. If it is 0, then the file system will

enforce security checks.

mntentfsmodeexport

If it is 0, then the file system has not been exported

by DFS. If it is 1, then the file system has been

exported by DFS.

mntentfsmoderdonly

If it is 0,then the file system is mounted as

read/write. If it is 1, then the file system is mounted

as read-only.

mntentfsmodenosuid

If it is 1, then the SETUID and SETGID mode flags

will be ignored for programs that reside in this file

system. If it is 0 then the SETUID and SETGID

mode flags will be enforced for programs that

reside in this file system. This information is

returned by the function but should not be changed.

mnt2_dev Device # which stat will return for all files in this file system. Not set

on input to __mount().

mnt2_parentdev

st_dev of parent file system. Not set on input to __mount().

mnt2_rootino The ino of the mount point. Not set on input to __mount().

mnt2_status status of the file system. The field is not an input parameter. It can

be tested on output after a successful request.

mnt2_ddname The ddname specified on mount. 1 to 8 characters are allowed.

mnt2_fstname The File System Type Name from the FILESYS parmlib statement.

The name for the file system that will perform the mount. This

8-character name must match the TYPE operand on a

FILESYSTYPE statement in the BPXPRMxx parmlib member for

the file system. 1 to 8 characters are allowed.

mnt2_fsname The File System Name. The name of the file system to be mounted;

it must be unique within the system. For a hierarchical file system

(HFS) data set, this is a 1-to-44-character MVS data set name

specified as all uppercase letters. This name is terminated with

NULL characters.

__mount

Chapter 3. Part 3. Library Functions 1245

mnt2_pathlen The length of mount point path.

mnt2_mountpoint

The name of the directory where the file system is mounted. 1 to

1023 characters are allowed. Also refers to the mount point

directory where the file system will be mounted.

mnt2_jobname If this file system is quiesced, this is the job that made the request.

This field is an output only field from getmntent().

mnt2_PID If this file system is quiesced, this is the PID that made the request.

This field is an output only field from getmntent().

mnt2_parmoffset

Offset of mount parameter mnt2_parmreturn from mnt2_fstype. Also

refers to a parameter passed to the physical file system that

performs the mount. This parameter may not be required. The form

and content of the parameter are determined by the physical file

system. A hierarchical file system (HFS) data set does not require a

parameter.

mnt2_parmlen The length of the mount parameter with size mnt2_parmreturn. Also

refers to the length of the parameter argument. The maximum

length is 1024 characters. A hierarchical file system data set does

not require a parameter.

mnt2_sysname

The name of the target system. 1 to 8 characters are allowed.

Changing the target system is always supplied as sysname. For all

other calls, sysname must be supplied as NULL or the target name

will be changed. When sysname is supplied, the mnte2ntchange

flag must be set off for a mount function call, or the mnte2ntchange

flag must be set on for a change mount function call. When you

specify system on a mount it means mount this file on this system

or when you specify system on a change mount it means move the

file system from where it is currently mounted to this system.

mnt2_qsystem The name of the quiesce system. 1 to 8 characters are allowed but

the character(s) are padded with blanks and do not contain a NULL

terminator. This field is an output only field from getmntent().

mnt2_fromsys The name of the system from which the file system has moved.

mnt2_rflags The field containing the request flags. A flag field that specifies the

change for existing mounted file system:

mnte2ntnewauto

This flag instigates a change of mode which will

effect the automove state depending on the value

that is set for mnte2ntfsnoautomove. See the

explanation under mnte2ntfsnoautomove.

mnte2ntchange

The request in this w_mntent is a change to

existing status or mode. This flag must be set on

for all change mount requests. The w_mntent

structure needs to modify either the mnte2ntfsname

field or the mnte2ntmountpoint and mnte2ndpathlen

fields. When the request is to mount a directory,

then this flag must be set to off.

mnt2_status2 The file system status extensions.

__mount

1246 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

mnt2_success This field is used to return the number of successfully moved file

systems when moving a collection of file systems. It is not used in

other cases.

mnt2_readct The number of reads done. This field is an output field only from

getmntent().

mnt2_writect The number of writes done. This field is an output field only from

getmntent().

mnt2_diribc The number of directory I/O blocks. This field is an output field only

from getmntent().

mnt2_readibc The number of read I/O blocks. This field is an output field only

from getmntent().

mnt2_writeibc The number of write I/O blocks. This field is an output field only

from getmntent().

mnt2_bytesreadhw

Total number of bytes read from high word. This field is an output

field only from getmntent().

mnt2_bytesreadlw

Total number of bytes read from low word. This field is an output

field only from getmntent().

mnt2_byteswrittenhw

Total number of bytes written to high word. This field is an output

field only from getmntent().

mnt2_bytesreadlw

Total number of bytes written to low word. This field is an output

field only from getmntent().

mnt2_rsrvd This element is reserved for expansion

parm_point This field contains the mountpoint parameters to be used when

mounting a file system. It is a separate field in the mnte2 structure

but contiguiously allocated following the w_mnte2 body. The

mnt2_parmoffset field contains the offset to the start of parm_point.

mnt2_syslistlength

Length of system list.

mnt2_syslistoffset

Offset of system list.

mnt2_aggnamelength

Length of the aggregate name in mnt2_aggname. The length does

not include the null terminating character, and is only valid if

mnt2_aggnameoffset has a non-zero value.

mnt2_aggnameoffset

The offset of mnt2_aggname from w_mntent. If the value is zero,

then no aggregate name is returned.

Returned Value

If successful, __mount() returns 0.

If the __mount() is proceeding asynchronously, it returns 1.

If unsuccessful, __mount() returns −1 and sets errno to one of the following values:

__mount

Chapter 3. Part 3. Library Functions 1247

Error Code Description

EBUSY The specified file system is unavailable.

EINVAL A parameter was incorrectly specified. Verify filesystype and mtm.

Another possible reason for this error is that the mount point is the

root of a file system or that the file system is already mounted.

EIO An I/O error occurred.

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOP (defined in the limits.h header file) symbolic

links are detected in the resolution of pathname.

ENOENT The mount point does not exist.

ENOMEM There is not enough storage available to save the information

required for this file system.

ENOTDIR The mount point is not a directory.

EPERM Appropriate authority is required to issue a mount.

Related Information

v “limits.h” on page 55

v “sys/mntent.h” on page 88

v “sys/stat.h” on page 89

v “umount() — Remove a Virtual File System” on page 2293

v “w_getmntent() — Get Information on Mounted File Systems” on page 2438

v “w_statfs() — Get the File System Status” on page 2476

__mount

1248 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

mprotect() — Set Protection of Memory Mapping

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

z/OS UNIX

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/mman.h>

int mprotect(void *addr, size_t len, int prot);

General Description

The mprotect() function changes the access protections on the mappings specified

by the len up to the next multiple of the page size as returned by sysconf(), to be

that specified by prot. Legitimate values for prot are the same as those permitted

for mprotect() and are defined in <sys/mman.h.>:

PROT_READ page can be read

PROT_WRITE page can be written

PROT_EXEC page can be executed

PROT_NONE page cannot be accessed

The range provided by the Map_address and Map_length may span regular maps

as well as __MAP_MEGA maps. Mprotect affects __MAP_MEGA maps very

differently than regular maps. The difference is in the scope of the change. When a

change is made to a __MAP_MEGA map, the change affects all processes which

are currently mapped to the same file-offset range represented by the pages within

the provided range. For example, changing a file-offset range (storage pages) that

is currently in use with a protection of write to a protection of read, makes the

file-offset range read for all processes, not just the current one. In other words, the

changes are global. On the other hand, changes to regular maps affect only the

process that issues mprotect.

When mprotect() fails for reasons other than EINVAL, the protection on some of the

pages in the range [addr, addr + len) may have been changed.

Returned Value

If successful, mprotect() returns 0.

If unsuccessful, mprotect() returns -1 and sets errno to one of the following values:

Error Code Description

EACCES The prot argument specifies a protection that violates the access

permission the process has to the underlying memory object.

EAGAIN The prot argument specifies PROT_WRITE over a MAP_PRIVATE

mapping and there are insufficient memory resources to reserve for

locking the private page.

mprotect

Chapter 3. Part 3. Library Functions 1249

||||

|
|
|

||

|

EINVAL The addr argument is not a multiple of the page size as returned by

sysconf().

ENOMEM Addresses in the range [addr, addr + len) are invalid for the address

space of a process, or specify one or more pages

Related Information

v “sys/mman.h” on page 87

v “mmap() — Map Pages of Memory” on page 1232

v “sysconf() — Determine System Configuration Options” on page 2111

mprotect

1250 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

mrand48() — Pseudo-Random Number Generator

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

long int mrand48(void);

General Description

The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions

generate uniformly distributed pseudo-random numbers using a linear congruential

algorithm and 48-bit integer arithmetic.

The functions drand48() and erand48() return nonnegative, double-precision,

floating-point values, uniformly distributed over the interval [0.0,1.0).

The functions lrand48() and nrand48() return nonnegative, long integers, uniformly

distributed over the interval [0,2**31).

The functions mrand48() and jrand48() return signed long integers, uniformly

distributed over the interval [-2**31,2**31).

The mrand48() function generates the next 48-bit integer value in a sequence of

48-bit integer values, X(i), according to the linear congruential formula:

X(n+1) = (aX(n) + c)mod(2**48) n>=0

The initial values of X, a, and c are:

X(0) = 1

a = 5deece66d (base 16)

c = b (base 16)

C/370 provides storage to save the most recent 48-bit integer value of the

sequence, X(i). This storage is shared by the drand48(), lrand48() and mrand48()

functions. The value, X(n), in this storage may be reinitialized by calling the

lcong48(), seed48() or srand48() function. Likewise, the values of a and c, may be

changed by calling the lcong48() function. Thereafter, whenever the seed48() or

srand48() function is called to change X(n), the initial values of a and c are also

reestablished.

Special Behavior for z/OS UNIX Services

You can make the mrand48() function and other functions in the drand48 family

thread-specific by setting the environment variable _RAND48 to the value THREAD

before calling any function in the drand48 family.

mrand48

Chapter 3. Part 3. Library Functions 1251

||||

|
|
|

||

|

If you do not request thread-specific behavior for the drand48 family, C/370

serializes access to the storage for X(n), a and c by functions in the drand48 family

when they are called by a multithreaded application.

If thread-specific behavior is requested, and the mrand48() function is called from

thread t, the mrand48() function generates the next 48-bit integer value in a

sequence of 48-bit integer values, X(t,i), for the thread t. The sequence of values

for a thread is generated according to the linear congruential formula:

X(t,n+1) = (a(t)X(t,n) + c(t))mod(2**48) n>=0

The initial values of X(t), a(t) and c(t) for the thread t are:

X(t,0) = 1

a(t) = 5deece66d (base 16)

c(t) = b (base 16)

C/370 provides storage which is specific to the thread t to save the most recent

48-bit integer value of the sequence, X(t,i), generated by the drand48(), lrand48() or

mrand48() function. The value, X(t,n), in this storage may be reinitialized by calling

the lcong48(), seed48() or srand48() function from the thread t. Likewise, the

values of a(t) and c(t) for thread t may be changed by calling the lcong48() function

from the thread. Thereafter, whenever the seed48() or srand48() function is called

from the thread t to change X(t,n), the initial values of a(t) and c(t) are also

reestablished.

Returned Value

mrand48() transforms the generated 48-bit value, X(n+1), to a signed long integer

value on the interval [-2**31,2**31) and returns this transformed value.

Special Behavior for z/OS UNIX Services

If thread-specific behavior is requested for the drand48 family and the mrand48()

function is called on thread t, the mrand48() function transforms the generated

48-bit value, X(t,n+1), to a signed long integer value on the interval [-2**31,2**31)

and returns this transformed value.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “erand48() — Pseudo-Random Number Generator” on page 476

v “jrand48() — Pseudo-Random Number Generator” on page 1051

v “lcong48() — Pseudo-Random Number Initializer” on page 1065

v “lrand48() — Pseudo-Random Number Generator” on page 1150

v “nrand48() — Pseudo-Random Number Generator” on page 1307

v “seed48() — Pseudo-Random Number Initializer” on page 1712

v “srand48() — Pseudo-Random Number Initializer” on page 2005

mrand48

1252 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

m_setvalues_layout() — Set Layout Values of a Layout Object (Bidi

data)

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

C99

both z/OS V1R2

Format

#include <sys/layout.h>

int m_setvalues_layout(LayoutObject layout_object, const LayoutValues values,

 int *index_returned);

General Description

The m_setvalues_layout() function is part of the support for handling of bidirectional

(Bidi) conversion of data between Visual (MVS) and Implicit (z/OS UNIX) formats.

Initial support is for Arabic and Hebrew data.

The m_setvalues_layout() function is used to change the layout values of a

LayoutObject. The layout_object argument specifies a LayoutObject returned by the

m_create_layout() function. The values argument specifies the list of layout values

which are to be changed. The values are written into the LayoutObject and may

affect the behavior of subsequent layout functions.

Note: Some layout values do alter internal states maintained by a LayoutObject.

The m_setvalues_layout() function can be implemented as a macro that

evaluates the first argument twice.

Returned Value

If successful, m_setvalues_layout() sets the requested layout values and returns 0.

If any value cannot be set, m_setvalues_layout() does not change any of the layout

values. It stores into index_returned the (zero-based) index of the value causing the

error. It returns -1 and sets errno to one of the following values:

Error Code Description

EINVAL The layout value specified by index_returned is unknown or its

value is invalid or the argument layout_object is invalid.

Related Information

v “sys/layout.h” on page 87

v “m_create_layout() — Create and Initialize a Layout Object (Bidi data)” on page

1201

v “m_destroy_layout() — Destroy a Layout Object (Bidi data)” on page 1203

v “m_getvalues_layout() — Query Layout Values of a Layout Object (Bidi data)” on

page 1215

v “m_transform_layout() — Layout Transformation for Character Strings (Bidi data)”

on page 1271

m_setvalues_layout

Chapter 3. Part 3. Library Functions 1253

v “m_wtransform_layout() — Layout Transformation for Wide-Character Strings

(Bidi data)” on page 1279

m_setvalues_layout

1254 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

msgctl() — Message Control Operations

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <sys/msg.h>

int msgctl(int msgid, int cmd, struct msqid_ds *buf);

General Description

The msgctl() function provides message control operations as specified by cmd.

The following values for cmd, and the message control operations they specify, are

(These symbolic constants are defined by the <sys/ipc.h> header):

IPC_STAT Place the current value of each member of the msqid_ds data

structure associated with msgid into the structure pointed to by buf.

The contents of this structure are defined in <sys/msg.h>. This

command requires read permission.

IPC_SET Set the value of the following members of the msqid_ds data

structure associated with msgid to the corresponding value found in

the structure pointed to by buf:

v msg_perm.uid

v msg_perm.gid

v msg_perm.mode

v msg_qbytes

IPC_SET can only be executed by a process with the appropriate

privileges or that has an effective user ID equal to the value of

msg_perm.cuid or msg_perm.uid in the msqid_ds data structure

associated with msgid. Only a process with appropriate privileges

can raise the value of msg_gbytes.

IPC_RMID Remove the message queue identifier specified by msgid from the

system and destroy the message queue and msqid_ds data

structure associated with it. IPC_RMID can only be executed by a

process with appropriate privileges or one that has an effective user

ID equal to the value of msg_perm.cuid or msg_perm.uid in the

msqid_ds data structure associated with msgid.

Returned Value

If successful, msgctl() returns 0.

If unsuccessful, msgctl() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The argument cmd is IPC_STAT and the calling process does not

have read permission.

msgctl

Chapter 3. Part 3. Library Functions 1255

||||

|
|
|

||

|

EINVAL The value of msgid is not a valid message queue identifier, or the

value of cmd is not a valid command.

EPERM The argument cmd is IPC_RMID or IPC_SET and the effective user

ID of the calling process is not equal to that of a process with

appropriate privileges and it is not equal to the value of

msg_perm.cuid or msg_perm.uid in the data structure associated

with msgid.

 Or the argument cmd is IPC_SET, an attempt is being made to

increase the value of msg_qbytes, and the effective user ID of the

calling process does not have appropriate privileges.

Related Information

v “sys/ipc.h” on page 87

v “sys/msg.h” on page 88

v “msgget() — Get Message Queue” on page 1257

v “msgrcv() — Message Receive Operation” on page 1260

v “msgsnd() — Message Send Operations” on page 1265

v “msgxrcv() — Extended Message Receive Operation” on page 1267

msgctl

1256 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

msgget() — Get Message Queue

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <sys/msg.h>

int msgget(key_t key, int msgflg);

General Description

The msgget() function returns the message queue identifier associated with the

argument key.

A message queue identifier, associated message queue and data structure (see

<sys/msg.h>) are created for the argument key if one of the following is true:

v The argument key is equal to IPC_PRIVATE

v The argument key does not already have a message queue identifier associated

with it, and the flag IPC_CREAT is on in msgflg.

Valid values for the argument msgflg include any combination of the following

constants defined in <sys/ipc.h> and <sys/modes.h>:

IPC_CREAT Create a message queue if the key specified does not already have

an associated ID. IPC_CREAT is ignored when IPC_PRIVATE is

specified

IPC_EXCL Causes the msgget() function to fail if the key specified has an

associated ID. IPC_EXCL is ignored when IPC_CREAT is not

specified or IPC_PRIVATE is specified

IPC_RCVTYPEPID

Creates a message queue that can only be read from msgrcv()

when Message_Type is the process ID of the invoker. This

restriction does not apply if the msgrcv() invoker has the same

effective UID as the message queue creator.

IPC_SNDTYPEPID

Creates a message queue that can only be written to msgsnd()

when MSG_TYPE is the process ID of the invoker. This restriction

does not apply if the msgsnd() invoker has the same effective UID

as the message queue creator.

S_IRUSR Permits read access when the effective user ID of the caller

matches either msg_perm.cuid or msg_perm.uid

S_IWUSR Permits write access when the effective user ID of the caller

matches either msg_perm.cuid or msg_perm.uid

S_IRGRP Permits read access when the effective group ID of the caller

matches either msg_perm.cgid or msg_perm.gid

msgget

Chapter 3. Part 3. Library Functions 1257

||||

|
|
|

||

|

S_IWGRP Permits write access when the effective group ID of the caller

matches either msg_perm.cgid or msg_perm.gid

S_IROTH Permits other read access

S_IWOTH Permits other write access

When a message set associated with argument key already exists, setting

IPC_EXCL and IPC_CREAT in argument msgflg will force msgget() to fail.

Upon creation, the msg_ds data structure associated with the new message queue

identifier is initialized as follows:

v The fields msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are

set equal to the effective user ID and effective group ID, respectively, of the

calling process.

v The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of

msgflg.

v The fields msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to

zero.

v The field msg_ctime is set equal to the current time.

v The field msg_qbytes is set equal to the system limit.

Usage Note 1:

In a client/server environment, two message queues can be used. One inbound to

the server created with IPC_SNDTYPEPID and the other outbound from the server

created with IPC_RCVTYPEPID. This arrangement guarantees that the server

knows the process ID of the client and the client is the only process that receives

the server’s returned message. The server may invoke msgrcv() with PID=0 to see

if any messages belong to process IDs that have gone away.

Usage Note 2:

Terminologies Descriptions

PLO Perform Lock Operation.

IPC_PLO1 Use PLO serialization (if available) until a select() involving this

message queue is detected.

IPC_PLO2 Allow the kernel to use its best judgment with serialization

(IPC_PLO1 ignored).

v Message_Flags IPC_PLO1 and IPC_PLO2 are ignored if the PLO instruction is

not present on the hardware.

v Performance of the PLO instruction for serialization will vary with the msgrcv

type, number of messages on the queue and the number of tasks doing

msgsnd() and msgrcv(). Msgrcv() with type<0 and long message queues is

expected to be a worse performer. Msgrcv() with type>0 is expected to be an

equivalent or good performer. Msgrcv() with type=0 is expected to be a very good

performer.

v Message queues created with Ipc_RcvTypePID, Ipc_SndTypePID, IPC_PLO1

and IPC_PLO2 will show these bits and may show the IPC_PLOINUSE bit in the

S_MODE byte returned with w_getipc.

v Message queue PLO serialization is not compatible with select() using message

queues. When msgrcv() detects a select() for a message queue, serialization will

be changed to use traditional latches.

msgget

1258 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v Performance runs should be made with IPC_PLO1 since IPC_PLO2 may switch

to latch serialization and the user would not know when.

Returned Value

If successful, msgget() returns a nonnegative integer, namely a message queue

identifier.

If unsuccessful, msgget() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES A message queue identifier exists for the argument key, but access

permission as specified by the low-order 9 bits of msgflg could not

be granted

EEXIST A message queue identifier exists for the argument key, but both

IPC_CREAT and IPC_EXCL are specified in msgflg

EINVAL The value of argument msgflg is not currently supported

ENOENT A message queue identifier does not exist for the argument key and

IPC_CREAT is not specified.

ENOSPC A message queue identifier is to be created but the

system-imposed limit on the maximum number of allowed message

queue identifiers system-wide would be exceeded.

When msgflg equals 0, the following applies:

v If a message queue identifier has already been created with key earlier, and the

calling process of this msgget() has read and/or write permissions to it, then

msgget() returns the associated message queue identifier.

v If a message queue identifier has already been created with key earlier, and the

calling process of this msgget() does not have read and/or write permissions to it,

then msgget() returns-1 and sets errno to EACCES.

v If a message queue identifier has not been created with key earlier, then

msgget() returns -1 and sets errno to ENOENT.

Related Information

v “sys/ipc.h” on page 87

v “sys/msg.h” on page 88

v “sys/types.h” on page 90

v “ftok() — Generate an Interprocess Communication (IPC) key” on page 718

v “msgctl() — Message Control Operations” on page 1255

v “msgrcv() — Message Receive Operation” on page 1260

v “msgsnd() — Message Send Operations” on page 1265

v “msgxrcv() — Extended Message Receive Operation” on page 1267

msgget

Chapter 3. Part 3. Library Functions 1259

msgrcv() — Message Receive Operation

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both

Format

Non-Single UNIX Specification, Version 2

#define _XOPEN_SOURCE

#include <sys/msg.h>

int msgrcv(int msgid, void *msgp, size_t msgsz, long int msgtyp, int msgflg);

Single UNIX Specification, Version 2

#define _XOPEN_SOURCE 500

#include <sys/msg.h>

ssize_t msgrcv(int msgid, void *msgp, size_t msgsz, long int msgtyp, int msgflg);

General Description

The msgrcv() function reads a message from the queue associated with the

message queue identifier specified by msgid and places it in the user-defined buffer

pointed to by msgp.

The argument msgp points to a user-defined buffer that must contain first a field of

type long int that will specify the type of the message, and then a data portion that

will hold the data bytes of the message. The structure below is an example of what

this user-defined buffer should look like:

struct message

{

 long int mtype; Message type

 int mtext[n]; Message text

}

The structure member, mtype, is the received message’s type as specified by the

sending process. The structure member, mtext, is the text of the message.

The argument msgsz specifies the size in bytes of mtext, The received message is

truncated to msgsz bytes if it is larger than msgsz and the MSG_NOERROR flag

was specified in the argument msgflg. The truncated portion of the message is lost

and no indication of the truncation is given to the calling process.

The argument msgtyp specifies the type of message requested, as follows:

v If msgtyp is equal to zero, the first message on the queue is received.

v If msgtyp is greater than 0, the first message of type, msgtyp, is received.

v If msgtyp is less than 0, the first message of the lowest type that is less than or

equal to the absolute value of msgtyp is received.

The argument msgflg specifies the action to be taken if a message of the desired

type is not on the queue. These are as follows:

msgrcv

1260 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

v If the IPC_NOWAIT flag is on in msgflg, the calling process will return

immediately with a return value of −1 and errno set to ENOMSG.

v If the IPC_NOWAIT flag is off in msgflg the calling process will suspend

execution until one of the following occurs:

– A message of the desired type is placed on the queue.

– The message queue identifier, msgid, is removed from the system; when this

occurs, errno is set to EIDRM and a value of −1 is returned.

– The calling process receives a signal that is to be caught; in this case a

message is not received and the calling process resumes execution. A value

of −1 is returned and errno is set to EINTR.

If successful, the following actions are taken with respect to the data structure,

msgiq_ds, associated with msgid:

1. msg_qnum is decremented by 1.

2. msg_lrpid is set equal to the process ID of the calling process.

3. msg_rtime is set equal to the current time.

Returned Value

If successful, msgrcv() returns a value equal to the number of bytes actually placed

into the mtext field of the user-defined buffer pointed to by msgp. A value of zero

indicates that only the mtype field was received from the message queue.

If unsuccessful, msgrcv() returns −1 and sets errno to one of the following values:

Error Code Description

E2BIG The value of mtext is greater than msgsz and the flag

MSG_NOERROR was not specified.

EACCES The calling process does not have read permission to the message

queue associated with the message queue identifier msgid or the

message queue was built with IPC_RCVTYPEPID and the

Message_Type was other than the invoker’s process ID

(JRTypeNotPID).

EIDRM The message queue identifier, msgid, has been removed from the

system while the caller of msgrcv() was waiting.

EINTR The function msgrcv() was interrupted by a signal before a

message could be received.

EINVAL The value of argument msgid is not a valid message queue

identifier or the value of msgsz is less than zero.

ENOMSG The flag IPC_NOWAIT was specified and the message queue does

not contain a message of the desired type.

Related Information

v “sys/ipc.h” on page 87

v “sys/msg.h” on page 88

v “msgctl() — Message Control Operations” on page 1255

v “msgget() — Get Message Queue” on page 1257

v “msgsnd() — Message Send Operations” on page 1265

v “msgxrcv() — Extended Message Receive Operation” on page 1267

msgrcv

Chapter 3. Part 3. Library Functions 1261

__msgrcv_timed() — Message Receive Operation With Timeout

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R10

Format

#define _OPEN_SYS_TIMED_EXT 1

#include <time.h>

#include <sys/msg.h>

int __msgrcv_timed(int msgid, void *msgp, size_t msgsz,

 long int msgtyp, int msgflg, struct timespec *set);

General Description

Reads a message from the queue associated with the message queue identifier

specified by msgid and places it in the user-defined buffer pointed to by msgp.

The argument msgp points to a user-defined buffer that must contain first a field of

type long int that will specify the type of the message, and then a data portion that

will hold the data bytes of the message. The structure below is an example of what

this user-defined buffer should look like:

struct message {

 long int mtype; Message type

 int mtext[n]; Message text

 }

The structure member, mtype, is the received message’s type as specified by the

sending process. The structure member, mtext, is the text of the message.

The argument msgsz specifies the size in bytes of mtext. The received message is

truncated to msgsz bytes if it is larger than msgsz and the MSG_NOERROR flag

was specified in the argument msgflg. The truncated portion of the message is lost

and no indication of the truncation is given to the calling process.

The argument msgtyp specifies the type of message requested, as follows:

v If msgtyp is equal to zero, the first message on the queue is received.

v If msgtyp is greater than 0, the first message of type, msgtyp, is received.

v If msgtyp is less than 0, the first message of the lowest type that is less than or

equal to the absolute value of msgtyp is received.

The argument msgflg specifies the action to be taken if a message of the desired

type is not on the queue. These are as follows:

The argument set is the timespec structure which contains the timeout value.

v If the IPC_NOWAIT flag is on in msgflg, the calling process will return

immediately with a return value of −1 and errno set to ENOMSG.

v If the IPC_NOWAIT flag is off in msgflg the calling process will suspend

execution until one of the following occurs:

– A message of the desired type is placed on the queue.

__msgrcv_timed

1262 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

– The message queue identifier, msgid, is removed from the system; when this

occurs, errno is set to EIDRM and a value of −1 is returned.

– The calling process receives a signal that is to be caught; in this case a

message is not received and the calling process resumes execution. A value

of −1 is returned and errno is set to EINTR.

If successful, the following actions are taken with respect to the data structure,

msqid_ds, associated with msgid:

1. msg_qnum is decremented by 1.

2. msg_lrpid is set equal to the process ID of the calling process.

3. msg_rtime is set equal to the current time.

The variable set gives the timeout specification.

v If the __msgrcv_timed() function finds that none of the messages specified by

msgid are received, it waits for the time interval specified in the timespec

structure referenced by set. If the timespec structure pointed to by set is

zero-valued and if none of the messages specified by msgid are received, then

__msgrcv_timed() returns immediately with EAGAIN. A timespec with the tv_sec

field set with INT_MAX, as defined in <limits.h>, will cause the __msgrcv_timed()

service to wait until a message is received. If set is the NULL pointer, it will be

treated the same as when timespec structure was supplied with the tv_sec field

set with INT_MAX.

Returned Value

If successful, __msgrcv_timed() returns a value equal to the number of bytes

actually placed into the mtext field of the user-defined buffer pointed to by msgp. A

value of zero indicates that only the mtype field was received from the message

queue.

If unsuccessful, __msgrcv_timed() returns −1 and sets errno to one of the following

values:

Error Code Description

E2BIG The value of mtext is greater than msgsz and the flag

MSG_NOERROR was not specified.

EACCES The calling process does not have read permission to the message

queue associated with the message queue identifier msgid.

EAGAIN The operation would result in time requested expired before any

messages were received. This would result if the timeout specified

expires before a message is posted.

EIDRM The message queue identifier, msgid, has been removed from the

system while the caller of __msgrcv_timed() was waiting.

EINTR The function __msgrcv_timed() was interrupted by a signal before a

message could be received.

EINVAL The value of argument msgid is not a valid message queue

identifier or the value of msgsz is less than zero.

ENOMSG The flag IPC_NOWAIT was specified and the message queue does

not contain a message of the desired type.

__msgrcv_timed

Chapter 3. Part 3. Library Functions 1263

Related Information

v “time.h” on page 93

v “sys/msg.h” on page 88

__msgrcv_timed

1264 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

msgsnd() — Message Send Operations

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <sys/msg.h>

int msgsnd(int msgid, const void *msgp, size_t msgsz, int msgflg);

General Description

The msgsnd() function is used to send a message to the queue associated with the

message queue identifier specified by msgid.

The argument msgp points to a user-defined buffer that must contain first a field of

type long int that will specify the type of the message, and then a data portion that

will hold the data bytes of the message. The structure below is an example of what

this user-defined buffer should look like:

struct message

{

 long int mtype; Message type

 int mtext[n]; Message text

}

The structure member, mtype, must be a nonzero positive value that can be used

by the receiving process for message selection. The structure member, mtext, is

any text of length, msgsz, bytes.

The argument msgsz specifies the size in bytes of mtext. When only mtype is to be

sent with no mtext, msgsz is set to zero. The argument can range from zero to a

system-imposed maximum or the maximum number of bytes allowed in the

message queue.

The argument msgflg specifies the action to be taken if one or more of the following

are true:

v Placing the message on the message queue would cause the current number of

bytes on the message queue (msg_cbytes) to exceed the maximum number of

bytes allowed on this queue, as specified in msg_qbytes.

v The total number of messages on the queue is equal to the system-imposed

limit.

These actions are as follows:

v If the IPC_NOWAIT flag is on in msgflg, the message not be sent and the calling

process will return immediately. msgsnd() will return -1 and set errno to EAGAIN.

v If the IPC_NOWAIT flag is off in msgflg, the calling process will suspend

execution until one of the following occurs:

1. The condition responsible for the suspension no longer exists, in which case

the message is sent.

msgsnd

Chapter 3. Part 3. Library Functions 1265

||||

|
|
|

||

|

2. The message queue identifier, msgid, is removed from the system; when this

occurs, errno is set to EIDRM and a value of -1 is returned.

3. The calling process receives a signal that is to be caught; in this case a

message is not sent and the calling process resumes execution. A value of -1

is returned and error is set to EINTR.

If successful, the following actions are taken with respect to the data structure,

msqid_ds, associated with msgid:

1. msg_qnum is incremented by 1.

2. msg_lspid is set equal to the process ID of the calling process.

3. msg_stime is set equal to the current time.

Returned Value

If successful, msgsnd() returns 0.

If unsuccessful, no message is sent, msgsnd() returns −1, and sets errno to one of

the following values:

Error Code Description

EACCES The calling process does not have write permission to the message

queue associated with the message queue identifier msgid or the

message queue was built with IPC_SNDTYPEPID and the

MSG_TYPE was other than the invoker’s process ID

(JRTypeNotPID).

EAGAIN The message cannot be sent for one of the reasons cited above

and IPC_NOWAIT was specified.

EIDRM The message queue identifier, msgid, has been removed from the

system while the caller of msgsnd() was waiting.

EINTR The function msgsnd() was interrupted by a signal before a

message could be sent.

EINVAL The value of argument msgid is not a valid message queue

identifier, or the value of mtype is less than 1; or the value of msgsz

is less than zero or greater than the system-imposed limit.

ENOMEM Not enough system storage exists to complete the msgsnd()

function.

Related Information

v “sys/ipc.h” on page 87

v “sys/msg.h” on page 88

v “msgctl() — Message Control Operations” on page 1255

v “msgget() — Get Message Queue” on page 1257

v “msgrcv() — Message Receive Operation” on page 1260

v “msgxrcv() — Extended Message Receive Operation” on page 1267

msgsnd

1266 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

msgxrcv() — Extended Message Receive Operation

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_IPC_EXTENSIONS

#include <sys/msg.h>

int msgxrcv(int msgid, void *msgp, size_t msgsz, long int msgtyp, int msgflg);

Note: To expose the msgxrcv() name, the feature test macro

_OPEN_SYS_IPC_EXTENSIONS should be defined. Otherwise, the

function’s name is __msgxrcv().

General Description

The msgxrcv() function reads an extended message from the queue associated with

the message queue identifier specified by msgid and places it in the user-defined

buffer pointed to by msgp.

The argument msgp points to a user-defined buffer where the extended message

will be received. This buffer must be defined by a data structure of the following

format: .

struct msgxbuf {

 time_t mtime; Time and date message was sent

 uid_t muid; Sender’s effective user ID

 gid_t mgid; Sender’s effective group ID

 pid_t mpid; Sender’s process ID

 long int mtype; Message type

 int mtext[n]; Message text

}

The structure member, mtype, is the received message’s type as specified by the

sending process. The structure member, mtext, is the text of the message.

The argument msgsz specifies the size in bytes of mtext, The received message is

truncated to msgsz bytes if it is larger than msgsz and the MSG_NOERROR flag

was specified in the argument msgflg. The truncated portion of the message is lost

and no indication of the truncation is given to the calling process.

The argument msgtyp specifies the type of message requested, as follows:

v If msgtyp is equal to zero, the first message on the queue is received.

v If msgtyp is greater than 0, the first message of type, msgtyp, is received.

v If msgtyp is less than 0, the first message of the lowest type that is less than or

equal to the absolute value of msgtyp is received.

The argument msgflg specifies the action to be taken if a message of the desired

type is not on the queue. These are as follows:

v If the IPC_NOWAIT flag is on in msgflg, the calling process will return

immediately with a return value of −1 and errno set to ENOMSG.

msgxrcv

Chapter 3. Part 3. Library Functions 1267

v If the IPC_NOWAIT flag is off in msgflg the calling process will suspend

execution until one of the following occurs:

– A message of the desired type is placed on the queue.

– The message queue identifier, msgid, is removed from the system; when this

occurs, errno is set to EIDRM and a value of −1 is returned.

– The calling process receives a signal that is to be caught; in this case a

message is not received and the calling process resumes execution. A value

of −1 is returned and errno is set to EINTR.

If successful, the following actions are taken with respect to the data structure,

msqid_ds, associated with msgid:

1. msg_qnum is decremented by 1.

2. msg_lrpid is set equal to the process ID of the calling process.

3. msg_rtime is set equal to the current time.

Returned Value

If successful, msgxrcv() returns a value equal to the number of bytes actually

placed into the mtext field of the user-defined buffer pointed to by msgp. A value of

zero indicates that only the mtype field was received from the message queue.

If unsuccessful, msgxrcv() returns −1 and sets errno to one of the following values:

Error Code Description

E2BIG The value of mtext is greater than msgsz and the flag

MSG_NOERROR was not specified.

EACCES The calling process does not have read permission to the message

queue associated with the message queue identifier msgid.

EIDRM The message queue identifier, msgid, has been removed from the

system while the caller of msgxrcv() was waiting.

EINTR The function msgxrcv() was interrupted by a signal before a

message could be received.

EINVAL The value of argument msgid is not a valid message queue

identifier or the value of msgsz is less than zero.

ENOMSG The flag IPC_NOWAIT was specified and the message queue does

not contain a message of the desired type.

Related Information

v “sys/ipc.h” on page 87

v “sys/msg.h” on page 88

v “msgctl() — Message Control Operations” on page 1255

v “msgget() — Get Message Queue” on page 1257

v “msgrcv() — Message Receive Operation” on page 1260

v “msgsnd() — Message Send Operations” on page 1265

msgxrcv

1268 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

msync() — Synchronize Memory with Physical Storage

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

General Description

The msync() function writes all modified copies of pages over the range [addr, addr

+ len) to the underlying hardware, or invalidates any copies so that further

references to the pages will be obtained by the system from their permanent

storage locations.

The flags argument is:

MS_ASYNC Perform asynchronous writes

MS_INVALIDATE

Invalidate mappings

MS_SYNC Perform synchronous writes

The function synchronizes the file contents to match the current contents to the

memory region.

v All write references to the memory region made before the call are visible by

subsequent read operations on the file.

v It is unspecified whether writes to the same portion of the file before the call are

visible by read references to the memory region.

v It is unspecified whether unmodified pages in the specified range are also written

to the underlying hardware.

If flags is MS_ASYNC, the function may return immediately once all write

operations are schedule; if flags is MS_SYNC, the function does not return until all

write operations are completed.

MS_INVALIDATE synchronizes the contents of the memory region to match the

current file contents.

v All writes to the mapped portion of the file made before the call are visible by

subsequent read references to the mapped memory region.

v It is unspecified whether write references before the call, by any process, to

memory regions mapped to the same portion of the file using MAP_SHARED,

are visible by read references to the region.

If msync() causes any write to the file, then the file’s st_ctime and st_mtime fields

are marked for update.

msync

Chapter 3. Part 3. Library Functions 1269

||||

|
|
||

|

Returned Value

If successful, msync() returns 0.

If unsuccessful, msync() returns -1 and sets errno to one of the following values:

Error Code Description

EINVAL The addr argument is not a multiple of the page size as returned by

sysnonf.

EIO An I/O error occurred while reading from or writing to the file

system.

ENOMEM Some or all the addresses in the range [addr, addr + range [addr,

addr + len) are len) are invalid for the address space of the process

or pages not mapped are specified.

Related Information

v “sys/mman.h” on page 87

v “mmap() — Map Pages of Memory” on page 1232

v “sysconf() — Determine System Configuration Options” on page 2111

msync

1270 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

m_transform_layout() — Layout Transformation for Character Strings

(Bidi data)

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

C99

both z/OS V1R2

Format

#include <sys/layout.h>

int m_transform_layout(LayoutObject layout_object,

 const char *InpBuf,

 const size_t InpSize,

 void *OutBuf,

 size_t *Outsize,

 size_t *InpToOut,

 size_t *OutToInp,

 unsigned char *Property,

 size_t *InpBufIndex);

General Description

The m_transform_layout() function is part of the support for handling of bidirectional

(Bidi) conversion of data between Visual (MVS) and Implicit (z/OS UNIX) formats.

Initial support is for Arabic and Hebrew data.

The m_transform_layout() function performs layout transformations (reordering,

shaping, cell determination). Alternatively, it may provide additional information

needed for layout transformation, such as:

v The expected size of the transformed layout

v The nesting level of different segments in the text

v Cross references between the locations of the corresponding elements before

and after the layout transformation.

Both the input text and output text are character strings. The m_transform_layout()

function transforms the input text in InpBuf according to the current layout values in

layout_object.

Any layout value whose value type is LayoutTextDescriptor describes the

attributes of the InpBuf and OutBuf arguments. If the attributes are the same for

both InpBuf and OutBuf, a null transformation is performed with respect to that

specific layout value.

The InpBuf argument specifies the source text to be processed. The InpBuf may not

be NULL, except when there is a need to reset the internal state.

The InpSize argument is the number of bytes within InpBuf to be processed by the

transformation. Its value will not have changed at the return from the transformation.

InpSize set to -1 indicates that the text in InpBuf is delimited by a NULL code

element. If InpSize is not set to -1, it is possible to have some NULL elements in

the input buffer. This might be used, for example, for a one shot transformation of

several strings, separated by NULLs.

m_transform_layout

Chapter 3. Part 3. Library Functions 1271

Outputs of this function may be one or more of the following, depending on the

setting of the arguments:

Output Description

OutBuf Any transformed data is stored in OutBuf, converted to

ShapeCharset.

Outsize The number of bytes in OutBuf.

InpToOut A cross reference from each InpBuf code element to the

transformed data. The cross reference relates to the data in InpBuf,

starting with the first element that InpBufIndex points to (and not

necessarily starting from the beginning of the InpBuf).

OutToInp A cross reference to each InpBuf code element from the

transformed data. The cross reference relates to the data in InpBuf,

starting with the first element that InpBufIndex points to (and not

necessarily starting from the beginning of the InpBuf).

Property A weighted value that represents specific input string transformation

properties with different connotations as explained below. If this

argument is not a NULL pointer, it represents an array of values

with the same number of elements as the source substring text

before the transformation.

 Each byte will contain relevant property information of the

corresponding element in InpBuf, starting from the element pointed

by InpBufIndex.

 The four rightmost bits of each property byte will contain information

for bidirectional environments (when ActiveDirectional is True) and

they will mean NestingLevels. The possible value from 0 to 15

represents the nesting level of the corresponding element in the

InpBuf, starting from the element pointed by InpBufIndex. If

ActiveDirectional is False, the content of NestingLevels bits will be

ignored.

 The leftmost bit of each property byte will contain a new cell

indicator for composed character environments. It will be a value of

either 1, for an element in InpBuf that is transformed to the

beginning of a new cell, or 0, for the zero-length composing

character elements when these are grouped into the same

presentation cell with a non-composing character. Here again, each

element of property pertains to the elements in the InpBuf, starting

from the element pointed by InpBufIndex. (Remember that this is

not necessarily the beginning of InpBuf.)

 If none of the transformation properties is required, the argument

Property can be NULL.

 The use of property can be enhanced in the future to pertain to

other possible usage in other environments.

InpBufIndex An offset value to the location of the transformed text. When

m_transform_layout() is called, InpBufIndex contains the offset to

the element in InpBuf that will be transformed first. (Note that this is

not necessarily the first element in InpBuf.)

 At the return from the transformation, InpBufIndex contains the

offset to the first element in the InpBuf that has not been

m_transform_layout

1272 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

transformed. If the entire substring has been transformed

successfully, InpBufIndex will be incremented by the amount

defined by InpSize.

 Each of these output arguments may be NULL to specify that no

output is desired for the specific argument, but at least one of them

should be set to non-NULL to perform any significant work.

 The layout_object maintains a directional state that keeps track of

directional changes, based on the last segment transformed. The

directional state is maintained across calls to the layout

transformation functions and allows stream data to be processed

with the layout functions. The directional state is reset to its initial

state whenever any of the layout values TypeOfText, Orientation

or ImplicitAlg is modified by means of a call to

m_setvalues_layout().

 The layout_object argument specifies a LayoutObject returned by

the m_create_layout() function.

 The OutBuf argument contains the transformed data. This argument

can be specified as a NULL pointer to indicate that no transformed

data is required. The encoding of the OutBuf argument depends on

the ShapeCharset layout value defined in layout_object. If the

ActiveShapeEditing layout value is not set (False), the encoding of

OutBuf is guaranteed to be the same as the codeset of the locale

associated with the LayoutObject defined by layout_object.

 On input, the OutSize argument specifies the size of the output

buffer in number of bytes. The output buffer should be large enough

to contain the transformed result; otherwise, only a partial

transformation is performed. If the ActiveShapeEditing layout

value is set (True), the OutBuf should be allocated to contain at

least the InpSize multiplied by ShapeCharsetSize.

OutSize Upon return, the OutSize argument is updated to be the actual

number of bytes placed in OutBuf.

 When the OutSize argument is specified as zero, the function

calculates the size of an output buffer large enough to contain the

transformed text, and the result is returned in this field. The content

of the buffers specified by InpBuf and OutBuf, and the value of

InpBufIndex, remain unchanged.

 If OutSize = NULL, the EINVAL error condition is returned.

 If the InpToOut argument is not a NULL pointer, it points to an array

of values with the same number of bytes as InpBuf, starting with

the one pointed by InpBufIndex and up to the end of the substring

in the buffer.

 On output, the nth value in InpToOut corresponds to the nth byte in

InpBuf. This value is the index (in units of bytes) in OutBuf that

identifies the transformed ShapeCharset element of the nth byte in

InpBuf.

 In the case of multibyte encoding, for each of the bytes of a code

element in the InpBuf, the index points to the first byte of the

transformed code element in the OutBuf. InpToOut may be

specified as NULL if no index array from InpBuf to OutBuf is

desired.

m_transform_layout

Chapter 3. Part 3. Library Functions 1273

If the OutToInp argument is not a NULL pointer, it points to an array

of values with the same number of bytes as contained in OutBuf.

On output, the nth value in OutToInp corresponds to the nth byte in

OutBuf. This value is the index in InpBuf, starting with the byte

pointed to by InpBufIndex, that identifies the logical code element of

the nth byte in OutBuf.

 In the case of multibyte encoding, the index will point, for each of

the bytes of a transformed code element in the OutBuf, to the first

byte of the code element in the InpBuf.

 OutToInp may be specified as NULL if no index array from OutBuf

to InpBuf is desired.

 To perform shaping of a text string without reordering of code

elements, the layout_object should be set with input and output

layout value TypeOfText set to TEXT_VISUAL, and both in and out

of Orientation set to the same value.

Returned Value

If successful, m_transform_layout() returns 0.

If unsuccessful, m_transform_layout() returns -1 and sets errno to one of the

following values:

Error Code Description

E2BIG The size of OutBuf is not large enough to contain the entire

transformed text. The input text state at the end of the uncompleted

transformation is saved internally.

EBADF The layout values are set to a meaningless combination or the

layout object is not valid.

EINVAL Transformation stopped due to an incomplete composite sequence

at the end of the input buffer, or OutSize contains NULL.

Related Information

v “sys/layout.h” on page 87

v “m_create_layout() — Create and Initialize a Layout Object (Bidi data)” on page

1201

v “m_destroy_layout() — Destroy a Layout Object (Bidi data)” on page 1203

v “m_getvalues_layout() — Query Layout Values of a Layout Object (Bidi data)” on

page 1215

v “m_setvalues_layout() — Set Layout Values of a Layout Object (Bidi data)” on

page 1253

v “m_wtransform_layout() — Layout Transformation for Wide-Character Strings

(Bidi data)” on page 1279

m_transform_layout

1274 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

munmap() — Unmap Pages of Memory

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

z/OS UNIX

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/mman.h>

int munmap(void *addr, size_t len);

General Description

The munmap() function removes the mappings for pages in the range [addr, addr +

len) rounding the len argument up to the next multiple of the page size as returned

by sysconf(). If addr is not the address of a mapping established by a prior call to

mmap(), the behavior is undefined. After a successful call to munmap() and before

any subsequent mapping of the unmapped pages, further references to these

pages will result in the delivery of a SIGBUS or SIGSEGV signal to the process.

__MAP_MEGA mapping: The munmap service removes the mapping for pages in

the requested range. The requested range may span multiple maps, and the maps

may represent the same or different files. The pages in the range may be part of a

regular mapping or may be part of a __MAP_MEGA mapping. When unmapping a

regular mapping, entire pages are unmapped; when unmapping a __MAP_MEGA

mapping, entire segments are unmapped.

Map_address: The value of map address must be a multiple of the page size. The

specified value does not have to be the start of a mapping. However, if the value

specified for Map_address falls within a __MAP_MEGA map, then the address is

rounded down to a megabyte multiple so that an entire segment is included in the

unmap operation. It is not possible to unmap a part of a segment when processing

a __MAP_MEGA map.

Map_length: The length can be the size of the whole mapping, or a part of it. If the

specified length is not in multiples of the page size, it will be rounded up to a page

boundary. If the Map_address plus the Map_length falls within a __MAP_MEGA

map, then the length is rounded up to a segment boundary, thus including the entire

segment (not necessarily the entire __MAP_MEGA mapping).

Returned Value

If successful, munmap() returns 0.

If unsuccessful, munmap() returns -1 and sets errno to one of the following values:

Error Code Description

EINVAL One of the following error conditions exists:

v The addr argument is not a multiple of the page size as returned

by sysconf.

munmap

Chapter 3. Part 3. Library Functions 1275

||||

|
|
|

||

|

v Addresses outside the valid range for the address space of a

process.

v The len argument is 0.

Related Information

v “sys/mman.h” on page 87

v “mmap() — Map Pages of Memory” on page 1232

v “sysconf() — Determine System Configuration Options” on page 2111

munmap

1276 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__must_stay_clean() — Enable or Query Clean

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both Z/OS V1R8

Format

#define _OPEN_SYS

#include <unistd.h>

int __must_stay_clean(int request);

General Description

The __must_stay_clean() function queries or enables the ″must stay clean″ state for

a process. A process that must stay clean is prohibited from doing an exec(),

spawn(), or other load of a non-program controlled executable. Only a program

controlled executable can enable the must stay clean state. The must stay clean

state of a process is propagated to its children created using fork or spawn. Once

the must stay clean state is enabled, it cannot be changed. All processes in the

address space will be forced to stay clean until they have all terminated. The query

support allows a process to determine if it was created in a trusted environment.

The BPX.DAEMON class profile must be defined to use the enable function.

Argument Description

request Specify the value _MSC_QUERY to query the state. Specify the

value _MSC_ENABLE to enable ″must stay clean″ for the process.

Returned Value

If successful, __must_stay_clean() returns the current ″must stay clean″ state of the

process. The following state values are possible:

_MSC_NOT_ENABLED

The ″must stay clean″ state is not enabled.

_MSC_ENABLED

The ″must stay clean″ state is enabled, meaning that it was set using this

function, and that it will continue to be enabled even after an exec() that

causes job step termination.

_MSC_ENABLED_COND

The ″must stay clean″ state is enabled conditionally, meaning that a prior

call to a security service, such as __passwd(), implicitly enabled the must

stay clean state, and that the state will be reset to ″not enabled″ at the next

exec() that causes job step termination. This state value can only be

returned using the query request.

 If unsuccessful, __must_stay_clean() returns _MSC_FAILED(-1) and sets errno to

one of the following values:

Error Code Description

EINVAL A parameter was not valid.

EMVSERR An MVS environmental error occurred. One possible cause is that a

must_stay_clean

Chapter 3. Part 3. Library Functions 1277

’dirty’ process attempted to enable the must stay clean attribute.

Another cause could be that the BPX.DAEMON class profile is not

defined.

EMVSSAF2ERR

An error occurred in the security product.

Example

/* celebm22.c */

/* This example shows how to use __must_stay_clean() to request */

/* the environment is to "stay clean" until all processes in the */

/* address space are terminated. */

/* Requirements: */

/* 1. The environment must already be clean, noting that the */

/* program issuing the request must be program-controlled */

/* 2. BPX.DAEMON must be defined */

#define _OPEN_SYS

#include <unistd.h>

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

int main(void){

 int rc;

 rc = __must_stay_clean(_MSC_ENABLE); /* Stay Clean! */

 if (rc == __MSC_FAILED){

 perror("could not enable must stay clean");

 printf("errno=%d errno2=%08x\n",errno,__errno2());

 exit(1);

 }

 return 0;

}

Related Information

must_stay_clean

1278 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

m_wtransform_layout() — Layout Transformation for Wide-Character

Strings (Bidi data)

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

C99

both z/OS V1R2

Format

#include <sys/layout.h>

int m_wtransform_layout(LayoutObject layout_object,

 const wchar_t *InpBuf,

 const size_t InpSize,

 void *OutBuf,

 size_t *Outsize,

 size_t *InpToOut,

 size_t *OutToInp,

 unsigned char *Property,

 size_t *InpBufIndex);

General Description

The m_wtransform_layout() function is part of the support for handling of

bidirectional (Bidi) conversion of data between Visual (MVS) and Implicit (z/OS

UNIX) formats. Initial support is for Arabic and Hebrew data.

The m_wtransform_layout() function performs layout transformations (reordering,

shaping, cell determination). Alternatively, it may provide additional information

needed for layout transformation, such as:

v The expected size of the transformed layout

v The nesting level of different segments in the text

v Cross references between the locations of the corresponding elements before

and after the layout transformation.

Both the input text and output text are wide-character strings. The

m_wtransform_layout() function transforms the input text in InpBuf according to the

current layout values in layout_object.

Any layout value whose value type is LayoutTextDescriptor describes the

attributes of the InpBuf and OutBuf arguments. If the attributes are the same for

both InpBuf and OutBuf, a null transformation is performed with respect to that

specific layout value.

The InpBuf argument specifies the source text to be processed. The InpBuf may not

be NULL, except when there is a need to reset the internal state.

The InpSize argument is the number of characters within InpBuf to be processed by

the transformation. Its value will not have changed at the return from the

transformation. InpSize set to -1 indicates that the text in InpBuf is delimited by a

NULL code element. If InpSize is not set to -1, it is possible to have some NULL

elements in the input buffer. This might be used, for example, for a one shot

transformation of several strings, separated by NULLs.

m_wtransform_layout

Chapter 3. Part 3. Library Functions 1279

Outputs of this function may be one or more of the following, depending on the

setting of the arguments:

Argument Description

OutBuf Any transformed data is stored in OutBuf, converted to

ShapeCharset.

Outsize The number of wide characters in OutBuf.

InpToOut A cross reference from each InpBuf code element to the

transformed data. The cross reference relates to the data in InpBuf,

starting with the first element that InpBufIndex points to (and not

necessarily starting from the beginning of the InpBuf.)

OutToInp A cross reference to each InpBuf code element from the

transformed data. The cross reference relates to the data in InpBuf,

starting with the first element that InpBufIndex points to (and not

necessarily starting from the beginning of the InpBuf.)

Property A weighted value that represents specific input string transformation

properties with different connotations as explained below. If this

argument is not a NULL pointer, it represents an array of values

with the same number of elements as the source substring text

before the transformation.

 Each byte will contain relevant property information of the

corresponding element in InpBuf, starting from the element pointed

by InpBufIndex.

 The four rightmost bits of each property byte will contain information

for bidirectional environments (when ActiveDirectional is True) and

they will mean NestingLevels. The possible value from 0 to 15

represents the nesting level of the corresponding element in the

InpBuf, starting from the element pointed by InpBufIndex. If

ActiveDirectional is False, the content of NestingLevels bits will be

ignored.

 The leftmost bit of each property byte will contain a new cell

indicator for composed character environments. It will be a value of

either 1, for an element in InpBuf that is transformed to the

beginning of a new cell, or 0, for the zero-length composing

character elements, when these are grouped into the same

presentation cell with a non-composing character. Here again, each

element of property pertains to the elements in the InpBuf, starting

from the element pointed by InpBufIndex. (Remember that this is

not necessarily the beginning of InpBuf.)

 If none of the transformation properties is required, the argument

Property can be NULL.

 The use of property can be enhanced in the future to pertain to

other possible usage in other environments.

InpBufIndex An offset value to the location of the transformed text. When

m_wtransform_layout() is called, InpBufIndex contains the offset to

the element in InpBuf that will be transformed first. (Note that this is

not necessarily the first element in InpBuf.)

 At the return from the transformation, InpBufIndex contains the

offset to the first element in the InpBuf that has not been

m_wtransform_layout

1280 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

transformed. If the entire substring has been transformed

successfully, InpBufIndex will be incremented by the amount

defined by InpSize.

 Each of these output arguments may be NULL to specify that no

output is desired for the specific argument, but at least one of them

should be set to non-NULL to perform any significant work.

 In addition to the possible outputs above, the layout_object

maintains a directional state across calls to the transform functions.

The directional state is reset to its initial state whenever any of the

layout values TypeOfText, Orientation or ImplicitAlg is modified

by means of a call to m_setvalues_layout().

 The layout_object argument specifies a LayoutObject returned by

the m_create_layout() function.

 The OutBuf argument contains the transformed data. This argument

can be specified as a NULL pointer to indicate that no transformed

data is required. The encoding of the OutBuf argument depends on

the ShapeCharset layout value defined in layout_object. If the

ActiveShapeEditing layout value is not set (False), the encoding of

OutBuf is guaranteed to be the same as the codeset of the locale

associated with the LayoutObject defined by layout_object.

 On input, the OutSize argument specifies the size of the output

buffer in number of wide characters. The output buffer should be

large enough to contain the transformed result; otherwise, only a

partial transformation is performed. If the ActiveShapeEditing

layout value is set (True), the OutBuf should be allocated to contain

at least the InpSize multiplied by ShapeCharsetSize.

OutSize Upon return, the OutSize argument is updated to be the actual

number of code elements placed in OutBuf.

 When the OutSize argument is specified as zero, the function

calculates the size of an output buffer large enough to contain the

transformed text, and the result is returned in this field. The content

of the buffers specified by InpBuf and OutBuf, and the value of

InpBufIndex, remain unchanged.

 If OutSize = NULL, the EINVAL error condition is returned.

 If the InpToOut argument is not a NULL pointer, it points to an array

of values with the same number of wide characters as InpBuf,

starting with the one pointed by InpBufIndex and up to the end of

the substring in the buffer.

 On output, the nth value in InpToOut corresponds to the nth wide

character in InpBuf. This value is the index (in units of wide

characters) in OutBuf that identifies the transformed ShapeCharset

element of the nth wide character in InpBuf.

 InpToOut may be specified as NULL if no index array from InpBuf to

OutBuf is desired.

 If the OutToInp argument is not a NULL pointer, it points to an array

of values with the same number of wide characters as contained in

OutBuf. On output, the nth value in OutToInp corresponds to the nth

wide character in OutBuf. This value is the index in InpBuf, starting

with the wide character pointed to by InpBufIndex, that identifies the

logical code element of the nth byte in OutBuf.

m_wtransform_layout

Chapter 3. Part 3. Library Functions 1281

OutToInp may be specified as NULL if no index array from OutBuf

to InpBuf is desired.

 To perform shaping of a text string without reordering of code

elements, the layout_object should be set with input and output

layout value TypeOfText set to TEXT_VISUAL, and both in and out

of Orientation set to the same value.

Returned Value

If successful, m_wtransform_layout() returns 0.

If unsuccessful, m_wtransform_layout() returns -1 and sets errno to one of the

following values:

Error Code Description

E2BIG The size of OutBuf is not large enough to contain the entire

transformed text. The input text state at the end of the uncompleted

transformation is saved internally.

EBADF The layout values are set to a meaningless combination or the

layout object is not valid.

EINVAL Transformation stopped due to an incomplete composite sequence

at the end of the input buffer, or OutSize contains NULL.

Related Information

v “sys/layout.h” on page 87

v “m_create_layout() — Create and Initialize a Layout Object (Bidi data)” on page

1201

v “m_destroy_layout() — Destroy a Layout Object (Bidi data)” on page 1203

v “m_getvalues_layout() — Query Layout Values of a Layout Object (Bidi data)” on

page 1215

v “m_setvalues_layout() — Set Layout Values of a Layout Object (Bidi data)” on

page 1253

v “m_transform_layout() — Layout Transformation for Character Strings (Bidi data)”

on page 1271

m_wtransform_layout

1282 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

nan(), nanf(), nanl() — Return Quiet NaN

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

double nan(const char *tagp);

float nanf(const char *tagp);

long double nanl(const char *tagp);

General Description

In the nan() family of functions, the call nan(″n-char-sequence″) is equivalent to

strtod(″NAN(n-charsequence)″, (char**) NULL) and the call nan(″″) is equivalent to

strtod(″NAN()″, (char**) NULL). If tagp does not point to an n-char sequence or an

empty string, the call is equivalent to strtod(″NAN″, (char**) NULL). Calls to nanf()

and nanl() are equivalent to the corresponding calls strtof() and strtold().

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

nan X X

nanf X X

nanl X X

Returned Value

If successful, they return a quiet NaN with content indicated by tagp.

Special Behavior in HEX

The nan() family of functions always return 0.

Example

/*

 * This program illustrates the use of the nan() function

 *

 * It calls both nan and strtod with equivalent arguments

 * and displays output of both. Output should be identical.

 *

 */

#define _ISOC99_SOURCE

#include <stdio.h>

#include <stdlib.h> /* needed of strtod */

#include <math.h>

nan, nanf, nanl

Chapter 3. Part 3. Library Functions 1283

||||

|
|
||

|

#define TESTVALS 5

struct {

 const char * str;

} nan_vals[] = {

/*0*/ { "0" },

/*1*/ { "1" },

/*2*/ { "something" }, /* invalid n-char seq. */

/*3*/ { "2147483647" }, /* int max */

/*4*/ { "2147483648" } /* int max +1 */

},

strod_vals[] = {

/*0*/ { "NAN(0)" },

/*1*/ { "NAN(1)" },

/*2*/ { "NAN" },

/*3*/ { "NAN(2147483647)" },

/*4*/ { "NAN(2147483648)" }

};

void main()

{

 double outnan,

 outstrtod;

 int i;

 char *tagp = (char *)NULL;

 printf("Illustrates the nan() function\n");

 printf("Output for both nan() and strtod() should be identical.\n\n");

 for (i=0; i<TESTVALS; i++) {

 outnan = nan(nan_vals[i].str);

 outstrtod = strtod(strod_vals[i].str, &tagp);

 printf("nan(%s) returned = %g\n",nan_vals[i].str, outnan);

 printf("strtod(%s) returned = %g\n\n",strod_vals[i].str, outstrtod);

 }

}

Output

Illustrates the nan() function

Output for both nan() and strtod() should be identical.

nan(0) returned = 0

strtod(NAN(0)) returned = 0

nan(1) returned = NaNQ(1)

strtod(NAN(1)) returned = NaNQ(1)

nan(something) returned = NaNQ(1)

strtod(NAN) returned = NaNQ(1)

nan(2147483647) returned = NaNQ(2147483647)

strtod(NAN(2147483647)) returned = NaNQ(2147483647)

nan(2147483648) returned = 0

strtod(NAN(2147483648)) returned = 0

Related Information

v “math.h” on page 60

v “strtod() — Convert Character String to Double” on page 2066

nan, nanf, nanl

1284 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

nand32(), nand64(), nand128() — Return Quiet NaN

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 nand32(const char *tagp);

_Decimal64 nand64(const char *tagp);

_Decimal128 nand128(const char *tagp);

General Description

In the nan() family of functions, the call nand32(″n-char-sequence″) is equivalent to

strtod32(″NAN(n-charsequence)″, (char**) NULL) and the call nand32(″″) is

equivalent to strtod32(″NAN()″, (char**) NULL). If tagp does not point to an n-char

sequence or an empty string, the call is equivalent to strtod32(″NAN″, (char**)

NULL). Calls to nand64() and nand128() are equivalent to the corresponding calls

strtod64() and strtod128().

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, they return a quiet NaN with content indicated by tagp.

Example

/* CELEBN05

 This program illustrates the use of the nand32() function.

 It calls both nand32() and strtod32() with equivalent arguments

 and displays output of both. Output should be identical.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

#include <stdlib.h> /* needed for strtod32() */

#define TESTVALS 5

struct

{

 const char * str;

}

nan_vals[] =

{

nand32, nand64, nand128

Chapter 3. Part 3. Library Functions 1285

|

|

||||

|||
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/*0*/ { "0" },

 /*1*/ { "1" },

 /*2*/ { "something" }, /* invalid n−char seq. */

 /*3*/ { "999999" }, /* max nancode */

 /*4*/ { "1000000" } /* max nancode + 1 */

}

,

strod_vals[] =

{

 /*0*/ { "NAN(0)" },

 /*1*/ { "NAN(1)" },

 /*2*/ { "NAN" },

 /*3*/ { "NAN(999999)" },

 /*4*/ { "NAN(1000000)" }

};

int main(void)

{

 _Decimal32 outnan,

 outstrtod;

 int i;

 printf("Illustrates the nand32() function\n");

 printf("Output for both nand32() and strtod32()"

 "should be identical.\n\n");

 for (i = 0; i < TESTVALS; i++)

 {

 outnan = nand32(nan_vals[i].str);

 outstrtod = strtod32(strod_vals[i].str, NULL);

 printf("nand32(%s) returned = %Hg\n"

 , nan_vals[i].str, outnan);

 printf("strtod32(%s) returned = %Hg\n\n"

 , strod_vals[i].str, outstrtod);

 }

 return 0;

}

Related Information

v “math.h” on page 60

v “nan(), nanf(), nanl() — Return Quiet NaN” on page 1283

v “strtod32(), strtod64(), strtod128() — Convert Character String to Decimal

Floating Point” on page 2069

nand32, nand64, nand128

1286 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

nearbyint(), nearbyintf(), nearbyintl() — Round the Argument to the

Nearest Integer

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

double nearbyint(double x);

float nearbyintf(float x);

long double nearbyintl(long double x);

General Description

The nearbyint() family of functions round x to an integer value, in floating-point

format, using the current rounding mode without raising the inexact floating-point

exception.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

nearbyint X X

nearbyintf X X

nearbyinfl X X

Returned Value

If successful, they return the rounded integer value. If the correct value causes an

overflow, a range error occurs and the value, respectively, of the macro:

+/-HUGE_VAL, +/-HUGE_VALF, or +/-HUGE_VALL (with the same sign as x) is

returned.

Example

/*

 * This program illustrates the use of nearbyint() function

 *

 * Note: to get the results shown in this book , this program

 * should be compiled using FLOAT(IEEE)

 *

 */

#define _ISOC99_SOURCE

#include <math.h>

#include <stdio.h>

#include <_Ieee754.h> /* save/get fpc functions */

char *RoundStr (_FP_rmode_t rm_type) {

 char *RndStr="undetermined";

 switch (rm_type) {

 case (_RMODE_RN):

 RndStr="round to nearest";

 break;

 case (_RMODE_RZ):

 RndStr="round toward zero";

 break;

 case (_RMODE_RP):

nearbyint, nearbyintf, nearbyintl

Chapter 3. Part 3. Library Functions 1287

||||

|
|
||

|

|
|
|

|
|
|

||||

|||

|||

|||
|

|

RndStr="round toward +infinity ";

 break;

 case (_RMODE_RM):

 RndStr="round toward -infinity ";

 break;

 }

 return (RndStr);

}

void main() {

 _FP_fpcreg_t save_rmode, current_rmode;

 double rnd2nearest;

 double number1=1.5,

 number2=-3.92;

 printf("Illustrates the nearbyint() function\n");

 __fpc_rd(¤t_rmode); /* get current rounding mode */

 rnd2nearest = nearbyint(number1);

 printf ("When rounding direction is %s:\n nearbyint(%.2f) = %f\n",RoundStr(current_rmode.rmode),number1, rnd2nearest);

 save_rmode.rmode = _RMODE_RZ;

 __fpc_sm(save_rmode.rmode); /* set rounding mode to round to zero */

 rnd2nearest = nearbyint(number2);

 printf ("When rounding direction is %s:\n nearbyint(%.2f) = %f\n",RoundStr(save_rmode.rmode),number2, rnd2nearest);

}

Output

Illustrates the nearbyint() function

When rounding direction is round to nearest:

 nearbyint(1.50) = 2.000000

When rounding direction is round toward zero:

 nearbyint(-3.91) = -3.000000

Related Information

v “math.h” on page 60

v “ceil(), ceilf(), ceill() — Round Up to Integral Value” on page 251

v “floor(), floorf(), floorl() — Round Down to Integral Value” on page 609

v “llround(), llroundf(), llroundl() — Round to the Nearest Integer” on page 1109

v “lrint(), lrintf(), lrintl() and llrint(), llrintf(), llrintl() — Round the Argument to the

Nearest Integer” on page 1152

v “lround(), lroundf(), lroundl() — Round a Decimal Floating-point Number to its

Nearest Integer” on page 1157

v “rint(), rintf(), rintl() — Round to Nearest Integral Value” on page 1689

v “round(), roundf(), roundl() — Round to the Nearest Integer” on page 1695

v “trunc(), truncf(), truncl() — Truncate an integer value” on page 2251

nearbyint, nearbyintf, nearbyintl

1288 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

nearbyintd32(), nearbyintd64(), nearbyintd128() — Round the Argument

to the Nearest Integer

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 nearbyintd32(_Decimal32 x);

_Decimal64 nearbyintd64(_Decimal64 x);

_Decimal128 nearbyintd128(_Decimal128 x);

_Decimal32 nearbyint(_Decimal32 x); /* C++ only */

_Decimal64 nearbyint(_Decimal64 x); /* C++ only */

_Decimal128 nearbyint(_Decimal128 x); /* C++ only */

General Description

The nearbyint() family of functions round x to an integer value, in decimal

floating-point format, using the current rounding mode without raising the inexact

decimal floating-point exception.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, they return the rounded integer value. If the correct value causes an

overflow, a range error occurs and the value, respectively, of the macro:

±HUGE_VAL_D32, ±HUGE_VAL_D64, or ±HUGE_VAL_D128 (with the same sign

as x) is returned.

Example

/* CELEBN06

 This example illustrates the nearbyintd64() function.

*/

#pragma strings(readonly)

#define __STDC_WANT_DEC_FP__

#include <fenv.h>

#include <math.h>

#include <stdio.h>

/* pass back printable rounding mode */

static

char *rm_str(int rm)

nearbyintd32, nearbyintd64, nearbyintd128

Chapter 3. Part 3. Library Functions 1289

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{

 char *s = "undetermined";

 switch (rm)

 {

 case FE_DEC_TONEAREST :

 s = "FE_DEC_TONEAREST" ; break;

 case FE_DEC_TOWARDZERO :

 s = "FE_DEC_TOWARDZERO" ; break;

 case FE_DEC_UPWARD :

 s = "FE_DEC_UPWARD" ; break;

 case FE_DEC_DOWNWARD :

 s = "FE_DEC_DOWNWARD" ; break;

 case FE_DEC_TONEARESTFROMZERO :

 s = "FE_DEC_TONEARESTFROMZERO" ; break;

 case _FE_DEC_TONEARESTTOWARDZERO :

 s = "_FE_DEC_TONEARESTTOWARDZERO" ; break;

 case _FE_DEC_AWAYFROMZERO :

 s = "_FE_DEC_AWAYFROMZERO" ; break;

 case _FE_DEC_PREPAREFORSHORTER :

 s = "_FE_DEC_PREPAREFORSHORTER" ; break;

 }

 return s;

}

/* Try out one passed−in number with rounding mode */

static try_rm(int rm)

{

 _Decimal64 r64;

 _Decimal64 d64 = 500.99DD;

 (void)fe_dec_setround(rm);

 r64 = nearbyintd64(d64);

 printf("nearbyintd64(%.2DF) = %DG − rounding mode = %s\n",

 d64, r64, rm_str(rm)

);

 return;

}

int main()

{

 try_rm(FE_DEC_TONEAREST);

 try_rm(FE_DEC_TOWARDZERO);

 try_rm(FE_DEC_UPWARD);

 try_rm(FE_DEC_DOWNWARD);

 try_rm(FE_DEC_TONEARESTFROMZERO);

 try_rm(_FE_DEC_TONEARESTTOWARDZERO);

 try_rm(_FE_DEC_AWAYFROMZERO);

 try_rm(_FE_DEC_PREPAREFORSHORTER);

 return 0;

}

Related Information

v “math.h” on page 60

v “ceild32(), ceild64(), ceild128() — Round Up to Integral Value” on page 253

v “floord32(), floord64(), floord128() — Round Down to Integral Value” on page 611

nearbyintd32, nearbyintd64, nearbyintd128

1290 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

v “llroundd32(), llroundd64(), llroundd128() — Round to the Nearest Integer” on

page 1111

v “lrintd32(), lrintd64(), lrintd128() and llrintd32(), llrintd64(), llrintd128() — Round

the Argument to the Nearest Integer” on page 1154

v “lroundd32(), lroundd64(), lroundd128() — Round a Floating-point Number to its

Nearest Integer” on page 1158

v “nearbyint(), nearbyintf(), nearbyintl() — Round the Argument to the Nearest

Integer” on page 1287

v “rintd32(), rintd64(), rintd128() — Round to Nearest Integral Value” on page 1690

v “roundd32(), roundd64(), roundd128() — Round to the Nearest Integer” on page

1696

v “truncd32(), truncd64(), truncd128() — CTruncate an integer value” on page 2252

nearbyintd32, nearbyintd64, nearbyintd128

Chapter 3. Part 3. Library Functions 1291

|
|
|
|
|
|
|
|
|
|
|
|

nextafter(), nextafterf(), nextafterl() — Next Representable Double Float

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double nextafter(double x, double y);

C99

#define _ISOC99_SOURCE

#include <math.h>

float nextafterf(float x, float y);

long double nextafterl(long double x, long double y);

General Description

The nextafter() function computes the next representable double-precision

floating-point value following x in the direction of y. Thus, if y is less than x,

nextafter() returns the largest representable floating-point number less than x.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

nextafter X X

nextafterf X X

nextafterl X X

Restriction

The nextafterf() function does not support the _FP_MODE_VARIABLE feature test

macro.

Returned Value

The nextafter() functions return the next representable value following x in the

direction of y. They always succeed.

If x is finite and the correct function value overflows, a range error occurs and

±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) are

returned as appropriate for the return type of the function.

Errno Descirption

ERANGE

The correct value overflows.

nextafter

1292 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|

||

|
|

Related Information

v “math.h” on page 60

nextafter

Chapter 3. Part 3. Library Functions 1293

nextafterd32(), nextafterd64(), nextafterd128() — Next Representable

Decimal Floating-Point Value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 nextafterd32(_Decimal32 x, _Decimal32 y);

_Decimal64 nextafterd64(_Decimal64 x, _Decimal64 y);

_Decimal128 nextafterd128(_Decimal128 x, _Decimal128 y);

_Decimal32 nextafter(_Decimal32 x, _Decimal32 y); /* C++ only */

_Decimal64 nextafter(_Decimal64 x, _Decimal64 y); /* C++ only */

_Decimal128 nextafter(_Decimal128 x, _Decimal128 y);/* C++ only */

General Description

The nextafter() function computes the next representable decimal floating-point

value following x in the direction of y. Thus, if y is less than x, nextafter() returns the

largest representable decimal floating-point number less than x.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The nextafter() functions return the next representable value following x in the

direction of y.

 If... Then...

x equals y copysign(x,y) is returned.

x is less than y the next representable value after x is

returned.

x is greater than y the largest representable decimal

floating-point number less than x is returned.

x or y is a NaN either x or y is returned.

Example

/* CELEBN07

 This example illustrates the nextafterd128() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

nextafterd32, nextafterd64, nextafterd128

1294 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|

|
|

|||

||

||
|

||
|

||
|

|

|
|
|
|
|
|
|
|
|

int main(void)

{

 _Decimal128 x = 123456789.70DL, dir = 123456790.00DL, z;

 z = nextafterd128(x, dir);

 printf("The next number after %DDf in the direction %DDf\n is %DDf\n",

 x, dir, z);

}

Related Information

v “math.h” on page 60

v “nextafter(), nextafterf(), nextafterl() — Next Representable Double Float” on

page 1292

nextafterd32, nextafterd64, nextafterd128

Chapter 3. Part 3. Library Functions 1295

|
|
|
|
|
|
|
|
|
|

|
|
|
|

nexttoward(), nexttowardf(), nexttowardl() — Calculate the Next

Representable Value

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

double nexttoward(double x, long double y);

float nexttowardf(float x, long double y);

long double nexttowardl(long double x, long double y);

General Description

The nexttoward() family of functions compute the next representable floating-point

value following x in the direction of y.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

nexttoward X X

nexttowardf X X

nexttowardl X X

Restriction

The nexttowardf() function does not support the _FP_MODE_VARIABLE feature

test macro.

Returned Value

If successful, they return the next representable value in the specified format after x

in the direction of y.

 If... Then...

x equals y y (of type x) is returned.

x is less than y the next representable value after x is

returned.

x is greater than y the largest representable floating-point

number less than x is returned.

x is finite and the correct function value would

overflow

a range error occurs and +/-HUGE_VAL,

+/-HUGE_VALF, or +/-HUGE_VALL (with the

same sign as x) is returned by nexttoward(),

nexttowardf() or nexttowardl() respectively.

nexttoward, nexttowardf, nexttowardl

1296 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

x does not equal y and the correct subroutine

value is subnormal, 0, or underflows

a range error occurs and either the correct

function value (if representable) or 0.0 is

returned.

x or y is a NaN a NaN is returned.

Example

/*

 * This program illustrates the use of nexttoward() function

 */

#define _ISOC99_SOURCE

#include <math.h>

#include <stdio.h>

void PrintBytes(char *str, double x)

{

 static union {

 unsigned char bytes[sizeof(double)];

 double val;

 } dbl;

 int i;

 dbl.val = x;

 printf("%s ",str);

 for (i=0; i<sizeof(double); ++i) {

 printf("%02x", dbl.bytes[i]);

 }

 printf("\n");

}

void main() {

 double nextvalue;

 double x=1.5;

 long double y=2.0;

 printf("Illustrates the nexttoward() function\n");

 printf("\nTest1 (x<y) x = %f y = %Lf\n",x,y);

 PrintBytes("x in hex =",x);

 nextvalue = nexttoward(x,y);

 printf ("nexttoward(x,y) = %f\n", nextvalue);

 PrintBytes("nexttoward(x,y) in hex =",nextvalue);

 x=1.5; y=1.0;

 printf("\nTest2 (x>y) x = %f y = %Lf\n",x,y);

 nextvalue = nexttoward(x,y);

 printf ("nexttoward(x,y) = %f\n", nextvalue);

 PrintBytes("nexttoward(x,y) in hex =",nextvalue);

}

Output

Illustrates the nexttoward() function

Test1 (x<y) x = 1.500000 y = 2.000000

x in hex = 3ff8000000000000

nexttoward(x,y) = 1.500000

nexttoward(x,y) in hex = 3ff8000000000001

Test2 (x>y) x = 1.500000 y = 1.000000

nexttoward(x,y) = 1.500000

nexttoward(x,y) in hex = 3ff7ffffffffffff

nexttoward, nexttowardf, nexttowardl

Chapter 3. Part 3. Library Functions 1297

Related Information

v “math.h” on page 60

v “copysign(), copysignf(), copysignl() — Copy the Sign from one floating-point

number to another” on page 347

v “nan(), nanf(), nanl() — Return Quiet NaN” on page 1283

v “nextafter(), nextafterf(), nextafterl() — Next Representable Double Float” on

page 1292

nexttoward, nexttowardf, nexttowardl

1298 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

nexttowardd32(), nexttowardd64(), nexttowardd128() — Calculate the

Next Representable Value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 nexttowardd32(_Decimal32 x, _Decimal128 y);

_Decimal64 nexttowardd64(_Decimal64 x, _Decimal128 y);

_Decimal128 nexttowardd128(_Decimal128 x, _Decimal128 y);

_Decimal32 nexttoward(_Decimal32 x, _Decimal128 y); /*C++ only*/

_Decimal64 nexttoward(_Decimal64 x, _Decimal128 y); /*C++ only*/

_Decimal128 nexttoward(_Decimal128 x, _Decimal128 y);/*C++ only*/

General Description

The nexttoward() family of functions compute the next representable decimal

floating-point value following x in the direction of y.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, they return the next representable value in the specified format after x

in the direction of y.

 If... Then...

x equals y y (of type x) is returned.

x is less than y the next representable value after x is

returned.

x is greater than y the largest representable decimal

floating-point number less than x is returned.

x is finite and the correct function value

would overflow

a range error occurs and ±HUGE_VAL_D32,

±HUGE_VAL_D64, or ±HUGE_VAL_D128

(with the same sign as x) is returned by

nexttowardd32(), nexttowardd64() or

nexttowardd128(), respectively.

x does not equal y and the correct

subroutine value is subnormal, 0, or

underflows

a range error occurs and either the correct

function value (if representable) or 0.0 is

returned.

x or y is a NaN a NaN is returned.

nexttowardd32, nexttowardd64, nexttowardd128

Chapter 3. Part 3. Library Functions 1299

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

|
|

|||

||

||
|

||
|

|
|
|
|
|
|
|

|
|
|

|
|
|

||
|

Example

/* CELEBN08

 This example illustrates the nexttowardd32() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

static void try_nt(_Decimal32 x, _Decimal128 y)

{

 _Decimal32 r = nexttowardd32(x, y);

 printf("nexttowardd32(%12.12HG, %12.12DDG) = % 12.12HG\n", x, y, r);

 return;

}

int main(void)

{

 try_nt(2.000000DF , 2.00000001DL);

 try_nt(−2.000000DF , −2.00000001DL);

 try_nt(2.000000DF , 2.00000000DL);

 try_nt(2.000000DF , 1.99999999DL);

 try_nt(−2.000000DF , −1.99999999DL);

 try_nt(9.999999E+96DF, 9.99999999E+96DL);

 try_nt(1.000000E−95DF, 0.99999999E−95DL);

 return 0;

}

Related Information

v “math.h” on page 60

v “copysignd32(), copysignd64(), copysignd128() — Copy the Sign from one

floating-point number to another” on page 348

v “nand32(), nand64(), nand128() — Return Quiet NaN” on page 1285

v “nextafterd32(), nextafterd64(), nextafterd128() — Next Representable Decimal

Floating-Point Value” on page 1294

v “nexttoward(), nexttowardf(), nexttowardl() — Calculate the Next Representable

Value” on page 1296

nexttowardd32, nexttowardd64, nexttowardd128

1300 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

nftw() — Traverse a File Tree

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ftw.h>

int nftw(const char *path,

 int (*fn)(const char *, const struct stat *, int, struct FTW *),

 int fd_limit, int flags);

General Description

The nftw() function recursively descends the directory hierarchy rooted in path. It is

similar to ftw() except that it takes an additional argument flags, which is a bitwise

inclusive-OR of zero or more of the following flags:

FTW_CHDIR If set, nftw() will change the current working directory to each

directory as it reports files in that directory. If clear, nftw() will not

change the current working directory.

FTW_DEPTH If set, nftw() will report all files in a directory before reporting the

directory itself. If clear, nftw() will report any directory before

reporting the files in that directory.

FTW_MOUNT If set, nftw() will only report files in the same file system as path. If

clear, nftw() will report all files encountered during the walk.

FTW_PHYS If set, nftw() performs a physical walk and does not follow symbolic

links. If clear, nftw() will follow links instead of reporting them, and

will not report the same file twice.

At each file it encounters, nftw() calls the user-supplied function fn with four

arguments:

v the first argument is the pathname of the object.

v the second argument is a pointer to a stat buffer containing information on the

object.

v the third argument is an integer giving additional information. Its value is one of

the following:

FTW_D for a directory

FTW_DNR for a directory that cannot be read

FTW_DP for a directory whose subdirectories have been visited. (This

condition will only occur if FTW_DEPTH is included in flags.)

FTW_F for a file

FTW_NS for an object other than a symbolic link on which stat() could not

be successfully executed. If the object is a symbolic link, and

stat() failed, it is unspecified whether nftw() passes FTW_SL or

FTW_NS to the user-supplied function.

nftw

Chapter 3. Part 3. Library Functions 1301

||||

|
|
||

|

FTW_SL for a symbolic link

FTW_SLN for a symbolic link that does not name an existing file. (This

condition will only occur if FTW_PHYS is not included in flags.)

v the fourth argument is a pointer to an FTW structure. The value of base is the

offset of the object’s filename in the pathname passed as the first argument to

fn(). The value of level indicates depth relative to the root of the walk, where the

root level is 0.

The argument fd_limit limits the directory depth for the search. At most one file

descriptor will be used for each directory level.

Note: When working with Large Files, the function pointed to by fn should be

compiled with Large Files support or else data may be inaccurate in the stat

structure.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, nftw() cannot receive a

C++ function pointer as the argument. If you attempt to pass a C++ function pointer

to nftw(), the compiler will flag it as an error. You can pass a C or C++ function to

nftw() by declaring it as extern ″C″.

Returned Value

nftw() continues until the first of the following conditions occurs:

v An invocation of fn() returns a nonzero value, in which case nftw() returns that

value.

v The nftw() function detects an error other than EACCES (see FTW_DNR and

FTW_NS above), in which case nftw() returns −1 and sets errno to indicate the

error.

v The tree is exhausted, in which case nftw() returns 0.

If unsuccessful, nftw() sets errno to one of the following values. All other errnos

returned by nftw() are unchanged.

Error Code Description

EACCES Search permission is denied for any component of path or read

permission is denied for path, or fn() returns −1 and does not reset

errno.

ELOOP Too many symbolic links were encountered.

EMFILE OPEN_MAX file descriptors are currently open in the calling

process.

ENAMETOOLONG

One of the following error conditions exists:

v Pathname resolution of a symbolic link produced an intermediate

result whose length exceeds PATH_MAX.

v The length of path exceeds PATH_MAX, or a pathname

component is longer than PATH_MAX.

ENFILE Too many files are currently open in the system.

ENOENT A component of path does not name an existing file or path is an

empty string.

ENOTDIR A component of path is not a directory.

nftw

1302 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|
|
|

|

errno may also be set if the function fn causes it to be set.

Related Information

v “ftw.h” on page 48

v “ftw() — Traverse a File Tree” on page 722

v “lstat() — Get Status of File or Symbolic Link” on page 1163

v “opendir() — Open a Directory” on page 1319

v “readdir() — Read an Entry from a Directory” on page 1608

v “stat() — Get File Information” on page 2008

nftw

Chapter 3. Part 3. Library Functions 1303

nice() — Change Priority of a Process

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <unistd.h>

int nice(int increment);

General Description

nice() adds the value of increment to the nice value of the calling process. A

process’s nice value is a nonnegative number for which a more positive value

results in a lower CPU priority.

A maximum nice value of 2*{NZERO}-1 and a minimum value of zero are imposed

by the system. Requests for values above or below these limits result in the nice

value being set to the corresponding limit. Only a process with appropriate

privileges can lower the nice value.

The changing of a process’s nice value has the equivalent effect on a process’s

scheduling priority value, since they both represent the process’s relative CPU

priority. For example, increasing one’s nice value to its maximum value of

(2*NZERO)-1 has the equivalent effect of setting one’s scheduling priority value to

its maximum value (19), and will be reflected on the nice(), getpriority(), and

setpriority() functions.

Returned Value

If successful, nice() return the new nice value minus (NZERO).

If unsuccessful, nice() returns −1 and sets errno to one of the following values:

Error Code Description

ENOSYS The system does not support this function.

EPERM The value of increment was negative and the calling process does

not have the appropriate privileges.

Because nice() can return the value -1 on successful completion, it is necessary to

set the external variable errno to 0 before a call to nice(). If nice() returns -1, then

errno can be checked to see if an error occurred or if the value is a legitimate nice

value.

Related Information

v “limits.h” on page 55

v “unistd.h” on page 96

v “getpriority() — Get Process Scheduling Priority” on page 831

v “setpriority() — Set Process Scheduling Priority” on page 1829

nice

1304 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

nlist() — Get Entries from a Name List

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <nlist.h>

int nlist(const char *loadname, struct nlist *np);

General Description

The nlist() function allows a program to examine the name list in the executable file

named by the loadname parameter. It selectively extracts a list of values and places

them in the array of nlist structures pointed to by the np parameter.

The name list specified by the np parameter consists of an array of structures

containing names of variables, types and values. The list is terminated with an

element that has a NULL string in the name structure member. Each variable name

is looked up in the name list of the executable file. If the name is found, the type

and the value of the name is copied into the nlist structure field. If the name is not

found, both the type and value entry will be set to zero.

All entries are set to zero if the specified executable file cannot be read or it does

not contain a valid name list.

Notes:

1. The only variable type that will be supported by this version of nlist() is external

function.

2. nlist() will extract the offset of the external functions from loadname.

3. The type returned in nlist structure will always be 2 to indicate function if the

function name is found in loadname.

4. loadname must be a HFS linear format load module containing main().

5. loadname cannot be a dll (dynamic link library) or a fetchable load module.

Returned Value

If successful, nlist() returns 0. The offset and type of functions if found will be

returned in the nlist structure.

If unsuccessful, nlist() returns −1.

Related Information

v “nlist.h” on page 71

nlist

Chapter 3. Part 3. Library Functions 1305

nl_langinfo() — Retrieve Locale Information

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <langinfo.h>

char *nl_langinfo(nl_item item);

General Description

Retrieves from the current locale the string that describes the requested information

specified by item.

For a list of macros that define the constants used to identify the information

queried in the current locale, see Table 7 on page 53.

Returned Value

If successful, nl_langinfo() returns a pointer to a NULL-terminated string containing

information concerning the active language or cultural area. The active language or

cultural area is determined by the most recent setlocale() call. The array pointed to

by the returned value is modified by subsequent calls to the function. The array

shall not be modified by the user’s program.

If the item is not valid, nl_langinfo() returns a pointer to an empty string.

Example

CELEBN01

/* CELEBN01

 This example retrieves the current codeset name using the

 &nll. function.

 */

#include "langinfo.h"

#include "locale.h"

#include "stdio.h"

main() {

 char *codeset;

 setlocale(LC_ALL, "");

 codeset = nl_langinfo(CODESET);

 printf("codeset is %s\n", codeset);

}

Related Information

v “langinfo.h” on page 53

v “nl_types.h” on page 72

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localeconv() — Query Numeric Conventions” on page 1117

v “setlocale() — Set Locale” on page 1811

nl_langinfo

1306 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

nrand48() — Pseudo-Random Number Generator

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

long int nrand48(unsigned short int x16v[3]);

General Description

The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions

generate uniformly distributed pseudo-random numbers using a linear congruential

algorithm and 48-bit integer arithmetic.

The functions drand48() and erand48() return nonnegative, double-precision,

floating-point values, uniformly distributed over the interval [0.0,1.0).

The functions lrand48() and nrand48() return nonnegative, long integers, uniformly

distributed over the interval [0,2**31).

The functions mrand48() and jrand48() return signed long integers, uniformly

distributed over the interval [-2**31,2**31).

The nrand48() function generates the next 48-bit integer value in a sequence of

48-bit integer values, X(i), according to the linear congruential formula:

 X(n+1) = (aX(n) + c)mod(2**48) n>=0

The nrand48() function uses storage provided by the argument array, x16v[3], to

save the most recent 48-bit integer value in the sequence, X(i). The nrand48()

function uses x16v[0] for the low-order (rightmost) 16 bits, x16v[1] for the

middle-order 16 bits, and x16v[2] for the high-order 16 bits of this value.

The initial values of a, and c are:

 a = 5deece66d (base 16)

 c = b (base 16)

The values a and c, may be changed by calling the lcong48() function. The initial

values of a and c are restored if either the seed48() or srand48() function is called.

Special Behavior for z/OS UNIX Services

You can make the nrand48() function and other functions in the drand48 family

thread-specific by setting the environment variable _RAND48 to the value THREAD

before calling any function in the drand48 family.

nrand48

Chapter 3. Part 3. Library Functions 1307

||||

|
|
|

||

|

If you do not request thread-specific behavior for the drand48 family, C/370

serializes access to the storage for X(n), a and c by functions in the drand48 family

when they are called by a multithreaded application.

If thread-specific behavior is requested and the nrand48() function is called from

thread t, the nrand48() function generates the next 48-bit integer value in a

sequence of 48-bit integer values, X(t,i), for the thread according to the linear

congruential formula:

 X(t,n+1) = (a(t)X(t,n) + c(t))mod(2**48) n>=0

The nrand48() function uses storage provided by the argument array, x16v[3], to

save the most recent 48-bit integer value in the sequence, X(t,i). The nrand48()

function uses x16v[0] for the low-order (rightmost) 16 bits, x16v[1] for the

middle-order 16 bits, and x16v[2] for the high-order 16 bits of this value.

The initial values of a(t) and c(t) on the thread t are:

 a(t) = 5deece66d (base 16)

 c(t) = b (base 16)

The values a(t) and c(t) may be changed by calling the lcong48() function from the

thread t. The initial values of a(t) and c(t) are restored if either the seed48() or

srand48() function is called from the thread.

Returned Value

nrand48() saves the generated 48-bit value, X(n+1), in storage provided by the

argument array, x16v[3]. nrand48() transforms the generated 48-bit value to a

nonnegative, long integer value on the interval [0,2**31) and returns this

transformed value.

Special Behavior for z/OS UNIX Services

If thread-specific behavior is requested for the drand48 family and nrand48() is

called on thread t, nrand48() saves the generated 48-bit value, X(t,n+1), in storage

provided by the argument array, x16v[3]. nrand48() transforms the generated 48-bit

value to a nonnegative, long integer value on the interval [0,2**31) and returns this

transformed value.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “erand48() — Pseudo-Random Number Generator” on page 476

v “jrand48() — Pseudo-Random Number Generator” on page 1051

v “lcong48() — Pseudo-Random Number Initializer” on page 1065

v “lrand48() — Pseudo-Random Number Generator” on page 1150

v “mrand48() — Pseudo-Random Number Generator” on page 1251

v “seed48() — Pseudo-Random Number Initializer” on page 1712

v “srand48() — Pseudo-Random Number Initializer” on page 2005

nrand48

1308 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ntohl() — Translate a Long Integer into Host Byte Order

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

XPG4.2

#define _XOPEN_SOURCE_EXTENDED 1

#include <arpa/inet.h>

in_addr_t ntohl(in_addr_t netlong);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <arpa/inet.h>

unit32_t ntohl(uint32_t netlong);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/inet.h>

unsigned long ntohl(unsigned long a);

General Description

The ntohl() function translates a long integer from network byte order to host byte

order.

Parameter Description

a The unsigned long integer to be put into host byte order.

in_addr_t netlong

Is typed to the unsigned long integer to be put into host byte order.

Notes:

1. For MVS, host byte order and network byte order are the same.

2. Since this function is implemented as a macro, you need one of the feature test

macros and the inet header file.

Returned Value

ntohl() returns the translated long integer.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/types.h” on page 90

v “htonl() — Translate Address Host to Network Long” on page 912

v “htons() — Translate an Unsigned Short Integer into Network Byte Order” on

page 914

ntohl

Chapter 3. Part 3. Library Functions 1309

||||

|
|
||

|

|
|
|
|

v “ntohs() — Translate an Unsigned Short Integer into Host Byte Order” on page

1311

ntohl

1310 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ntohs() — Translate an Unsigned Short Integer into Host Byte Order

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

XPG4.2

#define _XOPEN_SOURCE_EXTENDED 1

#include <arpa/inet.h>

in_port_t ntohs(in_port_t netshort);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <arpa/inet.h>

uint16_t ntohs(uint16_t netshort);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <arpa/inet.h>

#include <netinet/in.h>

unsigned short ntohs(unsigned short a);

General Description

The ntohs() function translates a short integer from network byte order to host byte

order.

Parameter Description

a The unsigned short integer to be put into host byte order.

in_port_t netshort

Is typed to the unsigned short integer to be put into host byte order.

Notes:

1. For MVS, host byte order and network byte order are the same.

2. Since this function is implemented as a macro, you need one of the feature test

macros and the inet header file.

Returned Value

ntohs() returns the translated short integer.

Related Information

v “arpa/inet.h” on page 34

v “netinet/in.h” on page 68

v “sys/types.h” on page 90

v “htonl() — Translate Address Host to Network Long” on page 912

v “htons() — Translate an Unsigned Short Integer into Network Byte Order” on

page 914

ntohs

Chapter 3. Part 3. Library Functions 1311

||||

|
|
||

|

|
|
|
|

v “ntohl() — Translate a Long Integer into Host Byte Order” on page 1309

ntohs

1312 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

open() — Open a File

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <fcntl.h>

int open(const char *pathname, int options, ...);

General Description

Opens a file and returns a number called a file descriptor.

The pathname argument must be a hierarchical file system (HFS) file name. You

can use this file descriptor to refer to the file in subsequent I/O operations, for

example, read() or write(). Each file opened by a process gets a new file descriptor.

Restriction: Using this function with FIFOs, POSIX terminals, and character

special files requires z/OS XL C programs running POSIX(ON). See

“z/OS XL C/C++ applications with z/OS UNIX System Services C

functions” on page 13 for more information.

The argument pathname is a string giving the name of the file you want to open.

The integer options specifies options for the open operation by taking the bitwise

inclusive-OR of symbols defined in the fcntl.h header file. The options indicate

whether the file should be accessed for reading, writing, reading and writing, and so

on.

An additional argument (...) is required if the O_CREAT option is specified in

options. This argument may be called the mode and has the mode_t type. It

specifies file permission bits to be used when a file is created. All the file permission

bits are set to the bits of mode, except for those set in the file-mode creation mask

of the process. Here is a list of symbols that can be used for a mode.

S_IRGRP Read permission for the file’s group.

S_IROTH Read permission for users other than the file owner.

S_IRUSR Read permission for the file owner.

S_IRWXG Read, write, and search or execute permission for the file’s group.

S_IRWXG is the bitwise inclusive-OR of S_IRGRP, S_IWGRP, and

S_IXGRP.

S_IRWXO Read, write, and search or execute permission for users other than

the file owner. S_IRWXO is the bitwise inclusive-OR of S_IROTH,

S_IWOTH, and S_IXOTH.

S_IRWXU Read, write, and search, or execute, for the file owner; S_IRWXG is

the bitwise inclusive-OR of S_IRUSR, S_IWUSR, and S_IXUSR.

open

Chapter 3. Part 3. Library Functions 1313

||||

|
|
|
|

||

|

S_ISGID Privilege to set group ID (GID) for execution. When this file is run

through an exec function, the effective group ID of the process is

set to the group ID of the file, so that the process has the same

authority as the file owner rather than the authority of the actual

invoker.

S_ISUID Privilege to set the user ID (UID) for execution. When this file is run

through an exec function, the effective user ID of the process is set

to the owner of the file, so that the process has the same authority

as the file owner rather than the authority of the actual invoker.

S_ISVTX Indicates shared text. Keep loaded as an executable file in storage.

S_IWGRP Write permission for the file’s group.

S_IWOTH Write permission for users other than the file owner.

S_IWUSR Write permission for the file owner.

S_IXGRP Search permission (for a directory) or execute permission (for a file)

for the file’s group.

S_IXOTH Search permission for a directory, or execute permission for a file,

for users other than the file owner.

S_IXUSR Search permission (for a directory) or execute permission (for a file)

for the file owner.

Most open operations position a file offset (an indicator showing where the next

read or write will take place in the file) at the beginning of the file; however, there

are options that can change this position. One of the following must be specified in

the options argument of the open() operation:

O_RDONLY Open for reading only

O_WRONLY Open for writing only

O_RDWR Open for both reading and writing

One or more of the following can also be specified in options:

O_APPEND Positions the file offset at the end of the file before each write

operation.

O_CREAT Indicates that the call to open() has a mode argument.

 If the file being opened already exists O_CREAT has no effect

except when O_EXCL is also specified; see O_EXCL following.

 If the file being opened does not exist it is created. The user ID is

set to the effective ID of the process, and its group ID is set to the

group ID of its directory. File permission bits are set according to

mode.

 If O_CREAT is specified and the file did not previously exist a

successful open() sets the access time, change time, and

modification time for the file. It also updates the change time and

modification time fields in the parent directory.

O_EXCL

 If both O_EXCL and O_CREAT are specified open() fails if the file

already exists. If both O_EXCL and O_CREAT are specified and

pathname names a symbolic link open() fails regardless of the

contents of the symbolic link.

open

1314 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The check for the existence of the file and the creation of the file if

it does not exist is atomic with respect to other threads executing

open() naming the same filename in the same directory with

O_EXCL and O_CREAT set.

O_NOCTTY If pathname specifies a terminal open() does not make the terminal

the controlling terminal of the process (and the session). If

O_NOCTTY is not specified the terminal becomes the controlling

terminal if the following conditions are true:

v The process is a session leader.

v There is no controlling terminal for the session.

v The terminal is not already a controlling terminal for another

session.

O_NONBLOCK

Has different meanings depending on the situation.

v When you are opening a FIFO special file with O_RDONLY or

O_WRONLY:

If O_NONBLOCK is specified a read-only open() returns

immediately. A write-only open() returns with an error if no other

process has the FIFO open for reading.

If O_NONBLOCK is not specified a read-only open() blocks until

another process opens the FIFO for writing. A write-only open()

blocks until another process opens the FIFO for reading.

v When you are opening a character special file that supports a

nonblocking open(), O_NONBLOCK controls whether subsequent

reads and writes can block.

O_TRUNC If the file is successfully opened with O_RDWR or O_WRONLY, this

will truncate the file to zero length if the file exists and is a regular

file. The mode and owner of the file are unchanged. This option

should not be used with O_RDONLY. O_TRUNC has no effect on

FIFO special files or directories.

 If O_TRUNC is specified and the file previously existed a

successful open() updates the change time and modification time

for the file.

O_SYNC Force synchronous update. If this flag is 1 every write() operation

on the file is written to permanent storage. That is, the file system

buffers are forced to permanent storage. See fsync() also.

 The program is assured that all data for the file has been written to

permanent storage on return from a function which performs a

synchronous update,

If pathname refers to a STREAM file, oflag may be constructed from O_NONBLOCK

OR-ed with either O_RDONLY, O_WRONLY or O_RDWR. Other flag values are not

applicable to STREAMS devices and have no effect on them. The value O_NONBLOCK

affects the operation of STREAMS drivers and certain functions applied to file

descriptors associated with STREAMS files. For STREAMS drivers, the

implementation of O_NONBLOCK is device-specific.

Note: z/OS UNIX services do not supply any STREAMS devices or pseudodevices.

It is impossible for open() to return a valid STREAMS file descriptor.

open

Chapter 3. Part 3. Library Functions 1315

|
|
|
|

The largest value that can be represented correctly in an object of type off_t is

established as the offset maximum in the open file description.

 Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, open() returns a file descriptor.

If unsuccessful, open() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES Access is denied. Possible reasons include:

v The process does not have search permission on a component

in pathname.

v The file exists, but the process does not have permission to open

the file in the way specified by the flags.

v The file does not exist, and the process does not have write

permission on the directory where the file is to be created.

v O_TRUNC was specified, but the process does not have write

permission on the file.

EBUSY The process attempted to open a file that is in use.

EEXIST O_CREAT and O_EXCL were specified, and either the named file

refers to a symbolic link, or the named file already exists.

EINTR open() was interrupted by a signal.

EINVAL The options parameter does not specify a valid combination of the

O_RDONLY, O_WRONLY and O_TRUNC bits.

EIO The pathname argument names a STREAMS file and a hang-up or

error occurred during the open().

EISDIR pathname is a directory, and options specifies write or read/write

access.

ELOOP A loop exists in symbolic links. This error is issued if the number of

symbolic links detected in the resolution of pathname is greater

than POSIX_SYMLOOP.

EMFILE The process has reached the maximum number of file descriptors it

can have open.

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined using pathconf().

open

1316 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

ENFILE The system has reached the maximum number of file descriptors it

can have open.

ENOENT Typical causes:

v O_CREAT is not specified, and the named file does not exist.

v O_CREAT is specified, and either the prefix of pathname does

not exist or the pathname argument is an empty string.

ENOMEM The pathname argument names a STREAMS file and the system is

unable to allocate resources.

ENOSPC The directory or file system intended to hold a new file has

insufficient space.

ENOSR The pathname argument names a STREAMS-based file and the

system is unable to allocate a STREAM.

ENOSYS For master pseudoterminals, slave initialization did not complete.

ENOTDIR A component of pathname is not a directory.

ENXIO O_NONBLOCK and O_WRONLY were specified and the named file

is a FIFO, but no process has the file open for reading. For a

pseudoterminal, the requested minor number exceeds the

maximum number supported by the installation.

EPERM For slave pseudoterminals, permission to open is denied for one of

these reasons:

v It is the first open of the slave after the master pseudoterminal

was opened, and the user ID associated with the two opening

processes is not the same.

v There was an internal error in the security system after the

master pseudoterminal was opened.

v The attempt to open the slave used a different pathname than

earlier opens used.

EROFS pathname is on a read-only file system, and one or more of the

options O_WRONLY, O_RDWR, O_TRUNC, or O_CREAT (if the file

does not exist) was specified.

Example

The following opens an output file for appending:

 int fd;

 fd = open("outfile",O_WRONLY | O_APPEND);

The following statement creates a new file with read/write/execute permissions for

the creating user. If the file already exists, open() fails.

 fd = open("newfile",O_WRONLY|O_CREAT|O_EXCL,S_IRWXU);

Related Information

v “fcntl.h” on page 45

v “close() — Close a File” on page 299

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup() — Duplicate an Open File Descriptor” on page 449

v “exec Functions” on page 486

v “fcntl() — Control Open File Descriptors” on page 527

v “fsync() — Write Changes to Direct-Access Storage” on page 709

v “lseek() — Change the Offset of a File” on page 1161

open

Chapter 3. Part 3. Library Functions 1317

v “read() — Read From a File or Socket” on page 1602

v “stat() — Get File Information” on page 2008

v “umask() — Set and Retrieve File Creation Mask” on page 2291

v “write() — Write Data on a File or Socket” on page 2464

open

1318 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

opendir() — Open a Directory

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <dirent.h>

DIR *opendir(const char *dirname);

General Description

Opens a directory so that it can be read with readdir() or __readdir2(). dirname is a

string giving the name of the directory you want to open. The first readdir() or

__readdir2() call reads the first entry in the directory.

Returned Value

If successful, opendir() returns a pointer to a DIR object. This object describes the

directory and is used in subsequent operations on the directory, in the same way

that FILE objects are used in file I/O operations.

If unsuccessful, opendir() returns a NULL pointer and sets errno to one of the

following values:

Error Code Description

EACCES The process does not have permission to search some component

of dirname, or it does not have read permission on the directory

itself.

ELOOP A loop exists in the symbolic links. This error is issued if more than

POSIX_SYMLOOP (defined in the limits.h header file) symbolic

links are encountered during resolution of the dirname argument.

EMFILE The process has too many other file descriptors already open.

ENAMETOOLONG

dirname is longer than PATH_MAX characters, or some component

of dirname is longer than NAME_MAX characters while

_POSIX_NO_TRUNC is in effect. For symbolic links, the length of

the pathname string substituted for a symbolic link exceeds

PATH_MAX. The PATH_MAX and NAME_MAX values can be

determined using pathconf().

ENFILE The entire system has too many other file descriptors already open.

ENOENT The directory dirname does not exist.

ENOMEM There is not enough storage available to open the directory.

ENOTDIR Some component of the dirname pathname is not a directory.

opendir

Chapter 3. Part 3. Library Functions 1319

||||

|
|
|
|

||

|

Example

CELEBO01

/* CELEBO01

 This example opens a directory.

 */

#define _POSIX_SOURCE

#include <dirent.h>

#include <errno.h>

#include <sys/stat.h>

#include <sys/types.h>

#undef _POSIX_SOURCE

#include <stdio.h>

void traverse(char *fn, int indent) {

 DIR *dir;

 struct dirent *entry;

 int count;

 char path[1025];

 struct stat info;

 for (count=0; count<indent; count++) printf(" ");

 printf("%s\n", fn);

 if ((dir = opendir(fn)) == NULL)

 perror("opendir() error");

 else {

 while ((entry = readdir(dir)) != NULL) {

 if (entry−>d_name[0] != '.') {

 strcpy(path, fn);

 strcat(path, "/");

 strcat(path, entry−>d_name);

 if (stat(path, &info) != 0)

 fprintf(stderr, "stat() error on %s: %s\n", path,

 strerror(errno));

 else if (S_ISDIR(info.st_mode))

 traverse(path, indent+1);

 }

 }

 closedir(dir);

 }

}

main() {

 puts("Directory structure:");

 traverse("/etc", 0);

}

Output

Directory structure:

/etc

 /etc/samples

 /etc/samples/IBM

 /etc/IBM

Related Information

v “dirent.h” on page 40

v “stdio.h” on page 82

v “sys/types.h” on page 90

v “closedir() — Close a Directory” on page 302

v “__opendir2() — Open a Directory” on page 1322

v “readdir() — Read an Entry from a Directory” on page 1608

opendir

1320 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “rewinddir() — Reposition a Directory Stream to the Beginning” on page 1683

v “seekdir() — Set Position of Directory Stream” on page 1714

v “telldir() — Current Location of Directory Stream” on page 2189

opendir

Chapter 3. Part 3. Library Functions 1321

__opendir2() — Open a Directory

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R6

Format

#define _OPEN_SYS_DIR_EXT

#include <dirent.h>

DIR *__opendir2(const char *dirname, size_t bufsize);

General Description

Opens a directory so that it can be read with readdir() or __readdir2(). The first

readdir() or __readdir2() call reads the first entry in the directory.

dirname is a string giving the name of the directory you want to open. bufsize is the

size (in bytes) of the internal work buffer used by readdir() or __readdir2() to hold

directory entries. The larger the buffer, the less overhead there will be when reading

through large numbers of directory entries. This buffer will exist until the directory is

closed. If the specified buffer size is too small, it is ignored. A minimum-size buffer

is used instead.

__opendir2() is the same as opendir(), except that the buffer size can be specified

as a parameter.

Returned Value

If successful, __opendir2() returns a pointer to a DIR object. This object describes

the directory and is used in subsequent operations on the directory, in the same

way that FILE objects are used in file I/O operations.

If unsuccessful, __opendir2() returns a NULL pointer and sets errno to one of the

following values:

Error Code Description

EACCES The process does not have permission to search some component

of dirname, or it does not have read permission on the directory

itself.

ELOOP A loop exists in the symbolic links. This error is issued if more than

POSIX_SYMLOOP (defined in the limits.h header file) symbolic

links are encountered during resolution of the dirname argument.

EMFILE The process has too many other file descriptors already open.

ENAMETOOLONG

dirname is longer than PATH_MAX characters, or some component

of dirname is longer than NAME_MAX characters while

_POSIX_NO_TRUNC is in effect. For symbolic links, the length of

the pathname string substituted for a symbolic link exceeds

PATH_MAX. The PATH_MAX and NAME_MAX values can be

determined using pathconf().

ENFILE The entire system has too many other file descriptors already open.

__opendir2

1322 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ENOENT The directory dirname does not exist.

ENOMEM There is not enough storage available to open the directory using a

buffer that is length bufsize bytes long.

ENOTDIR Some component of the dirname pathname is not a directory.

Related Information

v “dirent.h” on page 40

v “stdio.h” on page 82

v “sys/types.h” on page 90

v “closedir() — Close a Directory” on page 302

v “opendir() — Open a Directory” on page 1319

v “readdir() — Read an Entry from a Directory” on page 1608

v “rewinddir() — Reposition a Directory Stream to the Beginning” on page 1683

v “seekdir() — Set Position of Directory Stream” on page 1714

v “telldir() — Current Location of Directory Stream” on page 2189

__opendir2

Chapter 3. Part 3. Library Functions 1323

openlog() — Open the System Control Log

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <syslog.h>

void openlog(const char *ident, int logopt, int facility);

General Description

The openlog() function optionally opens a connection to the logging facility, and sets

process attributes that affect subsequent calls to the syslog() function. The

argument ident is a string that is prefixed to every message. logopt is a bit field

indicating logging options. Current values of logopt are:

LOG_CONS Write messages to the system console if they cannot be sent to the

logging facility. This option is safe to use in processes that have no

controlling terminal, since the syslog() function forks before opening

the console.

LOG_NDELAY Open the connection to the logging facility immediately. Normally

the open is delayed until the first message is logged. This is useful

for programs that need to manage the order in which file

descriptors are allocated..

LOG_NOWAIT

Do not wait for child processes that have been forked to log

messages onto the console. This option should be used by

processes that enable notification of child termination using

SIGCHLD, since the syslog() function may otherwise block waiting for

a child whose exit status has already been collected.

LOG_ODELAY

Delay open until syslog() is called.

LOG_PID Log the processID with each message. This is useful for identifying

specific processes. In the message header, the processID is

surrounded by square brackets. The code point values for the

square brackets are taken from code page IBM-1047. The value for

the left square bracket is 0xAD. The value for the right square

bracket is 0xBD.

The facility argument encodes a default facility to be assigned to all messages that

do not have an explicit facility already encoded. The initial default facility is as

follows:

LOG_USER Message generated by random processes. This is the default facility

identifier if none is specified.

openlog

1324 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|
|

Returned Value

openlog() returns no values.

No errors are defined.

Related Information

v “syslog.h” on page 87

v “closelog() — Close the Control Log” on page 304

v “setlogmask() — Set the Mask for the Control Log” on page 1821

v “syslog() — Send a Message to the Control Log” on page 2116

openlog

Chapter 3. Part 3. Library Functions 1325

__open_stat() — Open a File and Get File Status Information

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R6

Format

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/stat.h>

int __open_stat(const char *pathname, int options, mode_t mode,

 struct stat *info);

General Description

Opens a file and returns a number called a file descriptor. __open_stat() also

returns information about the opened file. __open_stat() is a combination of open()

and fstat().

The parameters are:

Parameters Description

pathname This parameter is a NULL-terminated character string containing the

hierarchical file system (HFS) pathname of the file to be opened.

 pathname can begin with or without a slash.

v A pathname beginning with a slash is an absolute pathname. The

slash refers to the root directory, and the search for the file starts

at the root directory.

v A pathname not beginning with a slash is a relative pathname.

The search for the file begins at the working directory.

See “open() — Open a File” on page 1313 for more information

about the pathname parameter and the types of files that can be

opened.

options An integer containing option bits for the open operation. These

options are the same as those in the options parameter passed to

open(). These bits are defined in fcntl.h. For a list of these option

bits and their meaning, see “open() — Open a File” on page 1313.

mode mode is the same as the optional third parameter for open(), which

is used when a new file is being created. For __open_stat(), the

mode parameter is always required. If a new file is not being

created, mode is ignored, and may be set to 0. When __open_stat()

creates a file, the flag bits in mode specify the file permissions and

other characteristics for the new file. The flag bits in mode are

defined in sys/modes.h. For more information about the mode

parameter, see “open() — Open a File” on page 1313.

info The info parameter points to an area of memory where the system

will store information about the file that is opened. This parameter is

the same as the info parameter in fstat() or stat(). If the file is

successfully opened, the system returns file status information in a

__open_stat

1326 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

stat structure, as defined in sys/stat.h. The elements of this

structure are described in “stat() — Get File Information” on page

2008.

Returned Value

If successful, __open_stat() returns a file descriptor.

If unsuccessful, __open_stat() returns −1 and sets errno to one of the following

values:

Error Code Description

EACCESS Access to the file was denied. One of the following errors occurred:

v The calling process does not have permission to search one of

the directories specified in the pathname parameter.

v The calling process does not have permission to open the file in

the way specified by the options parameter.

v The file does not exist, and the calling process does not have

permission to write into files in the directory the file would have

been created in.

v The truncate option was specified, but the process does not have

write permission for the file.

EAGAIN Resources were temporarily unavailable.

EBUSY pathname specifies a master pseudoterminal that is either already

in use or for which the corresponding slave is open.

EEXIST The exclusive create option was specified, but the file already

exists.

 Use __errno2() to determine the exact reason the error occurred.

EFBIG A request to create a new file is prohibited because the file size

limit for the process is set to 0.

EINTR The __open_stat() operation was interrupted by a signal.

EINVAL The options parameter does not specify a valid combination of the

O_RDONLY, O_WRONLY and O_TRUNC bits, or the file type specified in the

mode parameter is not valid.

 Use __errno2() to determine the exact reason the error occurred.

EISDIR The file specified by pathname is a directory and the options

parameter specifies write or read/write access.

 Use __errno2() to determine the exact reason the error occurred.

ELOOP A loop exists in symbolic links encountered during resolution of the

pathname parameter. This error is issued if more than 8 symbolic

links are detected in the resolution of pathname.

EMFILE The process has reached the maximum number of file descriptors it

can have open.

ENAMETOOLONG

pathname is longer than 1023 characters, or a component of

pathname is longer than 255 characters. (The system does not

support filename truncation.)

ENODEV Typical causes of this error are:

__open_stat

Chapter 3. Part 3. Library Functions 1327

v An attempt was made to open a character special file for a

device not supported by the system.

v An attempt was made to open a character special file for a

device that is not yet initialized.

Use __errno2() to determine the exact reason the error occurred.

ENOENT Typical causes of this error are:

v The request did not specify that the file was to be created, but

the file named by pathname was not found.

v The request asked for the file to be created, but some

component of pathname was not found, or the pathname

parameter was blank.

Use __errno2() to determine the exact reason the error occurred.

ENOSPC The directory or file system intended to hold a new file has

insufficient space.

ENOTDIR A component of pathname is not a directory.

ENXIO The __open_stat() request specified write-only and nonblock for a

FIFO special file, but no process has the file open for reading. For

pseudoterminals, this errno can mean that the minor number

associated with pathname is too big.

EPERM The caller is not permitted to open the specified slave

pseudoterminal or the corresponding master is not yet open. EPERM

is also returned if the slave is closed with HUPCL set and an attempt

is made to reopen it.

EROFS The pathname parameter names a file on a read-only file system,

but options that would allow the file to be altered were specified:

write-only, read/write, truncate, or -- for a new file -- create.

 Use __errno2() to determine the exact reason the error occurred.

Related Information

v “fcntl.h” on page 45

v “sys/stat.h” on page 89

v “close() — Close a File” on page 299

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “fstat() — Get Status Information about a File” on page 704

v “stat() — Get File Information” on page 2008

v “umask() — Set and Retrieve File Creation Mask” on page 2291

v “open() — Open a File” on page 1313

__open_stat

1328 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__osenv() — Capture the WLM and Pthread Security Attributes

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS

#include <unistd.h>

int __osenv(int osenv_func,

 int osenv_parms,

 __osenv_token *osenv_token_ptr)

General Description

The __osenv() function captures the WLM and pthread security attributes

associated with the pthread and creates an environment (OSENV) to represent

these attributes. The caller will then become associated with the OSENV and a

token representing the OSENV will be returned to the caller.

The __osenv() function takes the following arguments:

osenv_func Specifies the following functions:

_OSENV_GET Captures the current security and WLM enclave

membership information and places this information

in an environment (OSENV) that is associated with

the caller. A token representing OSENV is returned.

_OSENV_SET Changes the security of the thread and WLM

information to the attributes associated with the

OSENV token passed as input. The thread will then

become associated with the OSENV.

_OSENV_UNSET Unassociates the passed OSENV with the thread. If

the OSENV is not associated with any thread then

the OSENV token is no longer eligible for use and

the resources associated with the OSENV are

released.

_OSENV_PERSIST

Marks the OSENV token currently in use by the

task as having a persistent association with the

task. An OSENV token will not be unassociated

from the task when the task issues an

_OSENV_UNSET function with the OSENV token,

thereby allowing the application to reuse the

OSENV token which allows a subsequent

_OSENV_SET request.

_OSENV_UNPERSIST

Resets the persistent association of an OSENV

token with the task, so that the resources

associated with the OSENV token can be released

and the token marked invalid when no further

interest exists.

__osenv

Chapter 3. Part 3. Library Functions 1329

osenv_parms Specifies one of the following options:

_OSENV_WLM Requests that the WLM enclave information

associated with the pthread be captured and

associated with the OSENV token. If the pthread is

not in an WLM enclave no WLM enclave will be

reflected in the OSENV environment.

_OSENV_SECURITY

Requests that the task level pthread security

associated with the pthread be captured and

associated with the OSEVN token. If task level

security exists but is NOT pthread security then the

request is rejected. If the pthread is under NO task

level level security then NO task level security will

be reflected in the OSENV environment.

osenv_token_ptr

The OSENV token that represents the OSENV that was created

and associated with the caller. The OSENV contains the WLM and

pthread security attributes currently associated with the pthread.

Usage Notes

Multiple function requests are not recommended except for _OSENV_SET and

_OSENV_UNSET.

The following usage notes are listed by function:

v _OSENV_GET

The environment represented by osenv_token_ptr may be propagated to other

pthreads using _OSENV_SET.

If WLM enclave membership is not requested (_OSENV_WLM is not set) then no

WLM enclave attributes will be reflected in the OSENV environment.

If no security environment is requested (_OSENV_SECURITY is not set) then no task

level security will be reflected in the OSENV environment.

v _OSENV_SET

If WLM enclave membership is requested (_OSENV_WLM) then the caller’s current

WLM enclave membership will be extracted and saved.

The following are the rules of WLM enclave attachment:

 If the WLM enclave associated with the OSENV and the WLM enclave

currently active with the pthread are the same then the WLM enclave

currently active remains unchanged (no action is taken).

 If the WLM enclave associated with the OSENV and the WLM enclave

currently active with the pthread are different then the WLM enclave request

fails.

 If there is no WLM enclave currently active with the pthread then the pthread

will join the OSENV associated WLM enclave.

 If the OSENV does not have an associated WLM enclave and the pthread

does not belong to a WLM enclave then no action is taken.

 If the OSENV does not have an associated WLM enclave and the pthread

belongs to a WLM enclave then the WLM enclave request fails.

_OSENV_SET() must be balanced with _OSEVN_UNSET().

v _OSENV_UNSET

__osenv

1330 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If the pthread has previously requested that the OSENV persist (_OSENV_PERSIST)

after an unset the association of the pthread with the OSENV will endure;

otherwise, the association of the caller with the OSENV environment will be

removed.

If the input OSENV is no longer associated with a pthread the OSENV attributes

are returned to the system and the OSENV token is marked invalid.

_OSENV_UNSET must be balanced with _OSENV_SET.

v _OSENV_PERSIST

__osenv_persist() must be balanced with __osenv_unpersist().

v _OSENV_UNPERSIST

__osenv_persist() must be balanced with __osenv_unpersist().

Restrictions

The current task must not be actively associated with an OSENV environment. Prior

invocations of _OSENV_GET() or _OSENV_SET must have been followed by

_OSENV_UNSET.

If _OSENV_SECURITY is specified to capture pthread security then the caller may not

have a task level security environment unless it is set by pthread_security_np().

If _OSENV_WLM is specified to set WLM Enclave membership and the caller is

currently in a WLM Enclave then the caller must belong to the OSENV WLM

Enclave.

Alterations to the OSENV attributes by other programming interfaces (native

interfaces) may not be detected by the next _osenv_unset() and the results may be

unpredictable.

Returned Value

If successful, __osenv() returns 0.

If unsuccessful, __osenv() returns −1 and sets errno to one of the following values:

Error Code Description

EALREADY Operation already in progress.

EINVAL The system determined that one or more of the parameters passed

are in error. Consult the reason code for more information.

EMVSERR A MVS environmental or internal error has occurred.

EMVSPARM Bad parameters were passed to the service.

EMVSSAF2EFF

SAF/RACF error.

EMVSSAFEXTRERR

SAF/RACF extract error.

EMVSWLMERROR

WLM detected error information. Consult the reason code for more

information.

ENOSYS The function is not implemented.

ESRCH No such process or thread exists.

__osenv

Chapter 3. Part 3. Library Functions 1331

Related Information

v “unistd.h” on page 96

v “pthread_security_np() — Create or Delete Thread-level Security” on page 1539

__osenv

1332 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__osname() — Get True Operating System Name

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both OS/390 V2R10

Format

#define _POSIX_SOURCE

#include <sys/utsname.h>

int __osname(struct utsname *name);

General Description

Gets information identifying the true operating system you are running on. The

argument name points to a memory area where __osname() can store a structure

describing the true operating system the process is running on.

The information about the true operating system is returned in a utsname structure,

which has the following elements:

char *sysname;

The true name of the implementation of the operating system.

char *nodename;

The node name of this particular machine. The node name is set by

the SYSNAME sysparm (specified at IPL), and usually differentiates

machines running at a single location.

char *release; The true current release level of the implementation.

char *version; The true current version level of the release.

char *machine;

The name of the hardware type the system is running on.

Each of these elements is a normal C string, terminated with a NULL character.

The values returned by __osname() are not intended to be used for comparison

purposes in order to determine a level of functionality provided by the operating

system. This is because the version and release values are not guaranteed to be

equal to or greater than the previous implementation.

__osname

Chapter 3. Part 3. Library Functions 1333

Table 43 lists the true operating system information returned by __osname().

 Table 43. __osname() Operating System Information

Operating System Sysname Release Version

OS/390 Rel. 10 OS/390 10.00 02

z/OS 1.1 z/OS 01.00 01

z/OS 1.2 z/OS 02.00 01

z/OS 1.3 or z/OS.e 1.3 z/OS 03.00 01

z/OS 1.4 or z/OS.e 1.4 z/OS 04.00 01

z/OS 1.5 or z/OS.e 1.5 z/OS 05.00 01

z/OS 1.6 or z/OS.e 1.6 z/OS 06.00 01

z/OS 1.7 or z/OS.e 1.7 z/OS 07.00 01

z/OS 1.8 or z/OS.e 1.8 z/OS 08.00 01

z/OS 1.9 z/OS 09.00 01

Returned Value

If successful, __osname() returns a nonnegative value.

If unsuccessful, __osname() returns −1 and it may set errno to indicate the reason

for the failure.

Example

/*

 This example gets information about the system you are running on.

 */

#define _POSIX_SOURCE

#include <sys/utsname.h>

#include <stdio.h>

main() {

 struct utsname uts;

 if (__osname(&uts) < 0)

 perror("__osname() error");

 else {

 printf("Sysname: %s\n", uts.sysname);

 printf("Nodename: %s\n", uts.nodename);

 printf("Release: %s\n", uts.release);

 printf("Version: %s\n", uts.version);

 printf("Machine: %s\n", uts.machine);

 }

}

Output

Sysname: z/OS

Nodename: SY1

Release: 02.00

Version: 01

Machine: 2064

Related Information

v “sys/utsname.h” on page 91

v “uname() — Display Current Operating System Name” on page 2296

__osname

1334 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

__passwd() — Verify/Change User Password

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <pwd.h>

int __passwd(const char *username, const char *oldpass, const char *newpass);

General Description

The __passwd() function verifies and/or changes the username password. The

username is a NULL-terminated character string of 1 to 8 bytes. The oldpass is the

current password for user username, and is a NULL-terminated character string of 1

to 8 bytes. The newpass is is NULL, then oldpass represents the password to be

verified, and no password change is performed. Otherwise, newpass is a

NULL-terminated character string of 1 to 8 bytes. Other installation-dependent

restrictions on passwords may apply, both in terms of length and content.

If the BPX.DAEMON facility class profile is defined, then all modules within the

address space must be loaded from a controlled library. This includes all modules in

the application and run-time libraries. See also ″Checking Which Module is not

Defined to Program Control″ in z/OS UNIX System Services Planning, GA22-7800.

Returned Value

If successful, __passwd() returns 0. When newpass is NULL, the password has

been verified. When newpass is not NULL, the new password has been set.

If unsuccessful, __passwd() returns −1 and sets errno to one of the following

values:

Error Code Description

EACCES The oldpass is not authorized.

EINVAL The username, oldpass, or newpass argument is invalid.

EMVSERR The specified function is not supported in an address space where

a load was done from an uncontrolled library.

EMVSEXPIRE The oldpass has expired.

EMVSPASSWORD

The newpass is not valid, or does not meet the installation-exit

requirements.

EMVSSAF2ERR

Internal processing error.

EMVSSAFEXTRERR

The username access has been revoked. One of the possible

reasons of this failure is that the user does not have READ/WRITE

access.

ESRCH The username user is unknown or not defined to the kernel.

__passwd

Chapter 3. Part 3. Library Functions 1335

For more information, refer to the z/OS UNIX System Services Messages and

Codes , z/OS UNIX System Services Programming: Assembler Callable Services

Reference

Related Information

v “pwd.h” on page 75

v “endpwent() — User Database Functions” on page 473

v “getpass() — Read a String of Characters Without Echo” on page 820

__passwd

1336 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pathconf() — Determine Configurable Pathname Variables

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

long pathconf(const char *pathname, int varcode);

General Description

Lets an application determine the value of a configuration variable, varcode,

associated with a particular file or directory, pathname.

The varcode argument may be any one of the following symbols, defined in the

unistd.h header file, each standing for a configuration variable:

_PC_LINK_MAX

Represents LINK_MAX, the maximum number of links the file can

have. If pathname is a directory, pathconf() returns the maximum

number of links that can be established to the directory itself.

_PC_MAX_CANON

Represents MAX_CANON, the maximum number of bytes in a

terminal canonical input line. pathname must refer to a character

special file for a terminal.

_PC_MAX_INPUT

Represents MAX_INPUT, the maximum number of bytes for which

space is available in a terminal input queue. That is, it refers to the

maximum number of bytes that a portable application can have the

user enter before the application actually reads the input. pathname

must refer to a character special file for a terminal.

_PC_NAME_MAX

Represents NAME_MAX, the maximum number of characters in a

file name (not including any terminating NULL at the end if the file

name is stored as a string). This symbol refers only to the file name

itself, that is, the last component of the file’s pathname. pathconf()

returns the maximum length of file names.

_PC_PATH_MAX

Represents PATH_MAX, the maximum number of characters in a

complete pathname (not including any terminating NULL at the end

if the pathname is stored as a string). pathconf() returns the

maximum length of a relative pathname.

_PC_PIPE_BUF

Represents PIPE_BUF, the maximum number of bytes that can be

written “atomically” to a pipe. If more than this number of bytes is

written to a pipe, the operation may take more than one physical

pathconf

Chapter 3. Part 3. Library Functions 1337

||||

|
|
|
|

||

|

write operation and physical read operation to read the data on the

other end of the pipe. If pathname is a FIFO special file, pathconf()

returns the value for the file itself. If pathname is a directory,

pathconf() returns the value for any FIFOs that exist or that can be

created under the directory. If pathname is any other kind of file, an

errno of EINVAL will be returned, indicating an invalid pathname

was specified.

_PC_CHOWN_RESTRICTED

Represents _POSIX_CHOWN_RESTRICTED defined in the

unistd.h header file, and restricts use of chown() to a process with

appropriate privileges. It also changes the group ID of a file to the

effective group ID of the process or to one of its supplementary

group IDs. If pathname is a directory, pathconf() returns the value

for any kind of file under the directory, but not for subdirectories of

the directory.

_PC_NO_TRUNC

Represents _POSIX_NO_TRUNC defined in the unistd.h header

file, and generates an error if a file name is longer than

NAME_MAX. If pathname refers to a directory, the value returned

by pathconf() applies to all files under that directory.

_PC_VDISABLE

Represents _POSIX_VDISABLE defined in the unistd.h header file.

This symbol indicates that terminal special characters can be

disabled using this character value, if it is defined; see the callable

service tcsetattr() for details. pathname must refer to a character

special file for a terminal.

_PC_ACL Returns 1 if an access control mechanism is supported by the

security product.

_PC_ACL_ENTRIES_MAX

Returns the maximum number of ACL entries in an ACL for a file or

directory that supports ACLs.

Returned Value

If successful, pathconf() return the value of the variable requested in varcode.

If unsuccessful, pathconf() returns −1. If a particular variable has no limit, such as

PATH_MAX, pathconf() returns −1 but does not change errno.

If pathconf() cannot determine an appropriate value, it sets errno to one of the

following values:

Error Code Description

EACCES The process does not have search permission on some component

of the pathname.

EINVAL varcode is not a valid variable code, or the given variable cannot be

associated with the specified file.

v If varcode refers to MAX_CANON, MAX_INPUT, or

_POSIX_VDISABLE, and pathname does not refer to a character

special file, pathconf() returns −1 and sets errno to EINVAL.

v If varcode refers to NAME_MAX, PATH_MAX, or

POSIX_NO_TRUNC, and pathname does not refer to a directory,

pathconf() returns the requested information.

pathconf

1338 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v If varcode refers to PC_PIPE_BUF and pathname refers to a

pipe or a FIFO, the value returned applies to the referenced

object itself. If pathname refers to a directory, the value returned

applies to any FIFOs that exist or can be created within the

directory. If pathname refers to any other type of file, the function

sets errno to EINVAL.

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOPS symbolic links are detected in the resolution of

pathname.

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX while

_POSIX_NO_TRUNC is in effect.

 For symbolic links, the length of the pathname string substituted for

a symbolic link exceeds PATH_MAX.

ENOENT There is no file named pathname, or the pathname argument is an

empty string.

ENOTDIR Some component of the pathname is not a directory.

Example

CELEBP01

/* CELEBP01

 This example determines the maximum number of characters in a file name.

 */

#define _POSIX_SOURCE

#include <errno.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 long result;

 errno = 0;

 puts("examining NAME_MAX limit for root filesystem");

 if ((result = pathconf("/", _PC_NAME_MAX)) == −1)

 if (errno == 0)

 puts("There is no limit to NAME_MAX.");

 else perror("pathconf() error");

 else

 printf("NAME_MAX is %ld\n", result);

}

Output

examining NAME_MAX limit for root file system

NAME_MAX is 255

Related Information

v “unistd.h” on page 96

v “fpathconf() — Determine Configurable Pathname Variables” on page 638

pathconf

Chapter 3. Part 3. Library Functions 1339

pause() — Suspend a Process Pending a Signal

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

POSIX.4a

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _POSIX_SOURCE

#include <unistd.h>

int pause(void);

General Description

Suspends execution of the calling thread. The thread does not resume execution

until a signal is delivered, executing a signal handler or ending the thread. Some

signals can be blocked by the process’s thread. See “sigprocmask() — Examine or

Change a Thread” on page 1927 for details.

If an incoming unblocked signal ends the thread, pause() never returns to the caller.

If an incoming signal is handled by a signal handler, pause() returns after the signal

handler returns.

Returned Value

If pause() returns, it always returns −1 and sets errno to EINTR, indicating that a

signal was received and handled successfully.

Example

CELEBP02

/* CELEBP02

 This example suspends execution and determines the

 current time.

 */

#define _POSIX_SOURCE

#include <unistd.h>

#include <signal.h>

#include <stdio.h>

#include <time.h>

void catcher(int signum) {

 puts("inside catcher...");

}

void timestamp() {

 time_t t;

 time(&t);

 printf("the time is %s", ctime(&t));

}

main() {

pause

1340 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

struct sigaction sigact;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGALRM, &sigact, NULL);

 alarm(10);

 printf("before pause... ");

 timestamp();

 pause();

 printf("after pause... ");

 timestamp();

}

Output

before pause... the time is Fri Jun 16 09:42:29 2001

inside catcher...

after pause... the time is Fri Jun 16 09:42:39 2001

Related Information

v “unistd.h” on page 96

v “alarm() — Set an Alarm” on page 180

v “kill() — Send a Signal to a Process” on page 1055

v “raise() — Raise Signal” on page 1595

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

v “wait() — Wait for a Child Process to End” on page 2349

pause

Chapter 3. Part 3. Library Functions 1341

pclose() — Close a Pipe Stream to or from a Process

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE

#include <stdio.h>

int pclose(FILE *stream);

General Description

The pclose() function closes a stream that was opened by popen(), waits for the

command specified as an argument in popen() to terminate, and returns the status

of the process that was running the shell command. However, if a call caused the

termination status to be unavailable to pclose(), then pclose() returns -1 with errno

set to ECHILD to report this situation; this can happen if the application calls one of

the following functions:

v wait()

v waitid()

v waitpid() with a pid argument less than or equal to the process ID of the shell

command

v any other function that could do one of the above

In any case, pclose() will not return before the child process created by popen() has

terminated.

If the shell command cannot be executed, the child termination status returned by

pclose() will be as if the shell command terminated using exit(127) or _exit(127).

The pclose() function will not affect the termination status of any child of the calling

process other than the one created by popen() for the associated stream.

If the argument stream to pclose() is not a pointer to a stream created by popen(),

the termination status returned will be -1.

Threading Behavior: The pclose() function can be executed from any thread within

the parent process.

Returned Value

If successful, pclose() returns the termination status of the shell command.

If unsuccessful, pclose() returns -1 and sets errno to one of the following values:

Error Code Description

ECHILD The status of the child process could not be obtained.

pclose

1342 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

Related Information

v “stdio.h” on page 82

v “popen() — Initiate a Pipe Stream to or from a Process” on page 1358

v “waitpid() — Wait for a Specific Child Process to End” on page 2354

pclose

Chapter 3. Part 3. Library Functions 1343

perror() — Print Error Message

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

void perror(const char *string);

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdio.h>

void perror(const char *string);

Berkeley Sockets

#define _OE_SOCKETS

#include <stdio.h>

void perror(const char *string);

General Description

Prints an error message to stderr. If string is not NULL and it does not point to a

NULL character, the string pointed to by string is printed to the standard error

stream, followed by a colon and a space. The message associated with the value in

errno is then printed followed with the errno2 value in parenthesis and a newline

character. The content of the message is the same as the content of a string

returned by strerror() with the argument errno.

The perror() string shown as: EDC5121I Invalid argument. (errno2=0x0C0F8402).

To produce accurate results, you should ensure that perror() is called immediately

after a library function returns with an error; otherwise, subsequent calls may alter

the errno value.

If the error is associated with the stderr file, a call to perror() is not valid.

There is an environment variable _EDC_ADD_ERRNO2, which when set to 0, will

remove the append of the current errno2 value at the end of the perror() string

shown.

The perror() function will not change the orientation of the stderr stream.

Returned Value

perror() returns no values.

perror

1344 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

|
|
|
|
|
|

|

|
|
|

|
|
|

Example

CELEBP03

/* CELEBP03

 This example tries to open a stream.

 If the fopen() function fails, the example prints a message and ends

 the program.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 FILE *fh;

 if ((fh = fopen("myfile.dat","r")) == NULL)

 {

 perror("Could not open data file");

 abort();

 }

}

The following example tries to open a stream socket. If the socket fails, the

example prints a message and ends the program.

#include <stdio.h>

#include <stdlib.h>

#include <sys/socket>

int main(void)

{

 ins s;

 if ((s = socket (AF_INET,SOCK_STREAM,0)) <0)

 {

 perror("Could not open socket");

 exit(-1);

 }

}

Related Information

v “stdio.h” on page 82

v “strerror() — Get Pointer to Run-time Error Message” on page 2031

perror

Chapter 3. Part 3. Library Functions 1345

__pid_affinity() — Add or Delete Process Affinity

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R6

Format

#define _OPEN_SYS

#include <unistd.h>

int __pid_affinity(int function_code,

 pid_t target_pid,

 pid_t signal_pid,

 int signal);

General Description

The __pid_affinity() function adds or deletes an entry in a process’s affinity list.

When a process terminates, each process in its affinity list is notified (sent a signal)

of the termination. The __pid_affinity() function provides the ability to dynamically

create or break an association between two processes that is similar to the

notification mechanism between parent and child processes without the processes

being related.

The function_code can be set to one of the following symbolics, as defined in the

unistd.h header file:

__PAF_ADD_PID

Add the process and signal specified by signal_pid and signal to

the affinity list of the process specified by target_pid.

__PAF_DELETE_PID

Delete the process and signal specified by signal_pid and signal

from the affinity list of the process specified by target_pid.

The target_pid identifies the process whose affinity list will be altered.

The signal_pid identifies the process that upon termination of the target_pid will be

sent signal signal.

The signal identifies the signal that the signal_pid process will receive when the

target_pid process terminates.

Usage Notes

1. Either the Target_Pid or Signal_Pid must contain the PID of the caller’s process.

2. The __pid affinity service is limited to adding and deleting entries in the caller’s

affinity list, or adding and deleting entries that contain the caller’s PID

(Signal_Pid) in other processes affinity list.

3. When the PAF_DELETE_PID# function is specified the Signal is ignored. It is

not validated and may contain any value.

4. An entry is only deleted (PAF_DELETE_PID# specified) when the Signal_Pid

matches an entry in the Target_Pid process’s affinity list.

__pid_affinity

1346 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

5. Entries with duplicate PIDs are not allowed in an affinity list. If adding an entry

(PAF_ADD_PID# specified) and an entry with a PID that matches the

Signal_Pid is found the entry is reused. This may result in the loss of a specific

signal.

6. No permission is required when adding the caller’s PID to another process’s

affinity list. All processes have permission to send a signal to themselves

(raise()).

7. The PIDs specified by the Target_Pid and Signal_Pid parameters must be

greater than 1. Specifying a PID equal to or less than 1 will result in a error.

Returned Value

If successful, __pid_affinity() returns 0.

If unsuccessful, __pid_affinity() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL One or more of the following conditions were detected:

v The value specified by Function_code is not supported.

v The value specified by Signal is not a supported signal.

v Target_Pid does not contain a value greater than 1.

v Signal_Pid does not contain a value greater than 1.

v The Signal_Pid or Target_Pid does not specify the caller PID.

EMVSERR A MVS environmental or internal error has occurred.

EMVSSAF2ERR

An internal SAF/RACF error has occurred.

EPERM The caller does not have permission to send the signal to the

Signal_Pid process.

ESRCH One or more of the following conditions were detected:

v No process corresponding to Target_Pid was found.

v No process corresponding to Signal_Pid was found.

Related Information

v “unistd.h” on page 96

v “kill() — Send a Signal to a Process” on page 1055

__pid_affinity

Chapter 3. Part 3. Library Functions 1347

pipe() — Create an Unnamed Pipe

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int pipe(int fdinfo[2]);

General Description

Creates a pipe, an I/O channel that a process can use to communicate with another

process (in the same process or another process), or in some cases with itself.

Data is written into one end of the pipe and read from the other. fdinfo[2] points to

a memory area where pipe() can store two file descriptors. pipe() stores a file

descriptor for the input end of the pipe in fdinfo[1], and stores a file descriptor for

the output end of the pipe in fdinfo[0]. Thus, processes can read from fdinfo[0]

and write to fdinfo[1]. Data written to fdinfo[1] is read from fdinfo[0] on a

first-in-first-out (FIFO) basis.

When pipe() creates a pipe, the O_NONBLOCK and FD_CLOEXEC flags are

turned off on both ends of the pipe. You can turn these flags on with fcntl(). See

“fcntl() — Control Open File Descriptors” on page 527 for details.

If pipe() successfully creates a pipe, it updates the access, change, and

modification times for the pipe.

It is unspecified whether fdinfo[0] is also open for writing and whether fdinfo[1] is

also open for reading. z/OS UNIX pipes are not STREAMS-based.

Returned Value

If successful, pipe() returns 0.

If unsuccessful, pipe() returns −1 and sets errno to one of the following values:

Error Code Description

EMFILE Opening the pipe would exceed the limit on the number of file

descriptors the process can have open. This limit is given by

OPEN_MAX, defined in the limits.h header file.

ENFILE Opening the pipe would exceed the number of files that the system

can have open simultaneously.

ENOMEM Opening the pipe requires more space than is available.

Example

CELEBP04

pipe

1348 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

/* CELEBP04

 This example creates an I/O channel.

 The output shows the data written into one end and read from

 the other.

 */

#define _POSIX_SOURCE

#include <unistd.h>

#include <stdio.h>

void reverse(char *s) {

 char *first, *last, temp;

 first = s;

 last = s+strlen(s)−1;

 while (first != last) {

 temp = *first;

 *(first++) = *last;

 *(last−−) = temp;

 }

}

main() {

 char original[]="This is the original string";

 char buf[80];

 int p1[2], p2[2];

 if (pipe(p1) != 0)

 perror("first pipe() failed");

 else if (pipe(p2) != 0)

 perror("second pipe() failed");

 else if (fork() == 0) {

 close(p1[1]);

 close(p2[0]);

 if (read(p1[0], buf, sizeof(buf)) == −1)

 perror("read() error in parent");

 else {

 reverse(buf);

 if (write(p2[1], buf, strlen(buf)+1) == −1)

 perror("write() error in child");

 }

 exit(0);

 }

 else {

 close(p1[0]);

 close(p2[1]);

 printf("parent is writing '%s' to pipe 1\n", original);

 if (write(p1[1], original, strlen(original)+1) == −1)

 perror("write() error in parent");

 else if (read(p2[0], buf, sizeof(buf)) == −1)

 perror("read() error in parent");

 else printf("parent read '%s' from pipe 2\n", buf);

 }

}

Output

parent is writing ’This is the original string’ to pipe 1

parent read ’gnirts lanigiro eht si sihT’ from pipe 2

Related Information

v “unistd.h” on page 96

v “close() — Close a File” on page 299

v “fcntl() — Control Open File Descriptors” on page 527

v “open() — Open a File” on page 1313

pipe

Chapter 3. Part 3. Library Functions 1349

v “read() — Read From a File or Socket” on page 1602

v “write() — Write Data on a File or Socket” on page 2464

pipe

1350 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__poe() — Port Of Entry information used in determining various

levels of permission checking.

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R5

Format

#define _OPEN_SYS

#include <sys/socket.h>

int __poe(struct __poecb_t *poecbp);

General Description

The __poe() function will allow the user to specify what Port Of Entry information

the system should use in determining various levels of permission checking. The

attributes for the Port of Entry will be extracted and saved at the process level or

thread level and will be used by services that perform userid security authorization

(example: setuid(),__login(),__passwd()). For more detailed information on the

usage of this function see z/OS V1R5 Planning for Multilevel Security

The poecbp argument is the address of a __poecb_t structure which is used to

control this port of entry. The __poecb_t structure is defined in <sys/socket.h>. For

proper behavior the user should ensure that this structure has been initialized to

zeros before it is populated.

The ability to register Port of Entry is a privileged operation. An installation has two

ways of allowing an application to use this service:

1. For the highest level of security, the installation defines the BPX.POE FACILITY

class profile. For an application to use this service the user ID it runs under

must be given read access to this profile. See z/OS UNIX System Services

Planning for more information on setting up this profile.

2. For a lower security arrangement, you can assign the user ID under which the

application is run a UID of 0 so that it operates as a superuser.

Available elements of the __poecb_t structure are:

 /*

 *

 * __poecb_t structure used for the __poe() service (port of entry).

 *

 */

 struct __poecb_s {

 unsigned int __poe_options; /* Options for __poe() */

 unsigned int __poe_entry_type; /* Port of Entry Type */

 unsigned int __poe_entry_len; /* Port of Entry Length */

 char __poe_resrv1[4]; /* reserved */

 __pad31(__poe_resrv2,4) /* reserved 31-bit padding */

 void *__poe_entry_ptr; /* Address of Port of Entry */

 } __poecb_t;

 /*

 *

__poe

Chapter 3. Part 3. Library Functions 1351

|
|
|
|
|
|

* __poe_options values

 *

 */

 #define _POE_THREAD 0x00000001

 #define _POE_PROCESS 0x00000002

 /*

 *

 * __poe_entry_type values

 */

 #define _POE_SOCKET 1 entry is a file descriptor for a socket

 #define _POE_FILE 2 entry is a file descriptor for a non socket file

This includes the following non-socket file types:

v Character special

v FIFO

v Regular

v Symbolic link

v Directory
/*

 *

 * __poe_entry_len values

 */

 #define _POE_SOCKET_LEN 4 length of a file descriptor of a socket file

 #define _POE_FILE_LEN 4 length of a non-socket file descriptor

 /*

 *

 * __poe_entry_ptr

 */

When the __poe_entry_ptr field in the __poecb_t mapping contains the address of

a file descriptor the caller must indicate in the __poe_entry_type field what type of

file the descriptor represents.

Returned Value

If successful, __poe() returns 0.

If unsuccessful, __poe() returns -1 and sets errno to one of the following values:

EINVAL

The __poecb_t structure containing the requested changes is not valid.

EPERM

The calling process was attempting to change the POE attributes and the

calling process does not have appropriate privileges.

EFAULT

A bad address was received in the __poecb_t or *poecbp parameters.

Related Information

__poe

1352 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

poll() — Monitor Activity on File Descriptors and Message Queues

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

Sockets

#define _XOPEN_SOURCE_EXTENDED 1

#include <poll.h>

int poll(struct pollfd fds[], nfds_t nmsgsfds, int timeout);

Message Queues and Sockets

#define _XOPEN_SOURCE_EXTENDED 1

#define _OPEN_MSGQ_EXT

#include <sys/types.h>

#include <sys/time.h>

#include <sys/msg.h>

#include <poll.h>

int poll(void *listptr, nmsgsfds_t nmsgsfds, int timeout);

_OPEN_MSGQ_EXT must be defined if message queues are to be monitored.

General Description

The poll() function provides applications with a mechanism for multiplexing

input/output over the following set of file descriptors:

v regular files

v terminal and pseudoterminal devices

v STREAMS-based files

v sockets

v message queues.

v FIFOs

v pipes

For each member of the array(s) pointed to by listptr, poll() examines the given file

descriptor or message queue for the event(s) specified in the member. The number

of pollmsg structures and the number of pollfd structures in the arrays are specified

by nmsgsfds. The poll() function identifies those file descriptors on which an

application can read or write data, or on which an error event has occurred.

listptr A pointer to an array of pollfd structures, pollmsg structures, or to a

pollist structure. Each structure specifies a file descriptor or

message queue identifier and the events of interest for this file or

message queue. The type of parameter to pass depends on

whether you want to monitor file and socket descriptors, message

queue identifiers, or both. To monitor socket descriptors only, set

the high-order halfword of nmsgsfds to 0, the low-order halfword to

the number of pollfd structures to be provided, and pass a pointer

to an array of pollfd structures. To monitor message queues only,

set the low-order halfword of nmsgsfds to 0, the high-order halfword

to the number of pollmsg structures to be provided, and pass a

pointer to an array of pollmsg structures. To monitor both, set

poll

Chapter 3. Part 3. Library Functions 1353

||||

|
|
||

|

nmsgsfds as described below, and pass a pointer to a pollist

structure. If a pollist structure is to be used, a structure similar to

the following should be defined in a user program. The pollfd

structure must precede the pollmsg structure.

struct pollist {

 struct pollfd fds[3];

 struct pollmsg msgids[2];

 } list;

nmsgsfds The number of pollmsg structures and the number of pollfd

structures pointed to by listptr.

 This parameter is divided into two parts. The first half (the

high-order 16 bits) gives the number of pollmsg structures

containing message queue identifiers. This number must not

exceed the value 32767. The second half (the low-order 16 bits)

gives the number of pollfd structures containing file descriptors to

check. If either half of the nmsgsfds parameter is equal to a value

of 0, the corresponding pollmsg structures or pollfd structures is

assumed not to be present.

timeout The amount of time, in milliseconds, to wait for an event to occur.

 If none of the defined events have occurred on any selected

descriptor, poll() waits at least timeout milliseconds for an event to

occur on any of the selected descriptors. If the value of timeout is

0, poll() returns immediately. If the value of timeout is -1, poll()

blocks until a requested event occurs or until the call is interrupted.

 The above processing also applies to message queues.

Each pollfd or pollmsg structure contains the following fields:

v fd/msgid - open file descriptor or message queue identifier

v events - requested events

v revents - returned events

The events and revents fields are bitmasks constructed by OR-ing a combination of

the following event flags:

POLLERR An error or exceptional condition has occurred. This flag is only

valid in the revents bitmask; it is ignored in the events bitmask.

POLLHUP The device has been disconnected. This event and POLLOUT are

mutually exclusive, a stream can never be writable if a hang-up has

occurred. However, this event and POLLIN, POLLRDNORM,

POLLRDBAND or POLLPRI are not mutually exclusive. This flag is

only valid in the revents bitmask. It is ignored in the events

member.

POLLIN Same as POLLRDNORM

POLLNVAL The specified fd/msgid value is invalid. This flag is only valid in the

revents bitmask; it is ignored in the events bitmask.

POLLOUT Same as POLLWRNORM

POLLPRI Out-of-band data may be received without blocking.

POLLRDBAND

Data from a nonzero priority band may be read without blocking.

For STREAMS, this flag is set in revents even if the message is of

zero length.

poll

1354 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|

POLLRDNORM

Normal data may be read without blocking.

POLLWRBAND

Priority data (priority band greater than 0) may be written.

POLLWRNORM

Normal data may be written without blocking.

Note: Poll bits are supported as follows.

Regular Files Always poll() true for reading and writing. This means that all

poll() read and write bits are supported. They will never

return with POLLERR or POLLHUP.

FIFOs / PIPEs Do not have the concept of out-of-band data or priority band

data. They support POLLIN, POLLRDNORM, POLLOUT, and

POLLWRNORM. They ignore POLLPRI, POLLRDBAND, and

POLLWRBAND. They never return POLLERR.

TTYs / OCS Same support as FIFOs and PIPEs, except that TTYs may

return POLLERR.

Sockets Have the concept of out-of-band data. They support POLLIN,

POLLRDNORM, POLLOUT, POLLWRNORM, and POLLPRI

for out-of-band data. They ignore POLLRDBAND and

POLLWRBAND. They never return POLLHUP or POLLERR.

If the value of fd/msgid is less than 0, events is ignored and revents is set to 0 in

that entry on return from poll().

In each pollfd structure, poll() clears the revents member except that where the

application requested a report on a condition by setting one of the bits of events

listed above, poll() sets the corresponding bit in revents if the requested condition is

true. In addition, poll() sets the POLLERR flag in revents if the condition is true,

even if the application did not set the corresponding bit in events.

The poll() function is not affected by the O_NONBLOCK flag.

A file descriptor for a socket that is listening for connections will indicate that it is

ready for reading, once connections are available. A file descriptor for a socket that

is connecting asynchronously will indicate that it is ready for writing, once a

connection has been established.

The following macros are provided to manipulate the nmsgsfds parameter and the

return value from poll():

Macro Description

_SET_FDS_MSGS(nmsgsfds, nmsgs, nfds)

Sets the high-order halfword of nmsgsfds to nmsgs, and sets the

low-order halfword of nmsgsfds to nfds.

_NFDS(n) If the return value n from poll() is nonnegative, returns the number

of socket descriptors that meet the read, write, and exception

criteria. A descriptor may be counted multiple times if it meets more

than one given criterion.

_NMSGS(n) If the return value n from poll() is nonnegative, returns the number

poll

Chapter 3. Part 3. Library Functions 1355

of message queues that meet the read, write, and exception

criteria. A message queue may be counted multiple times if it meets

more than one given criterion.

Returned Value

If successful, poll() returns a nonnegative value.

A positive value indicates the total number of events that were found to be ready

among the message queues and the total number of events that were found to be

ready among the file descriptors. The return value is similar to nmsgsfds in that the

high-order 16 bits of the return value give the number associated with message

queues, and the low-order 16 bits give the number associated with file descriptors.

Should the number associated with message queues be greater than 32767, only

32767 will be reported. This is to ensure that the return value does not appear to be

negative. Should the number associated with file descriptors be greater than 65535,

only 65535 will be reported.

If the call timed out and no file descriptors have been selected, poll() returns 0.

If unsuccessful, poll() returns -1 and sets errno to one of the following values:

Error Code Description

EAGAIN The allocation of internal data structures failed, but a subsequent

request may succeed.

EINTR A signal was caught during poll().

EINVAL One of the parameters specified a value that was not correct.

Consult the reason code to determine the exact reason the error

occurred. The following reason codes can accompany this return

code.

v JRWAITFOREVER

v JRINVALIDNFDS

v JRNOFDSTOOMANYQIDS

EIO One of the descriptors in the select mask has become inoperative

and it is being repeatedly included in a select even though other

operations against this descriptor have been failing with EIO. A

socket descriptor, for example, can become inoperative if TCP/IP is

shut down. A failure from select can not tell you which descriptor

has failed so generally select will succeed and these descriptors will

be reported to you as being ready for whatever event they were

being selected for. Subsequently when the descriptor is used on a

receive or other operation you will receive the EIO failure and can

react to the problem with the individual descriptor. In general you

would close() the descriptor and remove it from the next select

mask. If the individual descriptor’s failing return code is ignored

though and an inoperative descriptor is repeatedly selected on and

used, even though each time it is used that call fails with EIO,

eventually the select call itself will fail with EIO.

Related Information

v “poll.h” on page 72

v “sys/msg.h” on page 88

v “sys/time.h” on page 89

v “sys/types.h” on page 90

poll

1356 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “accept() — Accept a New Connection on a Socket” on page 120

v “connect() — Connect a Socket” on page 325

v “listen() — Prepare the Server for Incoming Client Requests” on page 1104

v “msgctl() — Message Control Operations” on page 1255

v “msgget() — Get Message Queue” on page 1257

v “msgrcv() — Message Receive Operation” on page 1260

v “msgsnd() — Message Send Operations” on page 1265

v “read() — Read From a File or Socket” on page 1602

v “recv() — Receive Data on a Socket” on page 1628

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “send() — Send Data on a Socket” on page 1740

v “write() — Write Data on a File or Socket” on page 2464

poll

Chapter 3. Part 3. Library Functions 1357

popen() — Initiate a Pipe Stream to or from a Process

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE

#include <stdio.h>

FILE *popen(const char *command, const char *mode);

General Description

The popen() function executes the command specified by the string command. It

creates a pipe between the calling program and the executed command, and

returns a pointer to a stream that can be used to either read from or write to the

pipe.

The environment of the executed command will be as if a child process were

created within the popen() call using fork(), and the child invoked the sh utility using

the call:

execl("/bin/sh", "sh", "-c", command, (char *)0);

The popen() function ensures that any streams from previous popen() calls that

remain open in the parent process are closed in the child process.

The mode argument to popen() is a string that specifies I/O mode:

1. If mode is r, file descriptor STDOUT_FILENO will be the writable end of the

pipe when the child process is started. The file descriptor fileno(stream) in the

calling process, where stream is the stream pointer returned by popen(), will be

the readable end of the pipe.

2. If mode is w, file descriptor STDIN_FILENO will be the readable end of the pipe

when the child process is started. The file descriptor fileno(stream) in the calling

process, where stream is the stream pointer returned by popen(), will be the

writable end of the pipe.

3. If mode is any other value, a NULL pointer is returned and errno is set to

EINVAL.

After popen(), both the parent and the child process will be capable of executing

independently before either terminates.

Because open files are shared, a mode r command can be used as an input filter

and a mode w command as an output filter.

Buffered reading before opening an input filter (that is, before popen()) may leave

the standard input of that filter mispositioned. Similar problems with an output filter

may be prevented by buffer flushing with fflush().

A stream opened with popen() should be closed by pclose().

popen

1358 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

The behavior of popen() is specified for values of mode of r and w. mode values of

rb and wb are supported but are not portable.

If the shell command cannot be executed, the child termination status returned by

pclose() will be as if the shell command terminated using exit(127) or _exit(127).

If the application calls waitpid() with a pid argument greater than 0, and it still has a

stream that was created with popen() open, it must ensure that pid does not refer to

the process started by popen()

The stream returned by popen() will be designated as byte-oriented.

Special Behavior for file tagging and conversion

When the FILETAG(,AUTOTAG) run-time option is specified, the pipe opened for

communication between the parent and child process by popen() will be tagged with

the writer’’s program CCSID upon first I/O. For example, if popen(some_command,

″r″) were specified, then the stream returned by the popen() would be tagged in the

child process’’ program CCSID.

Returned Value

If successful, popen() returns a pointer to an open stream that can be used to read

or write to a pipe.

If unsuccessful, popen() returns a NULL pointer and sets errno to one of the

following values:

Error Code Description

EINVAL The mode argument is invalid.

popen() may also set errno values as described by spawn(), fork(), or pipe().

Related Information

v “stdio.h” on page 82

v “fflush() — Write Buffer to File” on page 584

v “fork() — Create a New Process” on page 632

v “pclose() — Close a Pipe Stream to or from a Process” on page 1342

v “pipe() — Create an Unnamed Pipe” on page 1348

v “system() — Execute a Command” on page 2118

popen

Chapter 3. Part 3. Library Functions 1359

posix_openpt – open a pseudo-terminal device

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1.9

Format

#define _XOPEN_SOURCE 600

#include <stdlib.h>

#include <fcntl.h>

int posix_openpt(int oflag);

General Description

The posix_openpt() function establishes a connection between a master device for

a pseudo-terminal and a file descriptor. The file descriptor is used by other I/O

functions that refer to that pseudo-terminal.

The file status flags and file access modes of the open file description are set

according to the value of oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags from the

following list, defined in <fcntl.h>:

O_RDWR

Open for reading and writing.

O_NOCTTY

If set posix_openpt() will not cause the terminal device to become the

controlling terminal for the process.

 The behavior of other values for the oflag argument is unspecified.

Argument Description

oflag The value of the file status flags and file access modes |of the open

file description.

Returned Value

Upon successful completion, the posix_openpt() function opens a master

pseudo-terminal device and returns a non-negative integer representing the lowest

numbered unused file descriptor. Otherwise, -1 is returned and errno set to indicate

the error.

Error Code Description

EMFILE {OPEN_MAX} file descriptors are currently open in the calling

process.

ENFILE The maximum allowable number of files is currently open in the

system.

EINVAL The value of oflag is not valid.

EAGAIN Out of pseudo-terminal resources.

posix_openpt

1360 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|
|

|

||

||
|

|

|
|
|
|

||

||
|

||
|

||

||

Example

CELEBP71

/* CELEBP71

 This example demonstrates how to use posix_openpt() to open a

 master psuedo−terminal device.

 Expected output:

 The master psuedo−terminal id is [first available descriptor]

*/

#define _XOPEN_SOURCE 600

#include <stdlib.h>

#include <fcntl.h>

#include <stdio.h>

void main() {

 int fd;

 fd = posix_openpt(O_RDWR | O_NOCTTY);

 if (fd == −1)

 perror("Error opening a terminal.\n");

 else

 printf("The master psuedo−terminal id is %d\n",fd);

}

Related Information

posix_openpt

Chapter 3. Part 3. Library Functions 1361

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

pow(), powf(), powl() — Raise to Power

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double pow(double x, double y);

double pow(double x, int y); /* C++ only */

float pow(float x, int y); /* C++ only */

float pow(float x, float y); /* C++ only */

long double pow(long double x, int y); /* C++ only */

long double pow(long double x, long double y); /* C++ only */

float powf(float x, float y);

long double powl(long double x, long double y);

General Description

Calculates the value of x to the power of y.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

If y is 0, the function returns 1.

If x is negative and y is non-integral, the function sets errno to EDOM and returns

−HUGE_VAL. If the correct value is outside the range of representable values,

±HUGE_VAL is returned according to the sign of the value, and the value of

ERANGE is stored in errno.

Special Behavior for IEEE

If successful, the function returns the value of x to the power of y.

If x is negative or 0, then the y parameter must be an integer. If y is 0, the function

returns 1.0 for all x parameters.

If an overflow occurs, the function returns HUGE_VAL and sets errno to ERANGE.

If x is negative and y is not an integer, the function returns NaNQ and sets errno to

EDOM. If both x and y are negative, the function returns NaNQ and sets errno to

EDOM. If x is 0 and y is negative, the function returns HUGE_VAL but does not

modify errno.

pow, powf, powl

1362 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|

||||

|
|
|
|
|
|
|

||

|

Example

CELEBP05

/* CELEBP05

 This example calculates the value of 2**3.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y, z;

 x = 2.0;

 y = 3.0;

 z = pow(x,y);

 printf("%lf to the power of %lf is %lf\n", x, y, z);

}

Output

2.000000 to the power of 3.000000 is 8.000000

Related Information

v “math.h” on page 60

v “exp(), expf(), expl() — Calculate Exponential Function” on page 498

v “log(), logf(), logl() — Calculate Natural Logarithm” on page 1126

v “log10(), log10f(), log10l() — Calculate Base 10 Logarithm” on page 1138

pow, powf, powl

Chapter 3. Part 3. Library Functions 1363

powd32(), powd64(), powd128() — Raise to Power

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 powd32(_Decimal32 x, _Decimal32 y);

_Decimal64 powd64(_Decimal64 x, _Decimal64 y);

_Decimal128 powd128(_Decimal128 x, _Decimal128 y);

_Decimal32 pow(_Decimal32 x, _Decimal32 y); /* C++ only */

_Decimal64 pow(_Decimal64 x, _Decimal64 y); /* C++ only */

_Decimal128 pow(_Decimal128 x, _Decimal128 y); /* C++ only */

General Description

Calculates the value of x to the power of y.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, the function returns the value of x to the power of y.

If x is negative or 0, then the y parameter must be an integer. If y is 0, the function

returns 1.0 for all x parameters.

If an overflow occurs, the function returns HUGE_VAL_D32, HUGE_VAL_D64, or

HUGE_VAL_D128 and sets errno to ERANGE.

If x is negative and y is not an integer, the function returns NaNQ and sets errno to

EDOM. If both x and y are negative, the function returns NaNQ and sets errno to

EDOM. If x is 0 and y is negative, the function returns HUGE_VAL_D32,

HUGE_VAL_D64, or HUGE_VAL_D128 but does not modify errno.

Example

/* CELEBP59

 This example illustrates the powd64() function

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal64 x, y, z;

powd32, powd64, powd128

1364 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

x = 2.0DD;

 y = 3.0DD;

 z = powd64(x, y);

 printf("%Df to the power of %Df is %Df\n", x, y, z);

}

Related Information

v “math.h” on page 60

v “expd32(), expd64(), expd128() — Calculate Exponential Function” on page 500

v “logd32(), logd64(), logd128() — Calculate Natural Logarithm” on page 1132

v “log10d32(), log10d64(), log10d128() — Calculate Base 10 Logarithm” on page

1140

v “pow(), powf(), powl() — Raise to Power” on page 1362

powd32, powd64, powd128

Chapter 3. Part 3. Library Functions 1365

|
|
|
|
|
|
|

|
|
|
|
|
|
|

__pow_i() — Raise to a Power (R**I)

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both z/OS V1R7

Format

#include <math.h>

double __pow_i(double x, int y);

General Description

__pow_i() calculates the value of x to the power of y and is a C interface to the

Language Environment Math Service CEESDXPI. Information about the Language

Environment Math Service CEESDXPI can be found in the following publications:

v z/OS: Language Environment Programming Guide

v z/OS: Language Environment Programming Reference

v z/OS: Language Environment Concepts Guide

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

__pow_i X X

Returned Value

If successful, __pow_i() returns the value of x to the power of y.

 If... Then...

x is not equal to 0 and y is 0 1 is returned.

x is 0 and y is positive 0 is returned.

x and y are 0 0 is returned and errno is set to EDOM.

x is 0 and y is negative ±HUGE_VAL is returned and errno is set to

EDOM.

x and y cause an overflow HUGE_VAL is returned.

Related Information

v “__pow_ii() — Raise to a Power (I**I)” on page 1367

__pow_i

1366 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__pow_ii() — Raise to a Power (I**I)

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both z/OS V1R7

Format

#include <math.h>

int __pow_ii(int x, int y);

General Description

__pow_ii() calculates the value of x to the power of y and is a C interface to the LE

Math Service CEESIXPI. Information about the LE Math Service CEESIXPI can be

found in the following publications:

v z/OS: Language Environment Programming Guide

v z/OS: Language Environment Programming Reference

v z/OS: Language Environment Concepts Guide

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

__pow_ii X X

Returned Value

If successful, __pow_ii() returns the value of x to the power of y.

 If... Then...

x is not equal to 0 and y is 0 1 is returned.

x is 0 and y is positive 0 is returned.

x is 0 and y is negative INT_MAX is returned and errno is set to

EDOM.

x and y are 0 0 is returned and errno is set to EDOM.

x is 1 and y is negative 1 is returned.

x is -1 and y is negative ±1 is returned.

x greater than 1 and y is negative 0 is returned and errno is set to EDOM.

x less than -1 and y is negative 0 is returned and errno is set to EDOM.

The values of x and y cause an overflow and

x is less than 0 or y is odd.

errno is set to ERANGE and the function

returns INT_MIN

The values of x and y cause an overflow and

x is greater than 0 or y is even.

errno is set to ERANGE and the function

returns INT_MAX

Related Information

v “__pow_i() — Raise to a Power (R**I)” on page 1366

__pow_ii

Chapter 3. Part 3. Library Functions 1367

pread() — Read From a File or Socket Without File Pointer Change

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R10

Format

#define _XOPEN_SOURCE 500

#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

General Description

The pread() function performs the same action as read(), except that it reads from a

given position in the file without changing the file pointer.

The first three arguments to pread() are the same as read(), with the addition of a

fourth argument offset for the desired position inside the file.

An error result is returned for any attempt to perform a pread() on a file that is

incapable of a seek action.

For regular files, no data transfer will occur past the offset maximum established in

the open file description associated with fildes.

Returned Value

If successful, pread() returns a non-negative integer indicating the number of bytes

actually read.

If unsuccessful, pread() returns -1 and sets errno to one of the following values:

Error Code Description

EAGAIN O_NONBLOCK is set to 1, but data was not available for reading.

EBADF fildes is not a valid file or socket descriptor.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT Using the buf and nbyte parameters would result in an attempt to

access memory outside the caller’s address space.

EINTR pread() was interrupted by a signal that was caught before any data

was available.

EINVAL nbyte contains a value that is less than 0, or the request is invalid

or not supported, or the STREAM or multiplexer referenced by

fildes is linked (directly or indirectly) downstream from a multiplexer.

 The offset argument is invalid. The value is negative.

EIO The process is in a background process group and is attempting to

read from its controlling terminal, and either the process is ignoring

or blocking the SIGTTIN signal or the process group of the process

is orphaned. For sockets, an I/O error occurred.

pread

1368 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

ENOBUFS Insufficient system resources are available to complete the call.

ENOTCONN A receive was attempted on a connection-oriented socket that is not

connected.

ENXIO A request was outside the capabilities of the device.

EOVERFLOW The file is a regular file and an attempt was made to read or write

at or beyond the offset maximum associated with the file.

ESPIPE fildes is associated with a pipe or FIFO.

ETIMEDOUT The connection timed out during connection establishment, or due

to a transmission timeout on active connection.

EWOULDBLOCK

The socket is in nonblocking mode and data is not available to

read.

Related Information

v “unistd.h” on page 96

v “pwrite() — Write Data on a File or Socket Without File Pointer Change” on page

1583

v “read() — Read From a File or Socket” on page 1602

pread

Chapter 3. Part 3. Library Functions 1369

printf() — Format and Write Data

The information for this function is included in “fprintf(), printf(), sprintf() — Format

and Write Data” on page 648.

printf

1370 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pselect() - Monitor Activity on Files/Sockets and Message Queues

The information for this function is included in “select(), pselect() — Monitor Activity

on Files/Sockets and Message Queues” on page 1715.

pselect

Chapter 3. Part 3. Library Functions 1371

|

|
|

pthread_atfork() - Register fork handlers

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R9

POSIX(ON)

Format

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_atfork(void (*prepare)(void), void (*parent)(void),

void (*child)(void));

General Description

The pthread_atfork() function registers fork handlers to be called before and after

fork(), in the context of the thread that called fork(). Fork handler functions may be

named for execution at the following three points in thread processing:

v The prepare handler is called before fork() processing commences.

v The parent handler is called after fork() processing completes in the parent

process.

v The child handler is called after fork() processing completes in the child process.

If any argument to pthread_atfork() is NULL, the call does not register a handler to

be invoked at the point corresponding to that argument.

The order of calls to pthread_atfork() is significant. The parent and child fork

handlers are called in the order in which they were established by calls to

pthread_atfork(). The prepare fork handlers are called in the opposite order.

The intended purpose of pthread_atfork() is to provide a mechanism for maintaining

the consistency of mutex locks between parent and child processes. Generally, the

prepare handler acquires needed mutex locks, and the parent and child handlers

release them. The handlers are expected to be straightforward programs, designed

simply to manage the synchronization variables and must return to ensure that all

registered handlers are called.

Special Behavior for z/OS XL C

The C Library pthread_atfork() function has the following restrictions:

v Any fork handler registered by a fetched module that has been released is

removed from the list at the time of release. See “fetch() — Get a Load Module”

on page 565,“fetchep() — Share Writable Static” on page 578, and “release() —

Delete a Load Module” on page 1657 for details about fetching and releasing

modules.

v Any handler registered in an explicitly loaded DLL (using dllload() or dlopen())

that has been freed (using dllfree() or dlclose()) is removed from the list, except

when the DLL has also been implicitly loaded.

v Use of non-C subroutines or functions as fork handlers will result in undefined

behavior.

pthread_atfork

1372 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|
|

|

|
|
|
|
|

|

|
|
|

|

|
|

|

|
|

|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|

Special Behavior for z/OS XL C++

v All of the behaviors listed under ″Special Behavior for z/OS XL C.″

v The pthread_atfork() function cannot receive C++ function pointers compiled as

31-bit non-XPLINK objects, because C and C++ linkage conventions are

incompatible in that environment. If you attempt to pass a C++ function pointer to

pthread_atfork(), the compiler will flag it as an error. In C++, you must ensure

that all handlers registered for use by pthread_atfork() have C linkage by

declaring them as extern ″C″.

Returned Value

If successful, pthread_atfork() returns zero; otherwise, it returns an error number.

Error Code

Description

ENOMEM

Insufficient table space exists to record the fork handler addresses.

Example

CELEBP60

/* CELEBP60 */

/* Example using SUSv3 pthread_atfork() interface */

#define _UNIX03_THREADS 1

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <stdlib.h>

#include <errno.h>

char fn_c[] = "childq.out";

char fn_p[] = "parentside.out";

int fd_c;

int fd_p;

void prep1(void) {

 char buff[80] = "prep1\n";

 write(4,buff,sizeof(buff));

}

void prep2(void) {

 char buff[80] = "prep2\n";

 write(4,buff,sizeof(buff));

}

void prep3(void) {

 char buff[80] = "prep3\n";

 write(4,buff,sizeof(buff));

}

void parent1(void) {

 char buff[80] = "parent1\n";

 write(4,buff,sizeof(buff));

}

void parent2(void) {

 char buff[80] = "parent2\n";

pthread_atfork

Chapter 3. Part 3. Library Functions 1373

|

|

|
|
|
|
|
|

|

|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

write(4,buff,sizeof(buff));

}

void parent3(void) {

 char buff[80] = "parent3\n";

 write(4,buff,sizeof(buff));

}

void child1(void) {

 char buff[80] = "child1\n";

 write(3,buff,sizeof(buff));

}

void child2(void) {

 char buff[80] = "child2\n";

 write(3,buff,sizeof(buff));

}

void child3(void) {

 char buff[80] = "child3\n";

 write(3,buff,sizeof(buff));

}

void *thread1(void *arg) {

 printf("Thread1: Hello from the thread.\n");

}

int main(void)

{

 pthread_t thid;

 int rc, ret;

 pid_t pid;

 int status;

 char header[30] = "Called Child Handlers\n";

 if (pthread_create(&thid, NULL, thread1, NULL) != 0) {

 perror("pthread_create() error");

 exit(3);

 }

 if (pthread_join(thid, NULL) != 0) {

 perror("pthread_join() error");

 exit(5);

 } else {

 printf("IPT: pthread_join success! Thread 1 should be finished now.\n");

 printf("IPT: Prepare to fork!!!\n");

 }

 /*−−−*/

 /*| Start atfork handler calls in parent */

 /*−−−*/

 /* Register call 1 */

 rc = pthread_atfork(&prep1, &parent2, &child3);

 if (rc != 0) {

 perror("IPT: pthread_atfork() error [Call #1]");

 printf(" rc= %d, errno: %d, ejr: %08x\n", rc, errno, __errno2());

 }

 /* Register call 2 */

 rc = pthread_atfork(&prep2, &parent3, &child1);

pthread_atfork

1374 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if (rc != 0) {

 perror("IPT: pthread_atfork() error [Call #2]");

 printf(" rc= %d, errno: %d, ejr: %08x\n", rc, errno, __errno2());

 }

 /* Register call 3 */

 rc = pthread_atfork(&prep3, &parent1, NULL);

 if (rc != 0) {

 perror("IPT: pthread_atfork() error [Call #3]");

 printf(" rc= %d, errno: %d, ejr: %08x\n", rc, errno, __errno2());

 }

 /* Create output files to expose the execution of fork handlers. */

 if ((fd_c = creat(fn_c, S_IWUSR)) < 0)

 perror("creat() error");

 else

 printf("Created %s and assigned fd= %d\n", fn_c, fd_c);

 if ((ret = write(fd_c,header,30)) == −1)

 perror("write() error");

 else

 printf("Write() wrote %d bytes in %s\n", ret, fn_c);

 if ((fd_p = creat(fn_p, S_IWUSR)) < 0)

 perror("creat() error");

 else

 printf("Created %s and assigned fd= %d\n", fn_p, fd_p);

 if ((ret = write(fd_p,header,30)) == −1)

 perror("write() error");

 else

 printf("Write() wrote %d bytes in %s\n", ret, fn_p);

 pid = fork();

 if (pid < 0)

 perror("IPT: fork() error");

 else {

 if (pid == 0) {

 printf("Child: I am the child!\n");

 printf("Child: My PID= %d, parent= %d\n", (int)getpid(),

 (int)getppid());

 exit(0);

 } else {

 printf("Parent: I am the parent!\n");

 printf("Parent: My PID= %d, child PID= %d\n", (int)getpid(), (int)pid);

 if (wait(&status) == −1)

 perror("Parent: wait() error");

 else if (WIFEXITED(status))

 printf("Child exited with status: %d\n",WEXITSTATUS(status));

 else

 printf("Child did not exit successfully\n");

 close(fd_c);

 close(fd_p);

 }

 }

}

pthread_atfork

Chapter 3. Part 3. Library Functions 1375

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “pthread.h” on page 72

v “pthread_create() — Create a Thread” on page 1448

v “fork() — Create a New Process” on page 632

v “atexit() — Register Program Termination Function” on page 196

pthread_atfork

1376 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

pthread_attr_destroy() — Destroy the Thread Attributes Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_attr_destroy(pthread_attr_t *attr);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_destroy(pthread_attr_t *attr);

General Description

Removes the definition of the thread attributes object. An error results if a thread

attributes object is used after it has been destroyed.

attr is a pointer to a thread attribute object initialized by pthread_attr_init().

You can use a thread attribute object to manage the characteristics of threads in

your application. It defines the set of values to be used for the thread during its

creation. By establishing a thread attribute object, you can create many threads with

the same set of characteristics, without defining those characteristics for each

thread. You can define more than one thread attribute object.

If a thread attribute object is shared between threads, the application must provide

the necessary synchronization because a thread attribute object is defined in the

application’s storage.

Returned Value

If successful, pthread_attr_destroy() returns 0.

If unsuccessful, pthread_attr_destroy() returns −1.

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_attr_destroy() returns an error number to indicate the error.

Example

CELEBP06

/* CELEBP06 */

#define _OPEN_THREADS

#include <stdio.h>

pthread_attr_destroy

Chapter 3. Part 3. Library Functions 1377

||||

|
|
||

|

|

|
|
|
|

|

|

#include <pthread.h>

void *thread1(void *arg) {

 pthread_exit(NULL);

}

int main()

{

 pthread_t thid;

 pthread_attr_t attr;

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 if (pthread_create(&thid, &attr, thread1, NULL) == −1) {

 perror("error in pthread_create");

 exit(2);

 }

 if (pthread_detach(&thid) == −1) {

 perror("error in pthread_detach");

 exit(4);

 }

 if (pthread_attr_destroy(&attr) == −1) {

 perror("error in pthread_attr_destroy");

 exit(5);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_create() — Create a Thread” on page 1448

pthread_attr_destroy

1378 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_attr_getdetachstate() — Get the Detach State Attribute

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_attr_getdetachstate(pthread_attr_t *attr);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_getdetachstate(const pthread_attr_t *attr,

 int *detachstate);

General Description

Returns the current value of the detachstate attribute for the thread attribute object,

attr, that is created by pthread_attr_init(). The detachstate attribute values are:

0 Undetached. An undetached thread will keep its resources after termination.

1 Detached. A detached thread will have its resources automatically freed by

the system at termination. Thus, you cannot get the thread’s termination

status (or wait for the thread to terminate) by using pthread_join().

You can use a thread attribute object to manage the characteristics of threads in

your application. It defines the set of values to be used for the thread during its

creation. By establishing a thread attribute object, you can create many threads with

the same set of characteristics, without defining those characteristics for each

thread. You can define more than one thread attribute object.

Returned Value

If successful, pthread_attr_getdetachstate() returns the detachstate (0 or 1).

If unsuccessful, pthread_attr_getdetachstate() returns −1.

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_attr_getdetachstate() returns an error number to indicate

the error.

Example

CELEBP07

/* CELEBP07 */

#define _OPEN_THREADS

#include <stdio.h>

pthread_attr_getdetachstate

Chapter 3. Part 3. Library Functions 1379

||||

|
|
||

|

|
|
|
|

|

|
|

|

|
|
|

#include <pthread.h>

int main()

{

 pthread_attr_t attr;

 char typ[12];

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 switch(pthread_attr_getdetachstate(&attr)) {

 default:

 perror("error in pthread_attr_getdetachstate()");

 exit(2);

 case 0:

 strcpy(typ, "undetached");

 break;

 case 1:

 strcpy(typ, "detached");

 }

 printf("The detach state is %s.\n", typ);

 if (pthread_attr_destroy(&attr) == −1) {

 perror("error in pthread_attr_destroy");

 exit(2);

 }

 exit(0);

}

CELEBP61

/* CELEBP61 */

/* Example using SUSv3 pthread_attr_getdetachstate() interface */

#define _UNIX03_THREADS 1

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <pthread.h>

#include <errno.h>

int main(void)

{

 pthread_attr_t attr;

 int rc, newstate, foundstate;

 char state[12];

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 newstate = PTHREAD_CREATE_DETACHED;

 pthread_attr_setdetachstate(&attr, newstate);

 rc = pthread_attr_getdetachstate(&attr,&foundstate);

 switch(foundstate) {

 case PTHREAD_CREATE_JOINABLE:

 strcpy(state,"joinable");

 break;

 case PTHREAD_CREATE_DETACHED:

 strcpy(state,"detached");

 break;

 default:

pthread_attr_getdetachstate

1380 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("pthread_attr_getdetachstate returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(2);

 }

 printf("Threads created with this attribute object are %s.\n",state);

 if (pthread_attr_destroy(&attr) == −1) {

 perror("error in pthread_attr_destroy");

 exit(3);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_setdetachstate() — Set the Detach State Attribute Object” on page

1397

v “pthread_create() — Create a Thread” on page 1448

pthread_attr_getdetachstate

Chapter 3. Part 3. Library Functions 1381

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

pthread_attr_getguardsize - Get guardsize attribute

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R9

POSIX(ON)

Format

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *__restrict__ attr,

 size_t ** __restrict__ guardsize);

General Description

pthread_attr_getguardsize() gets the guardsize attribute from attr and stores it into

guardsize.

attr is a pointer to a thread attribute object initialized by pthread_attr_init().

The retrieved guardsize always matches the size stored by

pthread_attr_setguardsize(), despite internal adjustments for rounding to multiples of

the PAGESIZE system variable.

Returned Value

If successful, pthread_attr_getguardsize() returns 0; otherwise it returns an error

number.

Error Number

Description

EINVAL

The value specified by attr does not refer to an initialized thread attribute

object.

Example

/* CELEBP62 */

/* Example using SUSv3 pthread_attr_getguardsize() interface */

#define _XOPEN_SOURCE 600

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <limits.h>

#include <errno.h>

int main(void)

{

 pthread_attr_t attr;

 int rc;

 size_t guardsize;

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

pthread_attr_getguardsize

1382 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|
|

|

|
|
|
|
|

|

|
|

|

|
|
|

|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

exit(1);

 }

 printf("Set guardsize to value of PAGESIZE.\n");

 rc = pthread_attr_setguardsize(&attr, PAGESIZE);

 if (rc != 0) {

 printf("pthread_attr_setguardsize returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(2);

 } else {

 printf("Set guardsize is %d\n", PAGESIZE);

 }

 rc = pthread_attr_getguardsize(&attr, &guardsize);

 if (rc != 0) {

 printf("pthread_attr_getguardsize returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(3);

 } else {

 printf("Retrieved guardsize is %d\n", guardsize);

 }

 rc = pthread_attr_destroy(&attr);

 if (rc != 0) {

 perror("error in pthread_attr_destroy");

 exit(4);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_setguardsize - Set guardsize attribute” on page 1399

v “pthread_attr_destroy() — Destroy the Thread Attributes Object” on page 1377

v ″Thread stack attributes″ in the z/OS XL C/C++ Programming Guide

pthread_attr_getguardsize

Chapter 3. Part 3. Library Functions 1383

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

pthread_attr_getschedparam - Get scheduling parameter attributes

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R9

POSIX(ON)

Format

#define _UNIX03_THREADS

#include <pthread.h>

#include <sched.h>

int pthread_attr_getschedparam(const pthread_attr_t *__restrict__ attr,

 struct sched_param *__restrict__ param);

General Description

pthread_attr_getschedparam() gets the scheduling priority attribute from attr and

stores it into param.

attr is a pointer to a thread attribute object initialized by pthread_attr_init().

param points to a user-defined scheduling parameter object into which

pthread_attr_getschedparam() copies the thread scheduling priority attribute.

Returned Value

If successful, pthread_attr_getschedparam() returns 0; otherwise it returns an error

number.

Error Number

Description

EINVAL

The value specified by attr does not refer to an initialized thread attribute

object.

Example

/* CELEBP63 */

/* Example using SUSv3 pthread_attr_getschedparam() interface */

#define _UNIX03_THREADS 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <errno.h>

int main(void)

{

 pthread_attr_t attr;

 int rc;

 struct sched_param param;

 param.sched_priority = 999;

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

pthread_attr_getschedparam

1384 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|
|

|

|
|
|
|
|
|

|

|
|

|

|
|

|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

 rc = pthread_attr_setschedparam(&attr, ¶m);

 if (rc != 0) {

 printf("pthread_attr_setschedparam returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(2);

 } else {

 printf("Set schedpriority to %d\n", param.sched_priority);

 }

 param.sched_priority = 0;

 rc = pthread_attr_getschedparam(&attr, ¶m);

 if (rc != 0) {

 printf("pthread_attr_getschedparam returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(3);

 } else {

 printf("Retrieved schedpriority of %d\n", param.sched_priority);

 }

 rc = pthread_attr_destroy(&attr);

 if (rc != 0) {

 perror("error in pthread_attr_destroy");

 exit(4);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_setschedparam - Set scheduling parameter attributes” on page

1401

v “pthread_attr_destroy() — Destroy the Thread Attributes Object” on page 1377

pthread_attr_getschedparam

Chapter 3. Part 3. Library Functions 1385

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

pthread_attr_getstack - Get stack attribute

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R9

POSIX(ON)

Format

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_getstack(const pthread_attr_t *__restrict__ attr,

 void ** __restrict__ addr, size_t * __restrict__ size);

General Description

The pthread_attr_getstack() function gets both the base (lowest addressable)

storage address and size of the initial stack segment from a thread attribute

structure and stores them into addr and size respectively.

attr is a pointer to a thread attribute object initialized by pthread_attr_init().

addr is a pointer to the user-defined location where this function will place the base

address of the initial stack segment.

size points to the user-defined location where this function will store the size of the

initial stack segment.

Note: An XPLINK application uses two stacks, an upward-growing stack and a

downward-growing stack. The ″size″ argument refers to the size of the

downward-growing stack.

Returned Value

If successful, pthread_attr_getstack() returns 0; otherwise it returns an error

number.

Error Number

Description

EINVAL

The value specified by attr does not refer to an initialized thread attribute

object.

Example

/* CELEBP69 */

/* Example using SUSv3 pthread_attr_getstack() interface */

#define _UNIX03_THREADS 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <limits.h>

#include <errno.h>

int main(void)

pthread_attr_getstack

1386 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|
|

|

|
|
|
|
|

|

|
|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

{

 pthread_attr_t attr;

 int rc;

 void *mystack;

 size_t mystacksize = 2 * PTHREAD_STACK_MIN;

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 /* Get a big enough stack and align it on 4K boundary. */

 mystack = malloc(PTHREAD_STACK_MIN * 3);

 if (mystack != NULL) {

 printf("Using PTHREAD_STACK_MIN to align stackaddr %x.\n", mystack);

 mystack = (void *)((((long)mystack + (PTHREAD_STACK_MIN − 1)) /

 PTHREAD_STACK_MIN) * PTHREAD_STACK_MIN);

 } else {

 perror("Unable to acquire storage.");

 exit(2);

 }

 printf("Setting stackaddr to %x\n", mystack);

 printf("Setting stacksize to %x\n", mystacksize);

 rc = pthread_attr_setstack(&attr, mystack, mystacksize);

 if (rc != 0) {

 printf("pthread_attr_setstack returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(3);

 } else {

 printf("Set stackaddr to %x\n", mystack);

 printf("Set stacksize to %x\n", mystacksize);

 }

 rc = pthread_attr_destroy(&attr);

 if (rc != 0) {

 perror("error in pthread_attr_destroy");

 printf("Returned: %d, Error: %d\n", rc, errno);

 printf("Errno_Jr: %x\n", __errno2());

 exit(4);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_setstack - Set stack attribute” on page 1403

v “pthread_attr_destroy() — Destroy the Thread Attributes Object” on page 1377

v ″Thread stack attributes″ in the z/OS XL C/C++ Programming Guide

pthread_attr_getstack

Chapter 3. Part 3. Library Functions 1387

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

pthread_attr_getstackaddr - Get stackaddr attribute

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R9

POSIX(ON)

Format

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_getstackaddr(const pthread_attr_t *__restrict__ attr,

 void ** __restrict__ addr);

General Description

The pthread_attr_getstackaddr() function gets the stackaddr attribute from attr and

stores it into addr. The stackaddr attribute holds the storage location of the created

thread’s initial stack segment.

attr is a pointer to a thread attribute object initialized by pthread_attr_init().

Note: The pthread_attr_getstackaddr() function is provided for historical reasons

and is marked obsolescent in the Single UNIX Specification, Version 3

(SUSv3). New applications should use the newer function

pthread_attr_getstack(), which provides functionality compatible with the

SUSv3 standard.

Returned Value

If successful, pthread_attr_getstackaddr() returns 0; otherwise it returns an error

number.

Error Number

Description

EINVAL

The value specified by attr does not refer to an initialized thread attribute

object.

Example

/* CELEBP64 */

/* Example using SUSv3 pthread_attr_getstackaddr() interface */

#define _UNIX03_THREADS 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <limits.h>

#include <errno.h>

int main(void)

{

 pthread_attr_t attr;

 int rc;

 void *stackaddr;

pthread_attr_getstackaddr

1388 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|
|

|

|
|
|
|
|

|

|
|
|

|

|
|
|
|
|

|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

void *mystack;

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 /* Get a big enough stack and align it on 4K boundary. */

 mystack = malloc(PTHREAD_STACK_MIN * 2);

 if (mystack != NULL) {

 printf("Using PTHREAD_STACK_MIN to align stackaddr %x.\n", mystack);

 mystack = (void *)((((long)mystack + (PTHREAD_STACK_MIN − 1)) /

 PTHREAD_STACK_MIN) * PTHREAD_STACK_MIN);

 } else {

 perror("Unable to acquire storage.");

 exit(2);

 }

 printf("Setting stackaddr to %x\n", mystack);

 rc = pthread_attr_setstackaddr(&attr, mystack);

 if (rc != 0) {

 printf("pthread_attr_setstackaddr returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(3);

 } else {

 printf("Set stackaddr to %x\n", mystack);

 }

 rc = pthread_attr_getstackaddr(&attr, &stackaddr);

 if (rc != 0) {

 printf("pthread_attr_getstackaddr returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(4);

 } else {

 printf("Retrieved stackaddr is %x\n", stackaddr);

 }

 rc = pthread_attr_destroy(&attr);

 if (rc != 0) {

 perror("error in pthread_attr_destroy");

 printf("Returned: %d, Error: %d\n", rc, errno);

 printf("Errno_Jr: %x\n", __errno2());

 exit(5);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_setstackaddr - Set stackaddr attribute” on page 1406

v “pthread_attr_destroy() — Destroy the Thread Attributes Object” on page 1377

v ″Thread stack attributes″ in the z/OS XL C/C++ Programming Guide

pthread_attr_getstackaddr

Chapter 3. Part 3. Library Functions 1389

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

pthread_attr_getstacksize() — Get the Thread Attribute Stacksize

Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_attr_getstacksize(pthread_attr_t *attr, size_t *stacksize);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_getstacksize(const pthread_attr_t * __restrict__attr,

 size_t * __restrict__stacksize);

General Description

Gets the value, in bytes, of the stacksize attribute for the thread attribute object,

attr, that is created by pthread_attr_init(). This function returns the value in the

variable pointed to by stacksize.

You can use a thread attribute object to manage the characteristics of threads in

your application. It defines the set of values to be used for the thread during its

creation. By establishing a thread attribute object, you can create many threads with

the same set of characteristics, without defining those characteristics for each

thread. You can define more than one thread attribute object.

Note: An XPLINK application uses two stacks, an upward-growing stack and a

downward-growing stack. The ″stacksize″ refers to the size of the

downward-growing stack.

Returned Value

If successful, pthread_attr_getstacksize() returns 0 and stores the stacksize

attribute value in stacksize.

If unsuccessful, pthread_attr_getstacksize() returns −1.

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_attr_getstacksize() returns an error number to indicate the

error.

Example

CELEBP08

pthread_attr_getstacksize

1390 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

|
|
|

|

|
|

/* CELEBP08 */

#define _OPEN_THREADS

#include <stdio.h>

#include <pthread.h>

int main()

{

 pthread_attr_t attr;

 size_t size;

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 if (pthread_attr_getstacksize(&attr, &size) == −1) {

 perror("error in pthread_attr_getstackstate()");

 exit(2);

 }

 printf("The stack size is %d.\n", (int) size);

 if (pthread_attr_destroy(&attr) == −1) {

 perror("error in pthread_attr_destroy");

 exit(2);

 }

 exit(0);

}

Output

The stack size is 524288.

Related Information

v “pthread.h” on page 72

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_setstacksize() — Set the Stacksize Attribute Object” on page 1409

v “pthread_create() — Create a Thread” on page 1448

pthread_attr_getstacksize

Chapter 3. Part 3. Library Functions 1391

pthread_attr_getsynctype_np() — Get Thread Sync Type

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_SYS

#include <pthread.h>

int pthread_attr_getsynctype_np(pthread_attr_t *attr);

General Description

The pthread_attr_getsynctype_np function returns the current synctype setting of

the attr thread attribute object.

The synctype can be set to one of the following symbolics, as defined in the

pthread.h header file:

__PTATSYNCHRONOUS Can only create as many threads as TCBs

available (or as many threads are available,

depending on which number is smaller).

__PTATASYNCHRONOUS Allows threads to be queued, that is, can create

more threads than TCBs are available up to limit of

how many threads are available. The queued

threads will be released as TCBs become available.

Returned Value

If successful, pthread_attr_getsynctype_np() returns the synctype value of the

thread attribute object.

If unsuccessful, pthread_attr_getsynctype_np() returns -1.

There are no documented errno values. Use perror() or strerror() to determine

cause of the error.

Related Information

v “pthread.h” on page 72

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_setsynctype_np() — Set Thread Sync Type” on page 1411

pthread_attr_getsynctype_np

1392 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_attr_getweight_np() — Get Weight of Thread Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_THREADS

#define _OPEN_SYS

#include <pthread.h>

int pthread_attr_getweight_np(pthread_attr_t *attr);

General Description

Obtains the current weight of the thread setting of the thread attributes object, attr.

The symbols for weight are defined in the pthread.h include file. The following

weights are supported:

__MEDIUM_WEIGHT The executing task can be reused when the thread

exits.

__HEAVY_WEIGHT When this exits, the associated MVS task can no

longer request threads to process.

You can use a thread attribute object to manage the characteristics of threads in

your application. It defines the set of values to be used for the thread during its

creation. By establishing a thread attribute object, you can create many threads with

the same set of characteristics, without defining those characteristics for each and

every thread. You can define more than one thread attribute object.

Returned Value

If successful, pthread_attr_getweight_np() returns the value of the weight of the

thread attribute.

If unsuccessful, pthread_attr_getweight_np() returns −1.

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Example

CELEBP09

/* CELEBP08 */

#define _OPEN_THREADS

#define _OPEN_SYS /* Needed to identify __HEAVY_WEIGHT AND

 __MEDIUM WEIGHT */

#include <stdio.h>

#include <pthread.h>

int main()

{

 pthread_attr_t attr;

 char weight[12];

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

pthread_attr_getweight_np

Chapter 3. Part 3. Library Functions 1393

exit(1);

 }

 switch(pthread_attr_getweight_np(&attr)) {

 default:

 perror("error in pthread_attr_getweight_np()");

 exit(2);

 case __HEAVY_WEIGHT:

 strcpy(weight, "heavy");

 break;

 case __MEDIUM_WEIGHT:

 strcpy(weight, "medium");

 }

 printf("The thread weight is %s.\n", weight);

 if (pthread_attr_destroy(&attr) == −1) {

 perror("error in pthread_attr_destroy");

 exit(2);

 }

 exit(0);

}

Output

The thread weight is heavy.

Related Information

v “pthread.h” on page 72

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_setweight_np() — Set Weight of Thread Attribute Object” on page

1412

v “pthread_create() — Create a Thread” on page 1448

pthread_attr_getweight_np

1394 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_attr_init() — Initialize a Thread Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

General Description

Initializes attr with the default thread attributes, whose defaults are:

stacksize Inherited from the STACK run-time option

detachstate Undetached

synch Synchronous

weight Heavy

Using a thread attribute object, you can manage the characteristics of threads in

your application. It defines the set of values to be used for the thread during its

creation. By establishing a thread attribute object, you can create many threads with

the same set of characteristics, without defining those characteristics for each

thread. You can define more than one thread attribute object. All threads are of

equal priority.

If a thread attribute object is shared between threads, the application must provide

the necessary synchronization because a thread attribute object is defined in the

application’s storage.

Note: An XPLINK application uses two stacks, an upward-growing stack and a

downward-growing stack. ″stacksize″ always refers to the size of the

upward-growing stack. The size of the downward-growing stack is inherited

from the THREADSTACK run-time option.

Returned Value

If successful, pthread_attr_init() returns 0.

If unsuccessful, pthread_attr_init() returns −1 and sets errno to one of the following

values:

Error Code Description

pthread_attr_init

Chapter 3. Part 3. Library Functions 1395

||||

|
|
||

|

ENOMEM Not enough memory is available to create the thread attribute

object.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_attr_init() returns an error number to indicate the error.

Example

CELEBP10

/* CELEBP10 */

#define _OPEN_THREADS

#include <stdio.h>

#include <pthread.h>

void *thread1(void *arg)

{

 printf("hello from the thread\n");

 pthread_exit(NULL);

}

int main()

{

 int rc, stat;

 pthread_attr_t attr;

 pthread_t thid;

 rc = pthread_attr_init(&attr);

 if (rc == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 rc = pthread_create(&thid, &attr, thread1, NULL);

 if (rc == −1) {

 perror("error in pthread_create");

 exit(2);

 }

 rc = pthread_join(thid, (void *)&stat);

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_destroy() — Destroy the Thread Attributes Object” on page 1377

v “pthread_create() — Create a Thread” on page 1448

pthread_attr_init

1396 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

pthread_attr_setdetachstate() — Set the Detach State Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr, int *detachstate);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

General Description

Alters the current detachstate setting of a thread attributes object, which can be set

to 0 or 1.

0 Causes all the threads created with attr to be in an undetached state. An

undetached thread will keep its resources after termination.

1 Causes all the threads created with attr to be in a detached state. A

detached thread will have its resources automatically freed by the system at

termination. Thus, you cannot get the thread’s termination status, or wait for

the thread to terminate by using pthread_join().

You can use a thread attribute object to manage the characteristics of threads in

your application. It defines the set of values to be used for the thread during its

creation. By establishing a thread attribute object, you can create many threads with

the same set of characteristics, without defining those characteristics for each

thread. You can define more than one thread attribute object.

Returned Value

If successful, pthread_attr_setdetachstate() returns 0.

If unsuccessful, pthread_attr_setdetachstate() returns −1.

Error Code

Description

EINVAL

The value of detachstate was not valid or the value specified by attr does

not refer to an initialized thread attribute object.

 Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_attr_setdetachstate() returns an error number to indicate

the error.

pthread_attr_setdetachstate

Chapter 3. Part 3. Library Functions 1397

||||

|
|
||

|

|
|
|

|
|

|
|
|

|

|
|

Example

CELEBP11

/* CELEBP11 */

#define _OPEN_THREADS

#include <stdio.h>

#include <pthread.h>

void **stat;

void *thread1(void *arg)

{

 printf("hello from the thread\n");

 pthread_exit((void *)0);

}

int main()

{

 int ds, rc;

 size_t s1;

 pthread_attr_t attr;

 pthread_t thid;

 rc = pthread_attr_init(&attr);

 if (rc == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 ds = 0;

 rc = pthread_attr_setdetachstate(&attr, &ds);

 if (rc == −1) {

 perror("error in pthread_attr_setdetachstate");

 exit(2);

 }

 rc = pthread_create(&thid, &attr, thread1, NULL);

 if (rc == −1) {

 perror("error in pthread_create");

 exit(3);

 }

 rc = pthread_join(thid, stat);

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_getdetachstate() — Get the Detach State Attribute” on page 1379

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_create() — Create a Thread” on page 1448

pthread_attr_setdetachstate

1398 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_attr_setguardsize - Set guardsize attribute

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R9

POSIX(ON)

Format

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);

General Description

pthread_attr_setguardsize() sets the guardsize attribute in attr using the value of

guardsize.

attr is a pointer to a thread attribute object initialized by pthread_attr_init().

This function stores the guardsize attribute in the thread attribute object for

subsequent calls to pthread_attr_getguardsize(), but no further action is taken. The

guardsize attribute is ignored during thread creation.

Note:

The Single UNIX Specification, Version 3 expects a guard area of at least

guardsize bytes, but permits the rounding of guardsize to a multiple of the

system variable, PAGESIZE. Stack management in z/OS UNIX sets a guard

area of PAGESIZE in 31-bit applications and of (PAGESIZE * PAGESIZE)

bytes in AMODE64. These values are the default for the guard size attribute.

Requests for larger guard areas will fail with EINVAL.

A zero guardsize requests that no guard area be provided. However, z/OS

UNIX stack management requires a guard area. Therefore, this request

cannot be satisfied, although pthread_attr_setguardsize() will tolerate a

guardsize of zero.

Returned Value

If successful, pthread_attr_setguardsize() returns 0; otherwise, it returns an error

number.

Error Code

Description

EINVAL

The parameter guardsize is not valid or the value specified by attr does not

refer to an initialized thread attribute object.

Example

/* CELEBP66 */

/* Example using SUSv3 pthread_attr_setguardsize() interface */

#define _XOPEN_SOURCE 600

pthread_attr_setguardsize

Chapter 3. Part 3. Library Functions 1399

|

|

||||

|||
|
|

|

|
|
|
|

|

|
|

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|

|

|
|
|
|

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <limits.h>

#include <errno.h>

int main(void)

{

 pthread_attr_t attr;

 int rc;

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 printf("Set guardsize to value of PAGESIZE.\n");

 rc = pthread_attr_setguardsize(&attr, PAGESIZE);

 if (rc != 0) {

 printf("pthread_attr_setguardsize returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(2);

 } else {

 printf("Set guardsize is %d\n", PAGESIZE);

 }

 rc = pthread_attr_destroy(&attr);

 if (rc != 0) {

 perror("error in pthread_attr_destroy");

 exit(3);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_destroy() — Destroy the Thread Attributes Object” on page 1377

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_getguardsize - Get guardsize attribute” on page 1382

v ″Thread stack attributes″ in the z/OS XL C/C++ Programming Guide.

pthread_attr_setguardsize

1400 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

pthread_attr_setschedparam - Set scheduling parameter attributes

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R9

POSIX(ON)

Format

#define _UNIX03_THREADS

#include <pthread.h>

#include <sched.h>

int pthread_attr_setschedparam(pthread_attr_t *__restrict__ attr,

 const struct sched_param *__restrict__ param);

General Description

pthread_attr_setschedparam() sets the scheduling priority attribute in attr using the

value from param.

attr is a pointer to a thread attribute object initialized by pthread_attr_init().

param points to a user-defined scheduling parameter object used by

pthread_attr_setschedparam() as the source of the thread scheduling priority

attribute to set in attr. The scheduling priority member of a sched_param structure

is declared as an int.

If successful, the sched_priority from param is available for subsequent calls to the

pthread_getschedparam() function. However, z/OS UNIX takes no other action

based on the value of the scheduling priority stored in attr.

Returned Value

If successful, pthread_attr_setschedparam() returns 0; otherwise, it returns an error

number.

Error Code

Description

EINVAL

The value specified by attr does not refer to an initialized thread attribute

object.

Example

/* CELEBP67 */

/* Example using SUSv3 pthread_attr_setschedparam() interface */

#define _UNIX03_THREADS 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <errno.h>

int main(void)

{

 pthread_attr_t attr;

 int rc;

pthread_attr_setschedparam

Chapter 3. Part 3. Library Functions 1401

|

|

||||

|||
|
|

|

|
|
|
|
|
|

|

|
|

|

|
|
|
|

|
|
|

|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

struct sched_param param;

 param.sched_priority = 999;

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 rc = pthread_attr_setschedparam(&attr, ¶m);

 if (rc != 0) {

 printf("pthread_attr_setschedparam returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(2);

 } else {

 printf("Set schedpriority to %d\n", param.sched_priority);

 }

 rc = pthread_attr_destroy(&attr);

 if (rc != 0) {

 perror("error in pthread_attr_destroy");

 exit(3);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “sched.h” on page 76

v “pthread_attr_destroy() — Destroy the Thread Attributes Object” on page 1377

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_getschedparam - Get scheduling parameter attributes” on page

1384

pthread_attr_setschedparam

1402 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

pthread_attr_setstack - Set stack attribute

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R9

POSIX(ON)

Format

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_setstack(pthread_attr_t *attr, void *addr, size_t size);

General Description

The pthread_attr_setstack() function sets the stackaddr and stacksize attributes in

attr from the values of addr and size respectively.

When a thread is created, the stackaddr attribute locates the base (lowest

addressable byte) of the created thread’s initial stack segment. The stacksize

attribute is the size, in bytes, of the initial stack segment allocated for the thread.

attr is a pointer to a thread attribute object initialized by pthread_attr_init().

addr is the memory location to use for the initial stack segment and must be aligned

appropriately to be used as a stack. For 31-bit applications, stack alignment is on a

4K boundary; in AMODE64, the alignment is on a one megabyte boundary.

size must be at least as large as PTHREAD_STACK_MIN. This constant is defined

in the <limits.h> header.

The minimum stacksize in 31-bit is 4096 (4K) and in 64-bit 1048576 (1M). In

addition, the system will allocate an equivalent-sized guardpage. There is no

specified maximum stacksize. If more storage is requested than the system can

satisfy at pthread creation, then pthread_create() will fail and return EINVAL.

Note:

1. An XPLINK application uses two stacks, an upward-growing stack and a

downward-growing stack. The ″size″ argument refers to the size of the

downward-growing stack.

2. The Language Environment storage report tolerates but does not

maintain statistics on application-managed stacks. Also. the run-time

storage option, suboption for dsa initialization does not support

application-managed stacks.

See ″Thread stack attributes″ in the z/OS XL C/C++ Programming Guide for a

complete set of restrictions on addr and size.

Returned Value

If successful, pthread_attr_setstack() returns 0; otherwise, it returns an error

number.

pthread_attr_setstack

Chapter 3. Part 3. Library Functions 1403

|

|

||||

|||
|
|

|

|
|
|
|

|

|
|

|
|
|

|

|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|

|

|
|

Error Code

Description

EINVAL

Can be one of the following error conditions:

v size is less than PTHREAD_STACK_MIN

v addr does not have proper alignment to be used as a stack

v (addr + size) lacks proper alignment

v attr does not refer to an initialized thread attribute object.

Example

/* CELEBP65 */

/* Example using SUSv3 pthread_attr_setstack() interface */

#define _UNIX03_THREADS 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <limits.h>

#include <errno.h>

int main(void)

{

 pthread_attr_t attr;

 int rc;

 void * stackaddr;

 void *mystack;

 size_t stacksize;

 size_t mystacksize = 2 * PTHREAD_STACK_MIN;

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 /* Get a big enough stack and align it on 4K boundary. */

 mystack = malloc(PTHREAD_STACK_MIN * 3);

 if (mystack != NULL) {

 printf("Using PTHREAD_STACK_MIN to align stackaddr %x.\n", mystack);

 mystack = (void *)((((long)mystack + (PTHREAD_STACK_MIN − 1)) /

 PTHREAD_STACK_MIN) * PTHREAD_STACK_MIN);

 } else {

 perror("Unable to acquire storage.");

 exit(2);

 }

 printf("Setting stackaddr to %x\n", mystack);

 printf("Setting stacksize to %x\n", mystacksize);

 rc = pthread_attr_setstack(&attr, mystack, mystacksize);

 if (rc != 0) {

 printf("pthread_attr_setstack returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(3);

 } else {

 printf("Set stackaddr to %x\n", mystack);

 printf("Set stacksize to %x\n", mystacksize);

 }

 rc = pthread_attr_getstack(&attr, &stackaddr, &stacksize);

 if (rc != 0) {

 printf("pthread_attr_getstack returned: %d\n", rc);

pthread_attr_setstack

1404 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(4);

 } else {

 printf("Retrieved stackaddr is %x\n", mystack);

 printf("Retrieved stacksize is %x\n", mystacksize);

 }

 rc = pthread_attr_destroy(&attr);

 if (rc != 0) {

 perror("error in pthread_attr_destroy");

 printf("Returned: %d, Error: %d\n", rc, errno);

 printf("Errno_Jr: %x\n", __errno2());

 exit(5);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_destroy() — Destroy the Thread Attributes Object” on page 1377

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_getstack - Get stack attribute” on page 1386

v ″Thread stack attributes″ in the z/OS XL C/C++ Programming Guide

pthread_attr_setstack

Chapter 3. Part 3. Library Functions 1405

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

pthread_attr_setstackaddr - Set stackaddr attribute

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R9

POSIX(ON)

Format

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_setstackaddr(pthread_attr_t *attr, void *addr);

General Description

The pthread_attr_setstackaddr() function sets the stackaddr attribute in attr using

the value of addr.

attr is a pointer to a thread attribute object initialized by pthread_attr_init().

addr is the lowest addressable byte of the memory designated for use as the initial

stack segment. It must have at least PTHREAD_STACK_MIN storage allocated.

The PTHREAD_STACK_MIN constant is defined in <limits.h>. The addr value must

also be aligned with the stack frame size, a multiple of 4K in 31-bit applications and

one megabyte in AMODE 64.

The thread must have permission to read and write to all pages within the stack

referenced by addr.

A stacksize is required at pthread creation. If the value is not present in the thread

attribute object, the stacksize will default to PTHREAD_STACK_MIN. Subsequent

calls to pthread_attr_setstacksize() can overwrite the stacksize prior to pthread

creation.

Note:

1. The pthread_attr_setstackaddr() function is provided for historical

reasons. It is marked obsolescent in the Single UNIX Specification,

Version 3 (SUSv3). New applications should use the newer function

pthread_attr_setstack(), which provides functionality compatible with the

SUSv3 standard.

2. An attribute object with the stackaddr attribute set may not be used more

than once, unless it is destroyed and reinitialized,or its stackaddr attribute

changed. For more details, see ″Thread stack attributes″ in the z/OS X/L

C/C++ Programming Guide.

3. An XPLINK application uses two stacks, an upward-growing stack and a

downward-growing stack. The variable addr always refers to lowest

addressable byte of the downward-growing stack.

4. The Language Environment storage report tolerates but does not

maintain statistics on application-managed stacks. Also. the run-time

storage option, suboption for dsa initialization does not support

application-managed stacks.

pthread_attr_setstackaddr

1406 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|
|

|

|
|
|
|

|

|
|

|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

Returned Value

If successful, pthread_attr_setstackaddr() returns 0; otherwise, it returns an error

number.

Error Code

Description

EINVAL

The value of addr does not have proper alignment to be used as a stack or

the value specified by attr does not refer to an initialized thread attribute

object.

Example

/* CELEBP68 */

/* Example using SUSv3 pthread_attr_setstackaddr() interface */

#define _UNIX03_THREADS 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <limits.h>

#include <errno.h>

int main(void)

{

 pthread_attr_t attr;

 int rc;

 void *mystack;

 if (pthread_attr_init(&attr) == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 /* Get a big enough stack and align it on 4K boundary. */

 mystack = malloc(PTHREAD_STACK_MIN * 2);

 if (mystack != NULL) {

 printf("Using PTHREAD_STACK_MIN to align stackaddr %x.\n", mystack);

 mystack = (void *)((((long)mystack + (PTHREAD_STACK_MIN − 1)) /

 PTHREAD_STACK_MIN) * PTHREAD_STACK_MIN);

 } else {

 perror("Unable to acquire storage.");

 exit(2);

 }

 printf("Setting stackaddr to %x\n", mystack);

 rc = pthread_attr_setstackaddr(&attr, mystack);

 if (rc != 0) {

 printf("pthread_attr_setstackaddr returned: %d\n", rc);

 printf("Error: %d, Errno_Jr: %08x\n", errno, __errno2());

 exit(3);

 } else {

 printf("Set stackaddr to %x\n", mystack);

 }

 rc = pthread_attr_destroy(&attr);

 if (rc != 0) {

 perror("error in pthread_attr_destroy");

 printf("Returned: %d, Error: %d\n", rc, errno);

 printf("Errno_Jr: %x\n", __errno2());

 exit(4);

pthread_attr_setstackaddr

Chapter 3. Part 3. Library Functions 1407

|

|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_destroy() — Destroy the Thread Attributes Object” on page 1377

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_getstackaddr - Get stackaddr attribute” on page 1388

v ″Thread stack attributes″ in the z/OS XL C/C++ Programming Guide

pthread_attr_setstackaddr

1408 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|
|
|
|

pthread_attr_setstacksize() — Set the Stacksize Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

General Description

Sets the stacksize, in bytes, for the thread attribute object, attr. stacksize is the

initial stack size. Other stack characteristics, like stack increment size, are inherited

from the STACK run-time option.

You can use a thread attribute object to manage the characteristics of threads in

your application. It defines the set of values to be used for the thread during its

creation. By establishing a thread attribute object, you can create many threads with

the same set of characteristics, without defining those characteristics for each

thread. You can define more than one thread attribute object.

Note:

v An XPLINK application uses two stacks, an upward-growing stack and a

downward-growing stack. The ″stacksize″ refers to the size of the

downward-growing stack.

v When using Single UNIX Specification, Version thread support, the

minimum stacksize in 31-bit is 4096 (4K) and in 64-bit 1048576 (1M). In

addition, the system will allocate an equivalent-sized guardpage. There is

no specified maximum stacksize. If more storage is requested than the

system can satisfy at pthread creation, then pthread_create() will fail and

return EINVAL.

Returned Value

If successful, pthread_attr_setstacksize() returns 0.

If unsuccessful, pthread_attr_setstacksize() returns −1.

Error Code

Description

EINVAL

The value of stacksize is less than PTHREAD_STACK_MIN, or the value

specified by attr does not refer to an initialized thread attribute object.

pthread_attr_setstacksize

Chapter 3. Part 3. Library Functions 1409

||||

|
|
||

|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_attr_setstacksize() returns an error number to indicate the

error.

Example

CELEBP12

/* CELEBP12 */

#define _OPEN_THREADS

#include <stdio.h>

#include <pthread.h>

void *thread1(void *arg)

{

 printf("hello from the thread\n");

 pthread_exit(NULL);

}

int main()

{

 int rc, stat;

 size_t s1;

 pthread_attr_t attr;

 pthread_t thid;

 rc = pthread_attr_init(&attr);

 if (rc == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 s1 = 4096;

 rc = pthread_attr_setstacksize(&attr, s1);

 if (rc == −1) {

 perror("error in pthread_attr_setstacksize");

 exit(2);

 }

 rc = pthread_create(&thid, &attr, thread1, NULL);

 if (rc == −1) {

 perror("error in pthread_create");

 exit(3);

 }

 rc = pthread_join(thid, (void *)&stat);

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_getstacksize() — Get the Thread Attribute Stacksize Object” on

page 1390

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_create() — Create a Thread” on page 1448

pthread_attr_setstacksize

1410 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|

pthread_attr_setsynctype_np() — Set Thread Sync Type

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_SYS

#include <pthread.h>

int pthread_attr_setsynctype_np(pthread_attr_t *attr, int synctype);

General Description

The pthread_attr_setsynctype_np function allows you to alter the synctype setting of

the attr thread attribute object.

The synctype can be set to one of the following symbolics, as defined in the

pthread.h header file:

__PTATSYNCHRONOUS Can only create as many threads as TCBs

available (or as many threads are available,

depending on which number is smaller).

__PTATASYNCHRONOUS Allows threads to be queued, that is, can create

more threads than TCBs are available up to limit of

how many threads are available. The queued

threads will be released as TCBs become available.

While threads are on the queue, they can still be

affected by other pthread functions.

Returned Value

If successful, pthread_attr_setsynctype_np() returns 0.

If unsuccessful, pthread_attr_setsynctype_np() returns -1.

There are no documented errno values. Use perror() or strerror() to determine

cause of the error.

Related Information

v “pthread.h” on page 72

v “pthread_attr_getsynctype_np() — Get Thread Sync Type” on page 1392

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_attr_setweight_np() — Set Weight of Thread Attribute Object” on page

1412

pthread_attr_setsynctype_np

Chapter 3. Part 3. Library Functions 1411

pthread_attr_setweight_np() — Set Weight of Thread Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_THREADS

#define _OPEN_SYS

#include <pthread.h>

int pthread_attr_setweight_np(pthread_attr_t *attr, int threadweight);

General Description

Alter the current weight of the thread setting of the thread attribute object, attr.

threadweight can be set to one of the following two symbols for the weight of the

thread, as defined in the pthread.h header file.

__LIGHT_WEIGHT Not supported.

__MEDIUM_WEIGHT Each thread runs on a task. Upon exiting, if another

thread is not queued to run, the task waits for some

other thread to issue a pthread_create(), and the

thread then runs on that task. The thread is

assumed to cleanup all resources it used.

__HEAVY_WEIGHT The task is attached on pthread_create() and

terminates upon a pthread_exit(). Full MVS EOT

resource cleanup occurs when exiting. When this

exits, the associated MVS task can no longer

request threads to process.

You can use a thread attribute object to manage the characteristics of threads in

your application. It defines the set of values to be used for the thread during its

creation. By establishing a thread attribute object, you can create many threads with

the same set of characteristics, without defining those characteristics for each

thread. You can define more than one thread attribute object.

Returned Value

If successful, pthread_attr_setweight_np() returns 0.

If unsuccessful, pthread_attr_setweight_np() returns −1.

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Example

CELEBP13

/* CELEBP13 */

#define _OPEN_THREADS

#define _OPEN_SYS /* Needed to identify __MEDIUM_WEIGHT */

#include <stdio.h>

#include <pthread.h>

pthread_attr_setweight_np

1412 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

void *thread1(void *arg)

{

 printf("hello from the thread\n");

 pthread_exit((void *)0);

}

int main()

{

 int rc, stat;

 pthread_attr_t attr;

 pthread_t thid;

 rc = pthread_attr_init(&attr);

 if (rc == −1) {

 perror("error in pthread_attr_init");

 exit(1);

 }

 rc = pthread_attr_setweight_np(&attr, __MEDIUM_WEIGHT);

 if (rc == −1) {

 perror("error in pthread_attr_setweight_np");

 exit(2);

 }

 rc = pthread_create(&thid, &attr, thread1, NULL);

 if (rc == −1) {

 perror("error in pthread_create");

 exit(3);

 }

 rc = pthread_join(thid, (void *)&stat);

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_attr_getweight_np() — Get Weight of Thread Attribute Object” on page

1393

v “pthread_attr_init() — Initialize a Thread Attribute Object” on page 1395

v “pthread_create() — Create a Thread” on page 1448

pthread_attr_setweight_np

Chapter 3. Part 3. Library Functions 1413

pthread_cancel() — Cancel a Thread

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_cancel(pthread_t thread);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_cancel(pthread_t thread);

General Description

Requests that a thread be canceled. The thread to be canceled controls when this

cancelation request is acted on through the cancelability state and type.

The cancelability states can be:

PTHREAD_INTR_DISABLE The thread cannot be canceled.

PTHREAD_INTR_ENABLE The thread can be canceled, but it is subject to

type.

The cancelability types can be:

PTHREAD_INTR_CONTROLLED

The thread can be canceled, but only at specific

points of execution:

v When waiting on a condition variable, which is

pthread_cond_wait() or pthread_cond_timedwait()

v When waiting for the end of another thread,

which is pthread_join()

v While waiting for an asynchronous signal, which

is sigwait()

v Testing specifically for a cancel request, which is

pthread_testintr()

v When suspended because of POSIX functions or

one of the following C standard functions:

close(), fcntl(), open() pause(), read(), tcdrain(),

tcsetattr(), sigsuspend(), sigwait(), sleep(), wait(),

or write()

PTHREAD_INTR_ASYNCHRONOUS

The thread can be canceled at any time.

A thread that is joined on a thread that is canceled has a status of −1 returned to it.

For more information, refer to “pthread_join() — Wait for a Thread to End” on page

1466.

pthread_cancel

1414 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

pthread_t is the data type used to uniquely identify a thread. It is returned by

pthread_create() and used by the application in function calls that require a thread

identifier.

Note: A thread in mutex wait will not be interrupted by a signal, and therefore not

canceled.

Special Behavior for C++

Destructors for automatic objects on the stack will be run when a thread is

canceled. The stack is unwound and the destructors are run in reverse order.

Special Behavior for SUSv3

Single UNIX Standard, Version 3 defines new symbols for cancelability state and

type. These are equivalent to the symbols described above and must be used when

compiling in the SUSv3 namespace. The symbols for state are

PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE. Symbols for

type are PTHREAD_CANCEL_DEFERRED and

PTHREAD_CANCEL_ASYNCHRONOUS.

Returned Value

If successful, pthread_cancel() returns 0. Success indicates that the

pthread_cancel() request has been issued. The thread to be canceled may still

execute because of its interruptibility state.

If unsuccessful, pthread_create() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL The specified thread is not valid.

ESRCH The specified thread does not refer to a currently existing thread.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_cancel() returns an error number to indicate the error.

Example

CELEBP14

/* CELEBP14 */

#define _OPEN_THREADS

#include <errno.h>

#include <pthread.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

int thstatus;

void * thread(void *arg)

{

 puts("thread has started. now sleeping");

 while (1)

 sleep(1);

}

main(int argc, char *argv[])

pthread_cancel

Chapter 3. Part 3. Library Functions 1415

|

|
|
|
|
|
|

|

|

{

 pthread_t thid;

 void *status;

 if (pthread_create(&thid, NULL, thread, NULL) != 0) {

 perror("pthread_create failed");

 exit(2);

 }

 if (pthread_cancel(thid) == −1) {

 perror("pthread_cancel failed");

 exit(3);

 }

 if (pthread_join(thid, &status)== −1) {

 perror("pthread_join failed");

 exit(4);

 }

 if (status == (int *)−1)

 puts("thread was cancelled");

 else

 puts("thread was not cancelled");

 exit(0);

}

Output

thread has started. now sleeping

thread was canceled

Related Information

v “pthread.h” on page 72

v “pthread_cond_timedwait() — Wait on a Condition Variable” on page 1430

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

v “pthread_exit() — Exit a Thread” on page 1455

v “pthread_join() — Wait for a Thread to End” on page 1466

v “pthread_setcancelstate() — Set Thread’s Cancelability State Format” on page

1544

v “pthread_setcanceltype() — Set Thread’s Cancelability Type Format” on page

1545

v “pthread_setintr() — Set Thread’s Cancelability State” on page 1547

v “pthread_setintrtype() — Set Thread’s Cancelability Type” on page 1550

v “pthread_testcancel() — Establish a Cancelation Point” on page 1561

v “pthread_testintr() — Establish a Cancelability Point” on page 1562

pthread_cancel

1416 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|

pthread_cleanup_pop() — Remove a Cleanup Handler

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

void pthread_cleanup_pop(int execute);

General Description

Removes the specified routine in the last executed pthread_cleanup_push()

statement from the top of the calling thread’s cleanup stack.

The execute parameter specifies whether the cleanup routine that is popped should

be run or just discarded. If the value is nonzero, the cleanup routine is executed.

pthread_cleanup_push() and pthread_cleanup_pop() must appear in pairs in the

program within the same lexical scope, or undefined behavior will result.

When the thread ends, all pushed but not yet popped cleanup routines are popped

from the cleanup stack and executed in last-in-first-out (LIFO) order. This occurs

when the thread:

v Calls pthread_exit()

v Does a return from the start routine (that gets controls as a result of a

pthread_create())

v Is canceled because of a pthread_cancel()

Returned Value

pthread_cleanup_pop() returns no values.

This function is used as a statement.

If an error occurs while a pthread_cleanup_pop() statement is being processed, a

termination condition is raised.

There are no documented errno values. Use perror() or strerror() to determine the

cause of an error.

Example

CELEBP15

/* CELEBP15 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

int iteration;

void noise_maker(void *arg) {

pthread_cleanup_pop

Chapter 3. Part 3. Library Functions 1417

||||

|
|
||

|

printf("hello from noise_maker in iteration %d!\n", iteration);

}

void *thread(void *arg) {

 pthread_cleanup_push(noise_maker, NULL);

 pthread_cleanup_pop(iteration == 1 ? 0 : 1);

}

main() {

 pthread_t thid;

 void * ret;

 for (iteration=1; iteration<=2; iteration++) {

 if (pthread_create(&thid, NULL, thread, NULL) != 0) {

 perror("pthread_create() error");

 exit(1);

 }

 if (pthread_join(thid, &ret) != 0){

 perror("pthread_join() error");

 exit(2);

 }

/*

 if (pthread_detach(&thid) != 0) {

 perror("pthread_detach() error");

 exit(3);

 }

 */

 }

}

Output

hello from noise_maker in iteration 2!

Related Information

v “pthread.h” on page 72

v “pthread_cancel() — Cancel a Thread” on page 1414

v “pthread_cleanup_push() — Establish a Cleanup Handler” on page 1419

v “pthread_exit() — Exit a Thread” on page 1455

pthread_cleanup_pop

1418 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_cleanup_push() — Establish a Cleanup Handler

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

void pthread_cleanup_push(void (*routine)(void *arg), void *arg);

General Description

Pushes the specified routine onto the calling thread’s cleanup stack. The cleanup

handler is executed as a result of a pthread_cleanup_pop(), with a nonzero value

for the execute parameter.

When the thread ends, all pushed but not yet popped cleanup routines are popped

from the cleanup stack and executed in last-in-first-out (LIFO) order. This occurs

when the thread:

v Calls pthread_exit()

v Does a return from the start routine

v Is canceled because of a pthread_cancel()

pthread_cleanup_push() and pthread_cleanup_pop() must appear in pairs and

within the same lexical scope, or undefined behavior will result.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, pthread_cleanup_push()

cannot receive a C++ function pointer as the start routine function pointer If you

attempt to pass a C++ function pointer to pthread_cleanup_push(), the compiler will

flag it as an error. You can pass a C or C++ function to pthread_cleanup_push() by

declaring it as extern ″C″.

Returned Value

pthread_cleanup_push() returns no values.

This function is used as a statement.

If an error occurs while a pthread_cleanup_push() statement is being processed, a

termination condition is raised.

There are no documented errno values. Use perror() or strerror() to determine the

cause of an error.

Example

CELEBP16

/* CELEBP16 */

#define _OPEN_THREADS

pthread_cleanup_push

Chapter 3. Part 3. Library Functions 1419

||||

|
|
||

|

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int footprint=0;

void *thread(void *arg) {

 char *storage;

 if ((storage = (char*) malloc(80)) == NULL) {

 perror("malloc() failed");

 exit(6);

 }

 /* Plan to release storage even if thread doesn't exit normally */

 pthread_cleanup_push(free, storage);

 puts("thread has obtained storage and is waiting to be cancelled");

 footprint++;

 while (1)

 sleep(1);

 pthread_cleanup_pop(1);

}

main() {

 pthread_t thid;

 if (pthread_create(&thid, NULL, thread, NULL) != 0) {

 perror("pthread_create() error");

 exit(1);

 }

 while (footprint == 0)

 sleep(1);

 puts("IPT is cancelling thread");

 if (pthread_cancel(thid) != 0) {

 perror("pthread_cancel() error");

 exit(3);

 }

 if (pthread_join(thid, NULL) != 0) {

 perror("pthread_join() error");

 exit(4);

 }

}

Output

thread has obtained storage and is waiting to be canceled

IPT is canceling thread

Related Information

v “pthread.h” on page 72

v “pthread_cancel() — Cancel a Thread” on page 1414

v “pthread_cleanup_pop() — Remove a Cleanup Handler” on page 1417

v “pthread_exit() — Exit a Thread” on page 1455

pthread_cleanup_push

1420 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_cond_broadcast() — Broadcast a Condition

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);

General Description

Unblock all threads that are blocked on the specified condition variable, cond. If

more than one thread is blocked, the order in which the threads are unblocked is

unspecified.

pthread_cond_broadcast() has no effect if there are no threads currently blocked on

cond.

Returned Value

If successful, pthread_cond_broadcast() returns 0.

If unsuccessful, pthread_cond_broadcast() returns −1 and sets errno to one of the

following values:

Error Code Description

EINVAL The value specified by cond does not refer to an initialized

condition variable.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_cond_broadcast() returns an error number to indicate the

error.

Example

CELEBP17

/* CELEBP17 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

main() {

 pthread_cond_t cond;

 if (pthread_cond_init(&cond, NULL) != 0) {

pthread_cond_broadcast

Chapter 3. Part 3. Library Functions 1421

||||

|
|
||

|

|
|
|
|

|

|
|

perror("pthread_cond_init() error");

 exit(1);

 }

 if (pthread_cond_broadcast(&cond) != 0) {

 perror("pthread_cond_broadcast() error");

 exit(2);

 }

 if (pthread_cond_destroy(&cond) != 0) {

 perror("pthread_cond_destroy() error");

 exit(3);

 }

}

Related Information

v “pthread.h” on page 72

v “pthread_cond_init() — Initialize a Condition Variable” on page 1425

v “pthread_cond_signal() — Signal a Condition” on page 1428

v “pthread_cond_timedwait() — Wait on a Condition Variable” on page 1430

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

pthread_cond_broadcast

1422 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_cond_destroy() — Destroy the Condition Variable Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);

General Description

Destroys the condition variable object specified by cond.

A condition variable object identifies a condition variable. Condition variables are

used in conjunction with mutexes to protect shared resources.

Returned Value

If successful, pthread_cond_destroy() returns 0.

If unsuccessful, pthread_cond_destroy() returns −1 and sets errno to one of the

following values:

Error Code Description

EBUSY An attempt was made to destroy the object referenced by cond

while it is referenced by another thread.

EINVAL The value specified by cond is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_cond_destroy() returns an error number to indicate the

error.

Example

CELEBP18

/* CELEBP18 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

main() {

 pthread_cond_t cond;

 if (pthread_cond_init(&cond, NULL) != 0) {

 perror("pthread_cond_init() error");

pthread_cond_destroy

Chapter 3. Part 3. Library Functions 1423

||||

|
|
||

|

|
|
|
|

|

|
|

exit(1);

 }

 if (pthread_cond_destroy(&cond) != 0) {

 perror("pthread_cond_destroy() error");

 exit(2);

 }

}

Related Information

v “pthread.h” on page 72

v “pthread_cond_broadcast() — Broadcast a Condition” on page 1421

v “pthread_cond_init() — Initialize a Condition Variable” on page 1425

v “pthread_cond_signal() — Signal a Condition” on page 1428

v “pthread_cond_timedwait() — Wait on a Condition Variable” on page 1430

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

pthread_cond_destroy

1424 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_cond_init() — Initialize a Condition Variable

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_cond_init(pthread_cond_t * __restrict__cond,

 pthread_condattr_t * __restrict__attr);

General Description

Initializes the condition variable referenced by cond with attributes referenced by

attr. If attr is NULL, the default condition variable attributes are used.

Returned Value

If successful, pthread_cond_init() returns 0.

If unsuccessful, pthread_cond_init() returns −1 and sets errno to one of the

following values:

Error Code Description

ENOMEM There is not enough memory to initialize the condition variable.

EAGAIN The system lacked the necessary resources (other than memory) to

initialize another condition variable.

EBUSY The implementation has detected an attempt to reinitialize the

object referenced by cond, a previously initialized, but not yet

destroyed, condition variable.

EINVAL The value specified by attr is invalid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_cond_init() returns an error number to indicate the error.

Usage Notes

The _OPEN_SYS_MUTEX_EXT feature switch can be optionally included. If the

feature is set, then significantly larger pthread_cond_t objects will be defined. The

feature is used for the management of mutex and condition variables in shared

memory. If the feature switch is set in the define of the condition variables in shared

memory, then the same feature switch must be set in the define of the mutex

associated with the condition variables.

pthread_cond_init

Chapter 3. Part 3. Library Functions 1425

||||

|
|
||

|

|
|
|
|

||
|

||
|
|

||

|

|

If the supplied extended pthread_cond_t object is not in shared memory,

pthread_cond_init() will treat the object as a non-shared object, since it is not

accessible to any other process.

If the _OPEN_SYS_MUTEX_EXT feature switch is set, a shared condition variable

is tied to the specified mutex for the life of the condition variable and mutex the very

first time a pthread_cond_wait() or pthread_cond_timedwait() is issued. No other

mutex can be associated with the specified condition variable or vise versa until the

condition variable or mutex is destroyed.

It is recommended that you define and initialize pthread_cond_t objects in the same

compile unit. If you pass a pthread_cond_t object around to be initialized, make

sure the initialization code has been compiled with the same

_OPEN_SYS_MUTEX_EXT feature setting as the code that defines the object.

The following sequence may cause storage overlay with unpredictable results:

1. Declare or define a pthread_cond_t object (in shared storage) without #define of

the _OPEN_SYS_MUTEX_EXT feature. The created pthread_cond_t object is

standard size (i.e. small) without the _OPEN_SYS_MUTEX_EXT feature

defined.

2. Pass the pthread_cond_t object to another code unit, which was compiled with

the _OPEN_SYS_MUTEX_EXT feature defined, to be initialized as a shared

object. The pthread_cond_t initialization generally involves the following steps:

a. pthread_condattr_init()

b. pthread_condattr_setpshared(). This step sets the attribute of the

pthread_cond_t as PTHREAD_PROCESS_SHARED and designates the

object to be of extended size.

c. pthread_cond_init(). This step initializes the passed-in (small)

pthread_cond_t object as if it is an extended object, causing storage overlay.

Example

CELEBP19

/* CELEBP19 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

main() {

 pthread_cond_t cond;

 if (pthread_cond_init(&cond, NULL) != 0) {

 perror("pthread_cond_init() error");

 exit(1);

 }

 if (pthread_cond_destroy(&cond) != 0) {

 perror("pthread_cond_destroy() error");

 exit(2);

 }

}

Related Information

v “pthread.h” on page 72

v “pthread_condattr_init() — Initialize a Condition Attribute Object” on page 1442

v “pthread_cond_broadcast() — Broadcast a Condition” on page 1421

v “pthread_cond_signal() — Signal a Condition” on page 1428

v “pthread_cond_timedwait() — Wait on a Condition Variable” on page 1430

pthread_cond_init

1426 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

pthread_cond_init

Chapter 3. Part 3. Library Functions 1427

pthread_cond_signal() — Signal a Condition

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

General Description

Unblock at least one thread that is blocked on the specified condition variable,

cond. If more than one thread is blocked, the order in which the threads are

unblocked is unspecified.

pthread_cond_signal() will have no effect if there are no threads currently blocked

on cond.

Returned Value

If successful, pthread_cond_signal() returns 0.

If unsuccessful, pthread_cond_signal() returns −1 and sets errno to one of the

following values:

Error Code Description

EINVAL The value specified by cond does not refer to an initialized

condition variable.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_cond_signal() returns an error number to indicate the error.

Example

CELEBP20

/* CELEBP20 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

main() {

 pthread_cond_t cond;

 if (pthread_cond_init(&cond, NULL) != 0) {

 perror("pthread_cond_init() error");

pthread_cond_signal

1428 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

|

|

exit(1);

 }

 if (pthread_cond_signal(&cond) != 0) {

 perror("pthread_cond_broadcast() error");

 exit(2);

 }

 if (pthread_cond_destroy(&cond) != 0) {

 perror("pthread_cond_destroy() error");

 exit(3);

 }

}

Related Information

v “pthread.h” on page 72

v “pthread_cond_broadcast() — Broadcast a Condition” on page 1421

v “pthread_cond_init() — Initialize a Condition Variable” on page 1425

v “pthread_cond_timedwait() — Wait on a Condition Variable” on page 1430

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

pthread_cond_signal

Chapter 3. Part 3. Library Functions 1429

pthread_cond_timedwait() — Wait on a Condition Variable

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,

 const struct timespec *abstime);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_cond_timedwait(pthread_cond_t * __restrict__cond,

 pthread_mutex_t * __retrict__mutex,

 const struct timespec * __restrict__abstime);

General Description

Allows a thread to wait on a condition variable until satisfied or until a specified time

occurs. pthread_cond_timedwait() is the same as pthread_cond_wait() except it

returns an error if the absolute time, specified by abstime, satisfies one of these

conditions:

v Passes before cond is signaled or broadcasted

v Has already been passed at the time of the call

When such timeouts occur, pthread_cond_timedwait() reacquires the mutex,

referenced by mutex (created by pthread_mutex_init()).

The two elements within the struct timespec are defined as follows:

tv_sec The time to wait for the condition signal. It is expressed in seconds

from midnight, January 1, 1970 UTC. The value specified must be

greater than or equal to current calendar time expressed in seconds

since midnight, January 1, 1970 UTC and less than 2,147,483,648

seconds.

tv_nsec The time in nanoseconds to be added to tv_sec to determine when

to stop waiting. The value specified must be greater than or equal

to zero (0) and less than 1,000,000,000 (1,000 million).

Returned Value

If successful, pthread_cond_timedwait() returns 0.

If unsuccessful, pthread_cond_timedwait() returns −1 and sets errno to one of the

following values:

Error Code Description

EAGAIN For a private condition variable, the time specified by abstime has

passed.

pthread_cond_timedwait

1430 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|

|
|
|
|
|

EINVAL Can be one of the following error conditions:

v The value specified by cond is not valid.

v The value specified by mutex is not valid.

v The value specified by abstime (tv_sec) is not valid.

v The value specified by abstime (tv_nsec) is not valid.

v Different mutexes were specified for concurrent operations on the

same condition variable.

ETIMEDOUT

 For a shared condition variable, the time specified by abstime has

passed.

Note: In SUSV3, pthread_cond_timedwait() also returns

ETIMEDOUT for a private condition variable, when the time

specified by abstime has passed.

EPERM The mutex was not owned by the current thread at the time of the

call.

 Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_cond_timedwait() returns an error number to indicate the

error.

Usage Notes

If the condition variable is shared (PTHREAD_PROCESS_SHARED), the mutex

must also be shared, with the _OPEN_SYS_MUTEX_EXT feature defined when the

mutex was created and initialized.

If the condition variable is private (PTHREAD_PROCESS_PRIVATE), the mutex

must also be private.

If the condition variable is shared, all calls to pthread_cond_wait() or

pthread_cont_timedwait() for a given condition variable must use the same mutex

for the life of the process, or until both the condition variable and mutex are

destroyed (using pthread_cond-destroy() and pthread_mutex_destroy()).

Example

CELEBP21

/* CELEBP21 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

#include <time.h>

#include <errno.h>

main() {

 pthread_cond_t cond;

 pthread_mutex_t mutex;

 time_t T;

 struct timespec t;

 if (pthread_mutex_init(&mutex, NULL) != 0) {

 perror("pthread_mutex_init() error");

 exit(1);

 }

 if (pthread_cond_init(&cond, NULL) != 0) {

pthread_cond_timedwait

Chapter 3. Part 3. Library Functions 1431

|
|
|

||
|

|

|
|

perror("pthread_cond_init() error");

 exit(2);

 }

 if (pthread_mutex_lock(&mutex) != 0) {

 perror("pthread_mutex_lock() error");

 exit(3);

 }

 time(&T);

 t.tv_sec = T + 2;

 printf("starting timedwait at %s", ctime(&T));

 if (pthread_cond_timedwait(&cond, &mutex, &t) != 0)

 if (errno == EAGAIN)

 puts("wait timed out");

 else {

 perror("pthread_cond_timedwait() error");

 exit(4);

 }

 time(&T);

 printf("timedwait over at %s", ctime(&T));

}

Output

starting timedwait at Fri Jun 16 10:44:00 2001

wait timed out

timedwait over at Fri Jun 16 10:44:02 2001

Related Information

v “pthread.h” on page 72

v “pthread_cond_broadcast() — Broadcast a Condition” on page 1421

v “pthread_cond_signal() — Signal a Condition” on page 1428

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

v “pthread_mutex_init() — Initialize a Mutex Object” on page 1479

pthread_cond_timedwait

1432 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_cond_wait() — Wait on a Condition Variable

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t * __restrict__cond,

 pthread_mutex_t * __restrict__mutex);

General Description

Blocks on a condition variable. It must be called with mutex locked by the calling

thread, or undefined behavior will result. A mutex is locked using

pthread_mutex_lock().

cond is a condition variable that is shared by threads. To change it, a thread must

hold the mutex associated with the condition variable. The pthread_cond_wait()

function releases this mutex before suspending the thread and obtains it again

before returning.

The pthread_cond_wait() function waits until a pthread_cond_broadcast() or a

pthread_cond_signal() is received. For more information on these functions, refer to

“pthread_cond_broadcast() — Broadcast a Condition” on page 1421 and to

“pthread_cond_signal() — Signal a Condition” on page 1428.

Returned Value

If successful, pthread_cond_wait() returns 0.

If unsuccessful, pthread_cond_wait() returns −1 and sets errno to one of the

following values:

Error Code Description

EINVAL Different mutexes were specified for concurrent operations on the

same condition variable.

EPERM The mutex was not owned by the current thread at the time of the

call.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_cond_wait() returns an error number to indicate the error.

pthread_cond_wait

Chapter 3. Part 3. Library Functions 1433

||||

|
|
||

|

|
|
|
|

||
|

||
|

|

|

Usage Notes

If the condition variable is shared (PTHREAD_PROCESS_SHARED), the mutex

must also be shared, with the _OPEN_SYS_MUTEX_EXT feature defined when the

mutex was created and initialized.

If the condition variable is private (PTHREAD_PROCESS_PRIVATE), the mutex

must also be private.

If the condition variable is shared, all calls to pthread_cond_wait() or

pthread_cont_timedwait() for a given condition variable must use the same mutex

for the life of the process, or until both the condition variable and mutex are

destroyed (using pthread_cond-destroy() and pthread_mutex_destroy()).

Example

CELEBP22

/* CELEBP22 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

#include <time.h>

#include <unistd.h>

pthread_cond_t cond;

pthread_mutex_t mutex;

int footprint = 0;

void *thread(void *arg) {

 time_t T;

 if (pthread_mutex_lock(&mutex) != 0) {

 perror("pthread_mutex_lock() error");

 exit(6);

 }

 time(&T);

 printf("starting wait at %s", ctime(&T));

 footprint++;

 if (pthread_cond_wait(&cond, &mutex) != 0) {

 perror("pthread_cond_timedwait() error");

 exit(7);

 }

 time(&T);

 printf("wait over at %s", ctime(&T));

}

main() {

 pthread_t thid;

 time_t T;

 struct timespec t;

 if (pthread_mutex_init(&mutex, NULL) != 0) {

 perror("pthread_mutex_init() error");

 exit(1);

 }

 if (pthread_cond_init(&cond, NULL) != 0) {

 perror("pthread_cond_init() error");

 exit(2);

 }

 if (pthread_create(&thid, NULL, thread, NULL) != 0) {

 perror("pthread_create() error");

pthread_cond_wait

1434 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

exit(3);

 }

 while (footprint == 0)

 sleep(1);

 puts("IPT is about ready to release the thread");

 sleep(2);

 if (pthread_cond_signal(&cond) != 0) {

 perror("pthread_cond_signal() error");

 exit(4);

 }

 if (pthread_join(thid, NULL) != 0) {

 perror("pthread_join() error");

 exit(5);

 }

}

Output

starting wait at Fri Jun 16 10:54:06 2001

IPT is about ready to release the thread

wait over at Fri Jun 16 10:54:09 2001

Related Information

v “pthread.h” on page 72

v “pthread_cond_broadcast() — Broadcast a Condition” on page 1421

v “pthread_cond_signal() — Signal a Condition” on page 1428

v “pthread_cond_timedwait() — Wait on a Condition Variable” on page 1430

pthread_cond_wait

Chapter 3. Part 3. Library Functions 1435

pthread_condattr_destroy() — Destroy Condition Variable Attribute

Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_condattr_destroy(pthread_condattr_t *attr);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_condattr_destroy(pthread_condattr_t *attr);

General Description

Destroys a condition attribute object. Condition-variable attribute objects are similar

to mutex attribute objects because you can use them to manage the characteristics

of condition variables in your application. They define the set of values to be used

for the condition variable during its creation.

pthread_condattr_init() is used to define a condition variable attribute object.

pthread_condattr_destroy() is used to remove the definition of the condition variable

attribute object. These functions are provided for portability purposes.

You can define a condition variable without using these functions by supplying a

NULL parameter during the pthread_cond_init() call. For more details, refer to

“pthread_cond_init() — Initialize a Condition Variable” on page 1425.

Returned Value

If successful, pthread_condattr_destroy() returns 0.

If unsuccessful, pthread_condattr_destroy() returns −1 and sets errno to one of the

following values:

Error Code

Description

EINVAL

The value specified by attr is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_condattr_destroy() returns an error number to indicate the

error.

Example

CELEBP23

pthread_condattr_destroy

1436 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

|
|
|
|

|

|
|

/* CELEBP23 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

main() {

 pthread_condattr_t cond;

 if (pthread_condattr_init(&cond) != 0) {

 perror("pthread_condattr_init() error");

 exit(1);

 }

 if (pthread_condattr_destroy(&cond) != 0) {

 perror("pthread_condattr_destroy() error");

 exit(2);

 }

}

Related Information

v “pthread.h” on page 72

v “pthread_condattr_init() — Initialize a Condition Attribute Object” on page 1442

v “pthread_cond_init() — Initialize a Condition Variable” on page 1425

v “pthread_mutex_init() — Initialize a Mutex Object” on page 1479

pthread_condattr_destroy

Chapter 3. Part 3. Library Functions 1437

pthread_condattr_getkind_np() — Get Kind Attribute from a Condition

Variable Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_THREADS

#define _OPEN_SYS

#include <pthread.h>

int pthread_condattr_getkind_np(pthread_condattr_t *attr, int *kind);

General Description

Gets the attribute kind for the condition variable attribute object attr. Condition

variable attribute objects are similar to mutex attribute objects. You can use them to

manage the characteristics of condition variables in your application. They define

the set of values for the condition variable during its creation.

The valid values for the attribute kind are:

__COND_DEFAULT No defined attributes.

__COND_NODEBUG State changes to this condition variable will not be

reported to the debug interface, even though it is

present.

Returned Value

If successful, pthread_condattr_getkind_np() returns 0.

If unsuccessful, pthread_condattr_getkind_np() returns −1 and sets errno to one of

the following values:

Error Code Description

EINVAL The value specified for attr is not valid.

Example

CELEBP24

/* CELEBP24 */

#pragma runopts(TEST(ALL))

#ifndef _OPEN_THREADS

#define _OPEN_THREADS

#define _OPEN_SYS /* Needed to identify __COND_NODEBUG and

 __COND_DEFAULT */

#endif

#include <stdio.h>

#include <pthread.h>

pthread_condattr_t attr;

int kind;

pthread_condattr_getkind_np

1438 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

main() {

 if (pthread_condattr_init(&attr) == −1) {

 perror("pthread_condattr_init()");

 exit(1);

 }

 if (pthread_condattr_setkind_np(&attr, __COND_NODEBUG) == −1) {

 perror("pthread_condattr_setkind_np()");

 exit(1);

 }

 if (pthread_condattr_getkind_np(&attr, &kind) == −1) {

 exit(1);

 }

 switch(kind) {

 case __COND_DEFAULT:

 printf("\ncondition variable will have no defined attributes");

 break;

 case __COND_NODEBUG:

 printf("\ncondition variable will have nodebug attribute");

 break;

 default:

 printf("\nattribute kind value returned by \

pthread_condattr_getkind_no() unrecognized");

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_condattr_init() — Initialize a Condition Attribute Object” on page 1442

v “pthread_condattr_setkind_np() — Set Kind Attribute from a Condition Variable

Attribute Object” on page 1444

pthread_condattr_getkind_np

Chapter 3. Part 3. Library Functions 1439

pthread_condattr_getpshared() — Get the process-shared condition

variable attribute

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment Extension

Single UNIX Specification, Version 3

both z/OS V1R2

Format

#define _OPEN_THREADS

#define _OPEN_SYS_MUTEX_EXT

#include <pthread.h>

int pthread_condattr_getpshared(const pthread_condattr_t *attr,

 int *pshared);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_condattr_getpshared(const pthread_condattr_t * __restrict__attr,

 int * __restrict__pshared);

General Description

Gets the attribute pshared for the condition variable attribute object attr. By using

attr, you can determine its process-shared value for a condition variable.

Valid values for the attribute pshared are:

Value Description

PTHREAD_PROCESS_SHARED

Permits a condition variable to be operated upon by any thread that

has access to the memory where the condition variable is allocated;

even if the condition variable is allocated in memory that is shared

by multiple processes.

PTHREAD_PROCESS_PRIVATE

A condition variable can only be operated upon by threads created

within the same process as the thread that initialized the condition

variable. If threads of differing processes attempt to operate on

such a condition variable, only the process to initialize the condition

variable will succeed. When a new process is created by the parent

process it will receive a different copy of the private condition

variable which can only be used to serialize between threads in the

child process.

Note: This is the default value of pshared

Returned Value

If successful, 0 is returned. If unsuccessful, -1 is returned and the errno value is

set. The following is the value of errno:

Value Description

EINVAL The value specified for attr is not valid.

pthread_condattr_getpshared

1440 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_condattr_getpshared() returns an error number to indicate

the error.

Related Information

v “pthread.h” on page 72

v “pthread_condattr_setpshared() — Set the process-shared condition variable

attribute” on page 1446

v “pthread_mutexattr_getpshared() — Get the Process-Shared Mutex Attribute” on

page 1494

v “pthread_mutexattr_setpshared() — Set the Process-Shared Mutex Attribute” on

page 1503

v “pthread_rwlockattr_getpshared() — Get the Processed-Shared Read/Write Lock

Attribute” on page 1534

v “pthread_rwlockattr_setpshared() — Set the Process-Shared Read/Write Lock

Attribute” on page 1537

pthread_condattr_getpshared

Chapter 3. Part 3. Library Functions 1441

|

|
|

pthread_condattr_init() — Initialize a Condition Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *attr);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *attr);

General Description

Establishes the default values for the condition variables that will be created. A

condition attribute (condattr) object contains various condition variable

characteristics. You can set up a template of these characteristics and then create a

set of condition variables with similar characteristics.

Condition variable attribute objects are similar to mutex attribute objects. You can

use them to manage the characteristics of condition variables in your application.

They define the set of values to be used for the condition variable during its

creation. For a valid condition variable attribute, refer to

″pthread_condattr_setkind_np() -- Set Kind Attribute from a Condition Variable

Attribute Object and pthread_condattr_setpshared() --Set the Process-Shared

Condition Variable Attribute

pthread_condattr_init() is used to define a condition variable attribute object.

pthread_condattr_destroy() is used to remove the definition of the condition variable

attribute object. These functions are provided for portability purposes.

You can define a condition variable without using these functions by supplying a

NULL parameter during the pthread_cond_init() call. For more details, refer to

“pthread_cond_init() — Initialize a Condition Variable” on page 1425.

Returned Value

If successful, pthread_condattr_init() returns 0.

If unsuccessful, pthread_condattr_init() returns −1 and sets errno to one of the

following values:

Error Code Description

ENOMEM There is not enough memory to initialize the condition variable

attributes object.

Special Behavior for Single UNIX Specification, Version 3:

pthread_condattr_init

1442 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

|

If unsuccessful, pthread_condattr_init() returns an error number to indicate the error.

Example

CELEBP25

/* CELEBP25 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

main() {

 pthread_condattr_t cond;

 if (pthread_condattr_init(&cond) != 0) {

 perror("pthread_condattr_init() error");

 exit(1);

 }

 if (pthread_condattr_destroy(&cond) != 0) {

 perror("pthread_condattr_destroy() error");

 exit(2);

 }

}

Related Information

v “pthread.h” on page 72

v “pthread_cond_init() — Initialize a Condition Variable” on page 1425

v “pthread_condattr_getpshared() — Get the process-shared condition variable

attribute” on page 1440

v

v “pthread_condattr_setpshared() — Set the process-shared condition variable

attribute” on page 1446

v “pthread_mutex_init() — Initialize a Mutex Object” on page 1479

pthread_condattr_init

Chapter 3. Part 3. Library Functions 1443

|

pthread_condattr_setkind_np() — Set Kind Attribute from a Condition

Variable Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_THREADS

#define _OPEN_SYS

#include <pthread.h>

int pthread_condattr_setkind_np(pthread_condattr_t *attr, int kind);

General Description

Sets the attribute kind for the condition variable attribute object attr. Condition

variable attribute objects are similar to mutex attribute objects. You can use them to

manage the characteristics of condition variables in your application. They define

the set of values to be used for the condition variable during its creation.

The valid values for the attribute kind are:

__COND_DEFAULT No defined attributes.

__COND_NODEBUG State changes to this condition variable will not be

reported to the debug interface, even though it is

present.

Returned Value

If successful, pthread_condattr_setkind_np() returns 0.

If unsuccessful, pthread_condattr_setkind_np() returns −1 and sets errno to one of

the following values:

Error Code Description

EINVAL The value specified for attr or kind is not valid.

Example

CELEBP26

/* CELEBP26 */

#pragma runopts(TEST(ALL))

#ifndef _OPEN_THREADS

#define _OPEN_THREADS

#define _OPEN_SYS /* Needed to identify __COND_NODEBUG and

 __COND_DEFAULT */

#endif

#include <stdio.h>

#include <pthread.h>

pthread_condattr_t attr;

int kind;

pthread_condattr_setkind_np

1444 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

main() {

 if (pthread_condattr_init(&attr) == −1) {

 perror("pthread_condattr_init()");

 exit(1);

 }

 if (pthread_condattr_setkind_np(&attr, __COND_NODEBUG) == −1) {

 perror("pthread_condattr_setkind_np()");

 exit(1);

 }

 if (pthread_condattr_getkind_np(&attr, &kind) == −1) {

 exit(1);

 }

 switch(kind) {

 case __COND_DEFAULT:

 printf("\ncondition variable will have no defined attributes");

 break;

 case __COND_NODEBUG:

 printf("\ncondition variable will have nodebug attribute");

 break;

 default:

 printf("\nattribute kind value returned by \

pthread_condattr_getkind_no() unrecognized");

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_condattr_init() — Initialize a Condition Attribute Object” on page 1442

v “pthread_condattr_getkind_np() — Get Kind Attribute from a Condition Variable

Attribute Object” on page 1438

pthread_condattr_setkind_np

Chapter 3. Part 3. Library Functions 1445

pthread_condattr_setpshared() — Set the process-shared condition

variable attribute

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment Extension

Single UNIX Specification, Version 3

both z/OS V1R2

Format

#define _OPEN_THREADS

#define _OPEN_SYS_MUTEX_EXT

#include <pthread.h>

int pthread_condattr_setpshared(pthread_condattr_t *attr,

 int pshared);

SUSV3

#define _UNIX03_THREADS

#define _OPEN_SYS_MUTEX_EXT

#include <pthread.h>

int pthread_condattr_setpshared(pthread_condattr_t *attr,

 int pshared);

General Description

Sets the attribute pshared for the condition variable attribute object attr.

A condition variable attribute object (attr) allows you to manage the characteristics

of condition variables in your application by defining a set of values to be used for a

condition variable during its creation. By establishing a condition variable attribute

object, you can create many condition variables with the same set of

characteristics, without needing to define the characteristics for each and every

condition variable. By using attr, you can define its process-shared value for a

condition variable.

Valid values for the attribute pshared are:

Value Description

PTHREAD_PROCESS_SHARED

Permits a condition variable to be operated upon by any thread that

has access to the memory where the condition variable is allocated;

even if the condition variable is allocated in memory that is shared

by multiple processes.

PTHREAD_PROCESS_PRIVATE

A condition variable can only be operated upon by threads created

within the same process as the thread that initialized the condition

variable. If threads of differing processes attempt to operate on

such a condition variable, only the process to initialize the condition

variable will succeed. When a new process is created by the parent

process it will receive a different copy of the private condition

variable which can only be used to serialize between threads in the

child process.

pthread_condattr_setpshared

1446 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|
|

|
|
|
|
|
|

Note: This is the default value of pshared.

Returned Value

If successful, 0 is returned. If unsuccessful, -1 is returned and the errno value is

set. The following is the value of errno:

Value Description

EINVAL The value specified for attr is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_condattr_setpshared() returns an error number to indicate

the error.

Usage Notes

It is recommended that you define and initialize pthread_cond_t objects in the same

compile unit. If you pass a pthread_cond_t object around to be initialized, make

sure the initialization code has been compiled with the same

_OPEN_SYS_MUTEX_EXT feature setting as the code that defines the object.

The following sequence may cause storage overlay with unpredictable results:

1. Declare or define a pthread_cond_t object (in shared storage) without #define of

the _OPEN_SYS_MUTEX_EXT feature. The created pthread_cond_t object is

standard size (i.e. small) without the _OPEN_SYS_MUTEX_EXT feature

defined.

2. Pass the pthread_cond_t object to another code unit, which was compiled with

the _OPEN_SYS_MUTEX_EXT feature defined, to be initialized as a shared

object. The pthread_cond_t initialization generally involves the following steps:

a. pthread_condattr_init()

b. pthread_condattr_setpshared(). This step sets the attribute of the

pthread_cond_t as PTHREAD_PROCESS_SHARED and designates the

object to be of extended size.

c. pthread_cond_init(). This step initializes the passed-in (small)

pthread_cond_t object as if it is an extended object, causing storage overlay.

Related Information

v “pthread.h” on page 72

v “pthread_condattr_getpshared() — Get the process-shared condition variable

attribute” on page 1440

v “pthread_mutexattr_getpshared() — Get the Process-Shared Mutex Attribute” on

page 1494

v “pthread_mutexattr_setpshared() — Set the Process-Shared Mutex Attribute” on

page 1503

v “pthread_rwlockattr_getpshared() — Get the Processed-Shared Read/Write Lock

Attribute” on page 1534

v “pthread_rwlockattr_setpshared() — Set the Process-Shared Read/Write Lock

Attribute” on page 1537

pthread_condattr_setpshared

Chapter 3. Part 3. Library Functions 1447

|

|
|

pthread_create() — Create a Thread

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_create(pthread_t *thread, pthread_attr_t *attr,

 void *(*start_routine) (void *arg), void *arg);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_create(pthread_t * __restrict__thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *arg),

 void * __restrict__arg);

General Description

Creates a new thread within a process, with attributes defined by the thread

attribute object, attr, that is created by pthread_attr_init().

If attr is NULL, the default attributes are used. See “pthread_attr_init() — Initialize a

Thread Attribute Object” on page 1395 for a description of the thread attributes and

their defaults. If the attributes specified by attr are changed later, the thread’s

attributes are not affected.

pthread_t is the data type used to uniquely identify a thread. It is returned by

pthread_create() and used by the application in function calls that require a thread

identifier.

The thread is created running start_routine, with arg as the only argument. If

pthread_create() completes successfully, thread will contain the ID of the created

thread. If it fails, no new thread is created, and the contents of the location

referenced by thread are undefined.

System default for the thread limit in a process is set by MAXTHREADS in the

BPXPRMxx parmlib member.

The maximum number of threads is dependent upon the size of the private area

below 16M. pthread_create() inspects this address space before creating a new

thread. A realistic limit is 200 to 400 threads.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, pthread_create() cannot

receive a C++ function pointer as the start routine function pointer If you attempt to

pass a C++ function pointer to pthread_create(), the compiler will flag it as an error.

You can pass a C or C++ function to pthread_create() by declaring it as extern ″C″.

pthread_create

1448 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|
|

The started thread provides a boundary with respect to the scope of try-throw-catch

processing. A throw done in the start routine or a function called by the start routine

causes stack unwinding up to and including the start routine (or until caught). The

stack unwinding will not go beyond the start routine back into the thread creator. If

the exception is not caught, terminate() is called.

The exception stack (for try-throw-catch) are thread-based. The throw of a

condition, or re-throw of a condition by a thread does not affect exception

processing on another thread, unless the condition is not caught.

Returned Value

If successful, pthread_create() returns 0.

If unsuccessful, pthread_create() returns −1 and sets errno to one of the following

values:

Error Code Description

EAGAIN The system lacks the necessary resources to create another

thread.

EINVAL The value specified by thread is null.

ELEMULTITHREADFORK

pthread_create() was invoked from a child process created by

calling fork() from a multi-threaded process. This child process is

restricted from becoming multi-threaded.

ENOMEM There is not enough memory to create the thread.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_create() returns an error number to indicate the error.

Example

CELEBP27

/* CELEBP27 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

void *thread(void *arg) {

 char *ret;

 printf("thread() entered with argument '%s'\n", arg);

 if ((ret = (char*) malloc(20)) == NULL) {

 perror("malloc() error");

 exit(2);

 }

 strcpy(ret, "This is a test");

 pthread_exit(ret);

}

main() {

 pthread_t thid;

 void *ret;

 if (pthread_create(&thid, NULL, thread, "thread 1") != 0) {

 perror("pthread_create() error");

 exit(1);

 }

 if (pthread_join(thid, &ret) != 0) {

pthread_create

Chapter 3. Part 3. Library Functions 1449

||

|

|

perror("pthread_create() error");

 exit(3);

 }

 printf("thread exited with '%s'\n", ret);

}

Output

thread() entered with argument ’thread 1’

thread exited with ’This is a test’

Related Information

v “pthread.h” on page 72

v “pthread_exit() — Exit a Thread” on page 1455

v “pthread_join() — Wait for a Thread to End” on page 1466

pthread_create

1450 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_detach() — Detach a Thread

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_detach(pthread_t *thread);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_detach(pthread_t thread);

General Description

Allows storage for the thread whose thread ID is in the location thread to be

reclaimed when that thread ends. This storage is reclaimed on process exit,

regardless of whether the thread was detached, and may include storage for

thread’s return value. If thread has not ended, pthread_detach() will not cause it to

end.

pthread_t is the data type used to uniquely identify a thread. It is returned by

pthread_create() and used by the application in function calls that require a thread

identifier.

Returned Value

If successful, pthread_detach() returns 0.

If unsuccessful, pthread_detach() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL The value specified by thread is not valid.

ESRCH A value specified by thread refers to a thread that is already

detached.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_detach() returns an error number to indicate the error.

Example

CELEBP28

/* CELEBP28 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

void *thread(void *arg) {

pthread_detach

Chapter 3. Part 3. Library Functions 1451

||||

|
|
||

|

|
|
|

|

|

char *ret;

 printf("thread() entered with argument '%s'\n", arg);

 if ((ret = (char*) malloc(20)) == NULL) {

 perror("malloc() error");

 exit(2);

 }

 strcpy(ret, "This is a test");

 pthread_exit(ret);

}

main() {

 pthread_t thid;

 void *ret;

 if (pthread_create(&thid, NULL, thread, "thread 1") != 0) {

 perror("pthread_create() error");

 exit(1);

 }

 if (pthread_join(thid, &ret) != 0) {

 perror("pthread_create() error");

 exit(3);

 }

 printf("thread exited with '%s'\n", ret);

}

Output

thread() entered with argument ’thread 1’

thread exited with ’This is a test’

Related Information

v “pthread.h” on page 72

v “pthread_join() — Wait for a Thread to End” on page 1466

pthread_detach

1452 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_equal() — Compare Thread IDs

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

General Description

Compares the thread IDs of t1 and t2.

pthread_t is the data type used to uniquely identify a thread. It is returned by

pthread_create() and used by the application in function calls that require a thread

identifier.

Returned Value

If t1 and t2 are equal, pthread_equal() returns a positive value. Otherwise, the value

0 is returned. If t1 or t2 are not valid thread IDs, the behavior is undefined.

If unsuccessful, pthread_equal() returns −1.

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Example

CELEBP29

/* CELEBP29 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

pthread_t thid, IPT;

void *thread(void *arg) {

 if (pthread_equal(IPT, thid))

 puts("the thread is the IPT...?");

 else

 puts("the thread is not the IPT");

}

main() {

 IPT = pthread_self();

 if (pthread_create(&thid, NULL, thread, NULL) != 0) {

 perror("pthread_create() error");

 exit(1);

 }

 if (pthread_join(thid, NULL) != 0) {

pthread_equal

Chapter 3. Part 3. Library Functions 1453

||||

|
|
||

|

perror("pthread_create() error");

 exit(3);

 }

}

Output

the thread is not the IPT

Related Information

v “pthread.h” on page 72

v “pthread_create() — Create a Thread” on page 1448

v “pthread_self() — Get the Caller” on page 1542

pthread_equal

1454 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_exit() — Exit a Thread

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

void pthread_exit(void *status);

General Description

Ends the calling thread and makes status available to any thread that calls

pthread_join() with the ending thread’s thread ID.

As part of pthread_exit() processing, cleanup and destructor routines may be run:

v For details on the cleanup routines, refer to “pthread_cleanup_pop() — Remove

a Cleanup Handler” on page 1417 and “pthread_cleanup_push() — Establish a

Cleanup Handler” on page 1419.

v For details on the destructor routine, refer to “pthread_key_create() — Create

Thread-Specific Data Key” on page 1470.

Special Behavior for C++

Destructors for automatic objects on the stack will be run when a thread is

canceled. The stack is unwound and the destructors are run in reverse order.

Returned Value

pthread_exit() cannot return to its caller.

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Example

CELEBP30

/* CELEBP30 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

void *thread(void *arg) {

 char *ret;

 if ((ret = (char*) malloc(20)) == NULL) {

 perror("malloc() error");

 exit(2);

 }

 strcpy(ret, "This is a test");

 pthread_exit(ret);

}

main() {

pthread_exit

Chapter 3. Part 3. Library Functions 1455

||||

|
|
||

|

pthread_t thid;

 void *ret;

 if (pthread_create(&thid, NULL, thread, NULL) != 0) {

 perror("pthread_create() error");

 exit(1);

 }

 if (pthread_join(thid, &ret) != 0) {

 perror("pthread_create() error");

 exit(3);

 }

 printf("thread exited with '%s'\n", ret);

}

Output

thread exited with ’This is a test’

Related Information

v “pthread.h” on page 72

v “pthread_cleanup_pop() — Remove a Cleanup Handler” on page 1417

v “pthread_cleanup_push() — Establish a Cleanup Handler” on page 1419

v “pthread_create() — Create a Thread” on page 1448

v “pthread_join() — Wait for a Thread to End” on page 1466

v “pthread_key_create() — Create Thread-Specific Data Key” on page 1470

pthread_exit

1456 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_getconcurrency() — Get the Level of Concurrency

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R7

POSIX(ON)

Format

#define _OPEN_THREADS 2

#include <pthread.h>

int pthread_getconcurrency(void);

General Description

pthread_getconcurrency() returns the value set by a previous call to

pthread_setconcurrency(), or 0 if pthread_setconcurrency() was not previously

called.

Returned Value

If successful, pthread_getconcurrency() returns the concurrency level set by a

previous call to pthread_setconcurrency(); otherwise, 0.

Related Information

v ″Thread Cancellation″ in the z/OS XL C/C++ Programming Guide

v “pthread.h” on page 72

v “pthread_setconcurrency() — Set the Level of Concurrency” on page 1546

pthread_getconcurrency

Chapter 3. Part 3. Library Functions 1457

||||

|||
|
|

pthread_getspecific() — Get the Thread-Specific Value for a Key

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_getspecific(pthread_key_t key, void **value);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

void *pthread_getspecific(pthread_key_t key);

General Description

Returns the thread-specific data associated with the specified key for the current

thread. If no thread-specific data has been set for key, the NULL value is returned

in value.

Many multithreaded applications require storage shared among threads, where

each thread has its own unique value. A thread-specific data key is an identifier,

created by a thread, for which each thread in the process can set a unique key

value.

pthread_key_t is a storage area where the system places the key identifier. To

create a key, a thread uses pthread_key_create(). This returns the key identifier into

the storage area of type pthread_key_t. At this point, each of the threads in the

application has the use of that key, and can set its own unique value by using

pthread_setspecific(). A thread can get its own unique value using

pthread_getspecific().

Returned Value

When unsuccessful, pthread_getspecific() sets errno to one of the following values:

Error Code Description

EINVAL The value for key is not valid.

Note: In SUSV3, if the key is invalid, pthread_getspecific() returns NULL but does

not set or return an errno value.

Example

CELEBP31

/* CELEBP31 */

#ifndef _OPEN_THREADS

#define _OPEN_THREADS

#endif

#include <stdio.h>

#include <stdlib.h>

pthread_getspecific

1458 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|

|
|

#include <errno.h>

#include <pthread.h>

#define threads 3

#define BUFFSZ 48

pthread_key_t key;

void *threadfunc(void *parm)

{

 int status;

 void *value;

 int threadnum;

 int *tnum;

 void *getvalue;

 char Buffer[BUFFSZ];

 tnum = parm;

 threadnum = *tnum;

 printf("Thread %d executing\n", threadnum);

 if (!(value = malloc(sizeof(Buffer))))

 printf("Thread %d could not allocate storage, errno = %d\n",

 threadnum, errno);

 status = pthread_setspecific(key, (void *) value);

 if (status < 0) {

 printf("pthread_setspecific failed, thread %d, errno %d",

 threadnum, errno);

 pthread_exit((void *)12);

 }

 printf("Thread %d setspecific value: %d\n", threadnum, value);

 getvalue = 0;

 status = pthread_getspecific(key, &getvalue);

 if (status < 0) {

 printf("pthread_getspecific failed, thread %d, errno %d",

 threadnum, errno);

 pthread_exit((void *)13);

 }

 if (getvalue != value)

 {

 printf("getvalue not valid, getvalue=%d", (int)getvalue);

 pthread_exit((void *)68);

 }

 pthread_exit((void *)0);

}

void destr_fn(void *parm)

{

 printf("Destructor function invoked\n");

 free(parm);

}

main() {

 int getvalue;

 int status;

 int i;

 int threadparm[threads];

 pthread_t threadid[threads];

 int thread_stat[threads];

 if ((status = pthread_key_create(&key, destr_fn)) < 0) {

 printf("pthread_key_create failed, errno=%d", errno);

pthread_getspecific

Chapter 3. Part 3. Library Functions 1459

exit(1);

 }

 /* create 3 threads, pass each its number */

 for (i=0; i<threads; i++) {

 threadparm[i] = i+1;

 status = pthread_create(&threadid[i],

 NULL,

 threadfunc,

 (void *)&threadparm[i]);

 if (status < 0) {

 printf("pthread_create failed, errno=%d", errno);

 exit(2);

 }

 }

 for (i=0; i<threads; i++) {

 status = pthread_join(threadid[i], (void *)&thread_stat[i]);

 if (status < 0) {

 printf("pthread_join failed, thread %d, errno=%d\n", i+1, errno);

 }

 if (thread_stat[i] != 0) {

 printf("bad thread status, thread %d, status=%d\n", i+1,

 thread_stat[i]);

 }

 }

 exit(0);

}

CELEBP70

/* CELEBP70 */

/* Example using SUSv3 pthread_getspecific() interface */

#define _UNIX03_THREADS 1

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <pthread.h>

#define threads 3

#define BUFFSZ 48

pthread_key_t key;

void *threadfunc(void *parm)

{

 int status;

 void *value;

 int threadnum;

 int *tnum;

 void *getvalue;

 char Buffer[BUFFSZ];

 tnum = parm;

 threadnum = *tnum;

 printf("Thread %d executing\n", threadnum);

 if (!(value = malloc(sizeof(Buffer))))

 printf("Thread %d could not allocate storage, errno = %d\n",

 threadnum, errno);

 status = pthread_setspecific(key, (void *) value);

 if (status < 0) {

 printf("pthread_setspecific failed, thread %d, errno %d",

pthread_getspecific

1460 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

threadnum, errno);

 pthread_exit((void *)12);

 }

 printf("Thread %d setspecific value: %d\n", threadnum, value);

 getvalue = 0;

 getvalue = pthread_getspecific(key);

 if (getvalue == 0) {

 printf("pthread_getspecific failed, thread %d", threadnum);

 printf(" rc= %d, errno %d, ejr %08x\n",(int)getvalue, errno, __errno2());

 pthread_exit((void *)13);

 } else {

 printf("Success!\n");

 printf("Returned value: %d matches set value: %d\n", getvalue, value);

 }

 if (getvalue != value)

 {

 printf("getvalue not valid, getvalue=%d", (int)getvalue);

 pthread_exit((void *)68);

 }

 pthread_exit((void *)0);

}

void destr_fn(void *parm)

{

 printf("Destructor function invoked\n");

 free(parm);

}

int main(void)

{

 int status;

 int i;

 int threadparm[threads];

 pthread_t threadid[threads];

 int thread_stat[threads];

 if ((status = pthread_key_create(&key, destr_fn)) < 0) {

 printf("pthread_key_create failed, errno=%d", errno);

 exit(1);

 }

 /* create 3 threads, pass each its number */

 for (i=0; i<threads; i++) {

 threadparm[i] = i+1;

 status = pthread_create(&threadid[i],

 NULL,

 threadfunc,

 (void *)&threadparm[i]);

 if (status < 0) {

 printf("pthread_create failed, errno=%d", errno);

 exit(2);

 }

 }

 for (i=0; i<threads; i++) {

 status = pthread_join(threadid[i], (void *)&thread_stat[i]);

 if (status < 0) {

 printf("pthread_join failed, thread %d, errno=%d\n", i+1, errno);

 }

 if (thread_stat[i] != 0) {

 printf("bad thread status, thread %d, status=%d\n", i+1,

pthread_getspecific

Chapter 3. Part 3. Library Functions 1461

thread_stat[i]);

 }

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_getspecific_d8_np() — Get the Thread-Specific Value for a Key” on

page 1463

v “pthread_key_create() — Create Thread-Specific Data Key” on page 1470

v “pthread_setspecific() — Set the Thread-Specific Value for a Key” on page 1554

pthread_getspecific

1462 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_getspecific_d8_np() — Get the Thread-Specific Value for a Key

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a, draft 8 both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

void *pthread_getspecific_d8_np(pthread_key_t key);

General Description

Returns the thread-specific data associated with the specified key for the current

thread. If no thread-specific data has been set for key, the NULL value is returned.

Many multithreaded applications require storage shared among threads, where

each thread has its own unique value. A thread-specific data key is an identifier,

created by a thread, for which each thread in the process can set a unique key

value.

pthread_key_t is a storage area where the system places the key identifier. To

create a key, a thread uses pthread_key_create(). This returns the key identifier into

the storage area of type pthread_key_t. At this point, each of the threads in the

application has the use of that key, and can set its own unique value by using

pthread_setspecific(). A thread can get its own unique value using

pthread_getspecific_d8_np() or pthread_getspecific().

The only difference between pthread_getspecific_d8_np() and pthread_getspecific()

is the syntax of the function.

Returned Value

When successful, pthread_getspecific_d8_np() returns the thread-specific data

value associated with key.

When unsuccessful, pthread_getspecific_d8_np() returns NULL and sets errno to

one of the following values:

Error Code Description

EINVAL The value for key is not valid.

Example

#ifndef _OPEN_THREADS

#define _OPEN_THREADS

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <pthread.h>

#define threads 3

#define BUFFSZ 48

pthread_getspecific_d8_np

Chapter 3. Part 3. Library Functions 1463

||||

|||
|

pthread_key_t key;

void *threadfunc(void *);

void destr_fn(void *);

main() {

 int status;

 int i;

 int threadparm[threads];

 pthread_t threadid[threads];

 int thread_stat[threads];

 if ((status = pthread_key_create(&key, destr_fn)) < 0) {

 printf("pthread_key_create failed, errno=%d", errno);

 exit(1);

 }

 /* create 3 threads, pass each its number */

 for (i=0; i<threads; i++) {

 threadparm[i] = i+1;

 status = pthread_create(&threadid[i],

 NULL,

 threadfunc,

 (void *)&threadparm[i]);

 if (status < 0) {

 printf("pthread_create failed, errno=%d", errno);

 exit(2);

 }

 }

 for (i=0; i<threads; i++) {

 status = pthread_join(threadid[i], (void *)&thread_stat[i]);

 if (status < 0) {

 printf("pthread_join failed, thread %d, errno=%d\n", i+1, errno);

 }

 if (thread_stat[i] != 0) {

 printf("bad thread status, thread %d, status=%d\n", i+1,

 thread_stat[i]);

 }

 }

 exit(0);

}

void *threadfunc(void *parm) {

 int status;

 int *void;

 int threadnum;

 int *tnum;

 void *getvalue;

 char Buffer[BUFFSZ];

 tnum = parm;

 threadnum = *tnum;

 printf("Thread %d executing\n", threadnum);

 if (!(value = malloc(sizeof(Buffer))))

 printf("Thread %d could not allocate storage, errno = %d\n",

 threadnum, errno);

 status = pthread_setspecific(key, (void *) value);

 if (status < 0) {

 printf("pthread_setspecific failed, thread %d, errno %d",

 threadnum, errno);

pthread_getspecific_d8_np

1464 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_exit((void *)12);

 }

 printf("Thread %d setspecific value: %d\n", threadnum, value);

 getvalue = pthread_getspecific_d8_np(key);

 if (getvalue == NULL) {

 printf("pthread_getspecific_d8_np failed, thread %d, errno %d",

 threadnum, errno);

 pthread_exit((void *)13);

 }

 pthread_exit((void *)0);

}

void destr_fn(void *parm)

{

 printf("Destructor function invoked\n");

 free(parm)

}

Related Information

v “pthread.h” on page 72

v “pthread_key_create() — Create Thread-Specific Data Key” on page 1470

v “pthread_getspecific() — Get the Thread-Specific Value for a Key” on page 1458

v “pthread_setspecific() — Set the Thread-Specific Value for a Key” on page 1554

pthread_getspecific_d8_np

Chapter 3. Part 3. Library Functions 1465

pthread_join() — Wait for a Thread to End

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_join(pthread_t thread, void **status);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_join(pthread_t thread, void **status);

General Description

Allows the calling thread to wait for the ending of the target thread.

pthread_t is the data type used to uniquely identify a thread. It is returned by

pthread_create() and used by the application in function calls that require a thread

identifier.

status contains a pointer to the status argument passed by the ending thread as

part of pthread_exit(). If the ending thread terminated with a return, status contains

a pointer to the return value. If the thread was canceled, status can be set to −1.

Returned Value

If successful, pthread_join() returns 0.

If unsuccessful, pthread_join() returns −1 and sets errno to one of the following

values:

Error Code Description

EDEADLK A deadlock has been detected. This can occur if the target is

directly or indirectly joined to the current thread.

EINVAL The value specified by thread is not valid.

ESRCH The value specified by thread does not refer to an undetached

thread.

Notes:

1. When pthread_join() returns successfully, the target thread has been detached.

2. Multiple threads cannot use pthread_join() to wait for the same target thread to

end. If a thread issues pthread_join() for a target thread after another thread

has successfully issued pthread_join() for the same target thread, the second

pthread_join() will be unsuccessful.

3. If the thread calling pthread_join() is canceled, the target thread is not detached.

pthread_join

1466 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_join() returns an error number to indicate the error.

Example

CELEBP32

/* CELEBP32 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

void *thread(void *arg) {

 char *ret;

 printf("thread() entered with argument '%s'\n", arg);

 if ((ret = (char*) malloc(20)) == NULL) {

 perror("malloc() error");

 exit(2);

 }

 strcpy(ret, "This is a test");

 pthread_exit(ret);

}

main() {

 pthread_t thid;

 void *ret;

 if (pthread_create(&thid, NULL, thread, "thread 1") != 0) {

 perror("pthread_create() error");

 exit(1);

 }

 if (pthread_join(thid, &ret) != 0) {

 perror("pthread_create() error");

 exit(3);

 }

 printf("thread exited with '%s'\n", ret);

}

Output

thread() entered with argument ’thread 1’

thread exited with ’This is a test’

Related Information

v “pthread.h” on page 72

v “pthread_create() — Create a Thread” on page 1448

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

v “pthread_detach() — Detach a Thread” on page 1451

pthread_join

Chapter 3. Part 3. Library Functions 1467

|

|

pthread_join_d4_np() — Wait for a Thread to End

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_SYS

#define _OPEN_SYS

#include <pthread.h>

int pthread_join_d4_np(pthread_t thread, void **status);

General Description

Allows the calling thread to wait for the ending of the target thread.

pthread_t is the data type used to uniquely identify a thread. It is returned by

pthread_create() and used by the application in function calls that require a thread

identifier.

status contains a pointer to the status argument passed by the ending thread as

part of pthread_exit(). If the ending thread ended by a return, status contains a

pointer to the return value. If the thread was canceled, status can be set to −1.

Returned Value

If successful, pthread_join_d4_np() returns 0.

If unsuccessful, pthread_join_d4_np() returns −1 and sets errno to one of the

following values:

Error Code Description

EDEADLK A deadlock has been detected. This can occur if the target is

directly or indirectly joined to the current thread.

EINVAL The value specified by thread is not valid.

ESRCH The value specified by thread does not refer to an undetached

thread.

Notes:

1. When pthread_join_d4_np() returns successfully, the target thread has not been

detached.

2. Multiple threads can use pthread_join_d4_np() to wait for the same target

thread to end.

Example

CELEBP33

/* CELEBP33 */

#define _OPEN_SYS

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

pthread_join_d4_np

1468 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

void *thread(void *arg) {

 char *ret;

 printf("thread() entered with argument '%s'\n", arg);

 if ((ret = (char*) malloc(20)) == NULL) {

 perror("malloc() error");

 exit(2);

 }

 strcpy(ret, "This is a test");

 pthread_exit(ret);

}

main() {

 pthread_t thid;

 void *ret;

 if (pthread_create(&thid, NULL, thread, "thread 1") != 0) {

 perror("pthread_create() error");

 exit(1);

 }

 if (pthread_join_d4_np(thid, &ret) != 0) {

 perror("pthread_create() error");

 exit(3);

 }

 printf("thread exited with '%s'\n", ret);

 if (pthread_detach(&thid) != 0) {

 perror("pthread_detach() error");

 exit(4);

 }

}

Output

thread() entered with argument ’thread 1’

thread exited with ’This is a test’

Related Information

v “pthread.h” on page 72

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

v “pthread_create() — Create a Thread” on page 1448

v “pthread_detach() — Detach a Thread” on page 1451

pthread_join_d4_np

Chapter 3. Part 3. Library Functions 1469

pthread_key_create() — Create Thread-Specific Data Key

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_key_create(pthread_key_t *key, void (*destructor)(void *));

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_key_create(pthread_key_t *key, void (*destructor)(void *));

General Description

Creates a key identifier, associated with key, and returns the key identifier into the

storage area of type pthread_key_t. At this point, each of the threads in the

application has the use of that key, and can set its own unique value by use of

pthread_setspecific(). A thread can get its own unique value using

pthread_getspecific().

The destructor routine may be called when the thread ends. It is called when a

non-NULL value has been set for the key for this thread, using

pthread_setspecific(), and the thread:

v Calls pthread_exit()

v Does a return from the start routine

v Is canceled because of a pthread_cancel() request.

When called, the destructor routine is passed the value bound to the key by the use

of pthread_setspecific().

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, pthread_key_create()

cannot receive a C++ function pointer as the start routine function pointer If you

attempt to pass a C++ function pointer to pthread_key_create(), the compiler will

flag it as an error. You can pass a C or C++ function to pthread_key_create() by

declaring it as extern ″C″.

Returned Value

If successful, pthread_key_create() returns 0 and stores the newly created key

identifier in key.

If unsuccessful, pthread_key_create() returns −1 and sets errno to one of the

following values:

Error Code Description

pthread_key_create

1470 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

EAGAIN There were not enough system resources to create another

thread-specific data key, or the limit is exceeded for the total

number of keys per process.

ENOMEM There is not enough memory to create key.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_key_create() returns an error number to indicate the error.

Example

CELEBP34

/* CELEBP34 */

#ifndef _OPEN_THREADS

#define _OPEN_THREADS

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <pthread.h>

#define threads 3

#define BUFFSZ 48

pthread_key_t key;

void *threadfunc(void *parm)

{

 int status;

 void *value;

 int threadnum;

 int *tnum;

 void *getvalue;

 char Buffer[BUFFSZ];

 tnum = parm;

 threadnum = *tnum;

 printf("Thread %d executing\n", threadnum);

 if (!(value = malloc(sizeof(Buffer))))

 printf("Thread %d could not allocate storage, errno = %d\n",

 threadnum, errno);

 status = pthread_setspecific(key, (void *) value);

 if (status < 0) {

 printf("pthread_setspecific failed, thread %d, errno %d",

 threadnum, errno);

 pthread_exit((void *)12);

 }

 printf("Thread %d setspecific value: %d\n", threadnum, value);

 getvalue = 0;

 status = pthread_getspecific(key, &getvalue);

 if (status < 0) {

 printf("pthread_getspecific failed, thread %d, errno %d",

 threadnum, errno);

 pthread_exit((void *)13);

 }

 if (getvalue != value) {

 printf("getvalue not valid, getvalue=%d", (int)getvalue);

 pthread_exit((void *)68);

 }

pthread_key_create

Chapter 3. Part 3. Library Functions 1471

|

|

pthread_exit((void *)0);

}

void destr_fn(void *parm)

{

 printf("Destructor function invoked\n");

 free(parm);

}

main() {

 int getvalue;

 int status;

 int i;

 int threadparm[threads];

 pthread_t threadid[threads];

 int thread_stat[threads];

 if ((status = pthread_key_create(&key, destr_fn)) < 0) {

 printf("pthread_key_create failed, errno=%d", errno);

 exit(1);

 }

 /* create 3 threads, pass each its number */

 for (i=0; i<threads; i++) {

 threadparm[i] = i+1;

 status = pthread_create(&threadid[i],

 NULL,

 threadfunc,

 (void *)&threadparm[i]);

 if (status < 0) {

 printf("pthread_create failed, errno=%d", errno);

 exit(2);

 }

 }

 for (i=0; i<threads; i++) {

 status = pthread_join(threadid[i], (void *)&thread_stat[i]);

 if (status < 0) {

 printf("pthread_join failed, thread %d, errno=%d\n", i+1, errno);

 }

 if (thread_stat[i] != 0) {

 printf("bad thread status, thread %d, status=%d\n", i+1,

 thread_stat[i]);

 }

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_getspecific() — Get the Thread-Specific Value for a Key” on page 1458

v “pthread_getspecific_d8_np() — Get the Thread-Specific Value for a Key” on

page 1463

v “pthread_setspecific() — Set the Thread-Specific Value for a Key” on page 1554

pthread_key_create

1472 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_key_delete() — Delete Thread-Specific Data Key

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, version 3 both z/OS V1R7

POSIX(ON)

Format

#define _OPEN_THREADS 2

#include <pthread.h>

int pthread_key_delete(pthread_key_t key);

General Description

pthread_key_delete() deletes thread-specific data keys created with

pthread_key_create(). The thread-specific data values associated with key do not

need to be NULL when the key is deleted. The application is responsible for freeing

any storage or cleaning up data structures referring to thread-specific data

associated with the deleted key in any thread. After key has been deleted, passing

it to any function taking a thread-specific data key results in undefined behavior.

pthread_key_delete() can be called from destructor functions. Calling

pthread_key_delete() will not cause any destructor functions to be invoked. Any

destructor function associated with key when it was created will not be called on

thread exit after key has been deleted.

Returned Value

If successful, pthread_key_delete() returns 0. Upon failure, pthread_key_delete()

returns an error number to indicate the error:

v EINVAL – The key value is invalid

Related Information

v “pthread.h” on page 72

v “pthread_getspecific() — Get the Thread-Specific Value for a Key” on page 1458

v “pthread_getspecific_d8_np() — Get the Thread-Specific Value for a Key” on

page 1463

v “pthread_key_create() — Create Thread-Specific Data Key” on page 1470

v “pthread_setspecific() — Set the Thread-Specific Value for a Key” on page 1554

v “unsetenv() — Delete an Environment Variable” on page 2315

pthread_key_delete

Chapter 3. Part 3. Library Functions 1473

||||

|||
|
|

pthread_kill() — Send a Signal to a Thread

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

#include <signal.h>

int pthread_kill(pthread_t thread, int sig);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <signal.h>

int pthread_kill(pthread_t thread, int sig);

General Description

Directs a signal sig to the thread thread. The value of sig must be either 0 or one of

the symbols defined in signal.h. (See Table 47 on page 1881 for a list of signals.) If

sig is 0, pthread_kill() performs error checking but does not send a signal.

pthread_t is the data type used to uniquely identify a thread. It is returned by

pthread_create() and used by the application in function calls that require a thread

identifier.

Special Behavior for C++

If a thread is sent a signal using pthread_kill() and that thread does not handle the

signal, then destructors for local objects may not be executed.

Usage Note

The SIGTHSTOP and SIGTHCONT signals can be issued by this function.

pthread_kill() is the only function that can issue SIGTHSTOP or SIGTHCONT.

Returned Value

If successful, pthread_kill() returns 0.

If unsuccessful, pthread_kill() returns −1 sends no signal, and sets errno to one of

the following values:

Error Code Description

EINVAL One of the following error conditions exists:

v The thread ID specified by thread is not valid.

v The value of sig is incorrect or is not the number of a supported

signal.

ESRCH No thread could be found corresponding to that specified by the

given thread ID.

pthread_kill

1474 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

||
|

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_kill() returns an error number to indicate the error.

Example

CELEBP35

/* CELEBP35 */

#define _OPEN_THREADS

#include <errno.h>

#include <pthread.h>

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

void *threadfunc(void *parm)

{

 int threadnum;

 int *tnum;

 sigset_t set;

 tnum = parm;

 threadnum = *tnum;

 printf("Thread %d executing\n", threadnum);

 sigemptyset(&set);

 if(sigaddset(&set, SIGUSR1) == −1) {

 perror("Sigaddset error");

 pthread_exit((void *)1);

 }

 if(sigwait(&set) != SIGUSR1) {

 perror("Sigwait error");

 pthread_exit((void *)2);

 }

 pthread_exit((void *)0);

}

main() {

 int status;

 int threadparm = 1;

 pthread_t threadid;

 int thread_stat;

 status = pthread_create(&threadid,

 NULL,

 threadfunc,

 (void *)&threadparm);

 if (status < 0) {

 perror("pthread_create failed");

 exit(1);

 }

 sleep(5);

 status = pthread_kill(threadid, SIGUSR1);

 if (status < 0)

 perror("pthread_kill failed");

 status = pthread_join(threadid, (void *)&thread_stat);

 if (status < 0)

pthread_kill

Chapter 3. Part 3. Library Functions 1475

|

|

perror("pthread_join failed");

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “signal.h” on page 77

v “bsd_signal() — BSD Version of signal()” on page 218

v “kill() — Send a Signal to a Process” on page 1055

v “killpg() — Send a Signal to a Process Group” on page 1058

v “pthread_self() — Get the Caller” on page 1542

v “raise() — Raise Signal” on page 1595

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigignore() — Set Disposition to Ignore a Signal” on page 1910

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigrelse() — Remove a Signal from a Thread” on page 1932

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

pthread_kill

1476 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_mutex_destroy() — Delete a Mutex Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);

General Description

Deletes a mutex object, which identifies a mutex. Mutexes are used to protect

shared resources. mutex is set to an invalid value, but can be reinitialized using

pthread_mutex_init().

Returned Value

If successful, pthread_mutex_destroy() returns 0.

If unsuccessful, pthread_mutex_destroy() returns −1 and sets errno to one of the

following values:

Error Code Description

EBUSY A request has detected an attempt to destroy the object referenced

by mutex while it was locked or referenced by another thread (for

example, while being used in a pthread_cond_wait() or

pthread_cond_timedwait() function).

EINVAL The value specified by mutex is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutex_destroy() returns an error number to indicate the

error.

Example

CELEBP36

/* CELEBP36 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

main() {

 pthread_mutex_t mutex;

 if (pthread_mutex_init(&mutex, NULL) != 0) {

pthread_mutex_destroy

Chapter 3. Part 3. Library Functions 1477

||||

|
|
||

|

|

|
|

perror("pthread_mutex_init() error");

 exit(1);

 }

 if (pthread_mutex_destroy(&mutex) != 0) {

 perror("pthread_mutex_destroy() error");

 exit(2);

 }

}

Related Information

v “pthread.h” on page 72

v “pthread_cond_timedwait() — Wait on a Condition Variable” on page 1430

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

v “pthread_mutex_init() — Initialize a Mutex Object” on page 1479

v “pthread_mutex_lock() — Wait for a Lock on a Mutex Object” on page 1482

v “pthread_mutex_trylock() — Attempt to Lock a Mutex Object” on page 1485

v “pthread_mutex_unlock() — Unlock a Mutex Object” on page 1487

pthread_mutex_destroy

1478 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_mutex_init() — Initialize a Mutex Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t * __restrict__mutex,

 const pthread_mutexattr_t * __restrict__attr);

General Description

Creates a mutex, referenced by mutex, with attributes specified by attr. If attr is

NULL, the default mutex attribute (NONRECURSIVE) is used.

Returned Value

If successful, pthread_mutex_init() returns 0, and the state of the mutex becomes

initialized and unlocked.

If unsuccessful, pthread_mutex_init() returns −1 and sets errno to one of the

following values:

Error Code Description

EAGAIN The system lacked the necessary resources (other than memory) to

initialize another mutex.

EBUSY detected an attempt to re-initialize the object referenced by mutex,

a previously initialized, but not yet destroyed, mutex.

EINVAL The value specified by attr is not valid.

ENOMEM There is not enough memory to acquire a lock. This errno will only

occur in the private path.

EPERM The caller does not have the privilege to perform the operation.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutex_init() returns an error number to indicate the error.

Usage Notes

The _OPEN_SYS_MUTEX_EXT feature switch can be optionally included. If the

feature is set, then significantly larger pthread_mutex_t objects will be defined. The

feature is used for the management of mutex and condition variables in shared

memory.

pthread_mutex_init

Chapter 3. Part 3. Library Functions 1479

||||

|
|
||

|

|
|
|
|

|

|

If the supplied extended pthread_mutex_t object is not in shared memory,

pthread_mutex_init() will treat the object as a non-shared object, since it is not

accessible to any other process.

It is recommended that you define and initialize the pthread_mutex_t objects in the

same compile unit. If you pass a pthread_mutex_t object around to be initialized,

make sure the initialization code has been compiled with the same

_OPEN_SYS_MUTEX_EXT feature setting as the code that defines the object.

The following sequence may cause storage overlay with unpredictable results:

1. Declare or define a pthread_mutex_t object (in shared storage) without #define

of the _OPEN_SYS_MUTEX_EXT feature. The created pthread_mutex_t object

is standard size (i.e. small) without the _OPEN_SYS_MUTEX_EXT feature

defined.

2. Pass the pthread_mutex_t object to another code unit, which was compiled with

the _OPEN_SYS_MUTEX_EXT feature defined, to be initialized as a shared

object. The pthread_mutex_t initialization generally involves the following steps:

a. pthread_mutexattr_init()

b. pthread_mutexattr_setpshared(). Shared pthread_mutex_t objects can be

small or of extended size. The presence of the _OPEN_SYS_MUTEX_EXT

feature declares it to be of extended size.

c. pthread_mutex_init(). This step initializes the passed-in (small)

pthread_mutex_t object as if it is an extended object, causing storage

overlay.

Example

CELEBP37

/* CELEBP37 */

#ifndef _OPEN_THREADS

#define _OPEN_THREADS

#endif

#include <pthread.h>

main() {

 pthread_mutexattr_t attr;

 pthread_mutex_t mut;

 if (pthread_mutexattr_init(&attr) == −1) {

 perror("mutexattr_init error");

 exit(1);

 }

 if (pthread_mutex_init(&mut, &attr) == −1) {

 perror("mutex_init error");

 exit(2);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_cond_init() — Initialize a Condition Variable” on page 1425

v “pthread_cond_timedwait() — Wait on a Condition Variable” on page 1430

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

v “pthread_mutexattr_init() — Initialize a Mutex Attribute Object” on page 1498

pthread_mutex_init

1480 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “pthread_mutex_lock() — Wait for a Lock on a Mutex Object” on page 1482

v “pthread_mutex_trylock() — Attempt to Lock a Mutex Object” on page 1485

v “pthread_mutex_unlock() — Unlock a Mutex Object” on page 1487

pthread_mutex_init

Chapter 3. Part 3. Library Functions 1481

pthread_mutex_lock() — Wait for a Lock on a Mutex Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

General Description

Locks a mutex object, which identifies a mutex. Mutexes are used to protect shared

resources. If the mutex is already locked by another thread, the thread waits for the

mutex to become available. The thread that has locked a mutex becomes its

current owner and remains the owner until the same thread has unlocked it.

When the mutex has the attribute of recursive, the use of the lock may be different.

When this kind of mutex is locked multiple times by the same thread, then a count

is incremented and no waiting thread is posted. The owning thread must call

pthread_mutex_unlock() the same number of times to decrement the count to zero.

Note: If a thread owns mutex at the time it is terminated then z/OS UNIX will

release those locks.

The mutex types are described below:

PTHREAD_MUTEX_NORMAL

A normal type mutex does not detect deadlock. That is, a thread

attempting to relock this mutex without first unlocking it will

deadlock. The mutex is either in a locked or unlocked state for a

thread.

PTHREAD_MUTEX_ERRORCHECK

An errorcheck type mutex provides error checking. That is, a thread

attempting to relock this mutex without first unlocking it will return

with an error. The mutex is either in a locked or unlocked state for a

thread. If a thread attempts to relock a mutex that it has already

locked, it will return with an error. If a thread attempts to unlock a

mutex that is unlocked, it will return with an error.

PTHREAD_MUTEX_RECURSIVE

A recursive type mutex permits a thread to lock many times. That

is, a thread attempting to relock this mutex without first unlocking

will succeed. This type of mutex must be unlocked the same

pthread_mutex_lock

1482 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

number to times it is locked before the mutex will be returned to an

unlocked state. If locked, an error is returned.

PTHREAD_MUTEX_DEFAULT

The default type mutex is mapped to a normal type mutex which

does not detect deadlock. That is, a thread attempting to relock this

mutex without first unlocking it will deadlock. The mutex is either in

a locked or unlocked state for a thread. The normal mutex is the

default type mutex.

Returned Value

If successful, pthread_mutex_lock() returns 0.

If unsuccessful, pthread_mutex_lock() returns −1 and sets errno to one of the

following values:

Error Code Description

EAGAIN The mutex could not be acquired because the maximum number of

recursive locks for mutex has been exceeded. This errno will only

occur in the shared path.

EDEADLK The current thread already owns the mutex, and the mutex has a

kind attribute of __MUTEX_NONRECURSIVE.

EINVAL The value specified by mutex is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutex_lock() returns an error number to indicate the error.

Usage Notes

If the _OPEN_SYS_MUTEX_EXT feature switch is set, all shared (extended) mutex

locks are released when the thread ends, whether normally or abnormally. If the

thread ends normally (i.e. pthread_exit() or pthread_cancel()), the first waiter of the

mutex lock will be resumed. If the thread ends abnormally, the processes of the

mutex waiters for this mutex lock will be terminated.

Example

CELEBP38

/* CELEBP38 */

#ifndef _OPEN_THREADS

#define _OPEN_THREADS

#endif

#include <pthread.h>

#include <stdio.h>

main() {

 pthread_mutex_t mut;

 if (pthread_mutex_init(&mut, NULL) != 0) {

 perror("mutex_lock");

 exit(1);

 }

 if (pthread_mutex_lock(&mut) != 0) {

 perror("mutex_lock");

 exit(2);

 }

pthread_mutex_lock

Chapter 3. Part 3. Library Functions 1483

|

|

puts("the mutex has been locked");

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_cond_init() — Initialize a Condition Variable” on page 1425

v “pthread_cond_wait() — Wait on a Condition Variable” on page 1433

v “pthread_mutex_destroy() — Delete a Mutex Object” on page 1477

v “pthread_mutex_init() — Initialize a Mutex Object” on page 1479

pthread_mutex_lock

1484 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_mutex_trylock() — Attempt to Lock a Mutex Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t *mutex);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t *mutex);

General Description

Locks a mutex object, which identifies a mutex. Mutexes are used to protect shared

resources. If pthread_mutex_trylock() is locked, it returns immediately.

For recursive mutexes, pthread_mutex_trylock() will effectively add to the count of

the number of times pthread_mutex_unlock() must be called by the thread to

release the mutex. (That is, it has the same behavior as a pthread_mutex_lock().)

Returned Value

If successful, pthread_mutex_trylock() returns 0.

If unsuccessful, pthread_mutex_trylock() returns −1 and sets errno to one of the

following values:

Error Code Description

EAGAIN The mutex could not be acquired because the maximum number of

recursive locks for mutex has been exceeded. This errno will only

occur in the shared path.

EBUSY mutex could not be acquired because it was already locked.

EINVAL The value specified by mutex is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutex_trylock() returns an error number to indicate the

error.

Usage Notes

If the _OPEN_SYS_MUTEX_EXT feature switch is set, all shared (extended) mutex

locks are released when the thread ends, whether normally or abnormally. If the

thread ends normally (i.e. pthread_exit() or pthread_cancel()), the first waiter of the

mutex lock will be resumed. If the thread ends abnormally, the processes of the

mutex waiters for this mutex lock will be terminated.

pthread_mutex_trylock

Chapter 3. Part 3. Library Functions 1485

||||

|
|
||

|

|
|
|
|

|

|
|

Example

CELEBP40

/* CELEBP40 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

#include <errno.h>

pthread_mutex_t mutex;

void *thread(void *arg) {

 if (pthread_mutex_trylock(&mutex) != 0)

 if (errno == EBUSY)

 puts("thread was denied access to the mutex");

 else {

 perror("pthread_mutex_trylock() error");

 exit(1);

 }

 else puts("thread was granted the mutex");

}

main() {

 pthread_t thid;

 if (pthread_mutex_init(&mutex, NULL) != 0) {

 perror("pthread_mutex_init() error");

 exit(2);

 }

 if (pthread_create(&thid, NULL, thread, NULL) != 0) {

 perror("pthread_create() error");

 exit(3);

 }

 if (pthread_mutex_trylock(&mutex) != 0)

 if (errno == EBUSY)

 puts("IPT was denied access to the mutex");

 else {

 perror("pthread_mutex_trylock() error");

 exit(4);

 }

 else puts("IPT was granted the mutex");

 if (pthread_join(thid, NULL) != 0) {

 perror("pthread_mutex_trylock() error");

 exit(5);

 }

}

Output

IPT was granted the mutex

thread was denied access to the mutex

Related Information

v “pthread.h” on page 72

v “pthread_mutex_destroy() — Delete a Mutex Object” on page 1477

v “pthread_mutex_init() — Initialize a Mutex Object” on page 1479

pthread_mutex_trylock

1486 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_mutex_unlock() — Unlock a Mutex Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_mutex_unlock(pthread_mutex_t *mutex);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_mutex_unlock(pthread_mutex_t *mutex);

General Description

Releases a mutex object. If one or more threads are waiting to lock the mutex,

pthread_mutex_unlock() causes one of those threads to return from

pthread_mutex_lock() with the mutex object acquired. If no threads are waiting for

the mutex, the mutex unlocks with no current owner.

When the mutex has the attribute of recursive the use of the lock may be different.

When this kind of mutex is locked multiple times by the same thread, then unlock

will decrement the count and no waiting thread is posted to continue running with

the lock. If the count is decremented to zero, then the mutex is released and if any

thread is waiting it is posted.

Returned Value

If successful, pthread_mutex_unlock() returns 0.

If unsuccessful, pthread_mutex_unlock() returns −1 and sets errno to one of the

following values:

Error Code Description

EINVAL The value specified by mutex is not valid.

EPERM The current thread does not own the mutex.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutex_unlock() returns an error number to indicate the

error.

Example

CELEBP41

/* CELEBP41 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

pthread_mutex_unlock

Chapter 3. Part 3. Library Functions 1487

||||

|
|
||

|

|

|
|

#include <errno.h>

pthread_mutex_t mutex;

void *thread(void *arg) {

 if (pthread_mutex_lock(&mutex) != 0) {

 perror("pthread_mutex_lock() error");

 exit(1);

 }

 puts("thread was granted the mutex");

 if (pthread_mutex_unlock(&mutex) != 0) {

 perror("pthread_mutex_unlock() error");

 exit(2);

 }

}

main() {

 pthread_t thid;

 if (pthread_mutex_init(&mutex, NULL) != 0) {

 perror("pthread_mutex_init() error");

 exit(3);

 }

 if (pthread_create(&thid, NULL, thread, NULL) != 0) {

 perror("pthread_create() error");

 exit(4);

 }

 if (pthread_mutex_lock(&mutex) != 0) {

 perror("pthread_mutex_lock() error");

 exit(5);

 }

 puts("IPT was granted the mutex");

 if (pthread_mutex_unlock(&mutex) != 0) {

 perror("pthread_mutex_unlock() error");

 exit(6);

 }

 if (pthread_join(thid, NULL) != 0) {

 perror("pthread_mutex_lock() error");

 exit(7);

 }

}

Output

IPT was granted the mutex

thread was granted the mutex

Related Information

v “pthread.h” on page 72

v “pthread_mutex_destroy() — Delete a Mutex Object” on page 1477

v “pthread_mutex_init() — Initialize a Mutex Object” on page 1479

v “pthread_mutex_lock() — Wait for a Lock on a Mutex Object” on page 1482

pthread_mutex_unlock

1488 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_mutexattr_destroy() — Destroy a Mutex Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#define _OPEN_SYS

#include <pthread.h>

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

SUSV3

#define _UNIX03_THREADS

#define _OPEN_SYS

#include <pthread.h>

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

General Description

Destroys an initialized mutex attribute object. With a mutex attribute object, you can

manage the characteristics of mutexes in your application. It defines the set of

values to be used for the mutex during its creation. By establishing a mutex

attribute object, you can create many mutexes with the same set of characteristics,

without defining those characteristics for each mutex. pthread_mutexattr_init() is

used to define a mutex attribute object.

Returned Value

If successful, pthread_mutexattr_destroy() returns 0.

If unsuccessful, pthread_mutexattr_destroy() returns −1 and sets errno to one of the

following values:

Error Code Description

EINVAL The value specified for attr is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutexattr_destroy() returns an error number to indicate the

error.

Example

CELEBP42

/* CELEBP42 */

#define _OPEN_THREADS

#define _OPEN_SYS /* Needed to identify __MUTEX_RESCURSIVE */

#include <pthread.h>

#include <stdio.h>

main() {

 pthread_mutexattr_t attr;

pthread_mutexattr_destroy

Chapter 3. Part 3. Library Functions 1489

||||

|
|
||

|

|
|
|
|
|

|

|
|

pthread_mutex_t mutex;

 if (pthread_mutexattr_init(&attr) != 0) {

 perror("pthread_mutex_attr_init() error");

 exit(1);

 }

 if (pthread_mutexattr_setkind_np(&attr, __MUTEX_RECURSIVE) != 0) {

 perror("pthread_mutex_attr_setkind_np() error");

 exit(2);

 }

 if (pthread_mutex_init(&mutex, &attr) != 0) {

 perror("pthread_mutex_init() error");

 exit(3);

 }

 if (pthread_mutexattr_destroy(&attr) != 0) {

 perror("pthread_mutex_attr_destroy() error");

 exit(4);

 }

}

Related Information

v “pthread.h” on page 72

v “pthread_cond_init() — Initialize a Condition Variable” on page 1425

v “pthread_create() — Create a Thread” on page 1448

v “pthread_mutexattr_init() — Initialize a Mutex Attribute Object” on page 1498

pthread_mutexattr_destroy

1490 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_mutexattr_getkind_np() — Get Kind from a Mutex Attribute

Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_THREADS

#define _OPEN_SYS

#include <pthread.h>

int pthread_mutexattr_getkind_np(pthread_mutexattr_t *attr, int *kind);

General Description

Gets the attribute kind from the mutex attribute object attr. With a mutex attribute

object, you can manage the characteristics of mutexes in your application. It defines

the set of values to be used for the mutex during its creation. By establishing a

mutex attribute object, you can create many mutexes with the same set of

characteristics without defining those characteristics for each and every mutex.

The values for the attribute kind are:

__MUTEX_NONRECURSIVE

A nonrecursive mutex can be locked only once. That is, the mutex

is either in a locked or unlocked state for a thread. If a thread

attempts to lock a mutex that it has already locked, an error is

returned.

_MUTEX_RECURSIVE

A recursive mutex can be locked more than once by the same

thread. A count of the number of times the mutex has been locked

is maintained. The mutex is unlocked when pthread_mutex_unlock()

is performed an equal number of times.

__MUTEX_NONRECURSIVE + __MUTEX_NODEBUG

A nonrecursive mutex can be given an additional attribute,

NODEBUG. This indicates that state changes to this mutex will not

be reported to the debug interface, even if present.

__MUTEX_RECURSIVE + __MUTEX_NODEBUG

A recursive mutex can be given an additional attribute, NODEBUG.

This indicates that state changes to this mutex will not be reported

to the debug interface, even if present.

Returned Value

If successful, pthread_mutexattr_getkind_np() returns 0.

If unsuccessful, pthread_mutexattr_getkind_np() returns −1 and sets errno to one of

the following values:

Error Code Description

EINVAL The value specified for attr is not valid.

pthread_mutexattr_getkind_np

Chapter 3. Part 3. Library Functions 1491

Example

CELEBP43

/* CELEBP43 */

#pragma runopts(TEST(ALL))

#ifndef _OPEN_THREADS

#define _OPEN_THREADS

#define _OPEN_SYS /* Needed to identify __MUTEX_RECURSIVE,

 __MUTEX_NODEBUG, and __MUTEX_NONRECURSIVE */

#endif

#include <stdio.h>

#include <pthread.h>

pthread_mutexattr_t attr;

int kind;

main() {

 if (pthread_mutexattr_init(&attr) == −1) {

 perror("pthread_mutexattr_init()");

 exit(1);

 }

 if (pthread_mutexattr_setkind_np(&attr, \

 __MUTEX_RECURSIVE + __MUTEX_NODEBUG) == −1) {

 perror("pthread_mutexattr_setkind_np()");

 exit(1);

 }

 if (pthread_mutexattr_getkind_np(&attr, &kind) == −1) {

 perror("pthread_mutexattr_getkind_np()");

 exit(1);

 }

 switch(kind) {

 case __MUTEX_NONRECURSIVE:

 printf("\nmutex will be nonrecursive");

 break;

 case __MUTEX_NONRECURSIVE+__MUTEX_NODEBUG:

 printf("\nmutex will be nonrecursive + nodebug");

 break;

 case __MUTEX_RECURSIVE:

 printf("\nmutex will be recursive");

 break;

 case __MUTEX_RECURSIVE+__MUTEX_NODEBUG:

 printf("\nmutex will be recursive + nodebug");

 break;

 default:

 printf("\nattribute kind value returned by \

 pthread_mutexattr_getkind_np() unrecognized");

 exit(1);

 }

 exit(0);

}

Output

a default mutex will be nonrecursive

pthread_mutexattr_getkind_np

1492 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “pthread.h” on page 72

v “pthread_mutexattr_init() — Initialize a Mutex Attribute Object” on page 1498

v “pthread_mutexattr_setkind_np() — Set Kind for a Mutex Attribute Object” on

page 1500

pthread_mutexattr_getkind_np

Chapter 3. Part 3. Library Functions 1493

pthread_mutexattr_getpshared() — Get the Process-Shared Mutex

Attribute

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr_t *attr, int *pshared);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr_t *__restrict__attr,

 int * __restrict__ pshared);

General Description

The pthread_mutexattr_getpshared() function gets the attribute pshared for the

mutex attribute object attr. By using attr with the pthread_mutexattr_getpshared()

function you can determine its process-shared value for a mutex.

The valid values for the attribute pshared are:

PTHREAD_PROCESS_SHARED

Permits a mutex to be operated upon by any thread that has

access to the memory where the mutex is allocated, even if the

mutex is allocated in memory that is shared by multiple processes.

PTHREAD_PROCESS_PRIVATE

A mutex can only be operated upon by threads created within the

same process as the thread that initialized the mutex. When a new

process is created by the parent process it will receive a different

copy of the private mutex and this new mutex can only be used to

serialize between threads in the child process. The default value of

the attribute is PTHREAD_PROCESS_PRIVATE.

Returned Value

If successful, pthread_mutexattr_getpshared() returns 0.

If unsuccessful, pthread_mutexattr_getpshared() returns −1 and sets errno to one of

the following values:

Error Code Description

EINVAL The value specified for attr is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutexattr_getpshared() returns an error number to indicate

the error.

pthread_mutexattr_getpshared

1494 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|

|
|
|
|

|

|
|

Related Information

v “pthread.h” on page 72

v “pthread_mutexattr_setpshared() — Set the Process-Shared Mutex Attribute” on

page 1503

v “pthread_rwlockattr_getpshared() — Get the Processed-Shared Read/Write Lock

Attribute” on page 1534

v “pthread_rwlockattr_setpshared() — Set the Process-Shared Read/Write Lock

Attribute” on page 1537

pthread_mutexattr_getpshared

Chapter 3. Part 3. Library Functions 1495

pthread_mutexattr_gettype() — Get Type of Mutex Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_mutexattr_gettype(const pthread_mutexattr_t * __restrict__attr,

 int * __restrict__type);

General Description

The pthread_mutexattr_gettype() function gets the attribute type from the mutex

attribute object attr.

A mutex attribute object allows you to manage the characteristics of mutexes in

your application. It defines the set of values to be used for the mutex during its

creation. By establishing a mutex attribute object, you can create many mutexes

with the same set of characteristics, without needing to define the characteristics for

each and every mutex.

The values for the attribute type are:

PTHREAD_MUTEX_NORMAL

A normal type mutex does not detect deadlock. That is, a thread

attempting to relock this mutex without first unlocking it will

deadlock. The mutex is either in a locked or unlocked state for a

thread.

PTHREAD_MUTEX_ERRORCHECK

An errorcheck type mutex provides error checking. That is, a thread

attempting to relock this mutex without first unlocking it will return

with an error. The mutex is either in a locked or unlocked state for a

thread. If a thread attempts to relock a mutex that it has already

locked, it will return with an error. If a thread attempts to unlock a

mutex that is unlocked, it will return with an error.

PTHREAD_MUTEX_RECURSIVE

A recursive type mutex permits a thread to lock many times. That

is, a thread attempting to relock this mutex without first unlocking

will succeed. This type of mutex must be unlocked the same

number to times it is locked before the mutex will be returned to an

unlocked state. If locked, an error is returned.

PTHREAD_MUTEX_DEFAULT

The default type mutex is mapped to a normal type mutex which

does not detect deadlock. That is, a thread attempting to relock this

pthread_mutexattr_gettype

1496 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|

|
|
|
|

mutex without first unlocking it will deadlock. The mutex is either in

a locked or unlocked state for a thread. The normal mutex is the

default type mutex.

__MUTEX_NONRECURSIVE

A nonrecursive mutex can be locked only once. That is, the mutex

is either in a locked or unlocked state for a thread. If a thread

attempts to lock a mutex that it has already locked, an error is

returned.

__MUTEX_RECURSIVE

A recursive mutex can be locked more than once by the same

thread. A count of the number of times the mutex has been locked

is maintained. The mutex is unlocked when pthread_mutex_unlock()

is performed an equal number of times.

__MUTEX_NONRECURSIVE + __MUTEX_NODEBUG

A nonrecursive mutex can be given an additional attribute,

NODEBUG. This indicates that state changes to this mutex will not

be reported to the debug interface, even if present.

__MUTEX_RECURSIVE + __MUTEX_NODEBUG

A recursive mutex can be given an additional attribute, NODEBUG.

This indicates that state changes to this mutex will not be reported

to the debug interface, even if present.

Returned Value

If successful, pthread_mutexattr_gettype() returns 0.

If unsuccessful, pthread_mutexattr_gettype() returns −1 and sets errno to one of the

following values:

Error Code Description

EINVAL The value specified for attr is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutexattr_gettype() returns an error number to indicate the

error.

Related Information

v “pthread.h” on page 72

v “pthread_mutexattr_settype() — Set Type of Mutex Attribute Object” on page

1505

pthread_mutexattr_gettype

Chapter 3. Part 3. Library Functions 1497

|

|
|

pthread_mutexattr_init() — Initialize a Mutex Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#define _OPEN_SYS

#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

SUSV3

#define _UNIX03_THREADS

#define _OPEN_SYS

#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

General Description

Initializes a mutex attribute object. With a mutex attribute object, you can manage

the characteristics of mutexes in your application. It defines the set of values to be

used for the mutex during its creation. By establishing a mutex attribute object, you

can create many mutexes with the same set of characteristics, without defining

those characteristics for each and every mutex.

For a valid mutex attribute, refer to “pthread_mutexattr_setkind_np() — Set Kind for

a Mutex Attribute Object” on page 1500.

Returned Value

If successful, pthread_mutexattr_init() returns 0.

If unsuccessful, pthread_mutexattr_init() returns −1 and sets errno to one of the

following values:

Error Code Description

ENOMEM There is not enough memory to initialize attr.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutexattr_init() returns an error number to indicate the

error.

Example

CELEBP44

/* CELEBP44 */

#define _OPEN_THREADS

#define _OPEN_SYS /* Needed to identify __MUTEX_RECURSIVE */

#include <pthread.h>

#include <stdio.h>

pthread_mutexattr_init

1498 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|

|

|
|

main() {

 pthread_mutexattr_t attr;

 pthread_mutex_t mutex;

 if (pthread_mutexattr_init(&attr) != 0) {

 perror("pthread_mutex_attr_init() error");

 exit(1);

 }

 if (pthread_mutexattr_setkind_np(&attr, __MUTEX_RECURSIVE) != 0) {

 perror("pthread_mutex_attr_setkind_np() error");

 exit(2);

 }

 if (pthread_mutex_init(&mutex, &attr) != 0) {

 perror("pthread_mutex_init() error");

 exit(3);

 }

 if (pthread_mutexattr_destroy(&attr) != 0) {

 perror("pthread_mutex_attr_destroy() error");

 exit(4);

 }

}

Related Information

v “pthread.h” on page 72

v “pthread_cond_init() — Initialize a Condition Variable” on page 1425

v “pthread_create() — Create a Thread” on page 1448

v “pthread_mutex_init() — Initialize a Mutex Object” on page 1479

pthread_mutexattr_init

Chapter 3. Part 3. Library Functions 1499

pthread_mutexattr_setkind_np() — Set Kind for a Mutex Attribute

Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_THREADS

#define _OPEN_SYS

#include <pthread.h>

int pthread_mutexattr_setkind_np(pthread_mutexattr_t *attr, int kind);

General Description

Sets the attribute kind for the mutex attribute object attr. With a mutex attribute

object, you can manage the characteristics of mutexes in your application. It defines

the set of values to be used for the mutex during its creation. By establishing a

mutex attribute object, you can create many mutexes with the same set of

characteristics, without defining those characteristics for each and every mutex.

The valid values for the attribute kind are:

__MUTEX_NONRECURSIVE

A nonrecursive mutex can be locked only once. That is, the mutex

is either in a locked or unlocked state for a thread. If a thread

attempts to lock a mutex that it has already locked, an error is

returned.

__MUTEX_RECURSIVE

A recursive mutex can be locked more than once by the same

thread. A count of the number of times the mutex has been locked

is maintained. The mutex is unlocked when an equal number of

pthread_mutex_unlock() functions are performed.

__MUTEX_NONRECURSIVE + __MUTEX_NODEBUG

A nonrecursive mutex can be given an additional attribute,

NODEBUG. This indicates that state changes to this mutex will not

be reported to the debug interface, even though it is present.

__MUTEX_RECURSIVE + __MUTEX_NODEBUG

A recursive mutex can be given an additional attribute, NODEBUG.

This indicates that state changes to this mutex will not be reported

to the debug interface, even though it is present.

Returned Value

If successful, pthread_mutexattr_setkind_np() returns 0.

If unsuccessful, pthread_mutexattr_setkind_np() returns −1 and sets errno to one of

the following values:

Error Code Description

EINVAL The value specified for attr or kind is not valid.

pthread_mutexattr_setkind_np

1500 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Example

CELEBP45

/* CELEBP45 */

#pragma runopts(TEST(ALL))

#ifndef _OPEN_THREADS

#define _OPEN_THREADS

#define _OPEN_SYS /* Needed to identify __MUTEX_NODEBUG */

#endif

#include <stdio.h>

#include <pthread.h>

pthread_mutexattr_t attr;

int kind;

main() {

 if (pthread_mutexattr_init(&attr) == −1) {

 perror("pthread_mutexattr_init()");

 exit(1);

 }

 if (pthread_mutexattr_setkind_np(&attr, \

 __MUTEX_RECURSIVE + __MUTEX_NODEBUG) == −1) {

 perror("pthread_mutexattr_setkind_np()");

 exit(1);

 }

 if (pthread_mutexattr_getkind_np(&attr, &kind) == −1) {

 perror("pthread_mutexattr_getkind_np()");

 exit(1);

 }

 switch(kind) {

 case __MUTEX_NONRECURSIVE:

 printf("\nmutex will be nonrecursive");

 break;

 case __MUTEX_NONRECURSIVE+__MUTEX_NODEBUG:

 printf("\nmutex will be nonrecursive + nodebug");

 break;

 case __MUTEX_RECURSIVE:

 printf("\nmutex will be recursive");

 break;

 case __MUTEX_RECURSIVE+__MUTEX_NODEBUG:

 printf("\nmutex will be recursive + nodebug");

 break;

 default:

 printf("\nattribute kind value returned by \

 pthread_mutexattr_getkind_np() unrecognized");

 exit(1);

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_mutexattr_init() — Initialize a Mutex Attribute Object” on page 1498

pthread_mutexattr_setkind_np

Chapter 3. Part 3. Library Functions 1501

v “pthread_mutexattr_getkind_np() — Get Kind from a Mutex Attribute Object” on

page 1491

pthread_mutexattr_setkind_np

1502 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_mutexattr_setpshared() — Set the Process-Shared Mutex

Attribute

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared);

General Description

The pthread_mutexattr_setpshared() function sets the attribute pshared for the

mutex attribute object attr.

A mutex attribute object allows you to manage the characteristics of mutexes in

your application. It defines the set of values to be used for a mutex during its

creation. By establishing a mutex attribute object, you can create many mutexes

with the same set of characteristics, without needing to define the characteristics for

each and every mutex. By using attr with the pthread_mutexattr_setpshared()

function you can define its process-shared value for a mutex.

The valid values for the attribute pshared are:

PTHREAD_PROCESS_SHARED

Permits a mutex to be operated upon by any thread that has

access to the memory where the mutex is allocated, even if the

mutex is allocated in memory that is shared by multiple processes.

PTHREAD_PROCESS_PRIVATE

A mutex can only be operated upon by threads created within the

same process as the thread that initialized the mutex; if threads of

differing processes attempt to operate on such a mutex, only the

process to initialize the mutex will succeed. When a new process is

created by the parent process it will receive a different copy of the

private mutex and this new mutex can only be used to serialize

between threads in the child process. The default value of the

attribute is PTHREAD_PROCESS_PRIVATE

Returned Value

If successful, pthread_mutexattr_setpshared() returns 0.

If unsuccessful, pthread_mutexattr_setpshared() returns −1 and sets errno to one of

the following values:

pthread_mutexattr_setpshared

Chapter 3. Part 3. Library Functions 1503

||||

|
|
||
|
|

Error Code Description

EINVAL The value specified for attr or pshared is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutexattr_setpshared() returns an error number to indicate

the error.

Related Information

v “pthread.h” on page 72

v “pthread_mutexattr_getpshared() — Get the Process-Shared Mutex Attribute” on

page 1494

v “pthread_rwlockattr_getpshared() — Get the Processed-Shared Read/Write Lock

Attribute” on page 1534

v “pthread_rwlockattr_setpshared() — Set the Process-Shared Read/Write Lock

Attribute” on page 1537

pthread_mutexattr_setpshared

1504 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|

pthread_mutexattr_settype() — Set Type of Mutex Attribute Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

General Description

The pthread_mutexattr_settype() function sets the attribute type from the mutex

attribute object attr.

A mutex attribute object allows you to manage the characteristics of mutexes in

your application. It defines the set of values to be used for the mutex during its

creation. By establishing a mutex attribute object, you can create many mutexes

with the same set of characteristics, without needing to define the characteristics for

each and every mutex.

The values for the attribute type are:

PTHREAD_MUTEX_NORMAL

A normal type mutex does not detect deadlock. That is, a thread

attempting to relock this mutex without first unlocking it will

deadlock. The mutex is either in a locked or unlocked state for a

thread.

PTHREAD_MUTEX_ERRORCHECK

An errorcheck type mutex provides error checking. That is, a thread

attempting to relock this mutex without first unlocking it will return

with an error. The mutex is either in a locked or unlocked state for a

thread. If a thread attempts to relock a mutex that it has already

locked, it will return with an error. If a thread attempts to unlock a

mutex that is unlocked, it will return with an error.

PTHREAD_MUTEX_RECURSIVE

A recursive type mutex permits a thread to lock many times. That

is, a thread attempting to relock this mutex without first unlocking

will succeed. This type of mutex must be unlocked the same

number of times it is locked before the mutex will be returned to an

unlocked state. If locked, an error is returned.

PTHREAD_MUTEX_DEFAULT

The default type mutex is mapped to a normal type mutex which

does not detect deadlock. That is, a thread attempting to relock this

pthread_mutexattr_settype

Chapter 3. Part 3. Library Functions 1505

||||

|
|
||
|
|

|
|
|
|

mutex without first unlocking it will deadlock. The mutex is either in

a locked or unlocked state for a thread. The normal mutex is the

default type mutex.

__MUTEX_NONRECURSIVE

A nonrecursive mutex can be locked only once. That is, the mutex

is either in a locked or unlocked state for a thread. If a thread

attempts to lock a mutex that it has already locked, an error is

returned.

__MUTEX_RECURSIVE

A recursive mutex can be locked more than once by the same

thread. A count of the number of times the mutex has been locked

is maintained. The mutex is unlocked when pthread_mutex_unlock()

is performed an equal number of times.

__MUTEX_NONRECURSIVE + __MUTEX_NODEBUG

A nonrecursive mutex can be given an additional attribute,

NODEBUG. This indicates that state changes to this mutex will not

be reported to the debug interface, even if present.

__MUTEX_RECURSIVE + __MUTEX_NODEBUG

A recursive mutex can be given an additional attribute, NODEBUG.

This indicates that state changes to this mutex will not be reported

to the debug interface, even if present.

Returned Value

If successful, pthread_mutexattr_settype() returns 0.

If unsuccessful, pthread_mutexattr_settype() returns −1 and sets errno to one of the

following values:

Error Code Description

EINVAL Either the value type or the value specified for attr is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_mutexattr_settype() returns an error number to indicate the

error.

Related Information

v “pthread.h” on page 72

v “pthread_mutexattr_gettype() — Get Type of Mutex Attribute Object” on page

1496

pthread_mutexattr_settype

1506 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|
|

pthread_once() — Invoke a Function Once

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;

int pthread_once(pthread_once_t *once_control, void(*init_routine)());

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;

int pthread_once(pthread_once_t *once_control, void(*init_routine)());

General Description

Establishes a function that will be executed only once in a given process. You may

have each thread call the function, but only the first call causes the function to run.

This is true even if called simultaneously by multiple threads. For example, a mutex

or a thread-specific data key must be created exactly once. Calling pthread_once()

prevents the code that creates a mutex or thread-specific data from being called by

multiple threads. Without this routine, the execution must be serialized so that only

one thread performs the initialization. Other threads that reach the same point in the

code are delayed until the first thread is finished.

pthread_once() is used in conjunction with a once control variable of the type

pthread_once_t. This variable is a data type that you initialize to the

PTHREAD_ONCE_INIT constant. It is then passed as a parameter on the

pthread_once() function call.

init_routine is a normal function. It can be invoked directly outside of

pthread_once(). In addition, it is the once_control variable that determines if the

init_routine has been invoked. Calling pthread_once() with the same routine but with

different once_control variables, will result in the routine being called twice, once for

each once_control variable.

Returned Value

If successful, pthread_once() returns 0.

If unsuccessful, pthread_once() returns −1.

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_once() returns an error number to indicate the error.

pthread_once

Chapter 3. Part 3. Library Functions 1507

||||

|
|
||

|

|
|
|
|
|

|

|

Example

CELEBP46

/* CELEBP46 */

#ifndef _OPEN_THREADS

#define _OPEN_THREADS

#endif

#include <stdio.h>

#include <errno.h>

#include <pthread.h>

#define threads 3

int once_counter=0;

pthread_once_t once_control = PTHREAD_ONCE_INIT;

void once_fn(void)

{

 puts("in once_fn");

 once_counter++;

}

void *threadfunc(void *parm)

{

 int status;

 int threadnum;

 int *tnum;

 tnum = parm;

 threadnum = *tnum;

 printf("Thread %d executing\n", threadnum);

 status = pthread_once(&once_control, once_fn);

 if (status < 0)

 printf("pthread_once failed, thread %d, errno=%d\n", threadnum,

 errno);

 pthread_exit((void *)0);

}

main() {

 int status;

 int i;

 int threadparm[threads];

 pthread_t threadid[threads];

 int thread_stat[threads];

 for (i=0; i<threads; i++) {

 threadparm[i] = i+1;

 status = pthread_create(&threadid[i],

 NULL,

 threadfunc,

 (void *)&threadparm[i]);

 if (status < 0) {

 printf("pthread_create failed, errno=%d", errno);

 exit(2);

 }

 }

 for (i=0; i<threads; i++) {

 status = pthread_join(threadid[i], (void *)&thread_stat[i]);

 if (status < 0)

 printf("pthread_join failed, thread %d, errno=%d\n", i+1, errno);

 if (thread_stat[i] != 0)

pthread_once

1508 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

printf("bad thread status, thread %d, status=%d\n", i+1,

 thread_stat[i]);

 }

 if (once_counter != 1)

 printf("once_fn did not get control once, counter=%d",once_counter);

 exit(0);

}

Output

Thread 1 executing

in once_fn

Thread 2 executing

Thread 3 executing

Related Information

v “pthread.h” on page 72

pthread_once

Chapter 3. Part 3. Library Functions 1509

pthread_quiesce_and_get_np() — Freeze/Unfreeze Threads

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R10

POSIX(ON)

Format

#define _OPEN_SYS

#include <stddef.h>

#include <pthread.h>

int pthread_quiesce_and_get_np(int req, __thdq_t **thdq);

General Description

Restriction: This function is not supported in AMODE 64.

Freezes or unfreezes a set of threads belonging to the caller’s process. State data

can also be retrieved for the frozen threads.

The req parameter determines which function is performed, and can be one of the

following values that are defined in pthread.h:

__THDQ_FREEZE

This request causes pthread_quiesce_and_get_np() to freeze each

thread-specified in the passed-in __thdq_t object. No status for the

frozen threads is returned.

 When control returns to the caller after a successful __THDQ_FREEZE

request, the caller must not invoke any Language Environment

functions until all threads have been unfrozen. If Language

Environment functions are called while other threads are frozen,

unpredictable results (hangs or deadlocks in particular) may occur.

 The thdq parameter must point to a variable containing the address

of a partly-filled in __thdq_t object. The following fields must be

filled in before calling pthread_quiesce_and_get_np():

v __eye

v __length

v __version

v __numents

v __flags (should be cleared out)

v __array[].__thid in the first __numents array entries

v __array[].__flags in the first __numents array entries (should be

cleared out)

__THDQ_FREEZE_GET

This request causes pthread_quiesce_and_get_np() to freeze each

thread-specified in the passed-in __thdq_t object. In addition, status

is returned for each frozen thread in the passed-in __thdq_t area.

 When control returns to the caller after a successful

__THDQ_FREEZE_GET request, the caller may invoke other Language

Environment functions, since the frozen threads are in a safe state.

pthread_quiesce_and_get_np

1510 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|||
|
|

The thdq parameter must point to a variable containing the address

of a partly-filled in __thdq_t object. The following fields must be

filled in when pthread_quiesce_and_get_np() is called:

v __eye

v __length

v __version

v __numents

v __flags (should be cleared out)

v __array[].__thid in the first __numents array entries

v __array[].__flags in the first __numents array entries (should be

cleared out)

__THDQ_UNFREEZE_ALL

This request causes pthread_quiesce_and_get_np() to unfreeze

any threads in the caller’s process that are currently frozen.

 The thdq parameter is ignored, and may be a NULL pointer.

The thdq parameter points to a variable used to contain the address of a __thdq_t

structure.

For the __THDQ_FREEZE_GET request, this area is provided by the caller of

pthread_quiesce_and_get_np(), and thdq must point to a partly-filled in __thdq_t

object when pthread_quiesce_and_get_np() is called. Upon return the other fields in

the caller-provided __thdq_t object will be filled in the status of each frozen thread.

If pthread_quiesce_and_get_np() fails (return code is -1), it is possible that the

__thdq_t area is not completely filled in. When pthread_quiesce_and_get_np()

succeeds, the __thdq_t area is completely filled in (except in the case of

__THDQ_FREEZE, which returns no information).

The fields in the __thdq_t structure are:

__eye This is the __thdq_t eyecatcher. The system sets

this to __THDQ_ID in the system-provided __thdq_t

area. The caller must set this field to __THDQ_ID

when passing in a __thdq_t to be filled in by the

system.

__length This field can be set to 0 or to the overall length of

the __thdq_t structure. The maximum value that

can be set in __length is 65535 bytes. If the thdq_t

area is longer than 65535 bytes, the __length field

must be set to 0. Whenever there are more than

255 threads to freeze, the thdq_t area will be longer

than 65535 bytes, so the __length field must be set

to 0 in this case.

 If this field is nonzero, the caller must set this

length so as to include at least all bytes in the first

__numents __array[] entries, whenever the

__thdq_t area is passed in to

pthread_quiesce_and_get_np(). The

__THDQ_LENGTH(n) macro defined in pthread.h can

be used to compute the minimum length of an

__thdq_t object required to hold information for n

threads. If the __THDQ_LENGTH(n) macro is used,

stddef.h must be included in the compilation.

pthread_quiesce_and_get_np

Chapter 3. Part 3. Library Functions 1511

__version This is the version of the __thdq_t object. The

system sets this to __THDQ_VER in the

system-provided __thdq_t area. The caller must set

this field to __THDQ_VER when passing in a __thdq_t

object to be filled in by the system.

__numents This is the number of valid __array[] entries in the

__thdq_t structure. This value is filled in by the

system in a system-provided __thdq_t structure.

For caller-provided __thdq_t structures, it must be

filled in before pthread_quiesce_and_get_np() is

called.

__flags This field contains flags that pertain to the

pthread_quiesce_and_get_np() request. In

caller-provided __thdq_t structures, this field should

be cleared out when pthread_quiesce_and_get_np()

is called.

__flags.__allsafe This flag is set by the system to indicate that no

Language Environment threads have been frozen in

an unsafe state.

 When this flag is on, there may be non-Language

Environment threads or Language Environment

threads belonging to some other Language

Environment application. These threads are

indicated by the __array[].__flags.__otherle flag

-- as described here.

 If the _flags.__allsafe flag is off when

pthread_quiesce_and_get_np() returns from a

__THDQ_FREEZE_GET request, the return code will

normally be -1 and errno will be set to EAGAIN. One

or more of the __array[].__flags.__frzsafe flag

bits will be off, indicating which threads could not

be frozen in a safe state.

__array[] There is one __array[] entry for each frozen

thread, or thread to be frozen. Only the first numents

entries are valid in __array[]. The various fields in

each __array[] entry apply to the thread whose

thread ID is in the __array[].__thid field.

__array[].__thid For __THDQ_FREEZE and __THDQ_FREEZE_GET

requests, the caller of

pthread_quiesce_and_get_np() sets this field to the

thread ID (of type pthread_t) of one thread to be

frozen.

__array[].__flags This field contains flags that pertain to this thread.

When the caller of pthread_quiesce_and_get_np()

provides the __thdq_t area, this field should be

cleared out before calling

pthread_quiesce_and_get_np().

__array[].__flags.__notfound For __THDQ_FREEZE_GET requests, the system sets

this flag on when the thread-specified by the

__array[].__thid field is not found in the caller’s

process. In this case,

pthread_quiesce_and_get_np

1512 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_quiesce_and_get_np() fails with return

code -1 and sets errno to ESRCH. Other __array[]

entries (especially those following this one) may not

be filled in, and contents of those entries is

unspecified. In addition, the contents of this array

entry other than this flag bit are also unspecified.

__array[].__flags.__frzsafe For __THDQ_FREEZE_GET requests, the system sets

this flag if the thread was frozen in a safe state.

 This flag is always turned on if the

__array[].__flags.__otherle flag is set (see

below). It is assumed that the thread is always

frozen in a safe state as far as the invoker of

pthread_quiesce_and_get_np() is concerned.

__array[].__flags.__otherle For __THDQ_FREEZE_GET requests, the system sets

this flag when the thread indicated by

__array[].__thid does not belong to the Language

Environment program that called

pthread_quiesce_and_get_np(). (This situation can

occur for POSIX(ON) TSO commands that are

invoked from the TSO/E OMVS command. This

situation can also occur if the caller’s application

created tasks using MVS services, and these tasks

invoked kernel services (without using Language

Environment).) In this case, the

__array[].__downstackptr,

__array[].__upstackptr, and __array[].__caaptr

fields are all returned as NULL.

 The caller of pthread_quiesce_and_get_np() should

not normally be interested in this thread, since it

was not created by Language Environment for the

invoker’s application.

__array[].__flags.__nodata For __THDQ_FREEZE_GET requests, this flag is set on

when the system does not return any status

information for this thread. The PSW, registers, and

other status information are not valid for this thread.

The thread may still be in the process of being

created.

__array[].__flags.__quickfrz This flag is used internally by the system.

__array[].__flags.__regsok For __THDQ_FREEZE_GET requests, this flag is set on

when the system returns valid PSW and register

data for this thread.

__array[].__regsh[16] For __THDQ_FREEZE_GET requests, the system sets

this 64-byte field to the contents of the 16 high

registers at the time that the thread-specified by

__array[].__thid was frozen.

__array[].__regsh[n] contains the data for the

high half of register n.

__array[].__regsl[16] For __THDQ_FREEZE_GET requests, the system sets

this 64-byte field to the contents of the 16 low

registers at the time that the thread-specified by

pthread_quiesce_and_get_np

Chapter 3. Part 3. Library Functions 1513

__array[].__thid was frozen.

__array[].__regsl[n] contains the data for the low

half of register n.

__array[].__downstackptr For __THDQ_FREEZE_GET requests, the system sets

this field to the start of the oldest XPLINK stack

segment for this thread. If there is no XPLINK stack

for this thread, this field is set to 0.

__array[].__upstackptr For __THDQ_FREEZE_GET requests, the system sets

this field to the start of the oldest non-XPLINK user

stack segment for this thread. If there is no

non-XPLINK stack for this thread, this field is set to

0.

__array[].__pswia For __THDQ_FREEZE_GET requests, the system sets

this field to the PSW instruction address at the time

the thread-specified by __array[].__thid was

frozen.

__array[].__caaptr For __THDQ_FREEZE_GET requests, the system sets

this field to the address of the CAA (Common

Anchor Area) for the thread-specified by

__array[].__thid. If this thread has no CAA

(Common Anchor Area), this field will be 0.

__array[].__tcbptr For __THDQ_FREEZE_GET requests, the system sets

this field to the address of the TCB for the

thread-specified by __array[].__thid.

Returned Value

If successful, pthread_quiesce_and_get_np() returns 0.

If unsuccessful, pthread_quiesce_and_get_np() returns −1 and sets errno to one of

the following values. If pthread_quiesce_and_get_np() fails, no threads are frozen

as a result of the failing request when pthread_quiesce_and_get_np() returns.

Error Code Description

EAGAIN The requested function cannot be performed at this time due to

conflicts with other quiesce operations currently in progress.

 This error can occur under the following circumstances:

v Another thread is in the process of invoking

pthread_quiesce_and_get_np(), cdump(), csnap(), ctrace(),

CEE3DMP __heaprpt(), or any other Language Environment

function that causes threads to be temporarily quiesced or

frozen.

Note that dumps taken automatically after program checks or

other errors may also cause an EAGAIN errno.

v For a __THDQ_FREEZE_GET request, one or more threads could not

be frozen in a safe state within the required time limit.

In this case, the __flags.__allsafe flag and one or more of the

__array[].__flags.__frzsafe flags are probably off. These flags

indicate which threads could not be frozen in a safe state.

pthread_quiesce_and_get_np

1514 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The EAGAIN error may be temporary. It may be useful to retry

pthread_quiesce_and_get() a finite number of times, perhaps with a

short pause between each retry.

EINVAL One of the parameters contains a value that is not valid.

 Error conditions that result in EINVAL include (but are not limited to)

the following:

v The req parameter did not specify one of the valid requests.

v For __THDQ_FREEZE and __THDQ_FREEZE_GET requests, no __thdq_t

object was passed in (*thdq was NULL).

v For __THDQ_FREEZE and __THDQ_FREEZE_GET requests, the

passed-in __thdq_t object did not start on a word boundary.

v For __THDQ_FREEZE and __THDQ_FREEZE_GETthdq was NULL.

v For __THDQ_FREEZE and __THDQ_FREEZE_GET requests, __numents

was not 1 or more.

v For __THDQ_FREEZE and __THDQ_FREEZE_GET requests, __eye was

not set to __THDQ_ID.

v For __THDQ_FREEZE and __THDQ_FREEZE_GET requests, __version

was not set to __THDQ_VER01.

v For __THDQ_FREEZE and __THDQ_FREEZE_GET requests, __length

was not long enough to contain the header and __numents

complete __array[] entries.

v For __THDQ_FREEZE and __THDQ_FREEZE_GET requests, if duplicate

thread ids are specified in the __array[].__thid array.

EMVSERR MVS environmental or internal error occurred.

EPERM pthread_quiesce_and_get_np() was called when running under

CICS or some other unsupported environment.

ESRCH One of the following errors occurred:

v At least one of the specified threads could not be found in the

caller’s process.

v At least one of the specified threads was the invoking thread.

This error applies when req specifies __THDQ_FREEZE or

__THDQ_FREEZE_GET.

 One or more __array[].__thid values in the passed-in __thdq_t

object specified a nonexistent or invalid thread. In this case, at least

one of the __array[].__flags.__notfound flag bits will be set,

indicating at least one of the invalid thread IDs. There may be one

or more unprocessed and unchecked thread-IDs in this case.

Notes:

 1. Only one pthread_quiesce_and_get_np() freeze/unfreeze sequence can be in

progress for the entire Unix process, even if separate, non-overlapping sets of

threads are involved.

After one thread issues a pthread_quiesce_and_get_np() freeze request up

until it (or another unfrozen thread) issues the unfreeze request, any other

thread that calls pthread_quiesce_and_get_np() will get an EAGAIN error.

 2. When pthread_quiesce_and_get_np() is called, no other thread should be in

the process of calling:

v pthread_quiesce_and_get_np()

v __heaprpt()

pthread_quiesce_and_get_np

Chapter 3. Part 3. Library Functions 1515

v __cdump()

v __csnap()

v __ctrace()

v CEE3DMP

v pthread_create()

If one of these functions is in progress when pthread_quiesce_and_get_np() is

called, an EAGAIN error may occur.

 3. If pthread_quiesce_and_get_np() is called while some of the threads to be

frozen are doing long-running I/O or other operations that hold library locks for

an indefinite time, an EAGAIN error may occur. Such functions include (but are

not limited to) fgetc(), fgets(), fgetwc(), fgetws(), fread(), fscanf(), getc(),

getchar(), gets(), getwc(), getwchar(), scanf(), t_rcv(), and t_listen().

 4. pthread_quiesce_and_get_np() and pthread_once() should not be used at the

same time.

If any thread is frozen while it is calling pthread_once(), any unfrozen thread

(including the thread issuing pthread_quiesce_and_get_np()) that issues

pthread_once() may hang up until the frozen threads are unfrozen.

 5. After pthread_quiesce_and_get_np() returns successfully from a freeze

operation, any calls to __heaprpt(), __cdump(), __csnap(), __ctrace(), CEE3DMP,

or pthread_create() from an unfrozen thread (including the thread that issued

pthread_quiesce_and_get_np() freeze request) may be delayed for a while.

This delay could last several seconds up to a few dozen seconds, or until the

__THDQ_UNFREEZE_ALL request is issued.

 6. When pthread_quiesce_and_get_np() returns successfully after a

__THDQ_FREEZE_GET request, all threads are frozen in a safe state.

This means that the invoking thread (or any other unfrozen thread) can safely

invoke other Language Environment services. However:

a. Frozen threads may hold or be waiting for user-defined mutexes, condition

variables, rwlocks, POSIX byte-range locks, POSIX semaphores, or other

user locks and resources. (Language Environment will not hold or be

waiting for any of its own mutexes or other locks.)

b. Frozen threads may have called non-Language Environment services that

are holding locks or other resources. This means that unpredictable

problems may occur if the thread invoking pthread_quiesce_and_get_np()

(or another unfrozen thread) invokes non-Language Environment MVS

services. These services include (but are not limited to)

v CSP services

v DB2 services

v DWS services

v GDDM services

v IMS services

v ISPF services

v QMF services

v SORT services

v Functions, services, operators, etc. provided by a C++ class library.

v A Debugger (such as Debug Tool) or a Profiler

v Other BCP or system services

 7. When pthread_quiesce_and_get_np() returns after a __THDQ_FREEZE request,

some or all of the threads may be frozen in an unsafe state. This means that

unpredictable results can occur if any C or Language Environment services are

called from an unfrozen thread.

The state of non-Language Environment resources is also undefined in this

case (same as after __THDQ_FREEZE_GET requests -- see above).

pthread_quiesce_and_get_np

1516 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

8. While one or more threads are frozen by a call to

pthread_quiesce_and_get_np(), any dumps created with the CEE3DMP

service using the THREAD(ALL) option may not contain complete data for the

frozen threads.

 9. All calls to pthread_quiesce_and_get_np() in a given POSIX process must be

made in the same storage key. In addition, this storage key must allow access

to all Language Environment control blocks, heap storage, and stack storage.

10. If a C++ static constructor or destructor in a DLL longjumps out of the DLL

(back into code that caused the DLL to be loaded, for example), unpredictable

results may occur the next time that pthread_quiesce_and_get_np() is called.

All forms of longjump will cause this problem. This includes longjmp(),

_longjmp(), siglongjmp(), setcontext(), swapcontext(), CEEMRCE from a Language

Environment condition handler, CEEMRCR from a Language Environment

condition handler, and C++ throw().

11. When the __regsok flag indicates that registers for the frozen thread have

been returned, these registers may be:

v Current application registers, if the thread is frozen in user code.

v Current Runtime Library registers, if the thread is frozen somewhere inside

the Runtime Library code. In this case, the latest user application registers

at the time the Runtime Library code was called (or was entered because of

a signal, program check, or ABEND) will be available somewhere in the

XPLINK or non-XPLINK stack. If XPLINK application code had called the

runtime library or was interrupted, these registers may in some cases be

saved in the non-XPLINK stack.

In some cases, the only copy of the user application registers after an

interrupt may be in the Machine States pointed to by the Condition

Information Block fields CIB_MACHINE and CIB_RESUME. In this case, if a

user condition handler or signal catcher modifies the registers in the

Machine State, it may be altering the only copy of these saved registers on

the stack.

v Other registers, if the thread was frozen outside of non-user and Runtime

library code. If a frozen thread is stopped in a system service or other

non-Runtime Library code called by the Runtime Library, the user application

registers will have been saved somewhere in the XPLINK or non-XPLINK

stack.

In other cases, when the user application has called non-Runtime Library

Code directly, the Runtime Library will not ensure that the user application

registers have been saved somewhere on the stack. If these registers are

needed, the application must make provisions to save them somewhere

before calling the non-Runtime service directly.

If the application is using an Alternate Stack (sigstack() or sigaltstack()), or

User Stack segments (makecontext()), it is possible that the only saved copy

of the user application registers for a frozen thread is in an Alternate Stack or

User Stack segment.

If a Reserve Stack has been provided using the STORAGE runtime option , it

is also possible that the only saved copy of the application registers after an

interrupt is in the Reserve Stack segment.

If a thread is frozen during a call to CEE3RSUM and the caller requests that

the CSRL16J parameter area be FREEMAINed, the application registers may

not be saved on the stack or in the THDQ. The application should not rely on

finding the registers for the frozen thread in this case.

pthread_quiesce_and_get_np

Chapter 3. Part 3. Library Functions 1517

Example

The following code fragment shows a sample call to

pthread_quiesce_and_get_np():

#define _OPEN_SYS

#include <pthread.h>

#include <stddef.h>

#include <stdlib.h>

/**

 *

 * Sample routine to freeze ’n’ threads whose thread IDs are in

 * thid[]. For each frozen thread, it returns:

 *

 * - TCB address in tcb_p[]

 * - CAA address in caa_p[]

 * - oldest non-XPLINK DSA in up_p[]

 * - oldest XPLINK DSA in down_p[]

 * - register 4 in r4[]

 * - register 13 in r13[]

 *

 **/

int

quiesce_threads(unsigned int n

 , pthread_t thid []

 , void *tcb_p []

 , void *caa_p []

 , void *up_p []

 , void *down_p []

 , unsigned int r4 []

 , unsigned int r13 []

)

{

 unsigned int i;

 int rc;

 __thdq_t *p = (__thdq_t *)alloca(__THDQ_LENGTH(n));

 memcpy((void *)(p->__eye)

 , (void *)__THDQ_ID

 , strlen(__THDQ_ID)

);

 p->__length = __THDQ_LENGTH(n);

 p->__version = __THDQ_VER01;

 p->__numents = n;

 *(int *)&(p->__flags); = 0U;

 for (i=0U; i < n; i++)

 {

 *(int *)&(p->__array[i].__flags) = 0U;

 p->__array[i].__thid = thid[i];

 }

 rc = pthread_quiesce_and_get_np(__THDQ_FREEZE_GET, &p);

 if (rc == 0)

 for (i=0U; i < n; i++)

 {

 tcb_p [i] = p->__array[i].__tcbptr;

 caa_p [i] = p->__array[i].__caaptr;

 up_p [i] = p->__array[i].__upstackptr;

 down_p[i] = p->__array[i].__downstackptr;

 r4 [i] = p->__array[i].__regsl[4];

 r13 [i] = p->__array[i].__regsl[13];

pthread_quiesce_and_get_np

1518 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

}

 return rc;

}

Related Information

v “pthread.h” on page 72

v “cdump() — Request a Main Storage Dump” on page 249

v “csnap() — Request a Condensed Dump” on page 378

v “ctrace() — Request a Traceback” on page 393

v “__heaprpt() — Obtain Dynamic Heap Storage Report” on page 909

v “pthread_create() — Create a Thread” on page 1448

pthread_quiesce_and_get_np

Chapter 3. Part 3. Library Functions 1519

pthread_rwlock_destroy() — Destroy a Read/Write Lock Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

General Description

The pthread_rwlock_destroy() function deletes a read/write lock object, which is

identified by rwlock and releases any resources used by this read/write lock object.

Read/write locks are used to protect shared resources.

Note: rwlock is set to an invalid value by pthread_rwlock_destroy() but can be

reinitialized using pthread_rwlock_init().

Returned Value

If successful, pthread_rwlock_destroy() returns 0.

If unsuccessful, pthread_rwlock_destroy() returns −1 and sets errno to one of the

following values:

Error Code Description

EBUSY An attempt was made to destroy the object referenced by rwlock

while it is locked or referenced as part of a wait on a condition

variable.

EINVAL The value specified by rwlock is not valid.

 Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlock_destroy() returns an error number to indicate the

error.

Related Information

v “pthread.h” on page 72

v “pthread_rwlock_init() — Initialize a Read/Write Lock Object” on page 1522

v “pthread_rwlock_rdlock() — Wait for a Lock on a Read/Write Lock Object” on

page 1524

v “pthread_rwlock_tryrdlock() — Attempt to Lock a Read/Write Lock Object for

Reading” on page 1526

pthread_rwlock_destroy

1520 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|

|
|
|
|

|

|
|

v “pthread_rwlock_trywrlock() — Attempt to Lock a Read/Write Lock Object for

Writing” on page 1528

v “pthread_rwlock_unlock() — Unlock a Read/Write Lock Object” on page 1529

v “pthread_rwlock_wrlock() — Wait for a Lock on a Read/Write Lock Object for

Writing” on page 1531

pthread_rwlock_destroy

Chapter 3. Part 3. Library Functions 1521

pthread_rwlock_init() — Initialize a Read/Write Lock Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *rwlock, pthread_rwlockattr_t *attr);

pthread_rwlock_t rwlock=PTHREAD_RWLOCK_INITIALIZER;

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t * __restrict__rwlock,

 const pthread_rwlockattr_t * __restrict__attr);

General Description

The pthread_rwlock_init() function creates a read/write lock, referenced by rwlock,

with attributes specified by attr. If attr is NULL, the default read/write lock attribute

(PTHREAD_PROCESS_PRIVATE) is used. Once initialized, the lock can be used any

number of times without being reinitialized. Upon successful initialization, the state

of the read/write lock becomes initialized and unlocked.

In cases where default read/write lock attributes are appropriate, the macro

PTHREAD_RWLOCK_INITIALIZER can be used to initialize read/write locks that are

statically allocated. The effect is equivalent to dynamic initialization by a call to

pthread_rwlock_init() with parameter attr specified as NULL, except that no error

checking is done.

Note: Although the SUSv3 standard does not specify a static initializer for

read/write locks, the implementation-defined macro

PTHREAD_RWLOCK_INITIALIZER_NP may be used for that purpose. It is

functionally equivalent in the SUSv3 context to the

PTHREAD_RWLOCK_INITIALIZER macro.

Returned Value

If successful, pthread_rwlock_init() returns 0, and the state of the read/write lock

becomes initialized and unlocked.

If unsuccessful, pthread_rwlock_init() returns −1 and sets errno to one of the

following values:

Error Code Description

EAGAIN The system lacked necessary resources (other than memory) to

initialize another read/write lock.

EINVAL The value specified by attr is not valid.

ENOMEM There is not enough memory to initialize the read/write lock.

pthread_rwlock_init

1522 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|

|
|
|
|

|
|
|
|
|

EPERM The caller does not have the privilege to perform the operation.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlock_init() returns an error number to indicate the error.

Related Information

v “pthread.h” on page 72

v “pthread_rwlock_destroy() — Destroy a Read/Write Lock Object” on page 1520

v “pthread_rwlock_rdlock() — Wait for a Lock on a Read/Write Lock Object” on

page 1524

v “pthread_rwlock_tryrdlock() — Attempt to Lock a Read/Write Lock Object for

Reading” on page 1526

v “pthread_rwlock_trywrlock() — Attempt to Lock a Read/Write Lock Object for

Writing” on page 1528

v “pthread_rwlock_unlock() — Unlock a Read/Write Lock Object” on page 1529

v “pthread_rwlock_wrlock() — Wait for a Lock on a Read/Write Lock Object for

Writing” on page 1531

pthread_rwlock_init

Chapter 3. Part 3. Library Functions 1523

|

|

pthread_rwlock_rdlock() — Wait for a Lock on a Read/Write Lock

Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

General Description

The pthread_rwlock_rdlock() function applies a read lock to the read/write lock

referenced by rwlock. The calling thread acquires the read lock if a writer does not

hold the lock and there are no writers blocked on the lock. In z/OS UNIX, the calling

thread does not acquire the lock when a writer does not hold the lock and there are

writers waiting for the lock unless the thread already held rwlock for read. It will

block and wait until there are no writers holding or waiting for the read/write lock. If

a writer holds the lock, the calling thread will not acquire the read lock. If the read

lock is not acquired, the calling thread blocks (that is, it does not return from the

pthread_rwlock_rdlock() call) until it can acquire the lock.

A thread may hold multiple concurrent read locks on rwlock (that is successfully call

the pthread_rwlock_rdlock() function n times). If so, the thread must perform

matching unlocks (that is, it must call the pthread_rwlock_unlock() function n times).

Read/write locks are used to protect shared resources.

Note: If a thread owns locks at the time it is terminated then z/OS UNIX will

release those locks.

Returned Value

If successful, pthread_rwlock_rdlock() returns 0.

If unsuccessful, pthread_rwlock_rdlock() returns −1 and sets errno to one of the

following values:

Error Code Description

EAGAIN The read lock could not be acquired because the maximum number

of read locks for rwlock has been exceeded. This errno will only

occur in the shared path.

EDEADLK The current thread already owns the read/write lock for writing.

EINVAL The value specified by rwlock is not valid.

pthread_rwlock_rdlock

1524 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|

ENOMEM There is not enough memory to acquire a lock. This errno will only

occur in the private path.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlock_rdlock() returns an error number to indicate the

error.

Related Information

v “pthread.h” on page 72

v “pthread_rwlock_destroy() — Destroy a Read/Write Lock Object” on page 1520

v “pthread_rwlock_init() — Initialize a Read/Write Lock Object” on page 1522

pthread_rwlock_rdlock

Chapter 3. Part 3. Library Functions 1525

|

|
|

pthread_rwlock_tryrdlock() — Attempt to Lock a Read/Write Lock

Object for Reading

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

General Description

The pthread_rwlock_tryrdlock() function applies a read lock as in the

pthread_rwlock_rdlock() function with the exception that the function fails if any

thread holds a write lock on rwlock or there are writers blocked on rwlock unless

the thread already held rwlock for read. Read/write locks are used to protect shared

resources.

If the read/write lock identified by rwlock is locked, pthread_rwlock_tryrdlock()

returns immediately.

When there are only read locks on the read/write lock, pthread_rwlock_tryrdlock()

will effectively add to the count of the number of times pthread_rwlock_unlock()

must be called by the thread to release the mutex (that is, it has the same behavior

as a pthread_rwlock_rdlock() function).

Returned Value

If successful, pthread_rwlock_tryrdlock() returns 0.

If unsuccessful, pthread_rwlock_tryrdlock() returns −1 and sets errno to one of the

following values:

Error Code Description

EAGAIN The read lock could not be acquired because the maximum number

of read locks for rwlock has been exceeded. This errno will only

occur in the shared path.

EBUSY rwlock could not be acquired because it was already locked.

EINVAL The value specified by rwlock is not valid.

ENOMEM There is not enough memory to acquire a lock. This errno will only

occur in the private path.

pthread_rwlock_tryrdlock

1526 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|

|
|
|
|

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlock_tryrdlock() returns an error number to indicate the

error.

Related Information

v “pthread.h” on page 72

v “pthread_rwlock_destroy() — Destroy a Read/Write Lock Object” on page 1520

v “pthread_rwlock_init() — Initialize a Read/Write Lock Object” on page 1522

pthread_rwlock_tryrdlock

Chapter 3. Part 3. Library Functions 1527

|

|
|

pthread_rwlock_trywrlock() — Attempt to Lock a Read/Write Lock

Object for Writing

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

General Description

The pthread_rwlock_trywrlock() function applies a write lock as in the

pthread_rwlock_wrlock() function with the exception that the function fails if any

thread holds either a read lock or a write lock on rwlock. Read/write locks are used

to protect shared resources.

If the read/write lock identified by rwlock is locked, pthread_rwlock_trywrlock()

returns immediately.

Returned Value

If successful, pthread_rwlock_trywrlock() returns 0.

If unsuccessful, pthread_rwlock_trywrlock() returns −1 and sets errno to one of the

following values:

Error Code Description

EBUSY rwlock could not be acquired because it was already locked.

EINVAL The value specified by rwlock is not valid.

ENOMEM There is not enough memory to acquire a lock. This errno will only

occur in the private path.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlock_trywrlock() returns an error number to indicate the

error.

Related Information

v “pthread.h” on page 72

v “pthread_rwlock_destroy() — Destroy a Read/Write Lock Object” on page 1520

v “pthread_rwlock_init() — Initialize a Read/Write Lock Object” on page 1522

pthread_rwlock_trywrlock

1528 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|

|
|
|
|

|

|
|

pthread_rwlock_unlock() — Unlock a Read/Write Lock Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

General Description

The pthread_rwlock_unlock() function releases a read/write lock object. If one or

more threads are waiting to lock the rwlock, pthread_rwlock_unlock() causes one or

more of these threads to return from the pthread_rwlock_rdlock() or the

pthread_rwlock_wrlock() call with the read/write lock object acquired. If there are

multiple threads blocked on rwlock for both read locks and write locks, z/OS UNIX

will give the read/write lock to the next waiting call whether it is a read or a write

request even when there is a writer blocked waiting for the lock. If no threads are

waiting for the rwlock, the rwlock unlocks with no current owner.

Returned Value

If successful, pthread_rwlock_unlock() returns 0.

If unsuccessful, pthread_rwlock_unlock() returns −1 and sets errno to one of the

following values:

Error Code Description

EINVAL The value specified for rwlock is not valid.

ENOMEM There is not enough memory during the unlock process. This errno

will only occur in the private path.

EPERM The current thread does not own the read_write lock object.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlock_unlock() returns an error number to indicate the

error.

Related Information

v “pthread.h” on page 72

v “pthread_rwlock_destroy() — Destroy a Read/Write Lock Object” on page 1520

v “pthread_rwlock_init() — Initialize a Read/Write Lock Object” on page 1522

pthread_rwlock_unlock

Chapter 3. Part 3. Library Functions 1529

||||

|
|
||
|
|

|

|
|

v “pthread_rwlock_rdlock() — Wait for a Lock on a Read/Write Lock Object” on

page 1524

v “pthread_rwlock_tryrdlock() — Attempt to Lock a Read/Write Lock Object for

Reading” on page 1526

v “pthread_rwlock_trywrlock() — Attempt to Lock a Read/Write Lock Object for

Writing” on page 1528

v “pthread_rwlock_wrlock() — Wait for a Lock on a Read/Write Lock Object for

Writing” on page 1531

pthread_rwlock_unlock

1530 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_rwlock_wrlock() — Wait for a Lock on a Read/Write Lock

Object for Writing

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

General Description

The pthread_rwlock_wrlock() function applies a write lock to the read/write lock

referenced by rwlock. The calling thread acquires the write lock if no other thread

(reader or writer) holds the read/write lock rwlock. Otherwise, the thread blocks (that

is, does not return from the pthread_rwlock_wrlock() call) until it can acquire the

lock. In z/OS UNIX the calling thread does not acquire the lock when a writer does

not hold the lock and there are writers waiting for the lock. It will block and wait until

there are no writers holding or waiting for the read/write lock. If the thread already

holds read/write lock for either read or write then a deadlock errno will be returned.

Note: If a thread owns locks at the time it is terminated then z/OS UNIX will

release those locks.

Returned Value

If successful, pthread_rwlock_wrlock() returns 0.

If unsuccessful, pthread_rwlock_wrlock() returns −1 and sets errno to one of the

following values:

Error Code Description

EDEADLK The current thread already owns the read/write lock for writing or

reading.

EINVAL The value specified by rwlock is not valid.

ENOMEM There is not enough memory to acquire a lock. This errno will only

occur in the private path.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlock_wrlock() returns an error number to indicate the

error.

pthread_rwlock_wrlock

Chapter 3. Part 3. Library Functions 1531

||||

|
|
||
|
|

|
|
|
|

|

|
|

Related Information

v “pthread.h” on page 72

v “pthread_rwlock_destroy() — Destroy a Read/Write Lock Object” on page 1520

v “pthread_rwlock_init() — Initialize a Read/Write Lock Object” on page 1522

pthread_rwlock_wrlock

1532 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_rwlockattr_destroy() — Destroy a Read/Write Lock Attribute

Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

General Description

The pthread_rwlockattr_destroy() function destroys an initialized rwlock attribute

object.

After a read/write lock attributes object has been used to initialize one or more

read/write locks any function affecting the attributes object (including destruction)

does not affect any previously initialized read/write locks.

The pthread_rwlockattr_destroy() function destroys a read/write lock attributes

object. Subsequent use of the object will cause an error until the object is

reinitialized by another call to pthread_rwlockattr_init().

Returned Value

If successful, pthread_rwlockattr_destroy() returns 0.

If unsuccessful, pthread_rwlockattr_destroy() returns −1 and sets errno to one of

the following values:

Error Code Description

EINVAL The value specified for attr is not valid.

 Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlockattr_destroy() returns an error number to indicate the

error.

Related Information

v “pthread.h” on page 72

v “pthread_rwlockattr_init() — Initialize a Read/Write Lock Attribute Object” on page

1536

pthread_rwlockattr_destroy

Chapter 3. Part 3. Library Functions 1533

||||

|
|
||
|
|

|
|
|
|
|

|

|
|

pthread_rwlockattr_getpshared() — Get the Processed-Shared

Read/Write Lock Attribute

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *attr, int *pshared);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *

 __restrict__attr,

 int * __restrict__pshared);

General Description

The pthread_rwlockattr_getpshared() function gets the attribute pshared for the

read/write lock attribute object attr. By using attr with the

pthread_rwlockattr_getpshared() function you can determine its process-shared

value for a read/write lock.

The valid values for the attribute pshared are:

PTHREAD_PROCESS_SHARED

Permits a read/write lock to be operated upon by any thread that

has access to the memory where the read/write lock is allocated,

even if the read/write lock is allocated in memory that is shared by

multiple processes.

PTHREAD_PROCESS_PRIVATE

A read/write lock can only be operated upon by threads created

within the same process as the thread that initialized the read/write

lock. When a new process is created by the parent process it will

receive a different copy of the private read/write lock and this new

read/write lock can only be used to serialize between threads in the

child process. The default value of the attributed is

PTHREAD_PROCESS_PRIVATE.

Returned Value

If successful, pthread_rwlockattr_getpshared() returns 0.

If unsuccessful, pthread_rwlockattr_getpshared() returns −1 and sets errno to one

of the following values:

Error Code Description

EINVAL The value specified for attr is not valid.

pthread_rwlockattr_getpshared

1534 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|

|
|
|
|
|

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlockattr_getpshared() returns an error number to indicate

the error.

Related Information

v “pthread.h” on page 72

v “pthread_rwlock_init() — Initialize a Read/Write Lock Object” on page 1522

v “pthread_rwlockattr_setpshared() — Set the Process-Shared Read/Write Lock

Attribute” on page 1537

pthread_rwlockattr_getpshared

Chapter 3. Part 3. Library Functions 1535

|

|
|

pthread_rwlockattr_init() — Initialize a Read/Write Lock Attribute

Object

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

General Description

The pthread_rwlockattr_init() function initializes a read/write lock attribute object. A

read/write lock attribute object allows you to manage the characteristics of

read/write locks in your application. It defines the set of values to be used for the

read/write lock during its creation. By establishing a read/write lock attribute object,

you can create many read/write locks with the same set of characteristics, without

needing to define the characteristics for each and every read/write lock.

For a valid read/write lock attribute, refer to “pthread_rwlockattr_setpshared() — Set

the Process-Shared Read/Write Lock Attribute” on page 1537.

If pthread_rwlockattr_init() is called specifying an already initialized read/write lock

attributes object the request is rejected and the current lock attributes object is

unchanged.

Returned Value

If successful, pthread_rwlockattr_init() returns 0.

If unsuccessful, pthread_rwlockattr_init() returns −1 and sets errno to one of the

following values:

Error Code Description

ENOMEM There is not enough memory to initialize attr.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlockattr_init() returns an error number to indicate the

error.

Related Information

v “pthread.h” on page 72

v “pthread_rwlock_init() — Initialize a Read/Write Lock Object” on page 1522

pthread_rwlockattr_init

1536 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||
|
|

|
|
|
|

|

|
|

pthread_rwlockattr_setpshared() — Set the Process-Shared Read/Write

Lock Attribute

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX

Single UNIX Specification, Version 3

both POSIX(ON)

OS/390 V2R7

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared);

General Description

The pthread_rwlockattr_setpshared() function sets the attribute pshared for the

read/write lock attribute object attr.

A read/write lock attribute object allows you to manage the characteristics of

read/write locks in your application. It defines the set of values to be used for a

read/write lock during its creation. By establishing a read/write lock attribute object,

you can create many read/write locks with the same set of characteristics, without

needing to define those characteristics for each and every read/write lock. By using

attr with the pthread_rwlockattr_setpshared() function you can define its

process-shared value for a read/write lock.

The valid values for the attribute pshared are:

PTHREAD_PROCESS_SHARED

Permits a read/write lock to be operated upon by any thread that

has access to the memory where the read/write lock is allocated,

even if the read/write lock is allocated in memory that is shared by

multiple processes.

PTHREAD_PROCESS_PRIVATE

A read/write lock can only be operated upon by threads created

within the same process as the thread that initialized the read/write

lock. When a new process is created by the parent process it will

receive a different copy of the private read/write lock and this new

read/write lock can only be used to serialize between threads in the

child process. The default value of the attributed is

PTHREAD_PROCESS_PRIVATE.

Returned Value

If successful, pthread_rwlockattr_setpshared() returns 0.

pthread_rwlockattr_setpshared

Chapter 3. Part 3. Library Functions 1537

||||

|
|
||
|
|

|
|
|
|

If unsuccessful, pthread_rwlockattr_setpshared() returns −1 and sets errno to one of

the following values:

Error Code Description

EINVAL The value specified for attr or pshared is not valid.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_rwlockattr_setpshared() returns an error number to indicate

the error.

Related Information

v “pthread.h” on page 72

v “pthread_rwlock_init() — Initialize a Read/Write Lock Object” on page 1522

v “pthread_rwlockattr_getpshared() — Get the Processed-Shared Read/Write Lock

Attribute” on page 1534

pthread_rwlockattr_setpshared

1538 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|

pthread_security_np() — Create or Delete Thread-level Security

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_SYS 1

#include <pthread.h>

int pthread_security_np(int function_code,

 int identity_type,

 size_t identity_length,

 void *identity,

 char *password,

 int options);

General Description

pthread_security_np() creates or deletes a thread-level security environment for the

calling thread.

The function supports the following parameters:

Parameter Description

function_code Specify one of the following:

__CREATE_SECURITY_ENV

Create a thread-level security environment for the

calling thread. If a thread-level security environment

already exists, it is deleted before a new one is

created.

__DAEMON_SECURITY_ENV

 Creates a thread-level security environment for the

caller’s thread without the need for a password if

the caller is a superuser and has permission to

BPX.DAEMON facility class profile if BPX.DAEMON

facility class profile is defined. If a thread-level

security environment already exists, it is deleted

before the new environment is created. Using the

_DAEMON_SECURITY_ENV function code and not

specifying a password is similar to using the current

BPX.SRV.userid surrogate support. The difference

is that the installation does not have to setup

individual surrogate profiles for each of the clients

that desire a thread level identity in the target

server process.

 The server will be allowed to create any identity

without authentication if it is given permission to the

BPX.DAEMON facility class profile.

__DELETE_SECURITY_ENV

Delete the thread-level security environment for the

calling thread, if one exists. If the security

pthread_security_np

Chapter 3. Part 3. Library Functions 1539

environment was created using the

__TLS_TASK_ACEE option, then only the UNIX

security data is deleted (the task-level ACEE is

unchanged).

__TLS_TASK_ACEE

Initializes the UNIX security data for a task that has

an existing task-level security environment

(task-level ACEE). If the UNIX security data already

exists for the calling task, the existing UNIX security

data is deleted and a new set of UNIX security data

is established.

__TLS_TASK_ACEE_USP

Takes a pre-existing user security packet (USP)

from a task-level ACEE and extracts the UID and

GID information. This information is then used to

build a complete UNIX security environment for the

calling thread. If the calling thread does not have a

USP associated with the task-level ACEE, this call

is treated as if the __TLS_TASK_ACEE function

was specified.

identity_type Specifies the format of the user identity in the argument identity. It

can have one of the following values:

__USERID_IDENTITY

User identity in the form of a character string (1 to 8

bytes in length).

__CERTIFICATE_IDENTITY

User identity in the form of a __certificate_t.

A __certificate_t is a structure containing the following elements:

__cert_type The type of security certificate. Setting value

__CERT_X509, for example, indicates the

certificate is an X.509 security certificate.

__userid An output field in the __certificate structure that will

be filled with the user ID associated with the

certificate. This output will be up to 8 characters

long and NULL-terminated.

__cert_length The length in bytes of the security certificate.

__cert_ptr A pointer to the start of the security certificate.

identity_length Specifies the length of the identity parameter. If identity_type is

__USERID_IDENTITY, identity_length is the length of the user

identity character string. If identity_type is

__CERTIFICATE_IDENTITY, identity_length is the length of the

__certificate structure.

identity Specifies the user identity according to the identity parameter.

password Specifies a user password or pass ticket.

options Specifies options used to tailor the request. options must be set to

0.

This function is intended to be used by servers which process requests from

multiple clients. By creating and building a thread-level security environment for the

pthread_security_np

1540 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

client, a server can process many client requests without the overhead of issuing

fork/setuid/exec. See usage notes in z/OS UNIX System Services Programming:

Assembler Callable Services Reference for additional information.

Returned Value

If successful, pthread_security_np() returns 0.

If successful, pthread_security_np() returns -1 and sets errno to one the following

values:

Error Code Description

EACCESS The password provided is not valid for the passed userid.

EINVAL One of the following errors was detected:

v Function_code specified is undefined.

v Identity_Type specified is undefined.

v Identity_Length specified was not valid for the Identity_Type.

v Password_Length specified was not in the range 0 to 8.

v An undefined option flag was set.

EMVSERR An MVS environmental or internal error occurred.

v pthread_security_np() was called from the initial thread.

v pthread_security_np() was called from a task that is being

debugged using the ptrace() service.

v An MVS internal error occurred

EMVSEXPIRE The password provided has expired.

EMVSSAF2ERR

The SAF call to the security product incurred an error.

EMVSSAFEXTRERR

The SAF call to the security product incurred an error.

EPERM

1. The process does not have appropriate privileges to set a

thread-level security environment. The caller is not permitted to

the BPX.SERVER FACILITY class profile or BPX.SERVER is

not defined and the caller is not a superuser. No password is

provided and the caller is not defined as a surrogate of the

passed user ID.

2. The caller is not a superuser and permitted to the

BPX.DAEMON FACILITY class profile or BPX.DAEMON is not

defined and the caller is not a superuser.

ESRCH The userid provided as input is not defined to RACF or does not

have an OMVS segment defined.

Related Information

v “pthread.h” on page 72

v “getlogin() — Get the User Login Name” on page 799

pthread_security_np

Chapter 3. Part 3. Library Functions 1541

pthread_self() — Get the Caller

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

pthread_t pthread_self(void);

General Description

Returns the thread ID of the calling thread.

Returned Value

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Example

CELEBP47

/* CELEBP47 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

pthread_t thid, IPT;

void *thread(void *arg) {

 if (pthread_equal(IPT, pthread_self()))

 puts("the thread is the IPT...?");

 else

 puts("the thread is not the IPT");

 if (pthread_equal(thid, pthread_self()))

 puts("the thread is the one created by the IPT");

 else

 puts("the thread is not the one created by the IPT...?");

}

main() {

 IPT = pthread_self();

 if (pthread_create(&thid, NULL, thread, NULL) != 0) {

 perror("pthread_create() error");

 exit(1);

 }

 if (pthread_join(thid, NULL) != 0) {

 perror("pthread_create() error");

 exit(3);

 }

}

Output

pthread_self

1542 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

the thread is not the IPT

the thread is the one created by the IPT

Related Information

v “pthread.h” on page 72

v “pthread_create() — Create a Thread” on page 1448

v “pthread_equal() — Compare Thread IDs” on page 1453

pthread_self

Chapter 3. Part 3. Library Functions 1543

pthread_setcancelstate() — Set Thread’s Cancelability State Format

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, version 3 both z/OS V1R7

POSIX(ON)

Format

#define _OPEN_THREADS 2

#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);

General Description

pthread_setcancelstate() controls whether the thread acts on a cancelation request

caused by a call to pthread_cancel(). The old state is stored into the location

pointed to by oldstate. The cancelability states can be:

PTHREAD_CANCEL_ENABLE

The thread can be canceled, but is subject to type. The cancelability types can

be found in “pthread_setcanceltype() — Set Thread’s Cancelability Type

Format” on page 1545.

PTHREAD_CANCEL_DISABLE

The thread cannot be canceled.

Returned Value

If successful, pthread_setcancelstate() returns 0. Upon failure, returns the following

EINVAL error code:

v state is an invalid value.

Related Information

v ″Thread Cancellation″ in the z/OS XL C/C++ Programming Guide

v “pthread.h” on page 72

v “pthread_cancel() — Cancel a Thread” on page 1414

v “pthread_setcanceltype() — Set Thread’s Cancelability Type Format” on page

1545

v “pthread_testcancel() — Establish a Cancelation Point” on page 1561

pthread_setcancelstate

1544 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|||
|
|

pthread_setcanceltype() — Set Thread’s Cancelability Type Format

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, version 3 both z/OS V1R7

POSIX(ON)

Format

#define _OPEN_THREADS 2

#include <pthread.h>

int pthread_setcanceltype(int type, int *oldtype);

General Description

pthread_setcanceltype() controls when a cancel request is acted on. The old type is

stored into the location pointed to by oldtype. The cancelability types can be:

PTHREAD_CANCEL_ASYNCHRONOUS

The thread can be canceled at any time.

PTHREAD_CANCEL_DEFERRED

The thread can be canceled, but only at cancelation points introduced by

invocation of particular functions. For more information, see the z/OS XL C/C++

Programming Guide.

Returned Value

If successful, pthread_setcanceltype() returns 0. Upon failure, returns the following

EINVAL error code:

v type is an invalid value.

Related Information

v ″Thread Cancelation″ in the z/OS XL C/C++ Programming Guide

v “pthread.h” on page 72

v “pthread_cancel() — Cancel a Thread” on page 1414

v “pthread_setcancelstate() — Set Thread’s Cancelability State Format” on page

1544

v “pthread_testcancel() — Establish a Cancelation Point” on page 1561

pthread_setcanceltype

Chapter 3. Part 3. Library Functions 1545

||||

|||
|
|

pthread_setconcurrency() — Set the Level of Concurrency

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, version 3 both z/OS V1R7

POSIX(ON)

Format

#define _OPEN_THREADS 2

#include <pthread.h>

int pthread_setconcurrency(int new_level);

General Description

pthread_setconcurrency() sets the desired thread concurrency level to new_level.

Note: z/OS UNIX does not support multiplexing POSIX threads onto TCBs. If

successful, pthread_setconcurrency() saves new_level for subsequent calls to

pthread_getconcurrency() but takes no other action. For related information on the

relationship between pthreads and TCBs, see “pthread_attr_setweight_np() — Set

Weight of Thread Attribute Object” on page 1412 and

“pthread_attr_setsynctype_np() — Set Thread Sync Type” on page 1411.

Returned Value

If successful, pthread_setconcurrency() returns 0. Upon failure, returns one of the

following error values:

v EINVAL – The value specified by new_level is negative.

v EAGAIN – The value specific by new_level would cause a system resource to be

exceeded.

Related Information

v ″Thread Cancelation″ in the z/OS XL C/C++ Programming Guide

v “pthread.h” on page 72

v “pthread_getconcurrency() — Get the Level of Concurrency” on page 1457

pthread_setconcurrency

1546 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|||
|
|

pthread_setintr() — Set Thread’s Cancelability State

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_setintr(int state);

General Description

Controls whether the thread accepts a cancel request that was produced by a call

to pthread_cancel(). The cancelability states can be:

PTHREAD_INTR_DISABLE The thread cannot be canceled.

PTHREAD_INTR_ENABLE The thread can be canceled, but it is subject to

type. The cancelability types can be found in

“pthread_setintrtype() — Set Thread’s Cancelability

Type” on page 1550.

Note: If you are writing to the Single UNIX Specification, Version 3 standard, use

pthread_setcancelstate() in place of pthread_setintr().

Returned Value

If successful, pthread_setintr() returns the previous state.

If unsuccessful, pthread_setintr() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL state is an invalid value.

Example

CELEBP48

/* CELEBP48 */

#define _OPEN_THREADS

#include <stdio.h>

#include <string.h>

#include <pthread.h>

#include <errno.h>

#include <unistd.h>

int thstatus;

char state[60] = "enable/controlled − initial default";

void * thfunc(void *voidptr)

{

 int rc;

 char *parmptr;

 parmptr = voidptr;

 printf("parm = %s.\n", parmptr);

pthread_setintr

Chapter 3. Part 3. Library Functions 1547

|
|

strcpy(state, "disable/controlled");

 if (pthread_setintrtype(PTHREAD_INTR_CONTROLLED) == −1) {

 printf("set controlled failed. %s\n", strerror(errno));

 thstatus = 103;

 pthread_exit(&thstatus);

 }

 if (pthread_setintr(PTHREAD_INTR_ENABLE) == −1) {

 printf("set enable failed. %s\n", strerror(errno));

 thstatus = 104;

 pthread_exit(&thstatus);

 }

 strcpy(state, "enable/controlled");

 strcat(state, " − pthread_testintr");

 while (1) {

 pthread_testintr();

 sleep(1);

 }

 thstatus = 100;

 pthread_exit(&thstatus);

}

 main(int argc, char *argv[]) {

 int rc;

 pthread_attr_t attrarea;

 pthread_t thid;

 char parm[] = "abcdefghijklmnopqrstuvwxyz";

 int *statptr;

 if (pthread_attr_init(&attrarea) == −1) {

 printf("pthread_attr_init failed. %s\n", strerror(errno));

 exit(1);

 }

 if (pthread_create(&thid, &attrarea, thfunc, (void *)&parm) == −1) {

 printf("pthread_create failed. %s\n", strerror(errno));

 exit(2);

 }

 sleep(5);

 if (pthread_cancel(thid) == −1) {

 printf("pthread_cancel failed. %s\n", strerror(errno));

 exit(3);

 }

 if (pthread_join(thid, (void **)&statptr)== −1) {

 printf("pthread_join failed. %s\n", strerror(errno));

 exit(4);

 }

 if (statptr == (int *)−1)

 printf("thread was cancelled. state = %s.\n", state);

 else

 printf("thread was not cancelled. thstatus = %d.\n", *statptr);

 exit(0);

 }

Output

pthread_setintr

1548 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

parm = abcdefghijklmnopqrstuvwxyz.

thread was canceled. state = enable/controlled - pthread_testintr.

Related Information

v “pthread.h” on page 72

v “pthread_cancel() — Cancel a Thread” on page 1414

v “pthread_setintrtype() — Set Thread’s Cancelability Type” on page 1550

v “pthread_testintr() — Establish a Cancelability Point” on page 1562

pthread_setintr

Chapter 3. Part 3. Library Functions 1549

pthread_setintrtype() — Set Thread’s Cancelability Type

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_setintrtype(int type);

General Description

Controls when a cancel request is acted on. The cancelability types can be:

PTHREAD_INTR_ASYNCHRONOUS

The thread can be canceled at any time.

PTHREAD_INTR_CONTROLLED

The thread can be canceled, but only at specific points of

execution. These are:

v When waiting on a condition variable, which is

pthread_cond_wait() or pthread_cond_timedwait()

v When waiting for the end of another thread, which is

pthread_join()

v While waiting for an asynchronous signal, which is sigwait()

v When setting the calling thread’s cancelability state, which is

pthread_setintr()

v Testing specifically for a cancel request, which is

pthread_testintr()

v When suspended because of POSIX functions or one of the

following C standard functions: close(), fcntl(), open(), pause(),

read(), tcdrain(), tcsetattr(), sigsuspend(), sigwait(), sleep(),

wait(), or write()

Note: If you are writing to the Single UNIX Specification, Version 3 standard, use

pthread_setcanceltype() in place of pthread_setintrtype().

Returned Value

If successful, pthread_setintrtype() returns the previous type.

If unsuccessful, pthread_setintrtype() returns −1 and sets errno to one of the

following values:

Error Code Description

EINVAL type is an invalid value.

Example

CELEBP50

/* CELEBP50 */

#define _OPEN_THREADS

#include <stdio.h>

#include <string.h>

pthread_setintrtype

1550 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

#include <pthread.h>

#include <errno.h>

#include <unistd.h>

int thstatus;

char state[60] = "enable/controlled − initial default";

void * thfunc(void *voidptr)

{

 int rc;

 char *parmptr;

 parmptr = voidptr;

 printf("parm = %s.\n", parmptr);

 if (pthread_setintrtype(PTHREAD_INTR_CONTROLLED) == −1) {

 printf("set controlled failed. %s\n", strerror(errno));

 thstatus = 103;

 pthread_exit(&thstatus);

 }

 strcpy(state, "disable/controlled");

 if (pthread_setintr(PTHREAD_INTR_ENABLE) == −1) {

 printf("set enable failed. %s\n", strerror(errno));

 thstatus = 104;

 pthread_exit(&thstatus);

 }

 strcpy(state, "enable/controlled");

 strcat(state, " − pthread_testintr");

 while(1) {

 pthread_testintr();

 sleep(1);

 }

 thstatus = 100;

 pthread_exit(&thstatus);

}

main(int argc, char *argv[]) {

 int rc;

 pthread_attr_t attrarea;

 pthread_t thid;

 char parm[] = "abcdefghijklmnopqrstuvwxyz";

 int *statptr;

 if (pthread_attr_init(&attrarea) == −1) {

 printf("pthread_attr_init failed. %s\n", strerror(errno));

 exit(1);

 }

 if (pthread_create(&thid, &attrarea, thfunc, (void *)&parm) == −1) {

 printf("pthread_create failed. %s\n", strerror(errno));

 exit(2);

 }

 sleep(5);

 if (pthread_cancel(thid) == −1) {

 printf("pthread_cancel failed. %s\n", strerror(errno));

 exit(3);

 }

 if (pthread_join(thid, (void **)&statptr)== −1) {

 printf("pthread_join failed. %s\n", strerror(errno));

 exit(4);

 }

pthread_setintrtype

Chapter 3. Part 3. Library Functions 1551

if (statptr == (int *)−1)

 printf("thread was cancelled. state = %s.\n", state);

 else

 printf("thread was not cancelled. thstatus = %d.\n", *statptr);

 exit(0);

}

Output

parm = abcdefghijklmnopqrstuvwxyz.

thread was canceled. state = enable/controlled - pthread_testintr.

Related Information

v “pthread.h” on page 72

v “pthread_cancel() — Cancel a Thread” on page 1414

v “pthread_setintr() — Set Thread’s Cancelability State” on page 1547

v “pthread_testintr() — Establish a Cancelability Point” on page 1562

pthread_setintrtype

1552 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_set_limit_np() — Set Task and Thread Limits

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#define _OPEN_SYS

#include <pthread.h>

int pthread_set_limit_np(int action, int maxthreadtasks, int maxthreads);

General Description

The pthread_set_limit_np() function allows you to control how many tasks and

threads can be created for a process. On a single call, you can specify that you

want to update either the maximum number of tasks, the maximum number of

threads, or both. The maximum number of tasks and threads is dependent upon the

size of the private area below 16M. A realistic limit is 200 to 400 tasks and threads.

The action can be set to one of the following symbolics, as defined in the pthread.h

header file:

__STL_MAX_TASKS Specify this action when only updating the

maximum number of tasks.

__STL_MAX_THREADS Specify this action when only updating the

maximum number of threads.

__STL_SET_BOTH Specify this action when updating both the

maximum number of tasks and the maximum

number of threads at the same time.

For more information on the allowable values for maxthreadtasks and maxthreads,

see the BPX1STL function in z/OS UNIX System Services Programming: Assembler

Callable Services Reference, SA22-7803.

Returned Value

If successful, pthread_set_limit_np() returns 0.

If unsuccessful, pthread_set_limit_np() returns -1.

For more information regarding return values and reason codes, see the BPX1STL

function in z/OS UNIX System Services Programming: Assembler Callable Services

Reference, SA22-7803.

Related Information

v “pthread.h” on page 72

v “pthread_attr_setsynctype_np() — Set Thread Sync Type” on page 1411

v “pthread_attr_setweight_np() — Set Weight of Thread Attribute Object” on page

1412

pthread_set_limit_np

Chapter 3. Part 3. Library Functions 1553

pthread_setspecific() — Set the Thread-Specific Value for a Key

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_setspecific(pthread_key_t key, void *value);

SUSV3

#define _UNIX03_THREADS

#include <pthread.h>

int pthread_setspecific(pthread_key_t key, const void *value);

General Description

Associates a thread-specific value, value, with a key identifier, key.

Many multithreaded applications require storage shared among threads but a

unique value for each thread. A thread-specific data key is an identifier, created by

a thread, for which each thread in the process can set a unique key value.

pthread_key_t is a storage area where the system places the key identifier. To

create a key, a thread uses pthread_key_create(). This returns the key identifier into

the storage area of type pthread_key_t. At this point, each of the threads in the

application has the use of that key, and can set its own unique value by use of

pthread_setspecific(). A thread can get its own unique value using

pthread_getspecific().

Returned Value

If successful, pthread_setspecific() returns 0.

If unsuccessful, pthread_setspecific() returns −1 and sets errno to one of the

following values:

Error Code Description

EINVAL The key identifier key is not valid.

ENOMEM Insufficient memory exists to associate the non-NULL value with the

key.

Special Behavior for Single UNIX Specification, Version 3:

If unsuccessful, pthread_setspecific() returns an error number to indicate the error.

Example

CELEBP51

pthread_setspecific

1554 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|

||
|

|

|

/* CELEBP51 */

#define _OPEN_THREADS

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <pthread.h>

#define threads 3

#define BUFFSZ 48

pthread_key_t key;

void *threadfunc(void *parm)

{

 int status;

 void *value;

 int threadnum;

 int *tnum;

 void *getvalue;

 char Buffer[BUFFSZ];

 tnum = parm;

 threadnum = *tnum;

 printf("Thread %d executing\n", threadnum);

 if (!(value = malloc(sizeof(Buffer))))

 printf("Thread %d could not allocate storage, errno = %d\n",

 threadnum, errno);

 status = pthread_setspecific(key, (void *) value);

 if (status < 0) {

 printf("pthread_setspecific failed, thread %d, errno %d",

 threadnum, errno);

 pthread_exit((void *)12);

 }

 printf("Thread %d setspecific value: %d\n", threadnum, value);

 getvalue = 0;

 status = pthread_getspecific(key, &getvalue);

 if (status < 0) {

 printf("pthread_getspecific failed, thread %d, errno %d",

 threadnum, errno);

 pthread_exit((void *)13);

 }

 if (getvalue != value) {

 printf("getvalue not valid, getvalue=%d", (int)getvalue);

 pthread_exit((void *)68);

 }

 pthread_exit((void *)0);

}

void destr_fn(void *parm)

{

 printf("Destructor function invoked\n");

 free(parm);

}

main() {

 int getvalue;

 int status;

 int i;

 int threadparm[threads];

 pthread_t threadid[threads];

 int thread_stat[threads];

pthread_setspecific

Chapter 3. Part 3. Library Functions 1555

if ((status = pthread_key_create(&key, destr_fn)) < 0) {

 printf("pthread_key_create failed, errno=%d", errno);

 exit(1);

 }

 for (i=0; i<threads; i++) {

 threadparm[i] = i+1;

 status = pthread_create(&threadid[i],

 NULL,

 threadfunc,

 (void *)&threadparm[i]);

 if (status < 0) {

 printf("pthread_create failed, errno=%d", errno);

 exit(2);

 }

 }

 for (i=0; i<threads; i++) {

 status = pthread_join(threadid[i],

 (void *)&thread_stat[i]);

 if (status < 0) {

 printf("pthread_join failed, thread %d, errno=%d\n", i+1, errno);

 }

 if (thread_stat[i] != 0) {

 printf("bad thread status, thread %d, status=%d\n", i+1,

 thread_stat[i]);

 }

 }

 exit(0);

}

Related Information

v “pthread.h” on page 72

v “pthread_getspecific() — Get the Thread-Specific Value for a Key” on page 1458

v “pthread_getspecific_d8_np() — Get the Thread-Specific Value for a Key” on

page 1463

v “pthread_key_create() — Create Thread-Specific Data Key” on page 1470

pthread_setspecific

1556 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_sigmask() — Examine or Change a Thread’s Blocked Signals

Format

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, version 3 both z/OS V1R7

POSIX(ON)

Format

#define _OPEN_THREADS 2

#include <signal.h>

int pthread_sigmask(int option, const sigset_t *__restrict__ new_set,

 sigset_t *__restrict__ old_set);

General Description

pthread_sigmask() examines, changes, or examines and changes the signal mask

of the calling thread. If there is only one thread, it does the same for the calling

process.

Typically, pthread_sigmask(SIG_BLOCK, ..., ...) is used to block signals during a

critical section of code. At the end of the critical section of code,

pthread_sigmask(SIG_SETMASK, ..., ...) is used to restore the mask to the

previous value returned by pthread_sigmask(SIG_BLOCK, ..., ...).

option indicates the way in which the existing set of blocked signals should be

changed. The following are the possible values for option, defined in the signal.h

header file:

v SIG_BLOCK – Indicates that the set of signals given by new_set should be

blocked, in addition to the set currently being blocked.

v SIG_UNBLOCK – Indicates that the set of signals given by new_set should not

be blocked. These signals are removed from the current set of signals being

blocked.

v SIG_SETMASK – Indicates that the set of signals given by new_set should

replace the old set of signals being blocked.

new_set points to a signal set giving the new signals that should be blocked or

unblocked (depending on the value of option) or it points to the new signal mask if

the option was SIG_SETMASK. Signal sets are described in ″sigemptyset() —

Initialize a Signal Mask to Exclude All Signals″ in topic 3.727. If new_set is a NULL

pointer, the set of blocked signals is not changed. pthread_sigmask() determines

the current set and returns this information in *old_set. If new_set is NULL, the

value of option is not significant. The signal set manipulation functions:

sigemptyset(), sigfillset(), sigaddset(), and sigdelset() must be used to establish the

new signal set pointed to by new_set.

old_set points to a memory location where pthread_sigmask() can store a signal

set. If new_set is NULL, old_set returns the current set of signals being blocked.

When new_set is not NULL, the set of signals pointed to by old_set is the previous

set.

pthread_sigmask

Chapter 3. Part 3. Library Functions 1557

||||

|||
|
|

If there are any pending unblocked signals, either at the process level or at the

current thread’s level after pthread_sigmask() has changed the signal mask, then at

least one of those signals is delivered to the thread before pthread_sigmask()

returns.

The signals SIGKILL or SIGSTOP cannot be blocked. If you attempt to use

pthread_sigmask() to block these signals, the attempt is ignored. pthread_sigmask()

does not return an error status.

SIGFPE, SIGILL, and SIGSEGV signals that are not artificially generated by kill(),

killpg(), raise(), or pthread_kill() (that is, were generated by the system as a result

of a hardware or software exception) will not be blocked.

If an artificially raised SIGFPE, SIGILL, or SIGSEGV signal is pending and blocked

when an exception causes another SIGFPE, SIGILL, or SIGSEGV signal, both the

artificial and exception-caused signals may be delivered to the application.

If pthread_sigmask() fails, the signal mask of the thread is not changed.

Usage Note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this

function.

Returned Value

If successful, pthread_sigmask() returns 0. Otherwise, pthread_sigmask() returns

one of the following error numbers:

EINVAL

option does not have one of the recognized values.

Related Information

v “pthread.h” on page 72

v “signal.h” on page 77

v “kill() — Send a Signal to a Process” on page 1055

v “killpg() — Send a Signal to a Process Group” on page 1058

v “pthread_kill() — Send a Signal to a Thread” on page 1474

v “raise() — Raise Signal” on page 1595

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigaddset() — Add a Signal to the Signal Mask” on page 1899

v “sigdelset() — Delete a Signal from the Signal Mask” on page 1903

v “sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page 1905

v “sigfillset() — Initialize a Signal Mask to Include All Signals” on page 1907

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigismember() — Test If a Signal Is in a Signal Mask” on page 1912

v “signal() — Handle Interrupts” on page 1917

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigrelse() — Remove a Signal from a Thread” on page 1932

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

pthread_sigmask

1558 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

pthread_sigmask

Chapter 3. Part 3. Library Functions 1559

pthread_tag_np() — Set and Query Thread Tag Data

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_THREADS

#include <pthread.h>

int pthread_tag_np(const char *newtag, char *oldtag);

General Description

The pthread_tag_np() function is used to set and query the contents of the calling

thread’s tag data.

The parameters supported are:

newtag Specifies the new tag data to be set for the callers thread. The

length of the new tag data must be in the range of 0-65 bytes. If the

length is zero (NULL string) the caller’s thread tag data will be

cleared.

oldtag Specifies the string where pthread_tag_np() returns the old (current)

tag data for the caller’s thread. Tag data can be up to 66 bytes

(including the trailing NULL).

Returned Value

If successful, pthread_tag_np() returns 0.

If unsuccessful, pthread_tag_np() returns -1 and sets errno to one of the following

values:

Error Code Description

EFAULT One of the following errors was detected:

v All or part of the newtag string is not addressable by the caller.

v All or part of the oldtag string is not addressable by the caller.

EINVAL The length of the newtag string is not within allowable range (0 to

65 bytes).

EMVSERR An MVS environmental or internal error has occurred.

Related Information

v “pthread.h” on page 72

v “pthread_create() — Create a Thread” on page 1448

pthread_tag_np

1560 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pthread_testcancel() — Establish a Cancelation Point

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, version 3 both z/OS V1R7

POSIX(ON)

Format

#define _OPEN_THREADS 2

#include <pthread.h>

void pthread_testcancel(void);

General Description

pthread_testcancel() allows the thread to solicit cancel requests at specific points

within the current thread. You must have the cancelability state set to enabled

(PTHREAD_CANCEL_ENABLE) for this function to have any effect.

Returned Value

pthread_testcancel() returns no values.

Related Information

v ″Thread Cancelation″ in the z/OS XL C/C++ Programming Guide

v “pthread.h” on page 72

v “pthread_cancel() — Cancel a Thread” on page 1414

v “pthread_setcancelstate() — Set Thread’s Cancelability State Format” on page

1544

v “pthread_setcanceltype() — Set Thread’s Cancelability Type Format” on page

1545

pthread_testcancel

Chapter 3. Part 3. Library Functions 1561

||||

|||
|
|

pthread_testintr() — Establish a Cancelability Point

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

void pthread_testintr(void);

General Description

Allows the thread to solicit cancel requests at specific points within the current

thread. You must have the cancelability state set to enabled

(PTHREAD_INTR_ENABLE) for this function to have any effect.

Note: If you are writing to the Single UNIX Specification, Version 3 standard, use

pthread_testcancel() in place of pthread_testintr().

Returned Value

pthread_testintr() returns no values.

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Example

CELEBP52

/* CELEBP52 */

#define _OPEN_THREADS

#include <stdio.h>

#include <string.h>

#include <pthread.h>

#include <errno.h>

#include <unistd.h>

int thstatus;

char state[60] = "enable/controlled − initial default";

void * thfunc(void *voidptr)

{

 int rc;

 char *parmptr;

 parmptr = voidptr;

 printf("parm = %s.\n", parmptr);

 if (pthread_setintrtype(PTHREAD_INTR_CONTROLLED) == −1) {

 printf("set controlled failed. %s\n", strerror(errno));

 thstatus = 103;

 pthread_exit(&thstatus);

 }

 strcpy(state, "disable/controlled");

 if (pthread_setintr(PTHREAD_INTR_ENABLE) == −1) {

 printf("set enable failed. %s\n", strerror(errno));

 thstatus = 104;

pthread_testintr

1562 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

pthread_exit(&thstatus);

 }

 strcpy(state, "enable/controlled");

 strcat(state, " − pthread_testintr");

 while(1) {

 pthread_testintr();

 sleep(1);

 }

 thstatus = 100;

 pthread_exit(&thstatus);

}

main(int argc, char *argv[]) {

 int rc;

 pthread_attr_t attrarea;

 pthread_t thid;

 char parm[] = "abcdefghijklmnopqrstuvwxyz";

 int *statptr;

 if (pthread_attr_init(&attrarea) == −1) {

 printf("pthread_attr_init failed. %s\n", strerror(errno));

 exit(1);

 }

 if (pthread_create(&thid, &attrarea, thfunc, (void *)&parm) == −1) {

 printf("pthread_create failed. %s\n", strerror(errno));

 exit(2);

 }

 sleep(5);

 if (pthread_cancel(thid) == −1) {

 printf("pthread_cancel failed. %s\n", strerror(errno));

 exit(3);

 }

 if (pthread_join(thid, (void **)&statptr)== −1) {

 printf("pthread_join failed. %s\n", strerror(errno));

 exit(4);

 }

 if (statptr == (int *)−1)

 printf("thread was cancelled. state = %s.\n", state);

 else

 printf("thread was not cancelled. thstatus = %d.\n", *statptr);

 exit(0);

}

Output

parm = abcdefghijklmnopqrstuvwxyz.

thread was canceled. state = enable/controlled - pthread_testintr.

Related Information

v “pthread.h” on page 72

v “pthread_cancel() — Cancel a Thread” on page 1414

v “pthread_setintr() — Set Thread’s Cancelability State” on page 1547

v “pthread_setintrtype() — Set Thread’s Cancelability Type” on page 1550

pthread_testintr

Chapter 3. Part 3. Library Functions 1563

pthread_yield() — Release the Processor to Other Threads

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4a both POSIX(ON)

Format

#define _OPEN_THREADS

#include <pthread.h>

void pthread_yield(NULL);

General Description

Allows a thread to give up control of a processor so that another thread may have

the opportunity to run.

The parameter to the function must be NULL, because non-NULL values are

reserved.

The speed at which pthread_yield() will give up control of a processor can be

controlled with the use of the _EDC_PTHREAD_YIELD environment variable. With

the use of the _EDC_PTHREAD_YIELD environment variable, pthread_yield() can

be controlled to release the processor immediately, or to release the processor after

a delay.

For details on the _EDC_PTHREAD_YIELD environment variable, see the ″Using

Environment Variables″ chapter in z/OS XL C/C++ Programming Guide.

Returned Value

pthread_yield() returns no values.

There are no documented errno values.

Example

CELEBP53

/* CELEBP53 */

#define _OPEN_THREADS

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

void *thread(void *arg) {

 /* A simple loop with only puts() would allow a thread to write several

 lines in a row.

 With pthread_yield(), each thread gives another thread a chance before

 it writes its next line */

 while (1) {

 puts((char*) arg);

 pthread_yield(NULL);

 }

}

pthread_yield

1564 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

|
|

main() {

 pthread_t t1, t2, t3;

 if (pthread_create(&t1, NULL, thread, "thread 1") != 0) {

 perror("pthread_create() error");

 exit(1);

 }

 if (pthread_create(&t2, NULL, thread, "thread 2") != 0) {

 perror("pthread_create() error");

 exit(2);

 }

 if (pthread_create(&t3, NULL, thread, "thread 3") != 0) {

 perror("pthread_create() error");

 exit(3);

 }

 sleep(1);

 exit(0); /* this will tear all threads down */

}

Output

thread 1

thread 3

thread 2

thread 1

thread 3

thread 2

thread 1

thread 3

thread 2

thread 1

thread 3

Related Information

v “pthread.h” on page 72

pthread_yield

Chapter 3. Part 3. Library Functions 1565

ptsname() — Get Name of the Slave Pseudoterminal Device

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

char *ptsname(int fildes);

General Description

The ptsname() function returns the name of the slave pseudoterminal device

associated with a master pseudoterminal device. The fildes argument is a file

descriptor that refers to the master device. ptsname() returns a pointer to a string

containing the pathname of the corresponding slave device.

Returned Value

If successful, ptsname() returns a pointer to a string which is the name of the

pseudoterminal slave device.

If unsuccessful, ptsname() returns a NULL pointer. This could occur if fildes is an

invalid file descriptor or if the slave device name does not exist in the file system.

No errors are defined.

Related Information

v “stdlib.h” on page 85

v “grantpt() — Grant Access to the Slave Pseudoterminal Device” on page 906

v “open() — Open a File” on page 1313

v “ttyname() — Get the Name of a Terminal” on page 2272

v “unlockpt() — Unlock a Pseudoterminal Master/Slave Pair” on page 2314

putc(), putchar() — Write a Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

ptsname

1566 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

||||

|
|
|
|
|
|

||

|

Format

#include <stdio.h>

int putc(int c, FILE *stream);

int putchar(int c);

General Description

Converts c to unsigned char and then writes c to the output stream at the current

position. The putchar() function is identical to:

putc(c, stdout);

These functions are also available as macros in the z/OS XL C/C++ product. For

performance purposes, it is recommended that the macro forms rather than the

functional forms be used.

By default, if the stdio.h header file is included, the macro is invoked. Therefore, the

stream argument expression should never be an expression with side effects.

The actual function can be accessed using one of the following methods:

v For C only: do not include stdio.h.

v Specify #undef, for example, #undef putc.

v Surround the function name by parentheses, for example: (putchar)(’a’).

In a multithread application, in the presence of the feature test macro,

_OPEN_THREADS, these macros are in an #undef status because they are not

thread-safe.

putc() and putchar() are not supported for files opened with type=record.

putc() and putchar() have the same restriction as any write operation for a read

immediately following a write or a write immediately following a read. Between a

write and a subsequent read, there must be an intervening flush or reposition.

Between a read and a subsequent write, there must also be an intervening flush or

reposition unless an EOF has been reached.

If the application is not multithreaded, then setting the

_ALL_SOURCE_NO_THREADS feature test macro may improve performance of

the application, because it allows use of the inline version of this function.

Returned Value

If successful, putc() and putchar() return the character written.

If unsuccessful, putc() and putchar() return EOF.

Example

CELEBP54

/* CELEBP54

 This example writes the contents of a buffer to a data

 stream.

 The body of the "for" statement is null because the

 example carries out the writing operation in the test

 expression.

 */

#include <stdio.h>

putc, putchar

Chapter 3. Part 3. Library Functions 1567

#include <string.h>

#define LENGTH 80

int main(void)

{

 FILE *stream = stdout;

 int i, ch;

 char buffer[LENGTH + 1] = "Hello world\n";

 /* This could be replaced by using the fwrite routine */

 for (i = 0;

 (i < strlen(buffer)) && ((ch = putc(buffer[i], stream)) != EOF);

 ++i);

}

Output

Hello world

Related Information

v “stdio.h” on page 82

v “getc(), getchar() — Read a Character” on page 742

v “fputc() — Write a Character” on page 662

v “fwrite() — Write Items” on page 731

putc, putchar

1568 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

putenv() — Change or Add an Environment Variable

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

int putenv(char *envvar);

General Description

Adds a new environment variable or changes the value of an existing one. The

argument envvar is a pointer to a NULL-terminated character string that should be

of the form:

 name=value

Where:

1. The first part, name, is a character string that represents the name of the

environment variable. It is this part of the environment variable that putenv() will

use when it searches the array of environment variable to determine whether to

add or change this environment variable.

2. The second part, =, is a separator character (since the equal sign is used as a

separator character it cannot appear in the name).

3. The third part, value, is a NULL-terminated character string that represents the

value that the environment variable, name, will be set to.

putenv() is a simplified form of setenv() and is equivalent to

 setenv(name, value, 1)

Note: Starting with, z/OS V1R2, the storage used to define the environment

variable pointed to by envvar is added to the array of environment variables.

Previously, the system copied the string into system allocated storage. A new

environment variable, _EDC_PUTENV_COPY, will allow the previous

behavior to continue if set to YES. If _EDC_PUTENV_COPY is not set or is

set to any other value the new behavior will take place.

Special Behavior for POSIX C

You can use the external variable **environ (defined as extern char **environ) to

access the array of pointers to environment variables.

Returned Value

If successful, putenv() returns 0.

If unsuccessful, putenv() returns −1 and sets errno to one of the following values:

putenv

Chapter 3. Part 3. Library Functions 1569

||||

|
|
|

||

|

|
|
|
|

Error Code Description

ENOMEM Insufficient memory was available.

Special Behavior for z/OS UNIX Services

EINVAL The environment variable pointed to by the argument envvar does

not follow the prescribed format. The equal sign (=) separating the

environment variable name from the value was not found.

Related Information

v ″C/370 Environmental Variables″ in z/OS XL C/C++ Programming Guide

v “stdlib.h” on page 85

v “clearenv() — Clear Environment Variables” on page 291

v “getenv() — Get Value of Environment Variables” on page 761

v “__getenv() — Get an Environment Variable” on page 763

v “setenv() — Add, Delete, and Change Environment Variables” on page 1783

putenv

1570 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

putmsg(), putpmsg() — Send a Message on a STREAM

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stropts.h>

int putmsg(int fildes, const struct strbuf *ctlptr,

 const struct strbuf *dataptr, int flags);

int putpmsg(int fildes, const struct strbuf *ctlptr,

 const struct strbuf *dataptr, int band, int flags);

General Description

The putmsg() function creates a message from a process buffer(s) and sends the

message to a STREAMS file. The message may contain either a data part, a

control part, or both. The data and control parts are distinguished by placement in

separate buffers, as described below. The semantics of each part is defined by the

STREAMS module that receives the message.

The putpmsg() function does the same thing as putmsg(), but the process can send

messages in different priority bands. Except where noted, all requirements on

putmsg() also pertain to putpmsg().

The fildes argument specifies a file descriptor referencing an open STREAM. The

ctlptr and dataptr arguments each point to a strbuf structure.

The ctlptr argument points to the structure describing the control part, if any, to be

included in the message. The buf member in the strbuf structure points to the

buffer where the control information resides, and the len member indicates the

number of bytes to be sent. The maxlen member is not used by putmsg(). In a

similar manner, the argument dataptr specifies the data, if any, to be included in the

message. The flags argument indicates what type of message should be sent and

is described further below.

To send the data part of a message, dataptr must not be a NULL pointer and the

len member of dataptr must be 0 or greater. To send the control part of a message,

the corresponding values must be set for ctlptr. No data (control) part will be sent if

either dataptr (ctlptr) is a NULL pointer or the len member of dataptr (ctlptr) is set to

-1.

For putmsg(), if a control part is specified and flags is set to RS_HIPRI, a high

priority message is sent. If no control part is specified, and flags is set to RS_HIPRI,

putmsg() fails and sets errno to EINVAL. If flags is set to 0, a normal message

(priority band equal to 0) is sent. If a control part and data part are not specified

and flags is set to 0, no message is sent and 0 is returned.

The STREAM head guarantees that the control part of a message generated by

putmsg() is at least 64 bytes in length.

putmsg, putpmsg

Chapter 3. Part 3. Library Functions 1571

||||

|
|
||

|

For putpmsg(), the flags are different. The flags argument is a bitmask with the

following mutually-exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to

0, putpmsg() fails and sets errno to EINVAL. If a control part is specified and flags

is set to MSG_HIPRI and band is set to 0, a high-priority message is sent. If flags is

set to MSG_HIPRI and either no control part is specified or band is set to a nonzero

value, putpmsg() fails and sets errno to EINVAL. If flags is set to MSG_BAND, then a

message is sent in the priority band specified by band. If a control part and data

part are not specified and flags is set to MSG_BAND, no message is sent and 0 is

returned.

The putmsg() function blocks if the STREAM write queue is full due to internal flow

control conditions, with the following exceptions:

v For high-priority messages, putmsg() does not block on this condition and

continues processing the message.

v For other messages, putmsg() does not block but fails when the write queue is

full and O_NONBLOCK is set.

The putmsg() function also blocks, unless prevented by lack of internal resources,

while waiting for the availability of message blocks in the STREAM, regardless of

priority or whether O_NONBLOCK has been specified. No partial message is sent.

The following symbolic constants are defined under

_XOPEN_SOURCE_EXTENDED 1 in <stropts.h>.

MSG_ANY Receive any message.

MSG_BAND Receive message from specified band.

MSG_HIPRI Send/Receive high priority message.

MORECTL More control information is left in message.

MOREDATA More data is left in message.

Returned Value

If successful, putmsg() and putpmsg() return 0.

If unsuccessful, putmsg() and putpmsg() return −1 and set errno to one of the

following values.

Note: z/OS UNIX services do not supply any STREAMS devices or pseudodevices.

It is impossible for putmsg() and putpmsg() to send a message on a

STREAM. It will always return -1 with errno set to indicate the failure. See

“open() — Open a File” on page 1313

Error Code Description

EAGAIN A non-priority message was specified, the O_NONBLOCK flag is set,

and the STREAM write queue is full due to internal flow control

conditions; or buffers could not be allocated for the message that

was to be created.

EBADF fildes is not a valid file descriptor open for writing.

EINTR A signal was caught during putmsg().

EINVAL An undefined value is specified in flags, or flags is set to RS_HIPRI

or MSG_HIPRI and no control part is supplied, or the STREAM or

multiplexer referenced by fildes is linked (directly or indirectly)

putmsg, putpmsg

1572 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

downstream from a multiplexer, or flags is set to MSG_HIPRI and

band is nonzero (for putpmsg() only).

ENOSR Buffers could not be allocated for the message that was to be

created due to insufficient STREAMS memory resources.

ENOSTR A STREAM is not associated with fildes.

ENXIO A hang-up condition was generated downstream for the specified

STREAM.

EPIPE or EIO The fildes argument refers to a STREAMS-based pipe and the

other end of the pipe is closed. A SIGPIPE signal is generated for

the calling process.

ERANGE The size of the data part of the message does not fall within the

range specified by the maximum and minimum packet sizes of the

topmost STREAM module. This value is also returned if the control

part of the message is larger than the maximum configured size of

the control part of a message, or if the data part of a message is

larger than the maximum configured size of the data part of a

message.

In addition, putmsg() and putpmsg() will fail if the STREAM head had processed an

asynchronous error before the call. In this case, the value of errno does not reflect

the result of putmsg() or putpmsg() but reflects the prior error.

Related Information

v “stropts.h” on page 86

v “getmsg(), getpmsg() — Receive Next Message from a STREAMS File” on page

805

v “poll() — Monitor Activity on File Descriptors and Message Queues” on page

1353

v “read() — Read From a File or Socket” on page 1602

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “write() — Write Data on a File or Socket” on page 2464

v “writev() — Write Data on a File or Socket from an Array” on page 2472

putmsg, putpmsg

Chapter 3. Part 3. Library Functions 1573

puts() — Write a String

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int puts(const char *string);

General Description

Writes the string pointed to by string to the stream pointed to by stdout, and

appends the newline character to the output. The terminating NULL character is not

written.

If stdout points to the text stream, and the output string is longer than the length of

the stream’s record, the output is wrapped. That is, the record is filled with the

output characters, the last character of the record is set to a newline character, and

the remaining output characters are written to the next record. Such wrapping is

repeated until the remaining output characters fit into the record. Please note that

the newline character is appended to the last portion of the output string. If the

output string is shorter than the record, the remaining characters of the record are

filled with blanks—if stdout is opened in a text mode—or with NULL characters if

the stdout is opened in binary mode.

The puts() function is not supported for files opened with type=record.

puts() has the same restriction as any write operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, puts() returns the number of bytes written. However, newline

characters used to wrap the data are not counted.

If unsuccessful, puts() returns EOF.

If a system write-error occurs, the write stops at the point of failure.

After truncation, puts() does not count the truncated characters, but returns the

actual number of bytes written.

Example

CELEBP55

/* cCELEBP55

 This example writes "Hello World" to stdout.

puts

1574 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

*/

#include <stdio.h>

int main(void)

{

 if (puts("Hello World") == EOF)

 printf("Error in puts\n");

}

Output

Hello World

Related Information

v “stdio.h” on page 82

v “fputs() — Write a String” on page 664

v “gets() — Read a String” on page 850

puts

Chapter 3. Part 3. Library Functions 1575

pututxline() — Write Entry to utmpx Database

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <utmpx.h>

struct utmpx *pututxline(const struct utmpx *utmpx);

General Description

The pututxline() function writes out the structure into the utmpx database, when the

calling process has appropriate privileges. The pututxline() function uses getutxid()

to search for a record that satisfies the request. If the getutxid() search succeeds,

then the entry is replaced. Otherwise, a new entry is made at the end of the

database. If the utmpx database does not already exist, then pututxline() creates

the utmpx database with file permissions 0644. (See the __utmpxname() function

for information on the utmpx structure.)

If the ut_type field in the entry being added is EMPTY, it is always placed at the

start of the utmpx database. For this reason, pututxline() should not be used to

place EMPTY entries in the utmpx database.

The pututxline() function obtains an exclusive lock in the utmpx database on the

byte range of the record which is ready to write and releases the lock before

returning to its caller. The functions getutxent(), getutxid(), and getutxline() might

continue to read and are not affected by pututxline().

Because the pututxline() function processes thread-specific data the pututxline()

function can be used safely from a multithreaded application. If multiple threads in

the same process open the database, then each thread opens the database with a

different file descriptor. The thread’s database file descriptor is closed when the

calling thread terminates or the endutxent() function is called by the calling thread.

The name of the database file defaults to /etc/utmpx. To process a different

database file name use the __utmpxname() function.

pututxline() is not supported when all of the following conditions are true:

v The security environment for the current address space has the trusted attribute.

v Either the effective UID is different than the real UID, or the effective GID is

different than the real GID.

v The effective UID is not 0.

v The utmpx file is not writable by normal (non-trusted) processes with the current

effective UID and GID.

v pututxline() is called after getutxline(), getutxid(), or getutxent(), with no

intervening calls to endutxent() or __utmpxname().

pututxline

1576 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

For all entries that match a request, the ut_type member indicates the type of the

entry. Other members of the entry will contain meaningful data based on the value

of the ut_type member as follows:

EMPTY No other members have meaningful data.

BOOT_TIME ut_tv is meaningful.

__RUN_LVL ut_tv and ut_line are meaningful

OLD_TIME ut_tv is meaningful.

NEW_TIME ut_tv is meaningful.

USER_PROCESS

ut_id, ut_user (login name of the user), ut_line, ut_pid, and ut_tv

are meaningful.

INIT_PROCESS

ut_id, ut_pid, and ut_tv are meaningful.

LOGIN_PROCESS

ut_id, ut_user (implementation-specific name of the login process),

ut_pid, and ut_tv are meaningful.

DEAD_PROCESS

ut_id, ut_pid, and ut_tv are meaningful.

Returned Value

If successful, pututxline() returns a pointer to a utmpx structure containing a copy of

the entry written to the database.

If unsuccessful, pututxline() returns a NULL pointer.

pututxline() may fail if the process does not have appropriate privileges.

Related Information

v “utmpx.h” on page 98

v “endutxent() — Close the utmpx Database” on page 475

v “getutxent() — Read Next Entry in utmpx Database” on page 881

v “getutxid() — Search by ID utmpx Database” on page 883

v “getutxline() — Search by Line utmpx Database” on page 885

v “setutxent() — Reset to Start of utmpx Database” on page 1861

v “__utmpxname() — Change the utmpx Database Name” on page 2322

pututxline

Chapter 3. Part 3. Library Functions 1577

putw() — Put a Machine Word on a Stream

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

both

Format

#define _XOPEN_SOURCE

#include <stdio.h>

int putw(int w, FILE *stream);

General Description

The putw() function writes the word w to the output stream (at the position at which

the file offset, if defined, is pointing). The size of the word is the size of a type int,

and varies from machine to machine. The putw() function neither assumes nor

causes special alignment in the file. The st_ctime and st_mtime fields of the file will

be marked for update between the successful execution of putw() and the next

successful call to fflush() or fclose() on the same stream or a call to exit() or abort().

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use character-based output functions to replace putw() for portability.

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If successful, putw() returns 0.

If unsuccessful, putw() returns a nonzero value, sets the error indicators for stream,

and sets errno to indicate the error. Refer to “fread() — Read Items” on page 670

for errno values.

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

v “fwrite() — Write Items” on page 731

v “getw() — Get a Machine Word from a Stream” on page 887

putw

1578 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|
|
|

putwc() — Output a Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <stdio.h>

#include <wchar.h>

wint_t putwc(wchar_t wc, FILE *stream);

XPG4

#define _XOPEN_SOURCE

#include <stdio.h>

#include <wchar.h>

wint_t putwc(wint_t wc, FILE *stream);

XPG4 and MSE

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <stdio.h>

#include <wchar.h>

wint_t putwc(wchar_t wc, FILE *stream);

General Description

The putwc() function is equivalent to the fputwc() function, except that if it is

implemented as a macro, it may evaluate stream more than once. Therefore, the

argument should never be an expression with side effects. The behavior of this

wide-character function is affected by the LC_CTYPE category of the current locale.

If you use a non-wide-oriented function with putwc(), undefined results can occur.

putwc() has the same restriction as any write operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then the compiler assumes

that your program is using the XPG4 variety of the putwc() function, unless you also

define the _MSE_PROTOS feature test macro. Please see Table 4 on page 22 for a

list of XPG4 and other feature test macros.

The prototype for the XPG4 variety of the putwc() function is:

wint_t putwc(wint_t wc, FILE *stream);

putwc

Chapter 3. Part 3. Library Functions 1579

||||

|
|
|

||

|

The difference between this variety and the MSE variety of the putwc() function is

that the first parameter has type wint_t rather than type wchar_t.

Returned Value

If successful, putwc() returns the wide character written.

If a write error occurs, the error indicator for the stream is set and WEOF is

returned. If an encoding error occurs when converting from a wide character to a

multibyte character, the value of the macro EILSEQ is stored in errno and WEOF is

returned.

Example

CELEBP56

/* CELEBP56 */

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <errno.h>

int main(void)

{

 FILE *stream;

 wchar_t *wcs = L"This test string should not cause a WEOF condition";

 int i;

 int rc;

 if ((stream = fopen("myfile.dat", "w")) == NULL) {

 printf("Unable to open file\n");

 exit(1);

 }

 for (i=0; wcs[i] != L'\0'; i++) {

 errno = 0;

 if ((rc = putwc(wcs[i], stream)) == WEOF) {

 printf("Unable to putwc() the wide character.\n");

 printf("wcs[%d] = 0x%X\n", i, wcs[i]);

 if (errno == EILSEQ)

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 }

 fclose(stream);

}

Related Information

v “stdio.h” on page 82

v “wchar.h” on page 98

v “fputwc() — Output a Wide-Character” on page 666

putwc

1580 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

putwchar() — Output a Wide Character to Standard Output

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <stdio.h>

#include <wchar.h>

wint_t putwchar(wchar_t wc);

XPG4

#define _XOPEN_SOURCE

#include <stdio.h>

#include <wchar.h>

wint_t putwchar(wint_t wc);

XPG4 and MSE

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <stdio.h>

#include <wchar.h>

wint_t putwchar(wchar_t wc);

General Description

The putwchar() function is equivalent to: putwc()(wc stdout).

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you use a non-wide-oriented function with putwchar(),

undefined results can occur.

putwchar() has the same restriction as any write operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

You may not use putwc() or putwchar() with files opened as type=record.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then the compiler assumes

that your program is using the XPG4 variety of the putwchar() function, unless you

also define the _MSE_PROTOS feature test macro. Please see Table 4 on page 22

for a list of XPG4 and other feature test macros.

putwchar

Chapter 3. Part 3. Library Functions 1581

||||

|
|
|
|
|

||

|

The prototype for the XPG4 variety of the putwchar() function is:

wint_t putwchar(wint_t wc);

The difference between this variety and the MSE variety of the putwchar() function

is that its parameter has type wint_t rather than type wchar_t.

Returned Value

If successful, putwchar() returns the wide character written.

If a write error occurs, the error indicator for the stream is set and WEOF is

returned. If an encoding error occurs when converting from a wide character to a

multibyte character, the value of the macro EILSEQ is stored in errno and WEOF is

returned.

Example

CELEBP57

/* CELEBP57 */

#include <stdio.h>

#include <stdlib.h>

#include <wchar.h>

#include <errno.h>

int main(void)

{

 wchar_t *wcs = L"This test string should not cause a WEOF condition";

 int i;

 int rc;

 for (i=0; wcs[i] != L'\0'; i++) {

 errno = 0;

 if ((rc = putwchar(wcs[i])) == WEOF) {

 printf("Unable to putwchar() the wide character.\n");

 printf("wcs[%d] = 0x%X\n", i, wcs[i]);

 if (errno == EILSEQ)

 printf("An invalid wide character was encountered.\n");

 exit(1);

 }

 }

}

Related Information

v “stdio.h” on page 82

v “wchar.h” on page 98

v “fputwc() — Output a Wide-Character” on page 666

putwchar

1582 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

pwrite() — Write Data on a File or Socket Without File Pointer Change

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R10

Format

#define _XOPEN_SOURCE 500

#include <unistd.h>

ssize_t pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);

General Description

The pwrite() function performs the same action as write(), except that it writes into a

given position without changing the file pointer.

The first three arguments to pwrite() are the same as write() with the addition of a

fourth argument offset for the desired position inside the file.

Returned Value

If successful, pwrite() returns the number of bytes actually written to the file

associated with fildes. This number will never be greater than nbyte.

If unsuccessful, pwrite() returns -1 and sets errno to one of the following values:

Error Code Description

EAGAIN Resources temporarily unavailable. Subsequent requests may

complete normally.

EBADF fildes is not a valid file or socket descriptor.

ECONNRESET

A connection was forcibly closed by a peer.

EDESTADDRREQ

The socket is not connection-oriented and no peer address is set.

EFAULT Using the buf and nbyte parameters would result in an attempt to

access storage outside the caller’s address space.

EFBIG An attempt was made to write a file that exceeds the

system-established maximum file size or the process’s file size limit

supported by the implementation.

 The file is a regular file, nbyte is greater than 0 and the starting

position is greater than or equal to the offset maximum established

in the open file description associated with fields.

EINTR pwrite() was interrupted by a signal before it had written any output.

EINVAL The request is invalid or not supported. The STREAM or multiplexer

referenced by fildes is linked (directly or indirectly) downstream

from a multiplexer.

 The offset argument is invalid. The value is negative.

pwrite

Chapter 3. Part 3. Library Functions 1583

||||

|
|
||

|

EIO The process is in a background process group and is attempting to

write to its controlling terminal, but TOSTOP (defined in the

termios.h header file) is set, the process is neither ignoring nor

blocking SIGTTOU signals, and the process group of the process is

orphaned. An I/O error occurred.

EMSGSIZE The message was too big to be sent as a single datagram.

ENOBUFS Buffer space is not available to send the message.

ENOSPC There is no available space left on the output device.

ENOTCONN The socket is not connected.

ENXIO A hang-up occurred on the STREAM being written to.

EPIPE pwrite() is trying to write to a pipe that is not open for reading by

any other process. This error also generates a SIGPIPE signal. For

a connected stream socket the connection to the peer socket has

been lost.

ERANGE The transfer request size was outside the range supported by the

STREAMS file associated with fildes.

ESPIPE fildes is associated with a pipe or FIFO.

EWOULDBLOCK

The socket is in nonblocking mode and data is not available to

write.

Related Information

v “unistd.h” on page 96

v “pread() — Read From a File or Socket Without File Pointer Change” on page

1368

v “write() — Write Data on a File or Socket” on page 2464

pwrite

1584 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

qsort() — Sort Array

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

void qsort(void *base, size_t num, size_t width,

 int(*compare)(const void *element1, const void *element2));

General Description

Sorts an array of num elements, each of width bytes in size. The base pointer is a

pointer to the array to be sorted. The qsort() function overwrites the contents of the

array with the sorted elements.

The compare pointer points to a function, which you supply, that compares two

array elements and returns an integer value specifying their relationship. The qsort()

function calls the compare() function one or more times during the sort, passing

pointers to two array elements on each call. The function must compare the

elements, and then it returns one of the following values:

Value Meaning

< 0 element1 less than element2

= 0 element1 equal to element2

> 0 element1 greater than element2

The sorted array elements are stored in increasing order, as defined by your

comparison function. You can sort in reverse order by reversing the sense of

“greater than” and “less than” in the comparison function. If two elements are equal,

their order in the sorted array is unspecified.

Special Behavior for C++

C++ and C linkage conventions are incompatible, and therefore qsort() cannot

receive C++ function pointers. If you attempt to pass a C++ function pointer to

qsort(), the compiler will flag it as an error. To use the C++ qsort() function, you

must ensure that the compare() function has C linkage, by declaring it as extern

"C".

Returned Value

qsort() returns no values.

Example

CELEBQ01

qsort

Chapter 3. Part 3. Library Functions 1585

||||

|
|
|
|
|

||

|

/* CELEBQ01

 This example sorts the arguments (argv) in ascending sequence, based on

 the ASCII value of each character and string, and using the comparison

 function compare() supplied in the example.

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

 /* Declaration of compare() as a function */

#ifdef __cplusplus

extern "C" int compare(const void *, const void *);

#else

int compare(const void *, const void *); /* macro is automatically */

#endif /* defined by the C++/MVS compiler */

int main (int argc, char *argv[])

{

 int i;

 argv++;

 argc−−;

 qsort((char *)argv, argc, sizeof(char *), compare);

 for (i = 0; i < argc; ++i)

 printf("%s\n", argv[i]);

 return 0;

}

int compare (const void *arg1, const void *arg2)

{

 /* Compare all of both strings */

 return(strcmp(*(char **)arg1, *(char **)arg2));

}

Output

If the program is passed the arguments:

Does, this, really, sort, the, arguments, correctly?

then expect the following output.

arguments

correctly?

really

sort

the

this

Does

Related Information

v “stdlib.h” on page 85

v “bsearch() — Search Arrays” on page 220

qsort

1586 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

quantized32(), quantized64(), quantized128() — Set the Exponent of X

to the Exponent of Y

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 quantized32(_Decimal32 x, _Decimal32 y);

_Decimal64 quantized64(_Decimal64 x, _Decimal64 y);

_Decimal128 quantized128(_Decimal128 x, _Decimal128 y);

General Description

The quantize functions set the exponent of argument x to the exponent of argument

y, while trying to keep the value the same. If the exponent is being increased, the

value is correctly rounded according to the current rounding mode. If the result does

not have the same value as x, the ″inexact″ (FP_INEXACT) floating-point exception

is raised. If the exponent is being decreased, and the significand of the result has

more digits than the type would allow, the result is NaN and the ″invald″

(FP_INVALID) floating-point exception is raised.

If one of both operands are NaN, the result is NaN, and the ″invalid″ floating-point

exception may be raised. Otherwise, if only one operand is infinity, the result is

NaN, and the ″invalid″ floating-point exception is raised. If both operands are

infinity, the result is DEC_INFINITY, and the sign is the same as x.

The quantize functions do not signal underflow (FP_UNDERFLOW) or overflow

(FP_OVERFLOW).

 Argument Description

x Input value to be converted and perhaps

rounded using the exponent of y.

y Input value whose exponent is used for the

output value

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The quantize functions return the number which is equal in value (except for any

rounding) and sign to x, and which has been set to be equal to the exponent of y.

quantized32, quantized64, quantized128

Chapter 3. Part 3. Library Functions 1587

|

|

|

||||

|||
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|

|||

||
|

||
|
|

|

|
|

|
|

|

|
|

Example

/* CELEBQ02

 This example illustrates the quantized128() function.

*/

#define __STDC_WANT_DEC_FP__

#include <stdio.h>

#include <math.h>

int main(void)

{

 _Decimal128 price = 64999.99DL;

 _Decimal128 rate = 0.09875DL;

 _Decimal128 tax = quantized128(price * rate, 0.01DL);

 _Decimal128 total = price + tax;

 printf("price = %22.16DDF\n"

 " tax = %22.16DDF (price * rate = %−.16DDF)\n"

 "total = %22.16DDF\n"

 , price

 , tax , price * rate

 , total

);

 return 0;

}

Related Information

v “math.h” on page 60

v “samequantumd32(), samequantumd64(), samequantumd128() — Determine if

Exponents X and Y are the Same” on page 1701

quantized32, quantized64, quantized128

1588 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

QueryMetrics() — Query WLM System Information

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

int QueryMetrics(struct sysi *sysi_ptr, int *anslen);

General Description

The QueryMetrics() function provides the ability for an application to query WLM

system information.

*sysi_ptr Points to a buffer that the service is to return the WLM system

information. The data returned is in the format of the structure sysi.

*anslen Points to an integer data field that contains the length of the buffer

to return the WLM system information into.

Returned Value

If successful, QueryMetrics() returns 0.

If unsuccessful, QueryMetrics() returns -1 and sets errno to one of the following

values. If the returned errno and __errno2() indicate the supplied buffer is too small,

the anslen argument is updated to contain the length required to hold WLM system

information.

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained an incorrect value.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

The WLM query system information failed. Use __errno2() to obtain

the WLM service reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class if it is defined.

If BPX.WLMSERVER is not defined, the calling process is not

defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “CheckSchEnv() — Check WLM Scheduling Environment” on page 278

v “ConnectServer() — Connect to WLM as a Server Manager” on page 332

v “ConnectWorkMgr() — Connect to WLM as a Work Manager” on page 334

v “ContinueWorkUnit() — Continue WLM Work Unit” on page 343

QueryMetrics

Chapter 3. Part 3. Library Functions 1589

v “CreateWorkUnit() — Create WLM Work Unit” on page 369

v “DeleteWorkUnit() — Delete a WLM Work Unit” on page 415

v “DisconnectServer() — Disconnect from WLM Server” on page 421

v “JoinWorkUnit() — Join a WLM Work Unit” on page 1049

v “LeaveWorkUnit() — Leave a WLM Work Unit” on page 1073

v “QuerySchEnv() — Query WLM Scheduling Environment” on page 1591

QueryMetrics

1590 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

QuerySchEnv() — Query WLM Scheduling Environment

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/__wlm.h>

int QuerySchEnv(struct sethdr *sysi_ptr, int *anslen);

General Description

The QuerySchEnv() function provides the ability for an application to query WLM

scheduling environment.

*sysi_ptr Points to a buffer that the service is to return the WLM system

information. The data returned is in the format of the structure sysi.

*anslen Points to an integer data field that contains the length of the buffer

to return the WLM system information into.

Returned Value

If successful, QuerySchEnv() returns 0.

If unsuccessful, QuerySchEnv() returns -1 and sets errno to one of the following

values. If the returned errno and __errno2() indicate the supplied buffer is too small,

the anslen argument is updated to contain the length required to hold WLM system

information.

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained an incorrect value.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

The WLM query scheduling environment failed. Use __errno2() to

obtain the WLM service reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class if it is defined.

If BPX.WLMSERVER is not defined, the calling process is not

defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “CheckSchEnv() — Check WLM Scheduling Environment” on page 278

v “ConnectServer() — Connect to WLM as a Server Manager” on page 332

v “ConnectWorkMgr() — Connect to WLM as a Work Manager” on page 334

v “ContinueWorkUnit() — Continue WLM Work Unit” on page 343

QuerySchEnv

Chapter 3. Part 3. Library Functions 1591

v “CreateWorkUnit() — Create WLM Work Unit” on page 369

v “DeleteWorkUnit() — Delete a WLM Work Unit” on page 415

v “DisconnectServer() — Disconnect from WLM Server” on page 421

v “JoinWorkUnit() — Join a WLM Work Unit” on page 1049

v “LeaveWorkUnit() — Leave a WLM Work Unit” on page 1073

v “QueryMetrics() — Query WLM System Information” on page 1589

QuerySchEnv

1592 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

QueryWorkUnitClassification() — WLM Query Enclave Classification

Service

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both OS/390 V2R9

Format

#include <sys/__wlm.h>

int QueryWorkunitClassification(wlmetok_t *e_token,

 struct sysec *sysec_ptr,

 int *ans_len);

General Description

Returns the classification attributes of an enclave, using the following parameters:

*e_token Points to a work unit enclave token.

*sysec_ptr Points to the enclave classification data (mapped by sysec)

returned by the QueryWorkunitClassification function.

*anslen The length of the data area provided by the caller to receive the

information generated by the service. WLM will update this value

with the size of the area needed for the service to work. The

minimum area should hold the entire sysec structure through

version 3. The existing area will be populated with as much of the

information as can be returned.

Returned Value

If successful, QueryWorkunitClassification() returns 0.

If unsuccessful, QueryWorkunitClassification() returns −1 and sets errno to one of

the following values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained a value that is not correct.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

A WLM service failed. Use __errno2() to obtain the WLM service

reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class, if the

BPX.WLMSERVER class is defined. If BPX.WLMSERVER is not

defined, the calling process is not defined as a superuser (UID=0).

QueryWorkUnitClassification

Chapter 3. Part 3. Library Functions 1593

Related Information

v “sys/__wlm.h” on page 91

v “ConnectExportImport() — WLM Connect for Export or Import Use” on page 330

v “ExportWorkUnit() — WLM Export Service” on page 503

v “ExtractWorkUnit() — Extract Enclave Service” on page 508

v “ImportWorkUnit() — WLM Import Service” on page 939

v “UnDoExportWorkUnit() — WLM Undo Export Service” on page 2301

v “UnDoImportWorkUnit() — WLM Undo Import Service” on page 2303

v For more information, see z/OS MVS Programming: Workload Management

Services, SA22-7619

QueryWorkUnitClassification

1594 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

raise() — Raise Signal

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <signal.h>

int raise(int sig);

General Description

Sends the signal sig to the program that issued raise(). See Table 48 on page 1919

for the list of signals supported.

You can use signal() to specify how a signal will be handled when raise() is

invoked.

In C++ only, the use of signal() and raise() with try(), catch(), or throw() is

undefined. The use of signal() and raise() with destructors is also undefined.

Special Behavior for POSIX

To obtain access to the special POSIX behavior for raise(), the POSIX run-time

option must be set ON, and the version of MVS must be 4.3 or higher.

The raise() function sends the signal, sig, to the process that issued the raise(). If

the signal is not blocked, it is delivered to the sender before raise() returns. See

Table 47 on page 1881 in the description of the sigaction() function for the list of

signals supported.

You can use signal() or sigaction() to specify how a signal will be handled when

raise() is invoked.

Special Behavior for XPG4.2

To obtain access to the special POSIX behavior for raise(), the POSIX run-time

option must be set ON, and the version of MVS must be 4.3 or higher.

Several other functions are available to the XPG4.2 application for affecting the

behavior of a signal:

v bsd_signal()

v sigignore()

v sigset()

Special Behavior for C++

raise

Chapter 3. Part 3. Library Functions 1595

||||

|
|
|
|
|

||

|

The behavior when mixing signal-handling with C++ exception handling is

undefined. Also, the use of signal-handling with constructors and destructors is

undefined.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

If successful, raise() returns 0.

If unsuccessful, raise() returns nonzero.

Special Behavior for XPG4:

raise() sets errno to one of the following values:

Error Code Description

EINVAL The value of the sig argument is an invalid signal number.

Example

CELEBR01

/* CELEBR01

 This example establishes a signal handler called sig_hand for the

 signal SIGUSR1.

 The signal handler is called whenever the SIGUSR1 signal is raised and

 will ignore the first nine occurrences of the signal.

 On the tenth raised signal, it exits the program with an error code of 10.

 Note that the signal handler must be reestablished each time it is called.

 */

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

#ifdef __cplusplus

extern "C" {

#endif

 void sig_hand(int);

#ifdef __cplusplus

}

#endif

int i;

int main(void)

{

 signal(SIGUSR1, sig_hand); /* set up handler for SIGUSR1 */

 for (i=0; i<10; ++i)

 raise(SIGUSR1); /* signal SIGUSR1 is raised */

} /* sig_hand() is called */

void sig_hand(int dummy)

{

 static int count = 0; /* initialized only once */

 count++;

 if (count == 10) /* ignore the first 9 occurrences of this signal */

 {

 printf("reached 10th signal\n");

 exit(10);

raise

1596 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

}

 else

 signal(SIGUSR1, sig_hand); /* set up the handler again */

}

Related Information

v “signal.h” on page 77

v “bsd_signal() — BSD Version of signal()” on page 218

v “kill() — Send a Signal to a Process” on page 1055

v “killpg() — Send a Signal to a Process Group” on page 1058

v “pthread_kill() — Send a Signal to a Thread” on page 1474

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigignore() — Set Disposition to Ignore a Signal” on page 1910

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

raise

Chapter 3. Part 3. Library Functions 1597

rand() — Generate Random Number

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

int rand(void);

General Description

Generates a pseudo-random integer in the range 0 to RAND_MAX. Use the srand()

function before calling rand() to set a seed for the random number generator. If you

do not make a call to srand(), the default seed is 1.

Returned Value

Returns the calculated value.

Example

CELEBR02

/* CELEBR02

 This example prints the first 10 random numbers generated.

 */

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 int x;

 for (x = 1; x <= 10; x++)

 printf("iteration %d, rand=%d\n", x, rand());

}

Output

iteration 1, rand=16838

iteration 2, rand=5758

iteration 3, rand=10113

iteration 4, rand=17515

iteration 5, rand=31051

iteration 6, rand=5627

iteration 7, rand=23010

iteration 8, rand=7419

iteration 9, rand=16212

iteration 10, rand=4086

rand

1598 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Related Information

v “stdlib.h” on page 85

v “rand_r() — Pseudo-Random Number Generator” on page 1600

v “srand() — Set Seed for rand() Function” on page 2002

rand

Chapter 3. Part 3. Library Functions 1599

rand_r() — Pseudo-Random Number Generator

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <stdlib.h>

int rand_r(unsigned int *seed);

General Description

The rand_r() function generates a sequence of pseudo-random integers in the

range 0 to RAND_MAX. (The value of the RAND_MAX macro will be at least

32767.)

If rand_r() is called with the same initial value for the object pointed to by seed and

that object is not modified between successive returns and calls to rand_r(), the

same sequence shall be generated.

Returned Value

rand_r() returns a pseudo-random integer.

There are no documented errno values.

Related Information

v “stdlib.h” on page 85

v “rand() — Generate Random Number” on page 1598

v “srand() — Set Seed for rand() Function” on page 2002

rand_r

1600 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

random() — A Better Random-Number Generator

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

long random(void);

General Description

The random() function uses a nonlinear additive feedback random-number

generator employing a default state array size of 31 long integers to return

successive pseudo-random numbers in the range from 0 to 231-1. The period of this

random-number generator is approximately 16x(231-1). The size of the state array

determines the period of the random-number generator. Increasing the state array

size increases the period.

With 256 bytes of state information, the period of the random-number generator is

greater than 269.

Like rand(), random() produces by default a sequence of numbers that can be

duplicated by calling srandom() with 1 as the seed. The state information for the

random functions is maintained on a per-thread basis. For example, calls to

srandom() in one thread will have no effect on the numbers generated by calls to

random() in another thread.

Returned Value

random() returns the generated pseudo-random number.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “initstate() — Initialize Generator for random()” on page 975

v “setstate() — Change Generator for random()” on page 1854

v “srandom() — Use Seed to Initialize Generator for random()” on page 2004

random

Chapter 3. Part 3. Library Functions 1601

||||

|
|
||

|

read() — Read From a File or Socket

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define_POSIX_SOURCE

#include <unistd.h>

ssize_t read(int fs, void *buf, size_t N);

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

ssize_t read(int fs, void *buf, ssize_t N);

Berkeley Sockets

#define _OE_SOCKETS

#include <unistd.h>

ssize_t read(int socket, void *buf, ssize_t N);

General Description

From the file indicated by the file descriptor fs, the read() function reads N bytes of

input into the memory area indicated by buf. A successful read() updates the access

time for the file.

If fs refers to a regular file or any other type of file on which the process can seek,

read() begins reading at the file offset associated with fs. If successful, read()

changes the file offset by the number of bytes read. N should not be greater than

INT_MAX (defined in the limits.h header file).

If fs refers to a file on which the process cannot seek, read() begins reading at the

current position. There is no file offset associated with such a file.

If fs refers to a socket, read() is equivalent to recv() with no flags set.

Parameter

Description

fs The file or socket descriptor.

buf The pointer to the buffer that receives the data.

N The length in bytes of the buffer pointed to by the buf parameter.

Behavior for Sockets

The read() call reads data on a socket with descriptor fs and stores it in a buffer.

The read() all applies only to connected sockets. This call returns up to N bytes of

read

1602 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

data. If there are fewer bytes available than requested, the call returns the number

currently available. If data is not available for the socket fs, and the socket is in

blocking mode, the read() call blocks the caller until data arrives. If data is not

available, and the socket is in nonblocking mode, read() returns a −1 and sets the

error code to EWOULDBLOCK. See “ioctl() — Control Device” on page 977 or

“fcntl() — Control Open File Descriptors” on page 527 for a description of how to

set nonblocking mode.

For datagram sockets, this call returns the entire datagram that was sent, provided

that the datagram fits into the specified buffer. Excess datagram data is discarded.

Stream sockets act like streams of information with no boundaries separating data.

For example, if applications A and B are connected with a stream socket and

application A sends 1000 bytes, each call to this function can return 1 byte, or 10

bytes, or the entire 1000 bytes. Therefore, applications using stream sockets should

place this call in a loop, calling this function until all data has been received.

For sockets that are defined as AF_INET and SOCK_DGRAM type sockets, bulk

mode I/O will be supported only after the socket has been connected and the

setibmsockopt() or sock_do_bulkmode() function is issued to set a socket for bulk

mode use.

Behavior for Streams

A read() from a STREAMS file can read data in three different modes: byte-stream

mode, message-nondiscard mode, and message-discard mode. The default is

byte-stream mode. This can be changed using the I_SRDOPT ioctl() request, and can

be tested with the I_GRDOPT ioctl(). In byte-stream mode, read() retrieves data from

the STREAM until as many bytes as were requested are transferred, or until there

is no more data to be retrieved. Byte-stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() retrieves data until as many bytes

as were requested are transferred, or until a message boundary is reached. If

read() does not retrieve all the data in a message, the remaining data is left on the

STREAM, and can be retrieved by the next read() call. Message-discard mode also

retrieves data until as many bytes as were requested are transferred, or a message

boundary is reached. However, unread data remaining in a message after the

read() returns is discarded, and is not available for a subsequent read(), readv() or

getmsg() call.

How read() handles zero-byte STREAMS messages is determined by the current

read mode setting. In byte-stream mode, read() accepts data until it has read N

bytes, or until there is no more data to read, or until a zero-byte message block is

encountered. The read() function then returns the number of bytes read, and places

the zero-byte message back on the STREAM to be retrieved by the next read(),

readv() or getmsg(). In message-nondiscard mode or message-discard mode, a

zero-byte message returns 0 and the message is removed from the STREAM.

When a zero-byte message is read as the first message on a STREAM, the

message is removed from the STREAM and 0 is returned, regardless of the read

mode.

A read() from a STREAMS file returns the data in the message at the front of the

STREAM head read queue, regardless of the priority band of the message.

By default, STREAMs are in control-normal mode, in which a read() from a

STREAMS file can only process messages that contain a data part but do not

contain a control part. The read() fails if a message containing a control part is

read

Chapter 3. Part 3. Library Functions 1603

encountered at the STREAM head. This default action can be changed by placing

the STREAM in either control-data mode or control-discard mode with the I_SRDOPT

ioctl() command. In control-data mode, read() converts any control part to data and

passes it to the application before passing any data part originally present in the

same message. In control-discard mode, read() discards message control parts but

returns to the process any data part in the message.

In addition, read() and readv() will fail if the STREAM head had processed an

asynchronous error before the call. In this case, the value of errno does not reflect

the result of read() or readv() but reflects the prior error. If a hang-up occurs on the

STREAM being read, read() continues to operate normally until the STREAM head

read queue is empty. Thereafter, it returns 0.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, read() returns the number of bytes actually read and placed in buf.

This number is less than or equal to N. It is less than N only if:

v read() reached the end of the file before reading the requested number of bytes.

v read() was interrupted by a signal.

v In POSIX C programs only, the file is a pipe, FIFO special file, or a character

special file that has fewer than N bytes immediately available for reading. (See

“z/OS XL C/C++ applications with z/OS UNIX System Services C functions” on

page 13 for more information about using POSIX support.)

In POSIX C programs only, if read() is interrupted by a signal, the effect is one of

the following:

v If read() has not read any data yet, it returns −1 and sets errno to EINTR.

v If read() has successfully read some data, it returns the number of bytes it read

before it was interrupted.

If the starting position for the read operation is at the end of the file or beyond,

read() returns 0.

In POSIX C programs, if read() attempts to read from an empty pipe or a FIFO

special file, it has one of the following results:

v If no process has the pipe open for writing, read() returns 0 to indicate the end of

the file.

v If some process has the pipe open for writing and O_NONBLOCK is set to 1,

read() returns −1 and sets errno to EAGAIN.

v If some process has the pipe open for writing and O_NONBLOCK is set to 0,

read() blocks (that is, does not return) until some data is written, or the pipe is

closed by all other processes that have the pipe open for writing.

With other files that support nonblocking read operations (for example, character

special files), a similar principle applies:

read

1604 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v If data is available, read() reads the data immediately.

v If no data is available and O_NONBLOCK is set to 1, read() returns −1 and sets

errno to EAGAIN.

v If no data is available and O_NONBLOCK is set to 0, read() blocks until some

data becomes available.

read() causes the signal SIGTTIN to be sent when all these conditions exist:

v The process is attempting to read from its controlling terminal.

v The process is running in a background process group.

v The SIGTTIN signal is not blocked or ignored.

v The process group of the process is not orphaned.

If read() is reading a regular file and encounters a part of the file that has not been

written (but before the end of the file), read() places 0 bytes into buf in place of the

unwritten bytes.

If the number of bytes of input that you want to read is 0, read() simply returns 0

without attempting any other action.

If the connection is broken on a stream socket, but data is available, then read()

reads the data and gives no error on the first read operation. If the connection is

broken on a stream socket, but no data is available, then read() returns 0 bytes as

EOF on the first read operation.

Note: z/OS UNIX services do not supply any STREAMS devices or pseudodevices.

It is impossible for read() to read any data from a STREAMS-based file

indicated by fs. It will always return -1 with errno set to EBADF. EINVAL will

never be set because there are no multiplexing STREAMS drivers. See

“open() — Open a File” on page 1313 for more information.

If unsuccessful, read() returns −1 and sets errno to one of the following:

Error Code Description

EAGAIN O_NONBLOCK is set to 1, but data was not available for reading.

EBADF fs is not a valid file or socket descriptor.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT Using the buf and N parameters would result in an attempt to

access memory outside the caller’s address space.

EINTR read() was interrupted by a signal that was caught before any data

was available.

EINVAL N contains a value that is less than 0, or the request is invalid or

not supported, or the STREAM or multiplexer referenced by fs is

linked (directly or indirectly) downstream from a multiplexer.

EIO The process is in a background process group and is attempting to

read from its controlling terminal, and either the process is ignoring

or blocking the SIGTTIN signal or the process group of the process

is orphaned. For sockets, an I/O error occurred.

ENOBUFS Insufficient system resources are available to complete the call.

ENOTCONN A receive was attempted on a connection-oriented socket that is not

connected.

read

Chapter 3. Part 3. Library Functions 1605

EOVERFLOW The file is a regular file and an attempt was made to read or write

at or beyond the offset maximum associated with the file.

ETIMEDOUT The connection timed out during connection establishment, or due

to a transmission timeout on active connection.

EWOULDBLOCK

The socket is in nonblocking mode and data is not available to

read.

Example

CELEBR03

/* CELEBR03

 This example opens a file and reads input.

 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 int ret, fd;

 char buf[1024];

 system("ls −l / >| ls.output");

 if ((fd = open("ls.output", O_RDONLY)) < 0)

 perror("open() error");

 else {

 while ((ret = read(fd, buf, sizeof(buf)−1)) > 0) {

 buf[ret] = 0x00;

 printf("block read: \n<%s>\n", buf);

 }

 close(fd);

 }

 unlink("ls.output");

}

Output

block read:

<total 0

drwxr-xr-x 3 USER1 SYS1 0 Apr 16 07:59 bin

drwxr-xr-x 2 USER1 SYS1 0 Apr 6 10:20 dev

drwxr-xr-x 4 USER1 SYS1 0 Apr 16 07:59 etc

drwxr-xr-x 2 USER1 SYS1 0 Apr 6 10:15 lib

drwxrwxrwx 2 USER1 SYS1 0 Apr 16 07:55 tmp

drwxr-xr-x 2 USER1 SYS1 0 Apr 6 10:15 u

drwxr-xr-x 6 USER1 SYS1 0 Apr 6 10:15 usr

>

Related Information

v “limits.h” on page 55

v “unistd.h” on page 96

v “close() — Close a File” on page 299

v “connect() — Connect a Socket” on page 325

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup() — Duplicate an Open File Descriptor” on page 449

v “fcntl() — Control Open File Descriptors” on page 527

read

1606 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “fread() — Read Items” on page 670

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “lseek() — Change the Offset of a File” on page 1161

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

v “pread() — Read From a File or Socket Without File Pointer Change” on page

1368

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “recv() — Receive Data on a Socket” on page 1628

v “recvfrom() — Receive Messages on a Socket” on page 1631

v “recvmsg() — Receive Messages on a Socket and Store in an Array of Message

Headers” on page 1635

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “send() — Send Data on a Socket” on page 1740

v “sendmsg() — Send Messages on a Socket” on page 1747

v “sendto() — Send Data on a Socket” on page 1752

v “setsockopt() — Set Options Associated with a Socket” on page 1843

v “socket() — Create a Socket” on page 1970

v “write() — Write Data on a File or Socket” on page 2464

v “writev() — Write Data on a File or Socket from an Array” on page 2472

read

Chapter 3. Part 3. Library Functions 1607

readdir() — Read an Entry from a Directory

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define_POSIX_SOURCE

#include <dirent.h>

struct dirent *readdir(DIR *dir);

General Description

Returns a pointer to a dirent structure describing the next directory entry in the

directory stream associated with dir.

A call to readdir() overwrites data produced by a previous call to readdir() or

__readdir2() on the same directory stream. Calls for different directory streams do

not overwrite each other’s data.

Each call to readdir() updates the st_atime (access time) field for the directory.

A dirent structure contains the character pointer d_name, which points to a string

that gives the name of a file in the directory. This string ends in a terminating NULL,

and has a maximum of NAME_MAX characters.

Save the data from readdir(), if required, before calling closedir(), because closedir()

frees the data.

If the contents of a directory have changed since the directory was opened (files

added or removed); a call should be made to rewinddir() so that subsequent

readdir() requests can read the new contents.

Special Behavior for XPG4

If entries for dot or dot-dot exist, one entry will be returned for dot and one entry will

be returned for dot-dot; otherwise they will not be returned.

After a call to fork(), either the parent or child (but not both) may continue

processing the directory stream using __readdir2(), readdir(), rewinddir(), or

seekdir(). If both the parent and child processes use these functions, the result is

undefined.

Special Behavior for XPG4.2

If the entry names a symbolic link, the value of d_ino member in dirent structure is

unspecified.

readdir

1608 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

Returned Value

If successful, readdir() returns a pointer to a dirent structure describing the next

directory entry in the directory stream. When readdir() reaches the end of the

directory stream, it returns a NULL pointer.

If unsuccessful, readdir() returns a NULL pointer and sets errno to one of the

following values:

Error Code Description

EBADF dir does not yield an open directory stream.

EINVAL The buffer was too small to contain any directories.

ENOENT Added for XPG4.2: The current position of the directory stream is

invalid.

EOVERFLOW One of the values in the structure to be returned cannot be

represented correctly.

Note: Starting with z/OS V1.9, environment variable _EDC_SUSV3

can be used to control the behavior of readdir() with respect

to detecting an EOVERFLOW condition. By default, readdir()

will not detect that values in the structure returned can be

represented correctly. When _EDC_SUSV3 is set to 1,

readdir() will check for overflow conditions.

Example

CELEBR04

/* CELEBR04

 This example reads the contents of a root directory.

 */

#define _POSIX_SOURCE

#include <dirent.h>

#include <errno.h>

#include <sys/types.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 DIR *dir;

 struct dirent *entry;

 if ((dir = opendir("/")) == NULL)

 perror("opendir() error");

 else {

 puts("contents of root:");

 while ((entry = readdir(dir)) != NULL)

 printf(" %s\n", entry−>d_name);

 closedir(dir);

 }

}

Output

contents of root:

 .

 ..

 bin

 dev

 etc

readdir

Chapter 3. Part 3. Library Functions 1609

||
|

|
|
|
|
|
|

lib

 tmp

 u

 usr

Related Information

v “dirent.h” on page 40

v “stdio.h” on page 82

v “sys/types.h” on page 90

v “closedir() — Close a Directory” on page 302

v “opendir() — Open a Directory” on page 1319

v “__opendir2() — Open a Directory” on page 1322

v “readdir_r() — Read an Entry from a Directory” on page 1613

v “__readdir2() — Read Directory Entry and Get File Information” on page 1611

v “rewinddir() — Reposition a Directory Stream to the Beginning” on page 1683

v “seekdir() — Set Position of Directory Stream” on page 1714

v “telldir() — Current Location of Directory Stream” on page 2189

readdir

1610 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__readdir2() — Read Directory Entry and Get File Information

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R6

Format

#define _OPEN_SYS_DIR_EXT

#include <dirent.h>

struct dirent *__readdir2(DIR *dir, struct stat *info);

General Description

The __readdir2() function returns a pointer to a dirent structure describing the next

directory entry in the directory stream associated with dir.

A dirent structure contains the character pointer d_name, which points to a string

that gives the name of a file in the directory. This string ends in a terminating NULL,

and has a maximum of NAME_MAX characters.

The info argument points to an area of storage that will be filled in with information

about the file d_name. This information is returned in a stat structure defined in the

sys/stat.h header file. The format of this structure is described in the section about

the lstat() function. If info is NULL, no stat information is passed back.

If entries for dot or dot-dot exist, one entry will be returned for dot and one entry will

be returned for dot-dot; otherwise they will not be returned.

A call to __readdir2() overwrites data produced by a previous call to __readdir2() or

readdir() on the same directory stream. Calls for different directory streams do not

overwrite each other’s data.

Save the dirent data from __readdir2(), if required, before calling closedir(), because

closedir() frees the dirent data.

The __readdir2() function may buffer several directory entries per actual read

operation. __readdir2() updates the st_atime (access time) field of the directory

each time the directory is actually read.

After a call to fork(), either the parent or child (but not both) may continue

processing the directory stream using __readdir2(), readdir(), rewinddir() or

seekdir(). If both the parent and child processes use these functions, the result is

undefined.

If the entry names a symbolic link, the value of d_ino member in dirent structure is

unspecified.

Unpredictable results can occur if closedir() is used to close the the directory

stream before __readdir2() is called. If the contents of a directory have changed

since the directory was opened (files added or removed), a call should be made to

rewinddir() so that subsequent _readdir2() requests can read the new contents.

__readdir2

Chapter 3. Part 3. Library Functions 1611

The output from this function is similar to a combination of readdir() and lstat(). In

some cases, certain information in the output stat structure differs from what lstat()

would return. Also, the d_extra field in dir is always NULL for __readdir2().

Returned Value

If successful, __readdir2() returns a pointer to a dirent structure describing the next

directory entry in the directory stream. When __readdir2() reaches the end of the

directory stream, it returns a NULL pointer.

If unsuccessful, __readdir2() returns a NULL pointer and sets errno to one of the

following values:

Error Code Description

EBADF dir does not yield an open directory stream.

EINVAL The buffer was too small to contain any directories.

ELOOP A loop exists in symbolic links. This error occurs if the number of

symbolic links in a file name in the directory is greater than

POSIX_SYMLOOP.

ENOENT The current position of the directory stream is invalid.

Related Information

v “dirent.h” on page 40

v “stdio.h” on page 82

v “sys/types.h” on page 90

v “closedir() — Close a Directory” on page 302

v “opendir() — Open a Directory” on page 1319

v “__opendir2() — Open a Directory” on page 1322

v “readdir() — Read an Entry from a Directory” on page 1608

v “readdir_r() — Read an Entry from a Directory” on page 1613

v “rewinddir() — Reposition a Directory Stream to the Beginning” on page 1683

v “seekdir() — Set Position of Directory Stream” on page 1714

v “telldir() — Current Location of Directory Stream” on page 2189

__readdir2

1612 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

readdir_r() — Read an Entry from a Directory

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <dirent.h>

int readdir_r(DIR *__restrict__dir, struct dirent *__restrict__entry,

 struct dirent **__restrict__result);

General Description

The readdir_r() function initializes the dirent structure referenced by entry to

represent the directory entry at the current position in the directory stream referred

to by dir, stores a pointer to this structure at the location referenced by result, and

positions the directory stream at the next entry.

The storage pointed to by entry will be large enough for a dirent with an array of

char d_name member containing at least NAME_MAX+1 elements.

On successful return, the pointer returned at *result will have the same value as the

argument entry. Upon reaching the end of the directory stream, this pointer will

have the value NULL.

The readdir_r() function will not return directory entries containing empty names. It

is unspecified whether entries are returned for dot or dot-dot.

If a file is removed from or added to the directory after the most recent call to

opendir() or rewinddir(), whether a subsequent call to readdir_r() returns an entry for

that file is unspecified.

The readdir_r() function may buffer several directory entries per actual read

operation. The readdir_r() function marks for update the st_atime field of the

directory each time the directory is actually read.

Applications wishing to check for error situations should set errno to 0 before calling

readdir(). If errno is set to non-zero on return, an error occurred.

Returned Value

If successful, readdir_r() returns 0.

If unsuccessful, readdir_r() sets errno to one of the following values:

Error Code Description

EBADF dir does not refer to an open directory stream.

Related Information

v “dirent.h” on page 40

v “stdio.h” on page 82

readdir_r

Chapter 3. Part 3. Library Functions 1613

||||

|
|
||

|

|
|
|
|
|

v “sys/types.h” on page 90

v “closedir() — Close a Directory” on page 302

v “opendir() — Open a Directory” on page 1319

v “__opendir2() — Open a Directory” on page 1322

v “readdir() — Read an Entry from a Directory” on page 1608

v “__readdir2() — Read Directory Entry and Get File Information” on page 1611

v “rewinddir() — Reposition a Directory Stream to the Beginning” on page 1683

v “seekdir() — Set Position of Directory Stream” on page 1714

v “telldir() — Current Location of Directory Stream” on page 2189

readdir_r

1614 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

readlink() — Read the Value of a Symbolic Link

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX1_SOURCE 2

#include <unistd.h>

int readlink(const char *path,

 char *buf, size_t bufsiz);

#define _POSIX_C_SOURCE 200112L

#include <unistd.h>

ssize_t readlink(const char *__restrict__path,

 char *__restrict__buf, size_t bufsiz);

General Description

Places the contents of the symbolic link path in the buffer buf. The size of the buffer

is set by bufsiz. The result stored in buf does not include a terminating NULL

character.

If the buffer is too small to contain the value of the symbolic link, that value is

truncated to the size of the buffer (bufsiz). If the value returned is the size of the

buffer, use lstat() to determine the actual size of the symbolic link.

Returned Value

If successful, when bufsiz is greater than 0, readlink() returns the number of bytes

placed in the buffer. When bufsiz is 0 and readlink() completes successfully, it

returns the number of bytes contained in the symbolic link and the buffer is not

changed.

If the returned value is equal to bufsiz, you can determine the contents of the

symbolic link with either lstat() or readlink(), with a 0 value for bufsiz.

If unsuccessful, readlink() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EINVAL The named file is not a symbolic link.

EIO Added for XPG4.2: An I/O error occurred while reading from the

file system.

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOP symbolic links are encountered during resolution

of the path argument.

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

readlink

Chapter 3. Part 3. Library Functions 1615

||||

|
|
|

||

|

|
|
|
|
|
|
|
|
|
|
|

|

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined using pathconf().

ENOENT The named file does not exist.

ENOTDIR A component of the path prefix is not a directory.

Example

CELEBR05

/* CELEBR05 */

#define _POSIX_SOURCE 1

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

main() {

 char fn[]="readlink.file";

 char sl[]="readlink.symlink";

 char buf[30];

 int fd;

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(fd);

 if (symlink(fn, sl) != 0)

 perror("symlink() error");

 else {

 if (readlink(sl, buf, sizeof(buf)) < 0)

 perror("readlink() error");

 else printf("readlink() returned '%s' for '%s'\n", buf, sl);

 unlink(sl);

 }

 unlink(fn);

 }

}

Output

readlink() returned ’readlink.file’ for ’readlink.symlink’

Related Information

v “unistd.h” on page 96

v “lstat() — Get Status of File or Symbolic Link” on page 1163

v “stat() — Get File Information” on page 2008

v “symlink() — Create a Symbolic Link to a Pathname” on page 2107

v “unlink() — Remove a Directory Entry” on page 2312

readlink

1616 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

readv() — Read Data on a File or Socket and Store in a Set of Buffers

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/uio.h>

ssize_t readv(int fs, const struct iovec *iov, int iovcnt);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/uio.h>

int readv(int fs, struct iovec *iov, int iovcnt);

General Description

The readv() function reads data from a file or a socket with descriptor fs and stores

it in a set of buffers. The data is scattered into the buffers specified by

iov[0]...iov[iovcnt−1].

Parameter Description

fs The file or socket descriptor.

iov A pointer to an iovec structure.

iovcnt The number of buffers pointed to by the iov parameter.

The iovec structure is defined in uio.h and contains the following fields:

Element Description

iov_base The pointer to the buffer.

iov_len The length of the buffer.

If the descriptor refers to a socket, then it must be a connected socket.

This call returns a number of bytes of data equal to but not exceeding the sum of

all the iov_len fields. If less than the number of bytes requested is available, the call

returns the number currently available. If data is not available for the socket fs, and

the socket is in blocking mode, readv() call blocks the caller until data arrives. If

data is not available and fs is in nonblocking mode, readv() returns a −1 and sets

the error code to EWOULDBLOCK. See “fcntl() — Control Open File Descriptors”

on page 527 or “ioctl() — Control Device” on page 977 for a description of how to

set nonblocking mode.

For datagram sockets, this call returns the entire datagram that was sent, provided

that the datagram fits into the specified buffer. Excess datagram data is discarded.

Stream sockets act like streams of information with no boundaries separating data.

For example, if applications A and B are connected with a stream socket and

readv

Chapter 3. Part 3. Library Functions 1617

||||

|
|
||

|

application A sends 1000 bytes, each call to this function can return 1 byte, or 10

bytes, or the entire 1000 bytes. Therefore, applications using stream sockets should

place this call in a loop, calling this function until all data has been received.

For X/Open sockets, if the total number of bytes to read is 0, readv() returns 0. If

readv() is for a file and no data is available, readv() returns 0. If a readv() is

interrupted by a signal before it reads any data, it returns -1 with errno set to

EINTR. If readv() is interrupted by a signal after it has read data, it returns the

number of bytes read. If fs refers to a socket, readv() is the equivalent of recv() with

no flags set.

If the connection is broken on a stream socket and data is available, then readv()

reads the data and gives no error on the first read operation. If the connection is

broken on a stream socket and no data is available, then readv() returns 0 bytes as

EOF on the first read operation.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, readv() returns the number of bytes read into the buffer.

If unsuccessful, readv() returns −1 and sets errno to one of the following values:

Error Code Description

EAGAIN The O_NONBLOCK flag is set for the file descriptor and the

process would be delayed by the readv().

EBADF fs is not a valid file or socket descriptor.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT Using iov and iovcnt would result in an attempt to access storage

outside the caller’s address space.

EINTR readv() was interrupted by a signal that was caught before any data

was available.

EINVAL iovcnt was not valid, or one of the fields in the iov array was not

valid.

ENOBUFS Insufficient system resources are available to complete the call.

ENOTCONN A receive is attempted on a connection-oriented socket that is not

connected.

ETIMEDOUT The connection timed out during connection establishment, or due

to a transmission timeout on active connection.

EWOULDBLOCK

The socket is in nonblocking mode and data is not available to

read.

Related Information

v “sys/uio.h” on page 91

v “connect() — Connect a Socket” on page 325

v “fcntl() — Control Open File Descriptors” on page 527

readv

1618 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “read() — Read From a File or Socket” on page 1602

v “recv() — Receive Data on a Socket” on page 1628

v “recvfrom() — Receive Messages on a Socket” on page 1631

v “recvmsg() — Receive Messages on a Socket and Store in an Array of Message

Headers” on page 1635

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “send() — Send Data on a Socket” on page 1740

v “sendmsg() — Send Messages on a Socket” on page 1747

v “sendto() — Send Data on a Socket” on page 1752

v “setsockopt() — Set Options Associated with a Socket” on page 1843

v “socket() — Create a Socket” on page 1970

v “write() — Write Data on a File or Socket” on page 2464

v “writev() — Write Data on a File or Socket from an Array” on page 2472

readv

Chapter 3. Part 3. Library Functions 1619

realloc() — Change Reserved Storage Block Size

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

General Description

Changes the size of a previously reserved storage block. The ptr argument points

to the beginning of the block. The size argument gives the new size of the block in

bytes. The contents of the block are unchanged up to the shorter of the new and

old sizes.

If the ptr is NULL, realloc() reserves a block of storage of size bytes. It does not

give all bits of each element an initial value of 0.

If size is 0 and ptr is not NULL, the storage pointed to by ptr is freed and NULL is

returned.

If you use realloc() with a pointer that does not point to a ptr created previously by

malloc(), calloc(), or realloc(), or if you pass ptr to storage already freed, you get

undefined behavior—usually an exception.

If you ask for more storage, the contents of the extension are undefined and are not

guaranteed to be 0. You can specify the bytes to which storage is initialized, which

then ensures the contents of the extension.

The storage to which the returned value points is aligned for storage of any type of

object. Under z/OS XL C only, if 4K alignment is required, the __4kmalc() function

should be used. (This function is only available to C applications in stand-alone

System Programming C (SPC) Facility applications.) The library functions specific to

the System Programming C (SPC) environment are described in z/OS XL C/C++

Programming Guide.

To investigate the cause of realloc() running out of heap storage, see z/OS

Language Environment Programming Reference

Special Behavior for C++

The C++ keywords new and delete are not interoperable with calloc(), free(),

malloc(), or realloc().

realloc

1620 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

|
|

Returned Value

If successful, realloc() returns a pointer to the reallocated storage block. The

storage location of the block might be moved. Thus, the returned value is not

necessarily the same as the ptr argument to realloc().

The returned value is NULL if size is 0. If there is not enough storage to expand the

block to the given size, the original block is unchanged and a NULL pointer is

returned. If realloc() returns NULL because there is not enough storage, it will also

set errno to one of the following values:

Error Code Description

ENOMEM Insufficient memory is available

Example

CELEBR06

/* CELEBR06

 This example allocates storage for the prompted size of array

 and then uses &realloc. to reallocate the block to hold the

 new size of the array.

 The contents of the array are printed after each allocation.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 long * array; /* start of the array */

 long * ptr; /* pointer to array */

 int i; /* index variable */

 int num1, num2; /* number of entries of the array */

 void print_array(long *ptr_array, int size);

 printf("Enter the size of the array\n");

 scanf("%i", &num1);

 /* allocate num1 entries using malloc() */

 if ((array = (long *)malloc(num1 * sizeof(long))) != NULL) {

 for (ptr = array, i = 0; i < num1 ; ++i) /* assign values */

 *ptr++ = i;

 print_array(array, num1);

 printf("\n");

 }

 else { /* malloc error */

 printf("Out of storage\n");

 abort();

 }

 /* Change the size of the array ... */

 printf("Enter the size of the new array\n");

 scanf("%i", &num2);

 if ((array = (long *)realloc(array, num2* sizeof(long))) != NULL)

 {

 for (ptr = array + num1, i = num1; i <= num2; ++i)

 ptr++ = i + 2000; / assign values to new elements */

 print_array(array, num2);

 }

 else { /* realloc error */

 printf("Out of storage\n");

realloc

Chapter 3. Part 3. Library Functions 1621

abort();

 }

}

void print_array(long * ptr_array, int size)

{

 int i;

 long * index = ptr_array;

 printf("The array of size %d is:\n", size);

 for (i = 0; i < size; ++i) /* print the array out */

 printf(" array[%i] = %li\n", i, ptr_array[i]);

}

Output

If the initial value entered is 2 and the second value entered is 4, then expect the

following output:

Enter the size of the array

The array of size 2 is:

 array[0] = 0

 array[1] = 1

Enter the size of the new array

The array of size 4 is:

 array[0] = 0

 array[1] = 1

 array[2] = 2002

 array[3] = 2003

Related Information

v “System Programming C (SPC) Facilities” in z/OS XL C/C++ Programming Guide

v “spc.h” on page 78

v “stdlib.h” on page 85

v “calloc() — Reserve and Initialize Storage” on page 230

v “free() — Free a Block of Storage” on page 672

v “malloc() — Reserve Storage Block” on page 1172

realloc

1622 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

realpath() — Resolve Pathname

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

char *realpath(const char *__restrict__file_name, char *__restrict__resolved_name);

General Description

The realpath() function derives, from the pathname pointed to by file_name, an

absolute pathname that names the same file, whose resolution does not involve

″.″,″..″, or symbolic links. The generated pathname is stored, up to a maximum of

PATH_MAX bytes, in the buffer pointed to by resolved_name.

Returned Value

If successful, realpath() returns a pointer to the resolved name.

If unsuccessful, the contents of the buffer pointed to by resolved_name are

undefined, realpath() returns a NULL pointer and sets errno to one of the following

values:

Error Code Description

EACCES Read or search permission was denied for a component of

file_name.

EINVAL Either the file_name or resolved_name argument is a NULL pointer.

EIO An error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in resolving path

ENAMETOOLONG

Pathname is longer that PATH_MAX characters, or some

component of pathname is longer that NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values are

determined using pathconf().

ENOENT A component of file_name does not name an existing file or

file_name points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

ERANGE File system will return ERANGE if the result to be stored in

’resolved_name’ is larger than PATH_MAX.

Related Information

v “stdlib.h” on page 85

v “getcwd() — Get Pathname of the Working Directory” on page 754

realpath

Chapter 3. Part 3. Library Functions 1623

||||

|
|
||

|

|
|
|
|

v “sysconf() — Determine System Configuration Options” on page 2111

realpath

1624 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

re_comp() — Compile Regular Expression

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <re_comp.h>

char *re_comp(const char *string);

General Description

Restriction: This function is not supported in AMODE 64.

The re_comp() function converts a regular expression string into an internal form

suitable for pattern matching by re_exec().

The parameter string is a pointer to a character string defining a source regular

expression to be compiled.

If re_comp() is called with a NULL argument, the current regular expression remains

unchanged.

Strings passed to re_comp() must be terminated by a NULL byte, and may include

newline characters.

Notes:

1. The re_comp() and re_exec() functions are supported on the thread-level. They

must be issued from the same thread to work properly.

2. The re_comp() and re_exec() functions are provided for historical reasons.

These functions were part of the Legacy Feature in Single UNIX Specification,

Version 2. They have been withdrawn and are not supported as part of Single

UNIX Specification, Version 3. New applications should use the newer functions

fnmatch(), glob(), regcomp() and regexec(), which provide full internationalized

regular expression functionality compatible with IEEE Std 1003.1-2001.

3. The z/OS UNIX implementation of the re_comp() function supports only the

POSIX locale. Any other locales will yield unpredictable results.

The re_comp() function supports simple regular expressions, which are defined

below.

Simple Regular Expressions

A Simple Regular Expression (SRE) specifies a set of character strings. The

simplest form of regular expression is a string of characters with no special

meaning. A small set of special characters, known as metacharacters, do have

special meaning when encountered in patterns.

The following one-character regular expressions (RE) match a single character:

re_comp

Chapter 3. Part 3. Library Functions 1625

|
|
|
|
|
|

1. An ordinary character c (not a special character) is a one character regular

expression that matches itself.

2. A backslash (\) followed by any special character (that is, \c where c is any

special character) is a one character regular expression that matches the

special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash,

respectively) which are always special, except when they appear within

square brackets ([]).

b. ^(caret or circumflex), which is special at the beginning of the entire regular

expression, or when it immediately follows the left of a pair of square

brackets ([]).

c. $ (dollar symbol), which is special at the end of the regular expression.

d. The character used to bound (delimit) an entire regular expression, which is

special for that regular expression.

Note: A backslash (\) followed by an ordinary character is a one character

regular expression that matches the ordinary character itself.

3. A period (.) is a one-character RE that matches any character, except newline.

4. A non-empty string within square brackets ([string]) is a one-character RE that

matches any one character in that string. Thus, [abc], if compared to other

strings, would match any which contained a, b, or c.

If the caret symbol (^) is the first character of the string within square brackets

(that is, [^string]), the one-character RE matches any characters except

newline and the remaining characters within the square brackets. Thus, [^abc],

if compared to other strings, would fail to match any which contains even one a,

b, or c.

Ranges may be specified as c–c. The hyphen symbol, within square brackets,

means ″through″. It may be used to indicate a range of consecutive ASCII

characters. For example, [0–9] is equivalent to [0123456789].

The – (hyphen) can be used by itself, but only if it is the first (after an initial ^, if

any), or last character in the expression.

The right square bracket (]) can be used as part of the string but only if it is the

first character within it (after an initial ^, if any). For example, the expression

[]a–d] matches either a right square bracket or one of the characters a through

d.

The following rules may be used to construct REs from one character REs:

1. A one-character RE is a RE that matches whatever the one-character RE

matches.

2. A one-character RE followed by an asterisk symbol (*) is a RE that matches 0

or more occurrences of the one-character RE. For example, (a*e) will match any

of the following: e, ae, aaaaae. The longest leftmost match is chosen.

3. A one-character RE followed by \{m\}, \{m,\}, or \{m,u\} is a RE that matches a

range of occurrences of the one-character RE. Nonnegative integer values

enclosed in \{\} indicate the number of times to apply the preceding

one-character RE. m is the minimum number and u is the maximum number. u

must be less than 256. If you specify only m, it indicates the exact number of

times to apply the regular expression.

\{m,\} is equivalent to \{m,u\}. They both match m or more occurrences of the

expression. The * (asterisk) operation is equivalent to \{0,\}.

The maximum number of occurrences is matched.

re_comp

1626 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

4. REs can be concatenated. The concatenation of REs is a RE that matches the

concatenation of the strings matched by each component of the RE.

5. A RE enclosed between the character sequences \(and\) is a RE that matches

whatever the unadorned RE matches. The \(and \) sequences are ignored.

6. The expression \n (where 1 <= n <= 9) matches the same string of characters

as was matched by an expression enclosed between \(and \) earlier in the

same regular expression. The sub-expression it specified is that beginning with

the nth occurrence of \(counting from the left. For example, in the expression,

\(a\)r\(e\)\1, the \1 is equivalent to a, giving area.

An entire RE may be constrained to match only an initial segment or final segment

of a line (or both).

1. A caret (^) at the beginning of an entire RE constrains that RE to match an

initial segment of a line.

2. A dollar symbol ($) at the end of an entire RE constrains that RE to match a

final segment of a line. For example, the construct ^entire RE$ constrains the

entire RE to match the entire line.

Returned Value

If the string pointed to by the string argument is successfully converted, re_comp()

returns a NULL pointer.

If unsuccessful, re_comp() returns a pointer to an error message string

(NULL-terminated).

The following re_comp() error messages are defined:

 EDC7008E No previous regular expression

 EDC7009E Regular expression too long

 EDC7010E \(\) imbalance

 EDC7011E \{\} imbalance

 EDC7012E [] imbalance

 EDC7013E Too many \(\) pairs.

 EDC7014E Incorrect range values in \{\}

 EDC7015E Back reference number in \digit incorrect

 EDC7016E Incorrect endpoint in range expression

Note: The error message string is not to be freed by the application. It will be freed

when the thread terminates.

Related Information

v “re_comp.h” on page 75

v “fnmatch() — Match Filename or Pathname” on page 624

v “glob() — Generate Pathnames Matching a Pattern” on page 898

v “re_exec() — Match Regular Expression” on page 1640

v “regcomp() — Compile Regular Expression” on page 1646

v “regexec() — Execute Compiled Regular Expression” on page 1653

re_comp

Chapter 3. Part 3. Library Functions 1627

recv() — Receive Data on a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

ssize_t recv(int socket, void *buffer, size_t length, int flags);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

int recv(int socket, char *buffer, int length, int flags);

General Description

The recv() function receives data on a socket with descriptor socket and stores it in

a buffer. The recv() call applies only to connected sockets.

Parameter Description

socket The socket descriptor.

buf The pointer to the buffer that receives the data.

len The length in bytes of the buffer pointed to by the buf parameter.

flags The flags parameter is set by specifying one or more of the

following flags. If more than one flag is specified, the logical OR

operator (|) must be used to separate them.

MSG_OOB Reads any out-of-band data on the socket.

Out-of-band data is sent when the MSG_OOB flag

is on for a send(), sendto(), or sendmsg().

 The fcntl() command should be used with

F_SETOWN to specify the recipient, either a pid or

a gid, of a SIGURG signal that will be sent when

out-of-band data is sent. If no recipient is set, no

signal will be sent. For more information, see the

fcntl() command. The recipient of the data

determines whether to receive out-of-band data

inline or not inline by the setting of the

SO_OOBINLINE option of setsockopt(). If

SO_OOBINLINE is set off and the MSG_OOB flag

is set on, the out-of-band data byte will be read

out-of-line. It is invalid for the MSG_OOB flag to be

set on when SO_OOBINLINE is set on. If there is

out-of-band data available, and the MSG_OOB flag

is not set (SO_OOBINLINE can be on or off), then

the data up to, but not including, the out-of-band

recv

1628 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

||
|
|

||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

data will be read. When the read cursor has

reached the out-of-band data byte, then only the

out-of-band data will be read on the next read. The

SIOCATMARK option of ioctl() can be used to

determine if the read cursor is currently at the

out-of-band data byte. For more information, refer

to the setsockopt() and ioctl() commands.

MSG_PEEK Peeks at the data present on the socket; the data is

returned but not consumed, so that a subsequent

receive operation sees the same data.

This call returns the length of the incoming message or data. If a datagram packet

is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If

data is not available for the socket socket, and socket is in blocking mode, the

recv() call blocks the caller until data arrives. If data is not available and socket is in

nonblocking mode, recv() returns a −1 and sets the error code to EWOULDBLOCK.

See “fcntl() — Control Open File Descriptors” on page 527 or “ioctl() — Control

Device” on page 977 for a description of how to set nonblocking mode.

For datagram sockets, this call returns the entire datagram that was sent, provided

that the datagram fits into the specified buffer. Stream sockets act like streams of

information with no boundaries separating data. For example, if applications A and

B are connected with a stream socket and application A sends 1000 bytes, each

call to this function can return 1 byte, or 10 bytes, or the entire 1000 bytes.

Therefore, applications using stream sockets should place this call in a loop, calling

this function until all data has been received.

For sockets that are defined as AF_INET and SOCK_DGRAM type sockets, bulk

mode I/O will be supported only after the socket has been connected and the

setibmsockopt() or sock_do_bulkmode() function is issued to set a socket for bulk

mode use.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, recv() returns the length of the message or datagram in bytes. The

value 0 indicates the connection is closed.

If unsuccessful, recv() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF socket is not a valid socket descriptor.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT Using the buf and len parameters would result in an attempt to

access storage outside the caller’s address space.

EINTR The recv() call was interrupted by a signal that was caught before

any data was available.

EINVAL The request is invalid or not supported. The MSG_OOB flag is set

and no out-of-band data is available.

recv

Chapter 3. Part 3. Library Functions 1629

|
|
|
|
|
|
|

||
|
|

EIO There has been a network or transport failure.

ENOBUFS Insufficient system resources are available to complete the call.

ENOTCONN A receive is attempted on a connection-oriented socket that is not

connected.

ENOTSOCK The descriptor is for a file, not for a socket.

EOPNOTSUPP

The specified flags are not supported for this socket type or

protocol.

ETIMEDOUT The connection timed out during connection establishment, or due

to a transmission timeout on active connection.

EWOULDBLOCK

socket is in nonblocking mode and data is not available to read.

Related Information

v “sys/socket.h” on page 89

v “connect() — Connect a Socket” on page 325

v “fcntl() — Control Open File Descriptors” on page 527

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “read() — Read From a File or Socket” on page 1602

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “recvfrom() — Receive Messages on a Socket” on page 1631

v “recvmsg() — Receive Messages on a Socket and Store in an Array of Message

Headers” on page 1635

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “send() — Send Data on a Socket” on page 1740

v “sendmsg() — Send Messages on a Socket” on page 1747

v “sendto() — Send Data on a Socket” on page 1752

v “setsockopt() — Set Options Associated with a Socket” on page 1843

v “socket() — Create a Socket” on page 1970

v “write() — Write Data on a File or Socket” on page 2464

v “writev() — Write Data on a File or Socket from an Array” on page 2472

recv

1630 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

recvfrom() — Receive Messages on a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int recvfrom(int socket, void *__restrict__ buffer,

 size_t length, int flags,

 struct sockaddr *__restrict__ address,

 socklen_t *__restrict__ address_length);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

int recvfrom(int socket, char *buffer,

 int length, int flags,

 struct sockaddr *address,

 int *address_length);

General Description

The recvfrom() function receives data on a socket named by descriptor socket and

stores it in a buffer. The recvfrom() function applies to any datagram socket,

whether connected or unconnected.

Parameter Description

socket The socket descriptor.

buffer The pointer to the buffer that receives the data.

length The length in bytes of the buffer pointed to by the buffer parameter.

flags A parameter that can be set to 0 or MSG_PEEK, or MSG_OOB.

MSG_OOB Reads any out-of-band data on the socket.

Out-of-band data is sent when the MSG_OOB flag

is on for a send(), sendto(), or sendmsg().

 The fcntl() command should be used with

F_SETOWN to specify the recipient, either a pid or

a gid, of a SIGURG signal that will be sent when

out-of-band data is sent. If no recipient is set, no

signal will be sent. For more information, see the

fcntl() command. The recipient of the data

determines whether to receive out-of-band data

inline or not inline by the setting of the

SO_OOBINLINE option of setsockopt(). If

SO_OOBINLINE is set off and the MSG_OOB flag

is set on, the out-of-band data byte will be read

out-of-line. It is invalid for the MSG_OOB flag to be

recvfrom

Chapter 3. Part 3. Library Functions 1631

||||

|
|
||

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

set on when SO_OOBINLINE is set on. If there is

out-of-band data available, and the MSG_OOB flag

is not set (SO_OOBINLINE can be on or off), then

the data up to, but not including, the out-of-band

data will be read. When the read cursor has

reached the out-of-band data byte, then only the

out-of-band data will be read on the next read. The

SIOCATMARK option of ioctl() can be used to

determine if the read cursor is currently at the

out-of-band data byte. For more information, refer

to the setsockopt() and ioctl() commands.

MSG_PEEK Peeks at the data present on the socket; the data is

returned but not consumed, so that a subsequent

receive operation sees the same data.

address A pointer to a socket address structure from which data is received.

If address is nonzero, the source address is returned.

address_length

Must initially point to an integer that contains the size in bytes of

the storage pointed to by address. On return, that integer contains

the size required to represent the address of the connecting socket.

If this value is larger than the size supplied on input, then the

information contained in sockaddr is truncated to the length

supplied on input. If address is NULL, address_length is ignored.

If address is nonzero the source address of the message is filled. address_length

must first be initialized to the size of the buffer associated with address and is then

modified on return to indicate the actual size of the address stored there.

If either address or address_length is a NULL pointer, then address and

address_length are unchanged.

If address is nonzero, the source address of the message is filled. address_length

must first be initialized to the size of the buffer associated with address, and is then

modified on return to indicate the actual size of the address stored there.

This call returns the length of the incoming message or data. If a datagram packet

is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If

data is not available for the socket socket, and socket is in blocking mode, the

recvfrom() call blocks the caller until data arrives. If data is not available and socket

is in nonblocking mode, recvfrom() returns a −1 and sets the error code to

EWOULDBLOCK. See “fcntl() — Control Open File Descriptors” on page 527 or

“ioctl() — Control Device” on page 977 for a description of how to set nonblocking

mode.

For datagram sockets, this call returns the entire datagram that was sent, provided

that the datagram fits into the specified buffer. Stream sockets act like streams of

information with no boundaries separating data. For example, if applications A and

B are connected with a stream socket and application A sends 1000 bytes, each

call to this function can return 1 byte, or 10 bytes, or the entire 1000 bytes.

Therefore, applications using stream sockets should place this call in a loop, calling

this function until all data has been received.

recvfrom

1632 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

For sockets that are defined as AF_INET and SOCK_DGRAM type sockets, bulk

mode I/O will be supported when the setibmsockopt() or sock_do_bulkmode()

function is issued to set a socket for bulk mode use.

Socket Address Structure for IPv6

For an AF_INET6 socket, the address is returned in a sockaddr_in6 address

structure. The sockaddr_in6 structure is defined in the header file netinet/in.h.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The recvfrom() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, recvfrom() returns the length of the message or datagram in bytes.

If unsuccessful, recvfrom() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF socket is not a valid socket descriptor.

ECONNRESET

The connection was forcibly closed by a peer.

EFAULT Using the buffer and length parameters would result in an attempt

to access storage outside the caller’s address space.

EINTR A signal interrupted recvfrom() before any data was available.

EINVAL The request is invalid or not supported. The MSG_OOB flag is set

and no out-of-band data is available.

EIO There has been a network or transport failure.

ENOBUFS Insufficient system resources are available to complete the call.

ENOTCONN A receive is attempted on a connection-oriented socket that is not

connected.

ENOTSOCK The descriptor is for a file, not for a socket.

EOPNOTSUPP

The specified flags are not supported for this socket type.

ETIMEDOUT The connection timed out during connection establishment, or due

to a transmission timeout on active connection.

EWOULDBLOCK

socket is in nonblocking mode and data is not available to read.

Related Information

v “sys/socket.h” on page 89

v “fcntl() — Control Open File Descriptors” on page 527

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “read() — Read From a File or Socket” on page 1602

recvfrom

Chapter 3. Part 3. Library Functions 1633

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “recv() — Receive Data on a Socket” on page 1628

v “recvmsg() — Receive Messages on a Socket and Store in an Array of Message

Headers” on page 1635

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “send() — Send Data on a Socket” on page 1740

v “sendmsg() — Send Messages on a Socket” on page 1747

v “sendto() — Send Data on a Socket” on page 1752

v “setsockopt() — Set Options Associated with a Socket” on page 1843

v “socket() — Create a Socket” on page 1970

v “write() — Write Data on a File or Socket” on page 2464

v “writev() — Write Data on a File or Socket from an Array” on page 2472

recvfrom

1634 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

recvmsg() — Receive Messages on a Socket and Store in an Array of

Message Headers

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

ssize_t recvmsg(int socket, struct msghdr *message, int flags);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

int recvmsg(int socket, struct msghdr *message, int flags);

General Description

The recvmsg() function receives messages on a socket with descriptor socket and

stores them in an array of message headers.

Parameter Description

socket The socket descriptor.

msg An array of message headers into which messages are received.

flags The flags parameter is set by specifying one or more of the

following flags. If more than one flag is specified, the logical OR

operator (|) must be used to separate them.

MSG_OOB Reads any out-of-band data on the socket.

Out-of-band data is sent when the MSG_OOB flag

is on for a send(), sendto() or sendmsg().

 The fcntl command should be used with

F_SETOWN to specify the recipient, either a pid or

a gid, of a SIGURG signal that will be sent when

out-of-band data is sent. If no recipient is set, no

signal will be sent. For more information, see the

fcntl() command. The recipient of the data

determines whether to receive out-of-band data

inline or not inline by the setting of the

SO_OOBINLINE option of setsockopt(). If

SO_OOBINLINE is set off and the MSG_OOB flag

is set on, the out-of-band data byte will be read

out-of-line. It is invalid for the MSG_OOB flag to be

set on when SO_OOBINLINE is set on. If there is

out-of-band data available, and the MSG_OOB flag

is not set (SO_OOBINLINE can be on or off), then

the data up to, but not including, the out-of-band

recvmsg

Chapter 3. Part 3. Library Functions 1635

||||

|
|
||

|

||
|
|

||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

data will be read. When the read cursor has

reached the out-of-band data byte, then only the

out-of-band data will be read on the next read, and

the output MSG_OOB msg_flag in the message

header will be set on. The SIOCATMARK option of

ioctl() can be used to determine if the read cursor is

currently at the out-of-band data byte. For more

information, refer to the setsockopt() and ioctl()

commands.

MSG_PEEK Peeks at the data present on the socket; the data is

returned but not consumed, so that a subsequent

receive operation will see the same data.

MSG_WAITALL

Requests that the function block until the full

amount of data requested can be returned. The

function may return a smaller amount of data if a

signal is caught, the connection is terminated, or a

error is pending for the socket.

A message header is defined by a msghdr structure. A definition of this structure

can be found in the sys/socket.h include file and contains the following elements:

Element Description

msg_iov An array of iovec buffers into which the message is placed.

msg_iovlen The number of elements in the msg_iov array.

msg_name An optional pointer to a buffer where the sender’s address is stored.

msg_namelen The size of the address buffer.

caddr_t msg_accrights

Access rights sent/received (ignored if specified by the user).

int msg_accrightslen

Length of access rights data (ignored if specified by the user).

msg_control Ancillary data, see below.

msg_controllen

Ancillary data buffer length.

msg_flags Flags on received message.

Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr

structure followed by a data array. The data array contains the ancillary data

message, and the cmsghdr structure contains descriptive information that allows

an application to correctly parse the data.

The sys/socket.h header file defines the cmsghdr structure that includes at least

the following members:

Element Description

cmsg_len Data byte count, including header.

cmsg_level Originating protocol.

cmsg_type Protocol-specific type.

recvmsg

1636 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|

The sys/socket.h header file defines the following macro for use as the

cmsg_type value when cmsg_level is SOL_SOCKET:

SCM_RIGHTS Indicates that the data array contains the access rights to be sent

or received. This option is valid only for the AF_UNIX domain.

The sys/socket.h header file defines the following macros to gain access to the

data arrays in the ancillary data associated with a message header:

CMSG_DATA(cmsg) If the argument is a pointer to a cmsghdr structure,

this macro returns an unsigned character pointer to

the data array associated with the cmsghdr

structure.

CMSG_NXTHDR(mhdr,cmsg) If the first argument is a pointer to a msghdr

structure and the second argument is a pointer to a

cmsghdr structure in the ancillary data, pointed to

by the msg_control field of that msghdr structure,

this macro returns a pointer to the next cmsghdr

structure, or a NULL pointer if this structure is the

last cmsghdr in the ancillary data.

CMSG_FIRSTHDR(mhdr) If the argument is a pointer to a msghdr structure,

this macro returns a pointer to the first cmsghdr

structure in the ancillary data associated with this

msghdr structure, or a NULL pointer if there is no

ancillary data associated with the msghdr structure.

The recvmsg() function applies to sockets, regardless of whether they are in the

connected state.

This call returns the length of the data received. If data is not available for the

socket socket, and socket is in blocking mode, the recvmsg() call blocks the caller

until data arrives. If data is not available and socket is in nonblocking mode,

recvmsg() returns a −1 and sets the error code to EWOULDBLOCK. See “fcntl() —

Control Open File Descriptors” on page 527 or “ioctl() — Control Device” on page

977 for a description of how to set nonblocking mode.

For datagram sockets, this call returns the entire datagram that was sent, provided

that the datagram fits into the specified buffer. Stream sockets act like streams of

information with no boundaries separating data. For example, if applications A and

B are connected with a stream socket and application A sends 1000 bytes, each

call to this function can return 1 byte, or 10 bytes, or the entire 1000 bytes.

Therefore, applications using stream sockets should place this call in a loop, calling

this function until all data has been received.

On successful completion, the msg_flags member for the message header is the

bitwise inclusive-OR of all of the following flags that indicate conditions detected for

the received message:

MSG_OOB Out-of-band data was received.

MSG_TRUNC Normal data was truncated.

MSG_CTRUNC

Control data was truncated.

recvmsg

Chapter 3. Part 3. Library Functions 1637

For sockets that are defined as AF_INET and SOCK_DGRAM type sockets, bulk

mode I/O will be supported when the setibmsockopt() or sock_do_bulkmode()

function is issued to set a socket for bulk mode use.

Socket Address Structure for IPv6

For an AF_INET6 socket, the address is returned in a sockaddr_in6 address

structure. The sockaddr_in6 structure is defined in the header file netinet/in.h.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The recvmsg() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, recvmsg() returns the length of the message in bytes.

If unsuccessful, recvmsg() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF socket is not a valid socket descriptor.

ECONNRESET

The connection was forcibly closed by a peer.

EFAULT Using msg would result in an attempt to access storage outside the

caller’s address space.

EINTR The function was interrupted by a signal before any data was

available.

EINVAL The request is invalid or not supported. The sum of the iov_len

values overflows a ssize_t.

EIO There has been a network or transport failure.

ENOBUFS Insufficient system resources are available to complete the call.

ENOTCONN A receive is attempted on a connection-oriented socket that is not

connected.

ENOTSOCK The descriptor is for a file, not for a socket.

EOPNOTSUPP

The specified flags are not supported for this socket type.

ETIMEDOUT The connection timed out during connection establishment, or due

to a transmission timeout on active connection.

EWOULDBLOCK

socket is in nonblocking mode and data is not available to read.

Related Information

v “sys/socket.h” on page 89

v “connect() — Connect a Socket” on page 325

v “fcntl() — Control Open File Descriptors” on page 527

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

recvmsg

1638 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “read() — Read From a File or Socket” on page 1602

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “recv() — Receive Data on a Socket” on page 1628

v “recvfrom() — Receive Messages on a Socket” on page 1631

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “send() — Send Data on a Socket” on page 1740

v “sendmsg() — Send Messages on a Socket” on page 1747

v “sendto() — Send Data on a Socket” on page 1752

v “setsockopt() — Set Options Associated with a Socket” on page 1843

v “socket() — Create a Socket” on page 1970

v “write() — Write Data on a File or Socket” on page 2464

v “writev() — Write Data on a File or Socket from an Array” on page 2472

recvmsg

Chapter 3. Part 3. Library Functions 1639

re_exec() — Match Regular Expression

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <re_comp.h>

int re_exec(const char *string);

General Description

Restriction: This function is not supported in AMODE 64.

The re_exec() function attempts to match the string pointed to by the string

argument with the last regular expression passed to re_comp().

The parameter string is a pointer to a character string to be compared.

Strings passed to re_exec() must be terminated by a NULL byte, and may include

newline characters.

Notes:

1. The re_comp() and re_exec() functions are provided for historical reasons.

These functions were part of the Legacy Feature in Single UNIX Specification,

Version 2. They have been withdrawn and are not supported as part of Single

UNIX Specification, Version 3. New applications should use the newer functions

fnmatch(), glob(), regcomp() and regexec(), which provide full internationalized

regular expression functionality compatible with IEEE Std 1003.1-2001.

2. The z/OS UNIX implementation of the re_exec() function supports only the

POSIX locale. Any other locales will yield unpredictable results.

3. The re_comp() and re_exec() functions are supported on the thread-level. They

must be issued from the same thread to work properly.

The re_exec() function supports simple regular expressions, which are defined in

“re_comp() — Compile Regular Expression” on page 1625.

Returned Value

If successful, re_exec() returns 1 if the input string matches the last compiled

regular expression.

If unsuccessful, re_exec() returns 0 if the input string fails to match the last

compiled regular expression, and −1 if the compiled regular expression is invalid

(indicating an internal error).

Related Information

v “re_comp.h” on page 75

v “fnmatch() — Match Filename or Pathname” on page 624

v “glob() — Generate Pathnames Matching a Pattern” on page 898

re_exec

1640 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|

v “re_comp() — Compile Regular Expression” on page 1625

v “regcomp() — Compile Regular Expression” on page 1646

v “regexec() — Execute Compiled Regular Expression” on page 1653

re_exec

Chapter 3. Part 3. Library Functions 1641

regcmp() — Compile Regular Expression

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 C only

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <libgen.h>

char *regcmp(const char *pattern[,...], (char *)0);

char *regex(const char *cmppat, const char *subject[,subexp,...]);

extern char *__loc1;

General Description

Restriction: This function is not supported in AMODE 64.

The regcmp() function concatenates regular expression (RE) patterns specified by a

list of one or more pattern arguments. The end of this list must be delimited by a

NULL pointer. The regcmp() function then converts the concatenated RE pattern

into an internal form suitable for use by the pattern matching regex() function. If

conversion is successful, regcmp() returns a pointer to the converted pattern.

Otherwise, it returns a NULL pointer. The regcmp() function uses malloc() to obtain

storage for the converted pattern. It is the application’s responsibility to free

unneeded space so allocated.

The regex() function executes a converted pattern cmppat against a subject string.

If cmppat matches all or part of the subject string, the regex() function returns a

pointer to the next unmatched character in the subject string and sets the external

variable __loc1 to point the first matched character in the subject string. If no match

is found between cmppat and the subject string, the regex() function returns a

NULL pointer.

The regcmp() and regex() functions are supported in any locale. However, results

are unpredictable if they are not run in the same locale.

Following are valid RE symbols and their meaning to the regcmp() and regex()

functions:

Expression

Meaning

NUL Terminate RE pattern and text string

c Any non-special character, c, is a one-character RE which matches itself.

\s A backslash (\) followed by a special character, s, is a one-character RE

which matches the special character itself.

 The following characters are special:

regcmp

1642 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

period, ., asterisk, *, plus, +, dollar, $, left square bracket, [, left brace, {,

right brace, }, left parenthesis, (, right parenthesis,), and backslash, \,

are always special except when they appear within square brackets ([]).

 caret (^) is special at the beginning of an entire RE (which is another

name for a pattern).

Note: An non-special character preceded by \ is a one-character RE which

matches the non-special character.

yz Concatenation of REs y and z matches concatenation of strings matched by

y and z.

. The period (.) special character RE matches any single character except

the <newline> character.

 ̂ The caret (^) at the beginning of an entire RE is an RE which matches the

beginning of a string. Thus, it anchors or limits matches by the entire RE to

the beginning of strings.

$ The dollar ($) at the end of an entire RE is an RE which only the end of a

string (delimited by the <NUL> character). Thus, it anchors or limits

matches by the entire RE to the end of strings.

Note: \n (the C language designation for a <newline> character) must be

used in an entire RE to match any embedded or trailing <newline>

character in a text string.

(...) Parentheses are used to delimit a sub-expression which matches whatever

the REs comprising the sub-expression would have matched without the

delimiting parentheses.

(...)$n $n, where n is a digit between 0 and 9, inclusive, may be used to tag a

sub-expression. The tag tells the regex() function to return the substring

matched by the sub-expression at address specified by (n+1)th argument

after subject.

* A one-character RE or sub-expression followed by an asterisk (*) is a RE

that matches zero or more occurrences of the one-character RE or

sub-expression. If there is any choice, the longest leftmost string that

permits a match is chosen.

+ A one-character RE or sub-expression followed by a plus (+) is a RE that

matches one or more occurrences of the one-character RE or

sub-expression. Whenever a choice exists, the RE matches as many

occurrences as possible.

{m,n} A one-character RE or sub-expression followed by integer values, m and n,

enclosed in braces is a RE which matches repeated occurrences of

whatever the preceding one-character RE or sub-expression matched. The

value of m, which must be in the range 0 to 255, inclusive, is the minimum

number of occurrences required for a match. The value of n which, if

specified, must also must be in the range 0 to 255, inclusive, is the

maximum. The value of n, if specified, must be greater than or equal to the

value m. The following brace expressions are valid:

{m} Matches exactly m occurrences of the preceding one-character RE

or sub-expression.

{m,} Matches m or more occurrences of the preceding one-character RE

or sub-expression. There is no limit on the number of occurrences

regcmp

Chapter 3. Part 3. Library Functions 1643

which will be matched. The plus (+) and asterisk (*) operations are

equivalent to {1,} and {0,}, respectively.

{m,n} Matches between m and n occurrences, inclusive.

Whenever a choice exists, the RE matches as many occurrence as

possible.

[...] A non-empty list of characters enclosed by square brackets is a

one-character RE that matches any one character in the list.

[^...] A non-empty list of characters preceded by a caret (^) enclosed by square

brackets is a one-character RE that matches any character except

<newline> and the characters in the list. The ̂ has special meaning only if it

is the first character after the left bracket ([).

[c1-c2] The hyphen (-) between two characters c1 and c2 within square brackets

designates the list of characters whose collating values fall between the

collating values of c1 and c2 in the current locale. The collating value of c2

must be greater than or equal to c1. Also, c2 may not be used as the

ending point of one range and the starting point of another range. In other

words, c1-c2-c3 is invalid.

 The - loses special meaning if it occurs first or last in the bracket

expression or if it is used for c1 or c2.

 The right bracket,], does not terminate a bracket expression when it is the

first character within it (after an initial ^, if any). For example, the expression

[]0-9] matches a right bracket or a digit in the range 0-9, inclusive.

Notes:

1. Multiple duplication symbols applied to the same RE will be interpreted

in the following order of precedence:

a. *

b. +

c. {}

2. RE Order of precedence is as follows, from high to low:

a. escaped character \character

b. bracket expression [...]

c. sub-expression (...)

d. duplication * + {}

e. concatenation yz

f. anchors ̂ $

Note:

The regcmp() and regex() functions are provided for historical reasons.

These functions were part of the Legacy Feature in Single UNIX

Specification, Version 2. They have been withdrawn and are not supported

as part of Single UNIX Specification, Version 3. New applications should use

the newer functions fnmatch(), glob(), regcomp() and regexec(), which

provide full internationalized regular expression functionality compatible with

IEEE Std 1003.1-2001.

If it is necessary to continue using these functions in an application written

for Single UNIX Specification, Version 3, define the feature test macro

regcmp

1644 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|

|
|

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If the pattern formed by concatenating the list of pattern arguments is successfully

converted, regcmp() returns a pointer to the converted pattern. Otherwise, it returns

a NULL pointer. If regcmp() is unable to allocate storage for the converted pattern, it

sets errno to ENOMEM.

If regex() successfully matches the converted pattern cmppat to all or part of the

subject string, it returns a pointer to the next unmatched character in subject.

Otherwise, it returns a NULL pointer.

Related Information

v “libgen.h” on page 55

v “fnmatch() — Match Filename or Pathname” on page 624

v “glob() — Generate Pathnames Matching a Pattern” on page 898

v “re_comp() — Compile Regular Expression” on page 1625

v “re_exec() — Match Regular Expression” on page 1640

v “regcomp() — Compile Regular Expression” on page 1646

v “regexec() — Execute Compiled Regular Expression” on page 1653

regcmp

Chapter 3. Part 3. Library Functions 1645

|
|
|

regcomp() — Compile Regular Expression

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

z/OS UNIX

both

Format

#include <regex.h>

int regcomp(regex_t *_restrict_ preg, const char *_restrict_ pattern, int cflags);

General Description

Compiles the regular expression specified by pattern into an executable string of

op-codes.

preg is a pointer to a compiled regular expression.

pattern is a pointer to a character string defining a source regular expression

(described below).

cflags is a bit flag defining configurable attributes of compilation process:

REG_EXTENDED Support extended regular expressions.

REG_ICASE Ignore case in match.

REG_NEWLINE Eliminate any special significance to the newline

character.

REG_NOSUB Report only success or fail in regexec(), that is,

verify the syntax of a regular expression. If this flag

is set, the regcomp() function sets re_nsub to the

number of parenthesized sub-expressions found in

pattern. Otherwise, a sub-expression results in an

error.

The regcomp() function under z/OS XL C/C++ will use the definition of characters

according to the current LC_SYNTAX category. The characters, [,], {, }, |, ^, and

$, have varying code points in different encoded character sets.

Regular Expressions

The functions regcomp(), regerror(), regexec(), and regfree() use regular

expressions in a similar way to the UNIX awk, ed, grep, and egrep commands.

The simplest form of regular expression is a string of characters with no special

meaning. The following characters do have special meaning; they are used to form

extended regular expressions:

Symbol Description

. The period symbol matches any one character except the terminal

newline character.

regcomp

1646 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

|
|
|

|
|

[character–character]

The hyphen symbol, within square brackets, means “through”. It fills

in the intervening characters according to the current collating

sequence. For example, [a–z] can be equivalent to [abc...xyz] or,

with a different collating sequence, it can be equivalent to

[aAbBcC...xXyYzZ].

[string] A string within square brackets specifies any of the characters in

string. Thus [abc], if compared to other strings, would match any

that contained a, b, or c.

 No assumptions are made at compile time about the actual

characters contained in the range.

[m] [m,] [m,u] Integer values enclosed in [] indicate the number of times to apply

the preceding regular expression. m is the minimum number, and u

is the maximum number. u must be less than 256. If you specify

only m, it indicates the exact number of times to apply the regular

expression.

 [m,] is equivalent to [m,u]. They both match m or more occurrences

of the expression. The + (plus) and * (asterisk) operations are

equivalent to [1,] and [0,] respectively.

* The asterisk symbol indicates 0 or more of any characters. For

example, [a*e] is equivalent to any of the following: 99ae9, aaaaae,

a999e99.

$ The dollar symbol matches the end of the string. (Use \n to match a

newline character.)

character+ The plus symbol specifies one or more occurrences of a character.

Thus, smith+ern is equivalent to, for example, smithhhern.

[^string] The caret symbol, when inside square brackets, negates the

characters within the square brackets. Thus [^abc], if compared to

other strings, would fail to match any that contains even one a, b,

or c.

(expression)$n Stores the value matched by the enclosed regular expression in the

(n+1)th ret parameter. Ten enclosed regular expressions are

allowed. Assignments are made unconditionally.

(expression) Groups a sub-expression allowing an operator, such as *, +, or [].],

to work on the sub-expression enclosed in parentheses. For

example, (a*(cb+)*)$0.

Notes:

v Do not use multibyte characters.

v You can use the] (right square bracket) alone within a pair of square brackets,

but only if it immediately follows either the opening left square bracket or if it

immediately follows [^. For example: []–] matches the] and – characters.

v All the preceding symbols are special. You precede them with \ to use the symbol

itself. For example, a\.e is equivalent to a.e.

v You can use the – (hyphen) by itself, but only if it is the first or last character in

the expression. For example, the expression []−−0] matches either the] or else

the characters – through 0. Otherwise, use \–.

regcomp

Chapter 3. Part 3. Library Functions 1647

Returned Value

If successful, regcomp() returns 0.

If unsuccessful, regcomp() returns nonzero, and the content of preg is undefined.

Example

CELEBR07

/* CELEBR07

 This example compiles an extended regular expression.

 */

#include <regex.h>

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

main() {

 regex_t preg;

 char *string = "a simple string";

 char *pattern = ".*(simple).*";

 int rc;

 if ((rc = regcomp(&preg, string, REG_EXTENDED)) != 0) {

 printf("regcomp() failed, returning nonzero (%d)", rc);

 exit(1);

 }

}

Related Information

v “regex.h” on page 76

v “regerror() — Return Error Message” on page 1649

v “regexec() — Execute Compiled Regular Expression” on page 1653

v “regfree() — Free Memory for Regular Expression” on page 1656

regcomp

1648 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

regerror() — Return Error Message

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <regex.h>

size_t regerror(int errcode, const regex_t *_restrict_preg,

 char *_restrict_errbuf, size_t errbuf_size);

General Description

Finds the description for errcode. (For a description of regular expressions, see

“Regular Expressions” on page 1646.)

Returned Value

regerror() returns the integer value that is the size of the buffer needed to hold the

generated description string for the error condition corresponding to errcode.

regerror() returns the following messages.

errcode Description String

REG_BADBR Invalid \{ \} range exp

REG_BADPAT Invalid regular expression

REG_BADRPT ?*+ not preceded by valid RE

REG_EBOL ¬ anchor and not BOL

REG_EBRACE \{ \} or { } imbalance

REG_EBRACK [] imbalance

REG_ECHAR Invalid multibyte character

REG_ECOLLATE Invalid collating element

REG_ECTYPE Invalid character class

REG_EEOL $ anchor and not EOL

REG_EESCAPE Last character is \

REG_EPAREN \(\) or () imbalance

REG_ERANGE Invalid range exp endpoint

REG_ESPACE Out of memory

REG_ESUBREG Invalid number in \digit

REG_NOMATCH RE pattern not found

The LC_SYNTAX characters in the messages will be converted to the code points

from the current LC_SYNTAX category.

regerror

Chapter 3. Part 3. Library Functions 1649

||||

|
|
|

||

|

|
|
|
|

Example

CELEBR08

/* CELEBR08

 This example compiles an invalid regular expression, and

 print error message ®error..

 */

#include <regex.h>

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

main() {

 regex_t preg;

 char *pattern = "a[missing.bracket";

 int rc;

 char buffer[100];

 if ((rc = regcomp(&preg, pattern, REG_EXTENDED)) != 0) {

 regerror(rc, &preg, buffer, 100);

 printf("regcomp() failed with '%s'\n", buffer);

 exit(1);

 }

}

Related Information

v Chapter s about internationalization in z/OS XL C/C++ Programming Guide.

v “regex.h” on page 76

v “regcomp() — Compile Regular Expression” on page 1646

v “regexec() — Execute Compiled Regular Expression” on page 1653

v “regfree() — Free Memory for Regular Expression” on page 1656

regerror

1650 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

regex() — Execute Compiled Regular Expression

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 C only

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <libgen.h>

char *regex(const char *cmppat, const char *subject[,subexp,...]);

extern char *__loc1;

General Description

Restriction: This function is not supported in AMODE 64.

The regex() function executes a converted pattern cmppat produced by the

regcomp() function against a subject string. If cmppat matches all or part of the

subject string, the regex() function returns a pointer to the next unmatched

character in the subject string and sets the external variable __loc1 to point the first

matched character in the subject string. If no match is found between cmppat and

the subject string, the regex() function returns a NULL pointer.

The regex() and regcomp() functions are supported in any locale. However, results

are unpredictable if they are not run in the same locale.

Refer to “regcmp() — Compile Regular Expression” on page 1642 for a description

of regular expression syntax and semantics supported by the regex() and regcomp()

functions.

Note:

The regcmp() and regex() functions are provided for historical reasons.

These functions were part of the Legacy Feature in Single UNIX

Specification, Version 2. They have been withdrawn and are not supported

as part of Single UNIX Specification, Version 3. New applications should use

the newer functions fnmatch(), glob(), regcomp() and regexec(), which

provide full internationalized regular expression functionality compatible with

IEEE Std 1003.1-2001.

If it is necessary to continue using these functions in an application written

for Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If regex() successfully matches the converted pattern cmppat to all or part of the

subject string, it returns a pointer to the next unmatched character in subject.

regex

Chapter 3. Part 3. Library Functions 1651

|
|
|
|
|
|
|

|
|
|
|
|

If unsuccessful, regex() returns a NULL pointer.

Related Information

v “libgen.h” on page 55

v “fnmatch() — Match Filename or Pathname” on page 624

v “glob() — Generate Pathnames Matching a Pattern” on page 898

v “re_comp() — Compile Regular Expression” on page 1625

v “regcomp() — Compile Regular Expression” on page 1646

v “re_exec() — Match Regular Expression” on page 1640

v “regexec() — Execute Compiled Regular Expression” on page 1653

regex

1652 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

regexec() — Execute Compiled Regular Expression

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <regex.h>

int regexec(const regex_t *preg, const char *string,

 size_t nmatch, regmatch_t *pmatch, int eflags);

XPG4

#define _XOPEN_SOURCE

#include <regex.h>

int regexec(const regex_t *__restrict__ preg,

 const char *__restrict__ string,

 size_t nmatch, regmatch_t *__restrict__ pmatch, int eflags);

General Description

Compares the NULL-terminated string specified by string against the compiled

regular expression, preg. (For a description of regular expressions, see “Regular

Expressions” on page 1646.)

preg is a pointer to a compiled regular expression to compare against STRING.

string is a pointer to a string to be matched.

nmatch is the number of sub-expressions to match.

pmatch is an array of offsets into STRING which matched the corresponding

sub-expressions in preg.

eflags is a bit flag defining customizable behavior of regexec().

REG_NOTBOL

Indicates that the first character of STRING is not the beginning of

the line.

REG_NOTEOL

Indicates that the first character of STRING is not the end of the

line.

If nmatch parameter is 0 or REG_NOSUB was set on the call to regcomp(),

regexec() ignores the pmatch argument. Otherwise, the pmatch argument points to

an array of at least nmatch elements. The regexec() function fills in the elements of

the array with offsets of the substrings of STRING that correspond to the

parenthesized sub-expressions of the original pattern specified to regcomp(). The

0th element of the array corresponds to the entire pattern. If there are more than

nmatch sub-expressions, only the first nmatch−1 are recorded.

regexec

Chapter 3. Part 3. Library Functions 1653

||||

|
|
|

||

|

|
|
|
|
|
|

|
|
|

When matching a basic or extended regular expression, any given parenthesized

sub-expression of pattern might participate in the match of several different

substrings of STRING. The following rules determine which substrings are reported

in pmatch.

1. If a sub-expression participated in a match several times, the offset of the last

matching substring is reported in pmatch.

2. If a sub-expression did not match in the source STRING, the offset shown in

pmatch is set to −1.

3. If a sub-expression contains sub-expressions, the data in pmatch refers to the

last such sub-expression.

4. If a sub-expression matches a zero-length string, the offsets in pmatch refer to

the byte immediately following the matching string.

If EREG_NOSUB was set when regcomp() was called, the contents of pmatch are

unspecified.

If REG_NEWLINE was set when regcomp() was called, newline characters are

allowed in STRING.

Notes:

v With z/OS XL C/C++, the string passed to the regexec() function is assumed to

be in the initial shift state, unless REG_NOTBOL is specified. If REG_NOTBOL is

specified, the shift state used is the shift state after the last call to the regexec()

function.

v The information returned by the regexec() function in the regmatch_t structure

has the shift-state at the start and end of the string added. This will assist an

application to perform replacements or processing of the partial string. To perform

replacements, the application must add the required shift-out and shift-in

characters where necessary. No library functions are available to assist the

application.

v If MB_CUR_MAX is specified as 4, but the charmap file does not specify the

DBCS characters, and a collating-element (for example, [:a:]) is specified in the

pattern, the DBCS characters will not match against the collating-element even if

they have an equivalent weight to the collating-element.

Returned Value

If a match is found, regexec() returns 0.

If unsuccessful, regexec() returns nonzero indicating either no match or an error.

Example

CELEBR09

/* CELEBR09

 This example compiles an extended regular expression, and

 match against a string.

 */

#include <regex.h>

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

main() {

 regex_t preg;

regexec

1654 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

char *string = "a simple string";

 char *pattern = ".*(simple).*";

 int rc;

 size_t nmatch = 2;

 regmatch_t pmatch[2];

 if ((rc = regcomp(&preg, pattern, REG_EXTENDED)) != 0) {

 printf("regcomp() failed, returning nonzero (%d)\n", rc);

 exit(1);

 }

 if ((rc = regexec(&preg, string, nmatch, pmatch, 0)) != 0) {

 printf("failed to ERE match '%s' with '%s',returning %d.\n",

 string, pattern, rc);

 }

 regfree(&preg);

}

Related Information

v Chapter s about internationalization in z/OS XL C/C++ Programming Guide

v “regex.h” on page 76

v “regcomp() — Compile Regular Expression” on page 1646

v “regerror() — Return Error Message” on page 1649

v “regfree() — Free Memory for Regular Expression” on page 1656

regexec

Chapter 3. Part 3. Library Functions 1655

regfree() — Free Memory for Regular Expression

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <regex.h>

void regfree(regex_t *preg);

General Description

Frees any memory that was allocated by regcomp() to implement preg. The

expression defined by preg is no longer a compiled regular or extended expression.

(For a description of regular expressions, see “Regular Expressions” on page

1646.)

Example

CELEBR10

/* CELEBR10

 This example compiles an extended regular expression and a

 free regular expression.

 */

#include <regex.h>

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

main() {

 regex_t preg;

 char *pattern = ".*(simple).*";

 int rc;

 if ((rc = regcomp(&preg, pattern, REG_EXTENDED)) != 0) {

 printf("regcomp() failed, returning nonzero (%d)\n", rc);

 exit(1);

 }

 regfree(&preg);

}

Related Information

v Chapter s about internationalization in z/OS XL C/C++ Programming Guide

v “regex.h” on page 76

v “regcomp() — Compile Regular Expression” on page 1646

v “regerror() — Return Error Message” on page 1649

v “regexec() — Execute Compiled Regular Expression” on page 1653

regfree

1656 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

release() — Delete a Load Module

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX C only

Format

#include <stdlib.h>

int release(void(*fetch_ptr)());

General Description

Removes from memory the load modules retrieved by fetch() or fetch control blocks

created by fetchep(). The fetch_ptr parameter is obtained from a call to fetch() or

fetchep(). Once released, the fetch() and any associated fetchep() pointers are no

longer valid.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name, the external entry point name is prefixed with two underscore

characters, and the other name is not. The name without the prefix underscore

characters is exposed only when you use LANGLVL(EXTENDED).

Note: The external entry point name for release() is __rlse(), NOT __release().

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters __rlse(),

or compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

All fetched modules and fetch control blocks created by fetchep() are released

automatically on program termination.

Using release() on a module obtained by using fetch() will also cause the release()

of any child fetch control blocks created by fetchep() for this module. However,

using release() on a child fetch control block will have no effect on the parent

modules or sibling fetch control blocks obtained by using fetch(). Trying to use a

fetch control block after it has been released will result in undefined behavior. (A

Fetch Control Block (FECB) is an internal executable control block. The fetch

pointer points to it.

When non-reentrant modules have been fetched multiple times, you should release

them in the reverse order; otherwise, the load modules may not be deleted

immediately.

Returned Value

If successful, release() returns 0.

If unsuccessful, release() returns nonzero.

release

Chapter 3. Part 3. Library Functions 1657

Example

/* The following C example uses the fetch() function to load a module, and

 later uses release() to delete the module from memory.

 */

#include <stdlib.h>

void (*fetch_ptr)();

int main(void) {

 fetch_ptr = fetch("sample"); ...
 release(fetch_ptr); /* all modules are released */

}

Related Information

v “stdlib.h” on page 85

v “fetch() — Get a Load Module” on page 565

v “fetchep() — Share Writable Static” on page 578

release

1658 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

remainder(), remainderf(), remainderl() — Computes the remainder x

REM y

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double remainder(double x, double y);

C99

#define _ISOC99_SOURCE

#include <math.h>

float remainderf(float x, float y);

long double remainderl(long double x, long double y);

General Description

The remainder() function returns the floating-point remainder when y is nonzero and

following the relation

The value n is the integral value nearest the exact value x/y and when

 then the value of n is even.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

remainder X X

remainderf X X

remainderl X X

Restriction

The remainderf() function does not support the _FP_MODE_VARIABLE feature test

macro.

r = x - ny

n - x/y = 1/2

remainder

Chapter 3. Part 3. Library Functions 1659

||||

|
|
|

||

|

Returned Value

If successful, remainder() returns the remainder of the division of x by y as

described.

If y is zero, remainder() returns HUGE_VAL and sets errno to EDOM.

If r = 0, then its sign will be that of x.

Special Behavior for IEEE

If successful, remainder() returns the remainder of the division of x by y.

If y is zero, remainder() returns NaNQ and sets errno to EDOM..

Example

/*

 * This program illustrates the use of remainder() function

 *

 */

#define _ISOC99_SOURCE

#include <math.h>

#include <stdio.h>

void main() {

 double number1=3.0, number2=3.5;

 printf("Illustrates the remainder() function");

 #ifdef __BFP__

 printf(" (IEEE version)\n\n");

 #else

 printf(" (HFP version)\n\n");

 #endif

 printf("remainder(%.2f,%.2f)=%.2f\n",number1,number2,remainder(number1,number2));

 number1=1; number2=2;

 printf("remainder(%.2f,%.2f)=%.2f\n",number1,number2,remainder(number1,number2));

 number1=1; number2=0;

 printf("remainder(%.2f,%.2f)=%.2f\n",number1,number2,remainder(number1,number2));

}

Output

Illustrates the remainder() function (IEEE version)

remainder(3.00,3.50)=-0.50

remainder(1.00,2.00)=1.00

remainder(1.00,0.00)=NaNQ(1)

Related Information

v “math.h” on page 60

v “abs(), absf(), absl() — Calculate Integer Absolute Value” on page 118

remainder

1660 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

remove() — Delete File

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int remove(const char *filename);

General Description

Deletes the file specified by filename, unless the file is open. The remove() function

removes memory files and DASD data sets. (Non-DASD data sets, such as tapes,

are not supported.) It also removes individual members of PDSs and PDSEs, and

even removes memory files that simulate PDSs.

The interpretation of the file name passed to remove() depends on whether

POSIX(ON) is specified. See “z/OS XL C/C++ applications with z/OS UNIX System

Services C functions” on page 13 for more information about using POSIX support.

For full details about filename considerations, see one of the “Opening Files”

section s in z/OS XL C/C++ Programming Guide.

Memory files must exist and they must be closed. However, if you have z/OS UNIX

C application running POSIX(ON), memory files don’t need to be closed when

removing an HFS memory file. The z/OS UNIX services rules of interoperability

apply. See the appropriate “Opening Files” section s in z/OS XL C/C++

Programming Guide, for specifying file names for MVS data sets and HFS files.

Special Behavior for XPG4

If filename does not name a directory, remove(filename) is equivalent to

unlink(filename). If filename names a directory, remove(filename) is equivalent to

rmdir(filename).

Returned Value

If successful, remove() returns 0.

If unsuccessful, remove() returns nonzero to indicate an error.

Example

CELEBR12

/* CELEBR12

 When you invoke this example with a file name, the program attempts to

 remove that file.

 It issues a message if an error occurs.

remove

Chapter 3. Part 3. Library Functions 1661

||||

|
|
|
|
|
|

||

|

|

*/

#include <stdio.h>

int main(int argc, char ** argv)

{

 if (argc != 2)

 printf("Usage: %s fn\n", argv[0]);

 else

 if (remove(argv[1]) != 0)

 printf("Could not remove file\n");

}

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

v “rename() — Rename File” on page 1666

remove

1662 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

remque() — Remove an Element from a Doubly-linked List

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <search.h>

void remque(void *element);

General Description

The remque() function removes the element pointed to by element from a

doubly-linked list. The function operates on pointers to structures which have a

pointer to their successor in the list as their first element, and a pointer to their

predecessor as the second. The application is free to define the remaining contents

of the structure, and manages all storage itself.

Returned Value

remque() returns no values.

Related Information

v “search.h” on page 77

v “insque() — Insert an Element into a Doubly-linked List” on page 976

remque

Chapter 3. Part 3. Library Functions 1663

||||

|
|
||

|

remquo(), remquof(), remquol() — Computes the remainder.

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R5

Format

#define _ISOC99_SOURCE

#include <math.h>

double remquo(double x, double y, int *quo);

float remquof(float x, float y, int *quo);

long double remquol(long double x, long double y, int *quo);

General Description

The remquo functions compute the same remainder as the remainder functions. In

the object pointed to by quo they store a value whose sign is the sign of x/y and

whose magnitude is congruent modulo 2 to the power n to the magnitude of the

integral quotient of x/y, where n is an implementation defined integer greater than or

equal to 3.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

remquo X X

remquof X X

remquol X X

Restriction

The remquof() function does not support the _FP_MODE_VARIABLE feature test

macro.

Returned Value

The remquo functions return x REM y.

Example

/*

 * This program illustrates the use of remquol() function

 *

 */

#define _ISOC99_SOURCE

#include <math.h>

#include <stdio.h>

void main() {

 long double number1=3.0L, number2=3.5L;

 int quo=0;

remquo

1664 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

printf("Illustrates the remquol() function");

 #ifdef __BFP__

 printf(" (IEEE version)\n\n");

 #else

 printf(" (HFP version)\n\n");

 #endif

 printf("remquol(%.2Lf,%.2Lf,&quo)=%.2Lf",number1,number2,remquol(number1,number2,&(quo)));

 printf(" quo=%i\n",quo);

 number1=1.0L; number2=2.0L;

 printf("remquol(%.2Lf,%.2Lf,&quo)=%.2Lf",number1,number2,remquol(number1,number2,&(quo)));

 printf(" quo=%i\n",quo);

 number1=1.0L; number2=0.0L;

 printf("remquol(%.2Lf,%.2Lf,&quo)=%.2Lf",number1,number2,remquol(number1,number2,&(quo)));

 printf(" quo=%i\n",quo);

}

Output

Illustrates the remquol() function (IEEE version)

remquol(3.00,3.50,&quo)=-0.50 quo=1

remquol(1.00,2.00,&quo)=1.00 quo=0

remquol(1.00,0.00,&quo)=NaNQ(1) quo=0

Related Information

v “math.h” on page 60

remquo

Chapter 3. Part 3. Library Functions 1665

rename() — Rename File

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int rename(const char *oldname, const char *newname);

General Description

Changes the name of the file, from the name pointed to by oldname to the name

pointed to by newname.

The oldname pointer must point to the name of an existing file. The newname

pointer must not specify the name of an existing file. You cannot rename an open

file. In case of an error, the name of the file is not changed.

The rename() function renames memory files and DASD data sets. (Non-DASD

data sets, such as tapes, are not supported.) It also renames individual members of

PDSs (and PDSEs); it even renames files that simulate PDSs.

Special Behavior for POSIX C

Memory files must be closed unless you are working under z/OS UNIX services.

The interpretation of the file name passed to rename() depends on whether the

program is running POSIX(ON) or POSIX(OFF). (See “z/OS XL C/C++ applications

with z/OS UNIX System Services C functions” on page 13 for more information.)

You cannot rename an HFS file to an MVS data-set name or rename an MVS data

set to an HFS file name.

Both oldname and newname must be of the same type, that is, both directories or

both files.

If newname already exists, it is removed before oldname is renamed to newname.

Thus, if newname specifies the name of an existing directory, it must be an empty

directory.

If the oldname argument points to a symbolic link, the symbolic link is renamed. If

the newname argument points to a symbolic link, the link is removed and oldname

is renamed to newname. rename() does not affect any file or directory named by

the contents of the symbolic link.

rename

1666 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

For rename() to succeed, the process needs write permission on the directory

containing oldname and the directory containing newname. If oldname and

newname are directories, rename() also needs write permission on the directories

themselves.

If oldname and newname both refer to the same file, rename() returns successfully

and performs no other action.

When rename() is successful, it updates the change and modification times for the

parent directories of oldname and newname.

Returned Value

If successful, rename() returns 0.

If unsuccessful, rename() returns nonzero and sets errno to one of the following

values:

Error Code Description

EACCES An error occurred for one of these reasons:

v The process did not have search permission on some

component of the old or new pathname.

v The process did not have write permission on the parent

directory of the file or directory to be renamed.

v oldname or newname were directories.

v The process did not have write permission on oldname or

newname.

EBUSY oldname and newname specify directories, but one of them cannot

be renamed because it is in use as a root or a mount point.

EINVAL This error occurs for one of these reasons:

v oldname is part of the pathname prefix of newname.

v oldname or newname refers to either . (dot) or .. (dot-dot).

EIO Added for XPG4.2: A physical I/O error has occurred.

EISDIR newname is a directory, but oldname is not a directory.

ELOOP A loop exists in symbolic links. This error is issued if the number of

symbolic links encountered during resolution of oldname or

newname is greater than POSIX_SYMLOOP.

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined using pathconf().

ENOENT No file or directory named oldname was found, or either oldname or

newname was not specified.

ENOSPC The directory intended to contain newname cannot be extended.

ENOTDIR A component of the pathname prefix for oldname or newname is

not a directory, or oldname is a directory and newname is a file that

is not a directory.

rename

Chapter 3. Part 3. Library Functions 1667

ENOTEMPTY newname specifies a directory, but the directory is not empty.

EPERM or EACCES

Added for XPG4.2: The S_ISVTX flag is set on the directory

containing the file referred to by oldname and the caller is not the

file owner, nor is the caller the directory owner, nor does the caller

have appropriate privileges; or newname refers to an existing file,

the S_ISVTX flag is set on the directory containing this file and the

caller is not the file owner, nor is the caller the directory owner, nor

does the caller have appropriate privileges.

EROFS Renaming would require writing on a read-only file system.

EXDEV oldname and newname identify files or directories on different file

systems. z/OS UNIX services do not support links between different

files systems.

Example

CELEBR13

/* CELEBR13

 This example takes two file names as input and uses rename() to change

 the file name from the first name to the second name.

 */

#include <stdio.h>

int main(int argc, char ** argv)

{

 if (argc != 3)

 printf("Usage: %s old_fn new_fn\n", argv[0]);

 else if (rename(argv[1], argv[2]) != 0)

 printf("Could not rename file\n");

}

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

v “remove() — Delete File” on page 1661

rename

1668 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

res_init() — Domain Name Resolver Initialization

Standards

 Standards / Extensions C or C++ Dependencies

BSD 4.3 both OS/390 V2R8

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_init(void);

struct __res_state _res;

General Description

The res_init() function is the Resolver function that initializes the __res_state

structure for use by other Resolver functions. Initialization normally occurs on the

first call to any of the IP address resolution routines commonly called the XL C/C++

Run-Time Library Resolver.

The res_init() routine does its initialization by passing the __res_state structure to

the CS for z/OS Resolver. The Resolver reads the ″TCPIP.DATA″ configuration file

and updates the __res_state structure. The data in the __res_state structure is filled

in based on the contents of the ″TCPIP.DATA″ configuration file and can then be

referenced in the _res variable. Global configuration and state information that is

used by the Resolver routines is kept in the structure _res. Most of the values have

reasonable defaults and can be left unchanged.

Value Description

_res.retrans Retransmission time interval is taken from the ResolverTimeOut

statement found in the ″TCPIP.DATA″ configuration file.

_res.retry The number of times to retransmit a request. It is taken from the

ResolverUDPRetries statement found in the ″TCPIP.DATA″

configuration file.

_res.options Options stored in _res.options are defined in <resolv.h> and are

listed below. Options are stored as a simple bit mask containing the

bitwise OR of the options enabled.

Option Description

RES_INIT True after the initial name server address and

default domain name are initialized, because

res_init() has been called. This option should only

be tested but not set, except by the res_init()

function.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,

res_send() should continue until it finds an

authoritative answer or finds an error. Currently this

is not implemented.

res_init

Chapter 3. Part 3. Library Functions 1669

RES_USEVC Use TCP connections for queries instead of UDP

datagrams.

RES_STAYOPEN

Used with RES_USEVC to keep the TCP

connection open between queries. This is useful

only in programs that regularly do many queries.

UDP should be the normal mode used.

RES_IGNTC Ignore truncation errors, that is, don’t retry with

TCP. Currently unused.

RES_RECURSE

Set the recursion-desired bit in queries. This is the

default. (res_send() does not do iterative queries

and expects the name server to handle recursion.)

RES_DEFNAMES

If set, res_search() will append the default domain

name to single-component names (those that do

not contain a dot). This option is enabled by default.

RES_DNSRCH

If this option is set, res_search() will search for host

names in the current domain and in parent

domains. This is used by the standard host lookup

routine gethostbyname(). This option is enabled by

default.

RES_NOALIASES

This option turns off the user level aliasing feature

controlled by the ″HOSTALIASES″ environment

variable. Network daemons should set this option.

_res.nscount The number of name servers specified in the ″TCPIP.DATA″

configuration file.

_res.*nsaddr_list[0]

The addresses of name servers specified by the NSINTERADDR or

NameServer statements found in the ″TCPIP.DATA″ configuration

file.

_res.dnsrch[0] The beginning of the list of domains to be searched, as specified in

the SEARCH statement found in the ″TCPIP.DATA″ configuration

file. The structure will have either a Default DOMAIN or SEARCH.

_res.defdname[0]

The Default Domain name, as specified in the Domain or

DomainOrigin statement found in the ″TCPIP.DATA″ configuration

file. The structure will have either a Default DOMAIN or SEARCH.

_res.pfcode Currently this is not implemented.

_res.ndots The threshold for the number of dots in the domain name, as

specified by the OPTIONS statement value ndots:n found in the

″TCPIP.DATA″ configuration file. The default is 1.

_res.nsort The number of elements in sort_list[] as listed in the SORTLIST

statement found in the ″TCPIP.DATA″ configuration file.

_res.sort_list[0]

The network address and subnet mask in the SORTLIST statement

found in the ″TCPIP.DATA″ configuration file.

res_init

1670 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Returned Value

If successful, res_init() returns 0.

If unsuccessful, res_init() returns -1 and sets h_errno to one of the following values:

Error Code Description

NO_RECOVERY An error occurred that will continue to fail if tried

again. Storage could not be obtained for this thread

to contain the _res structure.

TRY_AGAIN An error occurred while initializing the __res_state

structure name selected, which can be retried.

If successful, _res returns the address of __res_state structure.

If unsuccessful, _res returns NULL and sets errno to one of the following values:

Error Code Description

ENOMEM The storage needed to define the _res structure could not be

obtained.

Related Information

v For additional information on the ″TCPIP.DATA″ configuration, see z/OS

Communications Server: IP Configuration Guide, SC31-8775.

v “arpa/nameser.h” on page 34

v “netinet/in.h” on page 68

v “resolv.h” on page 76

v “sys/types.h” on page 90

v “dn_comp() — Resolver Domain Name Compression” on page 442

v “dn_expand() — Resolver Domain Name Expansion” on page 444

v “dn_find() — Resolver Domain Name Find” on page 445

v “dn_skipname() — Resolver Domain Name Skipping” on page 446

v “gethostbyname() — Get a Host Entry by Name” on page 782

v “res_mkquery() — Make Resolver Query for Domain Name Servers (DNS)” on

page 1672

v “res_query() — Resolver Query for Domain Name Servers (DNS)” on page 1673

v “res_querydomain() — Build Domain Name and Resolver Query” on page 1675

v “res_search() — Resolver Query for Domain Name Servers (DNS)” on page

1677

v “res_send() — Send Resolver Query for Domain Name Servers (DNS)” on page

1679

res_init

Chapter 3. Part 3. Library Functions 1671

res_mkquery() — Make Resolver Query for Domain Name Servers

(DNS)

Standards

 Standards / Extensions C or C++ Dependencies

BSD 4.3 both OS/390 V2R8

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_mkquery(int op, const char *dname, int class, int type, const u_char *data,

 int datalen, const u_char *newrr_in, u_char *buf, int buflen);

General Description

This routine is one of several functions used for making, sending and interpreting

query and reply messages with Internet domain name servers (DNS).

The res_mkquery() function constructs a standard query message and places it in

buf. It returns the size of the query, or -1 if the query is larger than buflen. The

query type op is usually QUERY, but can be any of the query types defined in

<arpa/nameser.h>. The domain name for the query given by dname. The argument

newrr_in is currently unused but is intended for making update messages.

Note: The res_mkquery() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, res_mkquery() returns the size of the query.

If unsuccessful, res_mkquery() returns -1. The errors defined in <arpa/nameser.h>

can be found in the buf.rcode, if an answer was supplied in the buf buffer.

Related Information

v “arpa/nameser.h” on page 34

v “netinet/in.h” on page 68

v “resolv.h” on page 76

v “sys/types.h” on page 90

v “dn_comp() — Resolver Domain Name Compression” on page 442

v “dn_expand() — Resolver Domain Name Expansion” on page 444

v “dn_find() — Resolver Domain Name Find” on page 445

v “dn_skipname() — Resolver Domain Name Skipping” on page 446

v “res_init() — Domain Name Resolver Initialization” on page 1669

v “res_query() — Resolver Query for Domain Name Servers (DNS)” on page 1673

v “res_querydomain() — Build Domain Name and Resolver Query” on page 1675

v “res_search() — Resolver Query for Domain Name Servers (DNS)” on page

1677

v “res_send() — Send Resolver Query for Domain Name Servers (DNS)” on page

1679

res_mkquery

1672 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

res_query() — Resolver Query for Domain Name Servers (DNS)

Standards

 Standards / Extensions C or C++ Dependencies

BSD 4.3 both OS/390 V2R8

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_query(const char *dname, int class, int type, u_char *answer, int anslen);

General Description

This routine is one of several functions used for making, sending and interpreting

query and reply messages with Internet domain name servers (DNS).

The res_query() function provides an interface to the server query mechanism. It

constructs a query, sends it to the local server, awaits a response, and makes

preliminary checks on the reply. The query requests information of the specified

type and class for the specified fully-qualified domain name dname. The reply

message is left in the answer buffer with length anslen supplied by the caller.

Note: The res_query() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, res_query() returns the reply message in the answer buffer with length

anslen.

If unsuccessful, res_query() returns -1 and sets errno to one of the following values:

Error Code Description

HOST_NOT_FOUND The host name provided is not known at any of the

domain name servers queried for this request.

NO_DATA An answer was received but no data was supplied

in the answer buffer.

NO_RECOVERY An error occurred that will continue to fail if tried

again.

TRY_AGAIN A error occurred querying the name selected, which

can be retried.

Related Information

v “arpa/nameser.h” on page 34

v “netinet/in.h” on page 68

v “resolv.h” on page 76

v “sys/types.h” on page 90

v “dn_comp() — Resolver Domain Name Compression” on page 442

v “dn_expand() — Resolver Domain Name Expansion” on page 444

res_query

Chapter 3. Part 3. Library Functions 1673

v “dn_find() — Resolver Domain Name Find” on page 445

v “dn_skipname() — Resolver Domain Name Skipping” on page 446

v “res_init() — Domain Name Resolver Initialization” on page 1669

v “res_mkquery() — Make Resolver Query for Domain Name Servers (DNS)” on

page 1672

v “res_querydomain() — Build Domain Name and Resolver Query” on page 1675

v “res_search() — Resolver Query for Domain Name Servers (DNS)” on page

1677

v “res_send() — Send Resolver Query for Domain Name Servers (DNS)” on page

1679

res_query

1674 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

res_querydomain() — Build Domain Name and Resolver Query

Standards

 Standards / Extensions C or C++ Dependencies

BSD 4.3 both OS/390 V2R8

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_querydomain(const char *name, const char *domain, int class, int type,

 u_char *answer, int anslen);

General Description

This routine is one of several functions used for making, sending and interpreting

query and reply messages with Internet domain name servers (DNS).

The res_querydomain() function builds a fully qualified domain name and returns a

res_query() to the caller.

Note: The res_querydomain() function has a dependency on the level of the

Enhanced ASCII Extensions. See “Enhanced ASCII Support ” on page 2495

for details.

Returned Value

If successful, res_querydomain() returns a res_query() to the caller.

If unsuccessful, res_querydomain() returns -1 and sets errno to one of the following

values:

Error Code Description

HOST_NOT_FOUND The host name provided is not known at any of the

domain name servers queried for this request.

NO_DATA An answer was received but no data was supplied

in the answer buffer.

NO_RECOVERY An error occurred that will continue to fail if tried

again.

TRY_AGAIN A error occurred querying the name selected, which

can be retried.

Related Information

v “arpa/nameser.h” on page 34

v “netinet/in.h” on page 68

v “resolv.h” on page 76

v “sys/types.h” on page 90

v “dn_comp() — Resolver Domain Name Compression” on page 442

v “dn_expand() — Resolver Domain Name Expansion” on page 444

v “dn_find() — Resolver Domain Name Find” on page 445

res_querydomain

Chapter 3. Part 3. Library Functions 1675

v “dn_skipname() — Resolver Domain Name Skipping” on page 446

v “res_init() — Domain Name Resolver Initialization” on page 1669

v “res_mkquery() — Make Resolver Query for Domain Name Servers (DNS)” on

page 1672

v “res_query() — Resolver Query for Domain Name Servers (DNS)” on page 1673

v “res_search() — Resolver Query for Domain Name Servers (DNS)” on page

1677

v “res_send() — Send Resolver Query for Domain Name Servers (DNS)” on page

1679

res_querydomain

1676 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

res_search() — Resolver Query for Domain Name Servers (DNS)

Standards

 Standards / Extensions C or C++ Dependencies

BSD 4.3 both OS/390 V2R8

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_search(const char *dname, int class, int type, u_char *answer, int anslen);

General Description

This routine is one of several functions used for making, sending and interpreting

query and reply messages with Internet domain name servers (DNS).

The res_search() routine makes a query and awaits a response like res_query()

but, in addition, it implements the default and search rules controlled by the

RES_DEFNAMES and RES_DNSRCH options. It returns the first successful reply.

Note: The res_search() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, res_search() returns the first successful reply.

If unsuccessful, res_search() returns -1 and sets errno to one of the following

values:

Error Code Description

HOST_NOT_FOUND The host name provided is not known at any of the

domain name servers queried for this request.

NO_DATA An answer was received but no data was supplied

in the answer buffer.

NO_RECOVERY An error occurred that will continue to fail if tried

again.

TRY_AGAIN A error occurred querying the name selected, which

can be retried.

Related Information

v “arpa/nameser.h” on page 34

v “netinet/in.h” on page 68

v “resolv.h” on page 76

v “sys/types.h” on page 90

v “dn_comp() — Resolver Domain Name Compression” on page 442

v “dn_expand() — Resolver Domain Name Expansion” on page 444

v “dn_find() — Resolver Domain Name Find” on page 445

v “dn_skipname() — Resolver Domain Name Skipping” on page 446

res_search

Chapter 3. Part 3. Library Functions 1677

v “res_init() — Domain Name Resolver Initialization” on page 1669

v “res_mkquery() — Make Resolver Query for Domain Name Servers (DNS)” on

page 1672

v “res_query() — Resolver Query for Domain Name Servers (DNS)” on page 1673

v “res_querydomain() — Build Domain Name and Resolver Query” on page 1675

v “res_send() — Send Resolver Query for Domain Name Servers (DNS)” on page

1679

res_search

1678 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

res_send() — Send Resolver Query for Domain Name Servers (DNS)

Standards

 Standards / Extensions C or C++ Dependencies

BSD 4.3 both OS/390 V2R8

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

int res_send(const u_char *msg, int msglen, u_char *answer, int anslen);

General Description

This routine is one of several functions used for sending query and reply messages

with Internet domain name servers (DNS).

The res_send() routine sends a pre-formatted query and returns an answer. It will

call res_init() if RES_INIT is not set, send the query to the local name server, and

handle timeouts and retries. The length of the reply message is returned, or -1 if

there were errors.

Note: The res_send() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, res_send() returns the length of the reply message.

If unsuccessful, res_send() returns -1. The errors defined in <arpa/nameser.h> can

be found in the buf.rcode, if an answer was supplied in the answer buffer.

Related Information

v “arpa/nameser.h” on page 34

v “netinet/in.h” on page 68

v “resolv.h” on page 76

v “sys/types.h” on page 90

v “dn_comp() — Resolver Domain Name Compression” on page 442

v “dn_expand() — Resolver Domain Name Expansion” on page 444

v “dn_find() — Resolver Domain Name Find” on page 445

v “dn_skipname() — Resolver Domain Name Skipping” on page 446

v “res_init() — Domain Name Resolver Initialization” on page 1669

v “res_mkquery() — Make Resolver Query for Domain Name Servers (DNS)” on

page 1672

v “res_query() — Resolver Query for Domain Name Servers (DNS)” on page 1673

v “res_querydomain() — Build Domain Name and Resolver Query” on page 1675

v “res_search() — Resolver Query for Domain Name Servers (DNS)” on page

1677

res_send

Chapter 3. Part 3. Library Functions 1679

__reset_exception_handler() — Unregister an Exception Handler

Routine

Standards

 Standards / Extensions C or C++ Dependencies

both

Format

#include <__le_api.h>

int __reset_exception_handler(void);

General Description

A nonstandard function that unregisters the ’Exception Handler’ function, that was

previously registered via the __set_exception_handler() function, for the current

stack frame.

Returned Value

If successful, __reset_exception_handler() returns 0. Otherwise, -1 is returned and

errno is set to indicate the error. The following is a possible value for errno:

v EINVAL — No Exception Handler is registered in the current stack frame.

Related Information

v “__set_exception_handler() — Register an Exception Handler Routine” on page

1772

__reset_exception_handler

1680 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

rewind() — Set File Position to Beginning of File

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

void rewind(FILE *stream);

General Description

Repositions the file position indicator of the stream pointed to by stream. A call to

rewind() is the same as the statement below, except that rewind() also clears the

error indicator for the stream.

 (void) fseek(stream, 0L, SEEK_SET);

Returned Value

rewind() returns no values.

If an error occurs, errno is set. After the error, the file position does not change. The

next operation may be either a read or a write operation.

Special Behavior for XPG4.2

rewind() returns -1 and sets errno to ESPIPE if the underlying file type for the

stream is a PIPE or a socket.

Example

CELEBR14

/* CELEBR14

 This example first opens a file myfile for input

 and output.

 It writes integers to the file, uses &rewind. to reposition

 the file pointer to the beginning of the file, and then reads

 the data back in.

 */

#include <stdio.h>

int main(void)

{

 FILE *stream;

 int data1, data2, data3, data4;

 data1 = 1; data2 = −37;

 /* Place data in the file */

 stream = fopen("myfile.dat", "w+");

 fprintf(stream, "%d %d\n", data1, data2);

rewind

Chapter 3. Part 3. Library Functions 1681

||||

|
|
|
|
|
|

||

|

/* Now read the data file */

 rewind(stream);

 fscanf(stream, "%d", &data3);

 fscanf(stream, "%d", &data4);

 printf("The values read back in are: %d and %d\n",

 data3, data4);

}

Output

The values read back in are: 1 and -37

Related Information

v “stdio.h” on page 82

v “fgetpos() — Get File Position” on page 589

v “fseek() — Change File Position” on page 693

v “fsetpos() — Set File Position” on page 701

v “ftell() — Get Current File Position” on page 711

rewind

1682 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

rewinddir() — Reposition a Directory Stream to the Beginning

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define_POSIX_SOURCE

#include <dirent.h>

void rewinddir(DIR *dir);

General Description

Repositions an open directory stream to the beginning. dir points to a DIR object

associated with an open directory.

The next call to readdir() reads the first entry in the directory. If the contents of the

directory have changed since the directory was opened, a call to rewinddir()

updates the directory stream so that a subsequent readdir() can read the new

contents.

Returned Value

rewinddir() returns no values.

Example

CELEBR15

/* CELEBR15

 This example produces the contents of a directory by opening it,

 rewinding it, and closing it.

 */

#define _POSIX_SOURCE

#include <dirent.h>

#include <errno.h>

#include <sys/types.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 DIR *dir;

 struct dirent *entry;

 if ((dir = opendir("/")) == NULL)

 perror("opendir() error");

 else {

 puts("contents of root:");

 while ((entry = readdir(dir)) != NULL)

 printf("%s ", entry−>d_name);

 rewinddir(dir);

 puts("");

 while ((entry = readdir(dir)) != NULL)

 printf("%s ", entry−>d_name);

rewinddir

Chapter 3. Part 3. Library Functions 1683

||||

|
|
|
|

||

|

closedir(dir);

 puts("");

 }

}

Output

contents of root:

 . .. bin dev etc lib tmp u usr

 . .. bin dev etc lib tmp u usr

Related Information

v “dirent.h” on page 40

v “stdio.h” on page 82

v “sys/types.h” on page 90

v “closedir() — Close a Directory” on page 302

v “opendir() — Open a Directory” on page 1319

v “readdir() — Read an Entry from a Directory” on page 1608

v “seekdir() — Set Position of Directory Stream” on page 1714

v “telldir() — Current Location of Directory Stream” on page 2189

rewinddir

1684 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

rexec() — Execute Commands One at a Time on a Remote Host

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

Format

#include <rexec.h>

int rexec(char **Host, int Port, char *User, char *Password,

 char *Command, int *ErrFileDescParam)

General Description

The rexec (remote execution) subroutine allows the calling process to execute

commands on a remote host. If the rexec connection succeeds, a socket in the

Internet domain of type SOCK_STREAM is returned to the calling process and is

given to the remote command as standard input and standard output.

Host contains the name of a remote host that is listed in the /etc/hosts file or

/etc/resolv.config file. If the name of the host is not found in either file, the rexec

fails.

Port specifies the well-known Defense Advanced Research Projects Agency

(DARPA) Internet port to use for the connection. A pointer to the structure that

contains the necessary port can be obtained by issuing the following library call:

getservbyname(″exec″,″tcp″).

User and Password points to a user ID and password valid at the host. Command

points to the name of the command to be executed at the remote host.

ErrFileDescParam specifies one of the following values:

v Not 0 (zero) = an auxiliary channel to a control process is set up, and a

descriptor for it is placed in the ErrFileDescParam parameter. The control

process provides diagnostic output from the remote command on this channel

and also accepts bytes as signal numbers to be forwarded to the process group

of the command. This diagnostic information does not include remote

authorization failure, since this connection is set up after authorization has been

verified.

v 0 (zero) = the standard error of the remote command is the same as standard

output, and no provision is made for sending arbitrary signals to the remote

process. In this case, however, it may be possible to send out-of-band data to

the remote command.

This function is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

Note: The rexec() function has a dependency on the level of the Enhanced ASCII

Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

rexec

Chapter 3. Part 3. Library Functions 1685

Returned Value

If rexec() is successful, the system returns a socket to the remote command.

If rexec() is unsuccessful, the system returns a −1 indicating that the specified host

name does not exist.

Related Information

v “rexec.h” on page 76

v “getservbyname() — Get a Server Entry by Name” on page 852

v “rexec_af() — execute commands one at a time on a remote host” on page 1687

rexec

1686 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

rexec_af() — execute commands one at a time on a remote host

Standards

 Standards / Extensions C or C++ Dependencies

RCF2292 both z/OS V1R4

Format

#define _OPEN_SYS_SOCK_IPV6

#include <rexec.h>

int rexec_af(char **ahost, unsigned short rport,

 const char *name, const char *pass, const char *cmd,

 int *fd2p, int af);

General Description

The rexec_af() function behaves the same as the rexec() function. Instead of

creating an AF_INET socket, rexec_af can also create an AF_INET6 socket. The af

argument specifies the address family. It is set to either AF_INET or AF_INET6.

Note: The rexec_af() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

When successful, rexec_af() returns a socket to the remote command. If

unsuccessful, rexec_af() returns -1 and may set errno to one of the following:

EAFNOSUPPORT

The specified address family is not supported.

Related Information

v “rexec.h” on page 76

v “getservbyname() — Get a Server Entry by Name” on page 852

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

rexec_af

Chapter 3. Part 3. Library Functions 1687

rindex() — Search for Character

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <strings.h>

char *rindex(const char *string, int c);

General Description

The rindex() function locates the last occurrence of c (converted to an unsigned

char) in the string pointed to by string.

The string argument to the function must contain a NULL character (\0) marking the

end of the string.

The rindex() function is identical to “strrchr() — Find Last Occurrence of Character

in String” on page 2058.

Note: The rindex() function has been moved to the Legacy Option group in Single

UNIX Specification, Version 3 and may be withdrawn in a future version. The

strrchr() function is preferred for portability.

Returned Value

If successful, rindex() returns a pointer to the first occurrence of c (converted to an

unsigned character) in the string pointed to by string.

If c was not found, rindex() returns a NULL pointer.

There are no errno values defined.

Related Information

v “strings.h” on page 86

v “index() — Search for Character” on page 941

v “memchr() — Search Buffer” on page 1205

v “strchr() — Search for Character” on page 2020

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

v “strstr() — Locate Substring” on page 2062

rindex

1688 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|

rint(), rintf(), rintl() — Round to Nearest Integral Value

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double rint(double x);

C99

#define _ISOC99_SOURCE

#include <math.h>

float rintf(float x);

long double rintl(long double x);

General Description

The rint() functions return the integral value (represented in a floating-point mode)

nearest x using the round to nearest mode and may raise the ″inexact″

floating-point exception if the result differs in value from the argument.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

rint X X

rintf X X

rintl X X

Returned Value

rint() is always successful in IEEE.

Special Behavior for Hex

The rint() functions always round toward zero in hexadecimal math.

Related Information

v “math.h” on page 60

v “abs(), absf(), absl() — Calculate Integer Absolute Value” on page 118

v “isnan() — Test for NaN” on page 1032

rint

Chapter 3. Part 3. Library Functions 1689

||||

|
|
|

||

|

|
|
|

|
|
|

||||

|||

|||

|||
|

|

rintd32(), rintd64(), rintd128() — Round to Nearest Integral Value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 rintd32(_Decimal32 x);

_Decimal64 rintd64(_Decimal64 x);

_Decimal128 rintd128(_Decimal128 x);

_Decimal32 rint(_Decimal32 x); /* C++ only */

_Decimal64 rint(_Decimal64 x); /* C++ only */

_Decimal128 rint(_Decimal128 x); /* C++ only */

General Description

These functions return the integral value (represented in a decimal floating-point

mode) nearest x according to the rounding mode and may raise the ″inexact″

decimal floating-point exception if the result differs in value from the argument.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

These functions are always successful.

Example

/* CELEBR21

 This example illustrates the rintd32() function.

*/

#pragma strings(readonly)

#define __STDC_WANT_DEC_FP__

#include <fenv.h>

#include <math.h>

#include <stdio.h>

/* pass back printable rounding mode */

static

char *rm_str(int rm)

{

 char *s = "undetermined";

 switch (rm)

 {

 case FE_DEC_TONEAREST :

rintd32, rintd64, rintd128

1690 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

s = "FE_DEC_TONEAREST" ; break;

 case FE_DEC_TOWARDZERO :

 s = "FE_DEC_TOWARDZERO" ; break;

 case FE_DEC_UPWARD :

 s = "FE_DEC_UPWARD" ; break;

 case FE_DEC_DOWNWARD :

 s = "FE_DEC_DOWNWARD" ; break;

 case FE_DEC_TONEARESTFROMZERO :

 s = "FE_DEC_TONEARESTFROMZERO" ; break;

 case _FE_DEC_TONEARESTTOWARDZERO :

 s = "_FE_DEC_TONEARESTTOWARDZERO" ; break;

 case _FE_DEC_AWAYFROMZERO :

 s = "_FE_DEC_AWAYFROMZERO" ; break;

 case _FE_DEC_PREPAREFORSHORTER :

 s = "_FE_DEC_PREPAREFORSHORTER" ; break;

 }

 return s;

}

/* Try out one passed−in number with rounding mode */

static try_rm(int rm)

{

 _Decimal32 r32;

 _Decimal32 d32 = 500.99DF;

 (void)fe_dec_setround(rm);

 r32 = rintd32(d32);

 printf("rintd32(%.2HF) = %HG − rounding mode = %s\n",

 d32, r32, rm_str(rm)

);

 return;

}

int main()

{

 try_rm(FE_DEC_TONEAREST);

 try_rm(FE_DEC_TOWARDZERO);

 try_rm(FE_DEC_UPWARD);

 try_rm(FE_DEC_DOWNWARD);

 try_rm(FE_DEC_TONEARESTFROMZERO);

 try_rm(_FE_DEC_TONEARESTTOWARDZERO);

 try_rm(_FE_DEC_AWAYFROMZERO);

 try_rm(_FE_DEC_PREPAREFORSHORTER);

 return 0;

}

Related Information

v “math.h” on page 60

v “isnan() — Test for NaN” on page 1032

v “rint(), rintf(), rintl() — Round to Nearest Integral Value” on page 1689

rintd32, rintd64, rintd128

Chapter 3. Part 3. Library Functions 1691

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

rmdir() — Remove a Directory

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define_POSIX_SOURCE

#include <unistd.h>

int rmdir(const char *pathname);

General Description

Removes a directory, pathname, provided that the directory is empty. pathname

must not end in . (dot) or .. (dot-dot).

If pathname refers to a symbolic link, rmdir() does not affect any file or directory

named by the contents of the symbolic link. rmdir() does not remove a directory that

still contains files or subdirectories.

Special Behavior for XPG4.2

If pathname refers to a symbolic link, rmdir() fails and sets errno to ENOTDIR.

If no process currently has the directory open, rmdir() deletes the directory itself.

The space occupied by the directory is freed for new use. If one or more processes

have the directory open when it is removed, the directory itself is not removed until

the last process closes the directory. New files cannot be created under a directory

after the last link is removed, even if the directory is still open.

rmdir() removes the directory even if it is the working directory of a process.

If rmdir() is successful, the change and modification times for the parent directory

are updated.

Returned Value

If successful, rmdir() returns 0.

If unsuccessful, rmdir() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The process did not have search permission for some component

of pathname, or it did not have write permission for the directory

containing the directory to be removed.

EBUSY pathname cannot be removed, because it is currently being used by

the system or a process.

EINVAL The last component of pathname contains a . (dot) or a .. (dot-dot).

EIO Added for XPG4.2: A physical I/O error has occurred.

rmdir

1692 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

ELOOP A loop exists in symbolic links. More than POSIX_SYMLOOP (an

integer defined in the limits.h header file) symbolic links are

detected in the resolution of pathname.

ENAMETOOLONG

pathname is longer than PATH_MAX characters or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined using pathconf().

ENOENT pathname does not exist, or it is an empty string.

ENOTDIR Some component of the pathname prefix is not a directory.

ENOTEMPTY The directory still contains files or subdirectories.

EPERM or EACCES

Added for XPG4.2: The S_ISVTX flag is set on the parent directory

of the directory to be removed and the caller is not the owner of the

directory to be removed, nor is the caller the owner of the parent

directory, nor does the caller have the appropriate privileges.

EROFS The directory to be removed is on a read-only file system.

Example

CELEBR16

/* CELEBR16

 This example removes a directory.

 */

#define _OPEN_SYS

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/stat.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 char new_dir[]="new_dir";

 char new_file[]="new_dir/new_file";

 int fd;

 if (mkdir(new_dir, S_IRWXU|S_IRGRP|S_IXGRP) != 0)

 perror("mkdir() error");

 else if ((fd = creat(new_file, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(fd);

 unlink(new_file);

 }

 if (rmdir(new_dir) != 0)

 perror("rmdir() error");

 else

 puts("removed!");

}

rmdir

Chapter 3. Part 3. Library Functions 1693

Related Information

v “unistd.h” on page 96

v “mkdir() — Make a Directory” on page 1217

v “unlink() — Remove a Directory Entry” on page 2312

rmdir

1694 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

round(), roundf(), roundl() — Round to the Nearest Integer

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both

 z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

double round(double x);

float roundf(float x);

long double roundl(long double x);

General Description

The round() family of functions round x to the nearest integer, in floating-point

format and rounding halfway cases away from zero, regardless of the current

rounding mode.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

round X X

roundf X X

roundl X X

Returned Value

The round() family of functions returns the rounded integer value.

Related Information

v “math.h” on page 60

v “ceil(), ceilf(), ceill() — Round Up to Integral Value” on page 251

v “floor(), floorf(), floorl() — Round Down to Integral Value” on page 609

v “llround(), llroundf(), llroundl() — Round to the Nearest Integer” on page 1109

v “lrint(), lrintf(), lrintl() and llrint(), llrintf(), llrintl() — Round the Argument to the

Nearest Integer” on page 1152

v “lround(), lroundf(), lroundl() — Round a Decimal Floating-point Number to its

Nearest Integer” on page 1157

v “nearbyint(), nearbyintf(), nearbyintl() — Round the Argument to the Nearest

Integer” on page 1287

v “trunc(), truncf(), truncl() — Truncate an integer value” on page 2251

round, roundf, roundl

Chapter 3. Part 3. Library Functions 1695

||||

|
|
||

|
|

|
|
|

|
|
|

||||

|||

|||

|||
|

|

roundd32(), roundd64(), roundd128() — Round to the Nearest Integer

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 roundd32(_Decimal32 x);

_Decimal64 roundd64(_Decimal64 x);

_Decimal128 roundd128(_Decimal128 x);

_Decimal32 round(_Decimal32 x); /* C++ only */

_Decimal64 round(_Decimal64 x); /* C++ only */

_Decimal128 round(_Decimal128 x); /* C++ only */

General Description

These functions round x to the nearest integer, in decimal floating-point format and

rounding halfway cases away from zero, regardless of the current rounding mode.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

These functions return the rounded integer value.

Example

/* CELEBR22

 This example illustrates the round64() function.

*/

#pragma strings(readonly)

#define __STDC_WANT_DEC_FP__

#include <fenv.h>

#include <math.h>

#include <stdio.h>

/* pass back printable rounding mode */

static

char *rm_str(int rm)

{

 char *s = "undetermined";

 switch (rm)

 {

 case FE_DEC_TONEAREST :

 s = "FE_DEC_TONEAREST" ; break;

roundd32, roundd64, roundd128

1696 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

case FE_DEC_TOWARDZERO :

 s = "FE_DEC_TOWARDZERO" ; break;

 case FE_DEC_UPWARD :

 s = "FE_DEC_UPWARD" ; break;

 case FE_DEC_DOWNWARD :

 s = "FE_DEC_DOWNWARD" ; break;

 case FE_DEC_TONEARESTFROMZERO :

 s = "FE_DEC_TONEARESTFROMZERO" ; break;

 case _FE_DEC_TONEARESTTOWARDZERO :

 s = "_FE_DEC_TONEARESTTOWARDZERO" ; break;

 case _FE_DEC_AWAYFROMZERO :

 s = "_FE_DEC_AWAYFROMZERO" ; break;

 case _FE_DEC_PREPAREFORSHORTER :

 s = "_FE_DEC_PREPAREFORSHORTER" ; break;

 }

 return s;

}

/* Try out one passed−in number with rounding mode */

static try_rm(int rm, _Decimal64 d64)

{

 _Decimal64 r64;

 (void)fe_dec_setround(rm);

 r64 = roundd64(d64);

 printf("roundd64(%+.2DF) = %+DG − rounding mode = %s\n",

 d64 , r64, rm_str(rm)

);

 return;

}

int main()

{

 try_rm(FE_DEC_TONEAREST , 501.50DD);

 try_rm(FE_DEC_TOWARDZERO , 501.50DD);

 try_rm(FE_DEC_UPWARD , −501.51DD);

 try_rm(FE_DEC_DOWNWARD , −501.49DD);

 try_rm(FE_DEC_TONEARESTFROMZERO , 500.50DD);

 try_rm(_FE_DEC_TONEARESTTOWARDZERO, −501.50DD);

 try_rm(_FE_DEC_AWAYFROMZERO , 500.49DD);

 try_rm(_FE_DEC_PREPAREFORSHORTER , 501.50DD);

 return 0;

}

Related Information

v “math.h” on page 60

v “ceild32(), ceild64(), ceild128() — Round Up to Integral Value” on page 253

v “floord32(), floord64(), floord128() — Round Down to Integral Value” on page 611

v “llroundd32(), llroundd64(), llroundd128() — Round to the Nearest Integer” on

page 1111

v “lrintd32(), lrintd64(), lrintd128() and llrintd32(), llrintd64(), llrintd128() — Round

the Argument to the Nearest Integer” on page 1154

v “lroundd32(), lroundd64(), lroundd128() — Round a Floating-point Number to its

Nearest Integer” on page 1158

v “nearbyintd32(), nearbyintd64(), nearbyintd128() — Round the Argument to the

Nearest Integer” on page 1289

roundd32, roundd64, roundd128

Chapter 3. Part 3. Library Functions 1697

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

v “round(), roundf(), roundl() — Round to the Nearest Integer” on page 1695

v “truncd32(), truncd64(), truncd128() — CTruncate an integer value” on page 2252

roundd32, roundd64, roundd128

1698 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

rpmatch() — Test for a Yes/No Response Match

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <stdlib.h>

int rpmatch(const char *response);

External Entry Point

@@RPMTCH, __rpmtch

General Description

Tests whether a string pointed to by response matches either the affirmative or the

negative response set by LC_MESSAGES category in the current locale.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

Returned Value

If the string pointed to by response matches the affirmative expression in the

current locale, rpmatch() returns:

1 If the response string matches the affirmative expression.

0 If the response string matches the negative expression.

−1 If the response string does not match either the affirmative or the negative

expression.

Example

CELEBR17

/* CELEBR17

 This example asks for a reply, and checks the response.

 */

#include "locale.h"

#include "stdio.h"

#include "stdlib.h"

main() {

 char *response;

 char buffer??(100??);

 int rc;

rpmatch

Chapter 3. Part 3. Library Functions 1699

printf("Enter reply");

 response = fgets(buffer, 100, stdin);

 rc = rpmatch(response);

 if (rc > 0)

 printf("Response was affirmative\n");

 else if (rc == 0)

 printf("Response was negative\n");

 else

 printf("Response was neither negative or affirmative\n");

}

Related Information

v “stdlib.h” on page 85

rpmatch

1700 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

samequantumd32(), samequantumd64(), samequantumd128() —

Determine if Exponents X and Y are the Same

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Bool samequantumd32(_Decimal32 x, _Decimal32 y);

_Bool samequantumd64(_Decimal64 x, _Decimal64 y);

_Bool samequantumd128(_Decimal128 x, _Decimal128 y);

General Description

The samequantum functions determine if the representation exponents of x and y

are the same. If both x and y are NaN or infinity, they have the same representation

exponents. If exactly one operand is infinity or exactly one operand is NaN, they do

not have the same representation exponents. The samequantum functions raise no

floating point exceptions.

 Argument Description

x First input value

y Second input value

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The samequantum functions return true when x and y have the same

representation exponents, and false otherwise.

Example

/* CELEBS72

 This example illustrates the samequantumd64() function

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 _Decimal64 a1 = strtod64("1.23" , NULL);

 _Decimal64 a2 = strtod64("0.01" , NULL);

samequantumd32, samequantumd64, samequantumd128

Chapter 3. Part 3. Library Functions 1701

|

|

|

||||

|||
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|||

||

||
|

|

|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

_Decimal64 b1 = strtod64("1.234" , NULL);

 _Decimal64 b2 = strtod64("0.01" , NULL);

 _Decimal64 c1 = strtod64("1.000" , NULL);

 _Decimal64 c2 = strtod64("1.00" , NULL);

 _Decimal64 d1 = strtod64("0.000" , NULL);

 _Decimal64 d2 = strtod64("0.00" , NULL);

 printf("x=%−8.2DF y=%−8.2DF samequantum=%d\n"

 "x=%−8.3DF y=%−8.2DF samequantum=%d\n"

 "x=%−8.3DF y=%−8.2DF samequantum=%d\n"

 "x=%−8.3DF y=%−8.2DF samequantum=%d\n"

 , a1, a2, (int)samequantumd64(a1, a2)

 , b1, b2, (int)samequantumd64(b1, b2)

 , c1, c2, (int)samequantumd64(c1, c2)

 , d1, d2, (int)samequantumd64(d1, d2)

);

 return 0;

}

Related Information

v “math.h” on page 60

v “quantized32(), quantized64(), quantized128() — Set the Exponent of X to the

Exponent of Y” on page 1587

samequantumd32, samequantumd64, samequantumd128

1702 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

sbrk() — Change Space Allocation

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 2

both

Format

Non-Single UNIX Specification, Version 2

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

void *sbrk(int incr);

Single UNIX Specification, Version 2

#define _XOPEN_SOURCE 500

#include <unistd.h>

void *sbrk(intptr_t incr);

General Description

Restriction: This function is not supported in AMODE 64.

The sbrk() function is used to change the space allocated for the calling process.

The change is made by adding incr bytes to the process’s break value and

allocating the appropriate amount of space. The amount of allocated space

increases when incr is positive and decreases when incr is negative. If incr is zero

the current value of the program break is returned by sbrk(). The newly-allocated

space is set to 0. However, if the application first decrements and then increments

the break value, the contents of the reallocated space are not zeroed.

The storage space from which the brk() and sbrk() functions allocate storage is

separate from the storage space that is used by the other memory allocation

functions (malloc(), calloc(), etc.). Because this storage space must be a contiguous

segment of storage, it is allocated from the initial heap segment only and thus is

limited to the initial heap size specified for the calling program or the largest

contiguous segment of storage available in the initial heap at the time of the first

brk() or sbrk() call. Since this is a separate segment of storage, the brk() and sbrk()

functions can be used by an application that is using the other memory allocation

functions. However, it is possible that the user’s region may not be large enough to

support extensive usage of both types of memory allocation.

Prior usage of the sbrk() function has been limited to specialized cases where no

other memory allocation function performed the same function. Because the sbrk()

function may be unable to sufficiently increase the space allocation of the process

when the calling application is using other memory functions, the use of other

memory allocation functions, such as mmap(), is now preferred because it can be

used portably with all other memory allocation functions and with any function that

uses other allocation functions. Applications that require the use of brk() and/or

sbrk() should refrain from using the other memory allocation functions and should

be run with an initial heap size that will satisfy the maximum storage requirements

of the program.

sbrk

Chapter 3. Part 3. Library Functions 1703

The sbrk() function is not supported from a multithreaded environment, it will return

in error if it is invoked in this environment.

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use malloc() instead of brk() or sbrk().

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If successful, sbrk() returns 0.

If unsuccessful, sbrk() returns -1 and sets errno to one of the following values:

Error Code Description

EINVAL The caller is running in a multithreaded environment, this is not a

valid environment for this function.

ENOMEM The requested change would allocate more space than allowed for

the calling process.

Related Information

v “unistd.h” on page 96

v “brk() — Change Space Allocation” on page 216

sbrk

1704 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|
|
|

scalb() — Load Exponent

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <math.h>

double scalb(double x, double n);

General Description

The scalb() function computes

 .

If n is not an integer, it is silently truncated.

Note: This function works in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. The radix is 16 for hexadecimal floating-point and 2 for

IEEE Binary Floating-Point. See “IEEE Binary Floating-Point ” on page 108

for more information about IEEE Binary Floating-Point.

Returned Value

If it succeeds, scalb() returns the function of its arguments as described above.

scalb() will fail under the following conditions:

v If the result would underflow, scalb() will return 0 and set errno to ERANGE.

v If the result would overflow, scalb() will return ±HUGE_VAL according to the sign

of x and set errno to ERANGE.

Special Behavior for IEEE

If successful, scalb() returns the value of the x parameter times 2 to the power of

the y parameter.

If the result would overflow, scalb() returns ±HUGE_VAL according to the sign of x

and sets errno to ERANGE. No other errors can occur.

Related Information

v “math.h” on page 60

v “ldexp(), ldexpf(), ldexpl() — Multiply by a Power of Two” on page 1067

x radixn

scalb

Chapter 3. Part 3. Library Functions 1705

||||

|
|
||

|

scalbn(), scalbnf(), scalbnl(), scalbln(), scalblnf(), scalblnl() — load

exponent functions

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <math.h>

double scalbn(double x, int n);

float scalbnf(float x, int n);

long double scalbnl(long double x, int n);

double scalbln(double x, long int n);

float scalblnf(float x, long int n);

long double scalblnl(long double x, long int n);

General Description

The scalbn() and scalbln() families of functions compute (x * (FLT_RADIX) raised to

n) efficiently, not normally, by computing FLT_RADIX raised to n explicitly.

The radix for z/OS C applications, FLT_RADIX, is defined to be 16 under HEX

implementation and 2 under IEEE implementation.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

scalbn X X

scalbnf X X

scalbnl X X

scalbln X X

scalblnf X X

scalblnl X X

Restriction

The scalbnf() and scalblnf() functions do not support the _FP_MODE_VARIABLE

feature test macro.

Returned Value

The scalbn() and scalbln() families of functions return (x * (FLT_RADIX) raised to

n).

scalbn, scalbnf, scalbnl, scalbln, scalblnf, scalblnl

1706 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

Related Information

v “math.h” on page 60

v “exp(), expf(), expl() — Calculate Exponential Function” on page 498

v “expm1(), expm1f(), expm1l() — Exponential Minus One” on page 502

v “exp2(), exp2f(), exp2l() — Calculate the base-2 exponential” on page 505

v “frexp(), frexpf(), frexpl() — Extract Mantissa and Exponent of the Floating-Point

Value” on page 678

v “ilogb(), ilogbf(), ilogbl() — Integer Unbiased Exponent” on page 933

v “ldexp(), ldexpf(), ldexpl() — Multiply by a Power of Two” on page 1067

v “log(), logf(), logl() — Calculate Natural Logarithm” on page 1126

v “logb(), logbf(), logbl() — Unbiased Exponent” on page 1128

v “log1p(), log1pf(), log1pl() — Natural Log of x + 1” on page 1136

v “log10(), log10f(), log10l() — Calculate Base 10 Logarithm” on page 1138

v “log2(), log2f(), log2l() — Calculate the Base-2 Logarithm” on page 1142

v “modf(), modff(), modfl() — Extract Fractional and Integral Parts of Floating-Point

Value” on page 1237

scalbn, scalbnf, scalbnl, scalbln, scalblnf, scalblnl

Chapter 3. Part 3. Library Functions 1707

scalbnd32(), scalbnd64(), scalbnd128() and scalblnd32(), scalblnd64(),

scalblnd128() — load exponent functions

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 scalbnd32(_Decimal32 x, int n);

_Decimal64 scalbnd64(_Decimal64 x, int n);

_Decimal128 scalbnd128(_Decimal128 x, int n);

_Decimal32 scalbn(_Decimal32 x, int n); /* C++ only */

_Decimal64 scalbn(_Decimal64 x, int n); /* C++ only */

_Decimal128 scalbn(_Decimal128 x, int n); /* C++ only */

_Decimal32 scalblnd32(_Decimal32 x, long int n);

_Decimal64 scalblnd64(_Decimal64 x, long int n);

_Decimal128 scalblnd128(_Decimal128 x, long int n);

_Decimal32 scalbln(_Decimal32 x, long int n); /* C++ only */

_Decimal64 scalbln(_Decimal64 x, long int n); /* C++ only */

_Decimal128 scalbln(_Decimal128 x, long int n) /* C++ only */

General Description

The scalbn() and scalbln() families of functions compute (x * 10 raised to n)

efficiently, not normally, by computing 10 raised to n explicitly.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The scalbn() and scalbln() families of functions return (x * 10 raised to n).

Example

/* CELEBS68

 This example illustrates the scalbnd128() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal128 x, y;

 x = 7.2DL;

scalbnd32, scalbnd64, scalbnd128

1708 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

y = scalbnd128(x, 6000);

 printf("scalbnd128(%DDf, 6000) = %DDe\n", x, y);

}

Related Information

v “math.h” on page 60

v “expd32(), expd64(), expd128() — Calculate Exponential Function” on page 500

v “frexpd32(), frexpd64(), frexpd128() — Extract Mantissa and Exponent of the

Decimal Floating-Point Value” on page 680

v “ilogbd32(), ilogbd64(), ilogbd128() — Integer Unbiased Exponent” on page 935

v “ldexpd32(), ldexpd64(), ldexpd128() — Multiply by a Power of Ten” on page

1069

v “logd32(), logd64(), logd128() — Calculate Natural Logarithm” on page 1132

v “log10d32(), log10d64(), log10d128() — Calculate Base 10 Logarithm” on page

1140

v “modfd32(), modfd64(), modfd128() — Extract Fractional and Integral Parts of

Decimal Floating-Point Value” on page 1239

v “scalbn(), scalbnf(), scalbnl(), scalbln(), scalblnf(), scalblnl() — load exponent

functions” on page 1706

scalbnd32, scalbnd64, scalbnd128

Chapter 3. Part 3. Library Functions 1709

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

scanf() — Read and Format Data

The information for this function is included in “fscanf(), scanf(), sscanf() — Read

and Format Data” on page 682.

scanf

1710 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sched_yield() — Release the Processor to Other Threads

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, version 3 both z/OS V1R7

POSIX(ON)

Format

#define _UNIX03_SOURCE

#include <sched.h>

int sched_yield(void);

General Description

sched_yield() allows a thread to give up control of a processor so that another

thread may have the opportunity to run. It takes no arguments.

The speed at which sched_yield() will give up control of a processor can be

controlled with the use of the _EDC_PTHREAD_YIELD environment variable. With

the use of the _EDC_PTHREAD_YIELD environment variable, sched_yield() can be

controlled to release the processor immediately, or to release the processor after a

delay.

For details on the _EDC_PTHREAD_YIELD environment variable, see the ″Using

Environment Variables″ chapter in z/OS XL C/C++ Programming Guide.

Returned Value

sched_yield() will always return 0.

There are no documented errno values. Use perror() or strerror() to determine the

cause of the error.

Related Information

v “sched.h” on page 76

v “pthread_yield() — Release the Processor to Other Threads” on page 1564

sched_yield

Chapter 3. Part 3. Library Functions 1711

||||

|||
|
|

|
|
|
|
|

|
|

seed48() — Pseudo-Random Number Initializer

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

unsigned short int *seed48(unsigned short int seed16v[3]);

General Description

The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions

generate uniformly distributed pseudo-random numbers using a linear congruential

algorithm and 48-bit integer arithmetic.

The lcong48(), seed48(), and srand48() functions are initialization functions, one of

which should be invoked before either the drand48(), lrand48() or mrand48()

function is called.

The drand48(), lrand48() and mrand48() functions generate a sequence of 48-bit

integer values, X(i), according to the linear congruential formula:

 X(n+1) = (aX(n) + c)mod(2**48) n>=0

The initial values of X, a, and c are:

 X(0)= 1

 a = 5deece66d (base 16)

 c = b (base 16)

C/370 provides storage to save the most recent 48-bit integer value of the

sequence, X(i). This storage is shared by the drand48(), lrand48() and mrand48()

functions. The seed48() function is used to reinitialize the most recent 48-bit value

in this storage. The seed48() function replaces the low-order (rightmost) 16 bits of

this storage with seed16v[0], the middle-order 16 bits with seed16v[1], and the

high-order 16 bits with seed16v[2].

The values a and c, may be changed by calling the lcong48() function. The

seed48() function restores the initial values of a and c.

Special Behavior for z/OS UNIX Services

You can make the seed48() function and other functions in the drand48 family

thread-specific by setting the environment variable _RAND48 to the value THREAD

before calling any function in the drand48 family.

If you do not request thread-specific behavior for the drand48 family, C/370

serializes access to the storage for X(n), a and c by functions in the drand48 family

when they are called by a multithreaded application.

seed48

1712 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

If thread-specific behavior is requested, calls to the drand48(), lrand48() and

mrand48() functions from thread t generate a sequence of 48-bit integer values,

X(t,i), according to the linear congruential formula:

 X(t,n+1) = (a(t)X(t,n) + c(t))mod(2**48) n>=0

C/370 provides thread-specific storage to save the most recent 48-bit integer value

of the sequence, X(t,i). When the seed48()function is called from thread t, it

reinitializes the most recent 48-bit value in this storage. The seed48() function

replaces the low-order (rightmost) 16 bits of this storage with seed16v[0], the

middle-order 16 bits with seed16v[1], and the high-order 16 bits with seed16v[2].

The values of a(t) and c(t) may be changed by calling the lcong48() function from

thread t. When the seed48()function is called from this thread, it restores the initial

values of a(t) and c(t) for the thread which are:

 a(t) = 5deece66d (base 16)

 c(t) = b (base 16)

Returned Value

When seed48() is called, it saves the most recent 48-bit integer value in the

sequence, X(i), in an array of unsigned short ints provided by C/370 before

reinitializing storage for the most recent value in the sequence, X(i). seed48()

returns a pointer to the array containing the saved value.

Special Behavior for z/OS UNIX Services

If thread-specific behavior is requested for the drand48 family and seed48() is

called on thread t, it saves the most recent 48-bit integer value in the sequence,

X(t,i), for the thread in a thread-specific array of unsigned short ints before

reinitializing storage for the most recent value in the sequence, X(t,i). seed48()

returns a pointer to this thread-specific array containing the saved value.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “erand48() — Pseudo-Random Number Generator” on page 476

v “jrand48() — Pseudo-Random Number Generator” on page 1051

v “lcong48() — Pseudo-Random Number Initializer” on page 1065

v “lrand48() — Pseudo-Random Number Generator” on page 1150

v “mrand48() — Pseudo-Random Number Generator” on page 1251

v “nrand48() — Pseudo-Random Number Generator” on page 1307

v “srand48() — Pseudo-Random Number Initializer” on page 2005

seed48

Chapter 3. Part 3. Library Functions 1713

seekdir() — Set Position of Directory Stream

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <dirent.h>

void seekdir(DIR *dirp, long int loc);

General Description

The seekdir() function sets the position of the next readdir() operation on the

directory stream specified by dirp to the position specified by loc. The value of loc

should have been returned from an earlier call to telldir(). The new position reverts

to the one associated with the directory stream when telldir() was performed. If the

value of loc was not obtained from an earlier call to telldir() or if a call to rewinddir()

occurred between the call to telldir() and the call to seekdir(), the result of

subsequent calls to readdir() are unspecified.

Note: If files were added or removed from the directory after telldir() was called

and before seekdir() is done, the results are also unspecified.

Returned Value

seekdir() returns no values.

If the loc argument is negative, the directory stream is unchanged.

Related Information

v “dirent.h” on page 40

v “stdio.h” on page 82

v “sys/types.h” on page 90

v “closedir() — Close a Directory” on page 302

v “opendir() — Open a Directory” on page 1319

v “readdir() — Read an Entry from a Directory” on page 1608

v “rewinddir() — Reposition a Directory Stream to the Beginning” on page 1683

v “telldir() — Current Location of Directory Stream” on page 2189

seekdir

1714 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

select(), pselect() — Monitor Activity on Files/Sockets and Message

Queues

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#define _OPEN_MSGQ_EXT

#include <sys/types.h>

#include <sys/time.h>

#include <sys/msg.h>

int select(int nmsgsfds, fd_set *__restrict__ readlist,

 fd_set *__restrict__ writelist, fd_set *__restrict__ exceptlist,

 struct timeval *__restrict__ timeout);

SUSV3

#include <sys/select.h>

int pselect(int nmsgsfds, fd_set *__restrict__ readlist,

 fd_set *__restrict__ writelist, fd_set *__restrict__ exceptlist,

 const struct timespec *__restrict__ timeout,

 const sigset *__restrict__ sigmask);

Berkeley Sockets

#define _OE_SOCKETS

#define _OPEN_MSGQ_EXT

#include <sys/types.h>

#include <sys/time.h>

#include <sys/msg.h>

int select(int nmsgsfds, fd_set *readlist,

 fd_set *writelist, fd_set *exceptlist,

 struct timeval *timeout);

_OPEN_MSGQ_EXT must be defined if message queues are to be monitored

(X/Open sockets only).

General Description

The pselect() and select() functions monitor activity on a set of sockets and/or a set

of message queue identifiers until a timeout occurs, to see if any of the sockets and

message queues have read, write, or exception processing conditions pending. This

call also works with regular file descriptors, pipes, and terminals.

The select() function is equivalent to the pselect() function, except as follows:

v For the select() function, the timeout period is given in seconds and

microseconds in an argument of type struct timeval, whereas for the pselect()

function the timeout period is given in seconds and nanoseconds in an argument

of type struct timespec.

select

Chapter 3. Part 3. Library Functions 1715

|

|

|

||||

|
|
||

|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|

|

|
|
|
|

v The select() function has no sigmask argument; it will behave as pselect() does

when sigmask is a null pointer.

v Upon successful completion, the select() function can modify the object pointed

to by the timeout argument.

v The pselect() function always behaves as if _OPEN_MSGQ_EXT and

_OPEN_SYS_HIGH_DESCRIPTORS feature test macros are NOT defined.

Parameter Description

nmsgsfds The number of message queues and the number of file or socket

descriptors to check.

 This parameter is divided into two parts. The first half (the

high-order 16 bits) gives the number of elements of an array that

contains message queue identifiers. This number must not exceed

the value 32767.

 The second half (the low-order 16 bits) gives the number of bits

within a bit set that correspond to the file or socket descriptors to

check. This value should equal the greatest descriptor number to

check + 1.

 If either half of the nmsgsfds parameter is equal to a value of 0, the

corresponding bit sets or arrays are assumed not to be present.

 If _OPEN_MSGQ_EXT is not defined, only file or socket descriptors

may be monitored. In this case nmsgsfds must be less than or

equal to FD_SETSIZE (defined to be 2048 in sys/time.h), and

greater than or equal to zero. Also, FD_SETSIZE may not be

defined by your program.

 The bit set used to specify file or socket descriptors is fixed in size

with 1 bit for every possible file or socket. Use the nmsgsfds

parameter to force pselect() or select() to check only a subset of

the allocated bit set.

 If your application allocates sockets 3, 4, 5, 6, and 7 and you want

to check all of your allocations, the second half of nmsgsfds should

be set to 8, the highest descriptor you specified + 1. If your

application checks sockets 3 and 4, the second half of nmsgsfds

should be set to 5.

 To select on descriptor numbers between 2048 and 65534, either

the _OPEN_MSGQ_EXT or _OPEN_SYS_HIGH_DESCRIPTORS

feature test macro must be defined, and a bit set larger than the

default size must be used. Note that when you are also selecting

on message queues, as is possible when _OPEN_MSGQ_EXT is

defined, the largest descriptor number is restricted to 2047. To

select on descriptor numbers between 65535 and 524287, feature

test macro _OPEN_SYS_HIGH_DESCRIPTORS must be defined

and feature test macro _OPEN_MSGQ_EXT must not be defined.

In addition, the process’ MAXFILEPROC limit must be greater than

65536. With this feature, any number of sockets can be selected on

(without message queues). FD_SETSIZE may also be redefined in

this case, though it is recommended that the application explicitly

allocate the larger bit set using malloc().

readlist,writelist,exceptlist

Pointers to fd_set types, arrays of message queue identifiers, or

sellist structures to check for reading, writing, and exceptional

select

1716 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|
|

|
|

||

||
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

conditions, respectively. The type of parameter to pass depends on

whether you want to monitor file/socket descriptors, message queue

identifiers, or both. To monitor file/socket descriptors only, set the

high-order halfword of nmsgsfds to 0, the low-order halfword to

(highest descriptor number + 1), and use fd_set pointers. To

monitor message queues only, set the low-order halfword of

nmsgsfds to 0, the high-order halfword to the number of elements

in each array you want select() to consider, and pass pointers to

arrays of message queue identifiers. To monitor both, set nmsgsfds

as described above, and pass pointers to sellist structures.

 The sellist structure allows you to specify both file/socket

descriptors and message queues. Your program must define the

sellist structure in the following form:

struct sellist {

 fd_set fdset; /* file/socket descriptor bit set */

 int msgids[max_size]; /* array of message queue identifiers */

 };

If you use a sellist structure, the highest descriptor you can monitor

is 2047.

 The description of the type fd_set is given below. Each integer of

the msgids array specifies a message queue identifier whose status

is to be checked. Elements with a value of -1 are acceptable and

will be ignored. The value contained in the first half of nmsgsfds

determines exactly how many elements of the array are to be

checked.

timeout The pointer to the time to wait for the pselect() or select() call to

complete.

sigmask The signal mask of the caller by the set of signals pointed to by

sigmask before examining the descriptors, and will restore the

signal mask of the calling thread before returning.

 If timeout is not a NULL pointer, it specifies a maximum interval to wait for the

selection to complete. The maximum timeout value is 31 days. If timeout is a NULL

pointer, the pselect() and select() call blocks until a socket or message becomes

ready. To poll the sockets and return immediately, timeout should be a non-NULL

pointer to a zero-valued timeval structure or timespec structure.

If sigmask is not a null pointer, then the pselect() function will replace the signal

mask of the caller by the set of signals pointed to by sigmask before examining the

descriptors, and will restore the signal mask of the calling thread before returning.

To allow you to test more than one socket at a time, the sockets to test are placed

into a bit set of type fd_set. A bit set is a string of bits such that if x is an element of

the set, the bit representing x is set to 1. If x is not an element of the set, the bit

representing x is set to 0. For example, if socket 33 is an element of a bit set, then

bit 33 is set to 1. If socket 33 is not an element of a bit set, then bit 33 is set to 0.

Because the bit sets contain a bit for every socket that a process can allocate, the

size of the bit sets is constant. If your program needs to allocate a large number of

sockets, you may need to increase the size of the bit sets. Increasing the size of

the bit sets should be done when you compile the program. To increase the size of

the bit sets, define FD_SETSIZE before including sys/time.h. FD_SETSIZE is the

largest value of any socket that your program expects to use pselect() or select()

on. It is defined to be 2048 in sys/time.h.

select

Chapter 3. Part 3. Library Functions 1717

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

||
|

||
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

Note: FD_SETSIZE may only be defined by the application program if the

extended version of select() is used (by defining _OPEN_MSGQ_EXT). Do

NOT define FD_SETSIZE in your program if a sellist structure will be used.

Note: The z/OS UNIX POSIX.1 implementation allows you to control the maximum

number of open descriptors allowed per process. This maximum possible

value is 524288. If your application program requires a large number of

either socket or file descriptors, you should protect your code from possible

run-time errors by:

v Adding a check before your pselect(), select() or selectex() calls to see if

the bit set size contained in nmsgsfds is larger than FD_SETSIZE.

v Dynamically allocate bit strings large enough to hold the largest descriptor

value in your application program, rather than rely on the static bit strings

created at compile time. When allocating your own bit strings, use malloc()

to define an area large enough to represent each bit, rounded up to the

next 4-byte multiple. For example, if your largest descriptor value is 31,

you need 4 bytes; if your largest descriptor is 32, you need 8 bytes.

v If you dynamically allocate your own bit strings, the FD_ZERO() macro will

not work. The application must zero that storage, by using the memset

function—that is, memset(ptr,0,mallocsize). The other macros can be used

with the dynamically allocated bit strings, as long as the descriptor you are

manipulating is within the bit string. If the descriptor number is larger than

the bit string, unpredictable results can occur.

The application program must make sure that the parameters readlist, writelist, and

exceptlist point to bit strings that are as large as the bit string size in parameter

nmsgsfds z/OS UNIX services will try to access bits 0 through n−1 (where n = the

value of the second halfword of nmsgsfds), for each of the bit strings. If the bit

strings are too short, you will receive unpredictable results when you run your

application program.

The following macros are provided to manipulate bit sets.

Macro Description

FD_ZERO(&fdset)

Sets all bits in the bit set fdset to zero. After this operation, the bit

set does not contain sockets as elements. This macro should be

called to initialize the bit set before calling FD_SET() to set a socket

as a member.

Note: If you used malloc() to dynamically allocate a new area, the

FD_ZERO() macro can cause unpredictable results and

should not be used. You should zero the area using the

memset() function.

FD_SET(sock, &fdset)

Sets the bit for the socket sock to a 1, making sock a member of

the bit set fdset.

FD_CLR(sock, &fdset)

Clears the bit for the socket sock in bit set fdset. This operation

sets the appropriate bit to a zero.

FD_ISSET(sock, &fdset)

Returns nonzero if sock is a member of the bit set fdset. Returns 0

if sock is not a member of fdset. (This operation returns the bit

representing sock.)

select

1718 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

||

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

The following macros are provided to manipulate the nmsgsfds parameter and the

return value from pselect() and select():

Macro Description

_SET_FDS_MSGS(nmsgsfds, nmsgs, nfds)

Sets the high-order halfword of nmsgsfds to nmsgs, and sets the

low-order halfword of nmsgsfds to nfds.

_NFDS(n) If the return value n from pselect() or select() is nonnegative,

returns the number of descriptors that meet the read, write, and

exception criteria. A descriptor may be counted multiple times if it

meets more than one given criterion.

_NMSGS(n) If the return value n from pselect() or select() is nonnegative,

returns the number of message queues that meet the read, write,

and exception criteria. A message queue may be counted multiple

times if it meets more than one given criterion.

A socket is ready for reading when incoming data is buffered for it or when a

connection request is pending. To test whether any sockets are ready for reading,

use either FD_ZERO() or memset(), if the function was dynamically allocated, to

initialize the fdset bit set in readlist and invoke FD_SET() for each socket to test.

A socket is ready for writing if there is buffer space for outgoing data. A socket is

ready for reading if there is data on the socket to be received. For a nonblocking

stream socket in the process of connecting the connect() will return with a −1. The

program needs to check the errno. If the errno is EINPROGRESS, the socket is

selected for write when the connect() completes. In the situation where the errno is

not EINPROGRESS, the socket will still be selected for write which indicates that

there is a pending error on the socket. Acall to write(), send(), or sendto() does not

block provided that the amount of data is less than the amount of buffer space. If a

socket is selected for write, the amount of available buffer space is guaranteed to

be at least as large as the size returned from using SO_SNDBUF with getsockopt().

To test whether any sockets are ready for writing, initialize the fdset bit set in

writelist with either FD_ZERO() or memset(), if dynamically allocated, and use

FD_SET() for each socket to test.

A message queue is ready for reading when any time it has a message on it. It is

considered ready for writing when any time it is not full. A message queue is full

when it has either reached its number of messages limit or its number of bytes limit.

An exception condition exists when a message queue is deleted while a select()

caller is waiting on the queue.

The programmer can pass NULL for any of the readlist, writelist, and exceptlist

parameters. However, when they are not NULL, they must all point to the same

type of structures. For example, suppose the readlist points to a sellist. If the

writelist is not NULL, it must point to a sellist also. Now, let us say the writelist is

not NULL. If the programmer wants to check a set of file descriptors for read status

only, the appropriate bits in the bit set in the sellist structure pointed to by the

writelist must be set to 0. If the programmer wants to check a set of message

queues for write status only, the appropriate elements in the array in the sellist

structure pointed to by the readlist must be set to -1. Regular files are always ready

for reading and writing.

Because the sets of sockets passed to pselect() and select() are bit sets, the

pselect() and select() call must test each bit in each bit set before polling the socket

select

Chapter 3. Part 3. Library Functions 1719

|
|

||

|
|
|

||
|
|
|

||
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

for its status. The pselect() and select() call tests only sockets in the range 0 to n−1

(where n = the value of the second halfword of nmsgsfds).

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

The value −1 indicates the error code should be checked for an error. The value

zero indicates an expired time limit.

When the return value is greater than 0, then it is similar to nmsgsfds in that the

high-order 16 bits give the number of message queues, and the low-order 16 bits

give the number of descriptors. These values indicate the sum total that meet each

of the read, write, and exception criteria. Note that a descriptor or a message queue

may be counted multiple times if it meets more than one given criterion. Should the

return value for message queues exceed the value 32767, only 32767 will be

reported. This is to ensure that the return value does not appear to be negative.

Should the return value for file/socket descriptors be greater than 65535, only

65535 will be reported.

If the return value is greater than 0, the files/sockets that are ready in each bit set

are set to 1. Files/Sockets in each bit set that are not ready are set to zero. Use the

macro FD_ISSET() with each file/socket to test its status. For those message

queues that do not meet the conditions their identifiers in the msgsid arrays will be

replaced with a value of -1.

Error Code Description

EBADF One of the bit sets specified an invalid socket or a message queue

identifier is invalid. FD_ZERO() was probably not called to clear the

bit set before the sockets were set.

EFAULT One of the parameters contained an invalid address.

EINTR The pselect() or select() function was interrupted before any of the

selected events occurred and before the timeout interval expired.

EINVAL One of the fields in the timeval structure or timespec structure is

invalid, or there was an invalid nmsgsfds value.

EIO One of the descriptors in the select mask has become inoperative

and it is being repeatedly included in a select even though other

operations against this descriptor have been failing with EIO. A

socket descriptor, for example, can become inoperative if TCP/IP is

shut down. When a descriptor fails a failure from select could not

tell you which descriptor had failed so generally select will succeed

and these descriptors will be reported to you as being ready for

whatever events were specified on the select. Subsequently when

the descriptor is used on a receive or other operation you will

receive the EIO failure then and can react to the problem with the

individual descriptor. In general you would close() the descriptor

and remove it from the next select mask. If the individual

descriptor’s failing return code is ignored though and an inoperative

descriptor is repeatedly selected on and used, even though each

time it is used that call fails with EIO, eventually the select call itself

will fail with EIO.

select

1720 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|

|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

||

||
|
|

||

||
|

||
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Note: The pselect() function can also return errno’s set by the sigprocmask()

function.

Example

In the following example, select() is used to poll sockets for reading (socket sr),

writing (socket sw), and exception (socket se) conditions, and to check message

queue ids mr, mw, and me.

#define _XOPEN_SOURCE_EXTENDED 1

#define _OPEN_MSGQ_EXT

#include <sys/types.h>

#include <sys/time.h>

#include <sys/msg.h>

struct sellist {

 fd_set fdset;

 int msgids[2];

};

/*

 * sock_msg_stats(sr, sw, se, mr, mw, me) - Print the status of

 * sockets sr, sw, and se, and of message queue ids mr, mw,

 * and me.

 */

 int sock_msg_stats(sr, sw, se, mr, mw, me)

 int sr, sw, se, mr, mw, me;

 {

 struct sellist *reading, *writing, *excepting;

 struct sellist read, write, except;

 struct timeval timeout;

 int rc, max_sock, sock_size, nmsgsfds;

 int msgids[1]; /* we only check 1 message queue */

 /* What’s the maximum socket number? */

 max_sock = MAX(sr, sw);

 max_sock = MAX(max_sock, se);

 /* initialize the static bit sets */

 FD_ZERO(&read.fdset); reading = &read;

 FD_ZERO(&write.fdset); writing = &write;

 FD_ZERO(&except.fdset); excepting = &except;

 /* add sr, sw, and se to the appropriate bit set */

 FD_SET(sr, &reading->fdset);

 FD_SET(sw, &writing->fdset);

 FD_SET(se, &excepting->fdset);

 /* initialize the message id arrays */

 reading->msgids[0] = mr;

 writing->msgids[0] = mw;

 excepting->msgids[0] = me;

 /* set the nmsgsfds parameter */

 _SET_FDS_MSGS(nmsgsfds, 1, max_sock+1);

 /* make select poll by sending a 0 timeval */

 memset(&timeout, 0, sizeof(timeout));

 /* poll */

 rc = select(nmsgsfds, reading, writing, excepting, &timeout);

 if (rc < 0) {

 /* an error occurred during the SELECT() */

 perror("select");

 }

 else if (rc == 0) {

select

Chapter 3. Part 3. Library Functions 1721

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* no sockets or messages were ready in our little poll */

 printf("nobody is home.\n");

 } else

 if (_NFDS(rc) > 0) {

 /* at least one of the sockets is ready */

 printf("sr is %s\n",

 FD_ISSET(sr,&reading->fdset) ? "READY" : "NOT READY");

 printf("sw is %s\n",

 FD_ISSET(sw,&writing->fdset) ? "READY" : "NOT READY");

 printf("se is %s\n",

 FD_ISSET(se,&excepting->fdset) ? "READY": "NOT READY");

 } else

 if (_NMSGS(rc) > 0) {

 /* at least one message queue is ready */

 printf("mr is %s\n",

 reading->msgids[0] == -1 ? "NOT READY" : "READY");

 printf("mw is %s\n",

 writing->msgids[0] == -1 ? "NOT READY" : "READY");

 printf("me is %s\n",

 excepting->msgids[0] == -1 ? "NOT READY" : "READY");

 }

 }

CELEBP72

/* CELEBP72

 This example demonstrates the use of pselect()

 Expected output:

 Parent: Issuing pselect

 This is the child

 Child: Sending signal to the parent at:

 This is the signal handler

 Signal received: 14 (14 is SIGALRM)

 The pselect call was made at:

 The SIGALRM was caught at:

 TEST PASSED!

*/

#define _POSIX_C_SOURCE 200112L

#include <sys/select.h>

#include <stdio.h>

#include <fcntl.h>

#include <signal.h>

#include <string.h>

#include <time.h>

#include <unistd.h>

time_t t1,t2;

void incatchr(int signum){

 double diff=0;

 time(&t2);

 printf("\n\nThis is the signal handler\n");

 printf("Signal received: %d (14 is SIGALRM) \n",signum);

 printf("The pselect call was made at: \t%s\n",ctime(&t1));

 printf("The SIGALRM was caught at: \t%s\n",ctime(&t2));

 diff = difftime(t2,t1);

 if(diff < 10) {

select

1722 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("TEST FAILED!\n\n");

 }

 else{

 printf("TEST PASSED!\n\n");

 }

}

int main(void){

 int fd[1], rc, nfds=3, fd1, fd2, fd3;

 pid_t cpid, ppid;

 fd_set fdsread;

 struct sigaction action, info;

 sigset_t pselect_set;

 struct timespec t;

 time_t t3;

 t.tv_sec=10;

 t.tv_nsec=0;

 FD_ZERO(&fdsread);

 action.sa_handler = incatchr;

 action.sa_flags = 0;

 sigaction(SIGALRM,&action,&info);

 sigemptyset(&pselect_set);

 sigaddset(&pselect_set, SIGALRM);

 fd1 = open("./testchd.txt",O_RDWR|O_CREAT);

 fd2 = open("./testchd2.txt",O_RDWR|O_CREAT);

 if((rc=pipe(fd)) != 0){

 printf("Error in pipe\n");

 return(−1);

 }

 FD_SET(fd[0],&fdsread);

 if ((cpid = fork()) < 0){

 printf("Fork error\n");

 return(−1);

 }

 else{

 if (cpid == 0){

 fd3 = open("./testchd.txt",O_RDWR|O_CREAT);

 printf("This is the child\n");

 sleep(2);

 ppid= getppid();

 time(&t3);

 printf("Child: Sending signal to the parent at: ");

 printf("%s",ctime(&t3));

 kill(ppid,SIGALRM);

 sleep(3);

 _exit(0);

 }

 else{

 printf("Parent: Issuing pselect\n\n");

 time(&t1);

 if (pselect(nfds,&fdsread,NULL,NULL,&t,&pselect_set) == −1)

 printf("Error in pselect\n");

 }

 close(fd[0]);

 }

 return 0;

}

select

Chapter 3. Part 3. Library Functions 1723

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “sys/msg.h” on page 88

v “sys/times.h” on page 89

v “sys/types.h” on page 90

v “msgctl() — Message Control Operations” on page 1255

v “msgget() — Get Message Queue” on page 1257

v “msgrcv() — Message Receive Operation” on page 1260

v “msgsnd() — Message Send Operations” on page 1265

v “poll() — Monitor Activity on File Descriptors and Message Queues” on page

1353

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

select

1724 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|

selectex() — Monitor Activity on Files/Sockets and Message Queues

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#define _ALL_SOURCE

#define _OPEN_MSGQ_EXT

#include <sys/types.h>

#include <sys/time.h>

#include <sys/msg.h>

int selectex(int nmsgsfds, fd_set *readlist,

 fd_set *writelist,

 fd_set *exceptlist,

 struct timeval *timeout, int *ecbptr);

Berkeley Sockets

#define _OE_SOCKETS

#define _ALL_SOURCE

#define _OPEN_MSGQ_EXT

#include <sys/types.h>

#include <sys/time.h>

#include <sys/msg.h>

int selectex(int nmsgsfds, fd_set *readlist,

 fd_set *writelist,

 fd_set *exceptlist,

 struct timeval *timeout, int *ecbptr);

_OPEN_MSGQ_EXT must be defined if message queues are to be monitored

(X/Open sockets only).

General Description

The selectex() function provides an extension to the select() call by allowing you to

use an ECB that defines an event not described by readlist, writelist, or exceptlist.

The selectex() call monitors activity on a set of files/sockets and message queues

until a timeout occurs, or until the ECB is posted, to see if any of the files/sockets

and message queues have read, write, or exception processing conditions pending.

When the storage key of the first (or only) ECB matches the caller’s PSW key, the

kernel performs the wait in the caller’s PSW key; otherwise, the kernel performs the

wait in the TCB key (TCBPFK). However, if the caller is running in key 0, then the

kernel performs the wait in key 0, regardless of the storage key.

See select() for more information.

Parameter Description

nmsgsfds The number of message queues and the number of file or socket

descriptors to check. (Refer to select() for a full description of this

and other parameters below.)

selectex

Chapter 3. Part 3. Library Functions 1725

Note: This function is limited to descriptor numbers less than or

equal to 65535.

readlist A pointer to an fd_set type, array of message queue identifiers, or

sellist structure specifying descriptors and message queues to

check for reading.

writelist A pointer to an fd_set type, array of message queue identifiers, or

sellist structure specifying descriptors and message queues to

check for writing.

exceptlist A pointer to an fd_set type, array of message queue identifiers, or

sellist structure specifying descriptors and message queues to be

checked for exceptional pending conditions.

timeout The pointer to the time to wait for the selectex() call to complete.

ecbptr This variable can contain one of the following values:

1. A pointer to a user event control block. To specify this usage of

ecbptr, the high-order bit must be set to ’0’B.

2. A pointer to a list of ECBs. To specify this usage of ecbptr, the

high-order bit must be set to ’1’B.

The list can contain the pointers for up to 1013 ECBs. The

high-order bit of the last pointer in the list must be set to ’1’B.

3. A NULL pointer. This indicates no ECBs are specified.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

The value −1 indicates the error code should be checked for an error. The value 0

indicates an expired time limit or that the ECB is posted.

When the return value is greater than 0, then it is similar to nmsgsfds in that the

high-order 16 bits give the number of message queues, and the low-order 16 bits

give the number of descriptors. These values indicate the sum total that meet each

of the read, write, and exception criteria. Note that a descriptor or a message queue

may be counted multiple times if it meets more than one requested criterion. Should

the return value for message queues exceed the value 32767, only 32767 will be

reported. This is to ensure that the return value does not appear to be negative.

Should the return value for file/socket descriptors be greater than 65535, only

65535 will be reported.

If the return value is greater than 0, the files/sockets that are ready in each bit set

are set to 1. Files/Sockets in each bit set that are not ready are set to zero. Use the

macro FD_ISSET() with each socket to test its status. For those message queues

that do not meet the conditions their identifiers in the msgsid array will be replaced

with a value of -1.

Error Code Description

EBADF One of the descriptor sets specified an incorrect descriptor or a

message queue identifier is invalid.

EFAULT One of the parameters contained an invalid address.

selectex

1726 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EINTR selectex() was interrupted before any of the selected events

occurred and before the timeout interval expired.

EINVAL One of the fields in the timeval structure is incorrect.

EIO One of the descriptors in the select mask has become inoperative

and it is being repeatedly included in a select even though other

operations against this descriptor have been failing with EIO. A

socket descriptor, for example, can become inoperative if TCP/IP is

shut down. A failure from select can not tell you which descriptor

has failed so generally select will succeed and these descriptors will

be reported to you as being ready for whatever event they were

being selected for. Subsequently when the descriptor is used on a

receive or other operation you will receive the EIO failure and can

react to the problem with the individual descriptor. In general you

would close() the descriptor and remove it from the next select

mask. If the individual descriptor’s failing return code is ignored

though and an inoperative descriptor is repeatedly selected on and

used, even though each time it is used that call fails with EIO,

eventually the select call itself will fail with EIO.

Related Information

v “sys/msg.h” on page 88

v “sys/times.h” on page 89

v “sys/types.h” on page 90

v “accept() — Accept a New Connection on a Socket” on page 120

v “connect() — Connect a Socket” on page 325

v “msgctl() — Message Control Operations” on page 1255

v “msgget() — Get Message Queue” on page 1257

v “msgrcv() — Message Receive Operation” on page 1260

v “msgsnd() — Message Send Operations” on page 1265

v “poll() — Monitor Activity on File Descriptors and Message Queues” on page

1353

v “recv() — Receive Data on a Socket” on page 1628

v “send() — Send Data on a Socket” on page 1740

selectex

Chapter 3. Part 3. Library Functions 1727

semctl() — Semaphore Control Operations

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);

General Description

The semctl() function performs control operations in semaphore set semid as

specified by the argument cmd.

Depending on the value of argument cmd, argument semnum may be ignored or

identify one specific semaphore number.

The fourth argument is optional and depends upon the operation requested. If

required, it is of type union semun, which the application program must explicitly

declare:

union semun {

 int val;

 struct semid_ds *buf;

 unsigned short *array;

} arg;

Each semaphore in the semaphore set is represented by the following anonymous

data structure:

 unsigned short int semval Semaphore value

pid_t sempid Process ID of last operation

unsigned sort int semcnt Number of processes waiting for semval to become

greater than current value

unsigned short int semzcnt Number of processes waiting for semval to become

zero

When semctl() is used to identify one specific semaphore number for commands

GETVAL, SETVAL, GETPID, GETNCNT, and GETZCNT, then references are made

to this anonymous data structure for the semaphore semnum.

The following semaphore control operations as specified by argument cmd may be

specified. The level of permission required for each operation is shown with each

command. These symbolic constants are defined by the <sys/sem.h> header:

GETVAL Returns the value of semval, if the current process has read

permission.

SETVAL Sets the value of semval to arg.val, where arg is the value of the

fourth argument to semct(). When this command is successfully

semctl

1728 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

executed, the semadj value corresponding to the specified

semaphore in all processes is cleared. This command requires alter

permission. For an __IPC_BINSEM semaphore set the only values

that may be set are zero and one.

GETPID Returns the most recent process to update the semaphore

(sempid), if the current process has read permission.

GETNCNT Returns the number of threads waiting on the semaphore to

become greater than the current value, if the current process has

read permission.

GETZCNT Returns the number of threads waiting on the semaphore to

become zero, if the current process has read permission. For an

__IPC_BINSEM semaphore set this operation will always return a

zero; threads are not allowed to wait for the semaphore to become

zero in this type of semaphore set.

GETALL Stores semvals for each semaphore in the semaphore set and

place into the array pointed to by arg.array, where arg. is the

fourth argument to semctl(). GETALL requires read permission. It is

the caller’s responsibility to ensure that the storage allocated is

large enough to hold the number of semaphore elements. The

number of semaphore values stored is sem_nsems, which may be

obtained using the IPC_STAT command.

SETALL Sets semval values for each semaphore in the semaphore set

according to the array pointed to by arg.array, where arg is the

fourth argument to semctl(). SETALL requires alter permission.

Each semval value must be zero or positive. When this command is

successfully executed, the semadj values corresponding to each

specified semaphore in all processes are cleared. It is the caller’s

responsibility to ensure that the storage allocated is large enough to

hold the number of semaphore elements. The number of

semaphore values set is sem_nsems, which may be obtained using

the IPC_STAT command. If __IPC_BINSEM was specified on the

semget, this option should not be used while there is the possibility

of other threads performing semaphore operations on this

semaphore, as there may be no serialization while updating the

semaphore values; therefore a SETALL will not be allowed after a

semop has been done to the __IPC_BINSEM semaphore set. Also,

for the __IPC_BINSEM semaphore set, the only values that may be

set are zero and one.

IPC_STAT This command obtains status information for the semaphore

identifier specified by semid. This requires read permission. This

information is stored in the address specified by the fourth

argument defined by data structure semid_ds.

IPC_SET Set the value of the sem_perm.uid, sem_perm.gid, and

sem_perm.mode in semid_ds data structure for the semaphore

identifier specified by semid. These values are set to the values

found in semid_ds structure pointed to by the fourth argument.

 Any value for sem_perm.uid and semperm.gid may be set.

 Only mode bits defined under semget() function argument semflg

may be set in sem_perm.mode.

 This command can only be executed by a process that has an

effective user ID equal to either that of a process with appropriate

semctl

Chapter 3. Part 3. Library Functions 1729

privileges or to the value of sem_perm.cuid or sem_perm.uid in the

semid_ds structure associated with semid.

IPC_RMID Remove the semaphore identifier specified by argument semid from

the system and free the storage for the set of semaphores in the

semid_ds structure.

 This command can only be executed by a process that has an

effective user ID equal to either that of a process with appropriate

privileges or to the value of sem_perm.cuid or sem_perm.uid in the

semid_ds structure associated with semid. For an __IPC_BINSEM

semaphore set, it is recommended that all use of semop should be

completed before removing the semaphore ID.

Returned Value

If successful, the value returned by semctl() depends on the value of the argument

cmd as follows:

GETVAL value of semval is returned

GETPID value of sempid is returned

GETNCNT value of semncnt is returned

GETZCNT value of semzcnt is returned

All others value of zero is returned

If unsuccessful, semctl() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES Operation permission (read or write) is denied to the calling

process.

EINVAL The value of argument semid is not a valid semaphore identifier, or

the value of semnum is less than zero or greater than or equal to

the number of semaphores in the set, or the argument cmd is not a

valid command, or the bits specified for sem_perm.mode are

undefined. Note that the valid range of semnum is 0 to (number of

semaphores in the set minus 1).

EPERM The argument cmd has a value of IPC_RMID or IPC_SET and the

effective user ID of the caller is not that of a process with

appropriate privileges and is not the value of sem_perm.cuid or

sem_perm.uid in the semid_ds data structure associated with semid.

ERANGE The argument cmd has a value of SETVAL or SETALL and the

semval value to be set exceeds the system limit as defined in

<sys/sem.h>.

Related Information

v “sys/ipc.h” on page 87

v “sys/sem.h” on page 88

v “semget() — Get a Set of Semaphores” on page 1731

v “semop() — Semaphore Operations” on page 1734

semctl

1730 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

semget() — Get a Set of Semaphores

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

General Description

The semget() function returns the semaphore identifier associated with key.

A semaphore identifier is created with a semid_ds data structure, see <sys/sem.h>,

associated with nsems semaphores when any of the following is true:

v Argument key has a value of IPC_PRIVATE

v Argument key is not associated with a semaphore ID and (semflg &

IPC_CREAT) is non zero.

Valid values for the field semflg include any combination of the following defined in

<sys/ipc.h> and <sys/modes.h>:

IPC_CREAT Creates a semaphore if the key specified does not already have an

associated ID. IPC_CREATE is ignored when IPC_PRIVATE is

specified.

IPC_EXCL Causes the semget() function to fail if the key specified has an

associated ID. IPC_EXCL is ignored when IPC_CREAT is not

specified or IPC_PRIVATE is specified.

__IPC_BINSEM

Binary semaphore - semaphore must behave in a binary manner:

number of semaphore operations must be 1 and the semop must

be 1 with a semval of 0 or the semop must be -1 with a semval of 0

or 1. SEM_UNDO is now allowed on a semop() with this option.

The use of this flag will cause improved performance if the PLO

instruction is available on the hardware.

 See z/OS XL C/C++ Programming Guide for further information on

semaphore performance.

__IPC_SHORTHOLD

This flag states that it is known that the application will only hold

the resource being serialized for extremely short time intervals.

When this flag is combined with the __IPC_BINSEM flag, the

default first-in-first-out (FIFO) ordering of semaphore obtain

requesters will be bypassed, to allow short duration requesters to

successfully obtain the semaphore (and hopefully release it) within

the interval it normally takes to dispatch the next pending waiter for

that semaphore.

semget

Chapter 3. Part 3. Library Functions 1731

||||

|
|
|

||

|

S_IRUSR Permits read access when the effective user ID of the caller

matches either sem_perm.cuid or sem_perm.uid.

S_IWUSR Permits write access when the effective user ID of the caller

matches either sem_perm.cuid or sem_perm.uid.

S_IRGRP Permits read access when the effective group ID of the caller

matches either sem_perm.cgid or sem_perm.gid.

S_IWGRP Permits write access when the effective group ID of the caller

matches either sem_perm.cgid or sem_perm.gid.

S_IROTH Permits others read access

S_IWOTH Permits others write access

When a semaphore set associated with argument key already exists, setting

IPC_EXCL and IPC_CREAT in argument semflg will force semget() to fail.

When a semid_ds data structure is created the following anonymous data structure

is created for each semaphore in the set:

 unsigned short int semval Semaphore value

pid_t sempid Process ID of last operation

unsigned sort int semcnt Number of processes waiting for semval to become

greater than current value

unsigned short int semzcnt Number of processes waiting for semval to become

zero

The following fields are initialized when a semid_ds data structure is created:

v The fields sem_perm.cuid and sem_perm.uid are set equal to the effective user ID

of the calling process.

v The fields sem_perm.cgid. and sem_perm.gid are set equal to effective group ID

of the calling process.

v The low-order 9 bits of sem_perm.mode are set to the value in the low-order 9 bits

of semflg.

v The field sem_nsems is set to the value of nsems.

v The field sem_otime is set to 0.

v The field sem_ctime is set to the current time.

v The anonymous data structure containing semval for each semaphore is not

initialized. semctl() commands SETVAL and SETALL should be used to initialize

each semaphore’s semval value.

Usage Notes

v Semaphores created with __IPC_BINSEM will show this bit and may show the

IPC_PLOINUSE bit in the S_MODE byte returned with w_getipc.

Returned Value

If successful, semget() returns a nonnegative semaphore identifier.

If unsuccessful, semget() returns −1 and sets errno to one of the following values:

Error Code Description

semget

1732 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EACCES A semaphore identifier exists for the argument key, but access

permission as specified by the low-order 9 bits of semflg could not

be granted.

EEXIST A semaphore identifier exists for the argument key and both

IPC_CREAT and IPC_EXCL are specified in semflg.

EINVAL The value of nsems is either less than zero or greater than the

system limit. A semaphore identifier associated with key does not

exist and the nsems is zero. A semaphore identifier associated with

key already exists and the nsems value specified on semget() when

the semaphore identifier was created is less than the nsems value

on the current semget(). The semflg argument specified flags not

currently supported.

ENOENT A semaphore identifier does not exist for the argument key and

IPC_CREAT is not specified.

ENOSPC A system limit of number of semaphore identifiers has been

reached.

When semflg equals 0, the following applies:

v If a semaphore identifier has already been created with key earlier, and the

calling process of this semget() has read and/or write permissions to it, then

semget() returns the associated semaphore identifier.

v If a semaphore identifier has already been created with key earlier, and the

calling process of this semget() does not have read and/or write permissions to it,

then semget() returns-1 and sets errno to EACCES.

v If a semaphore identifier has not been created with key earlier, then semget()

returns -1 and sets errno to ENOENT.

Related Information

v “sys/ipc.h” on page 87

v “sys/sem.h” on page 88

v “sys/stat.h” on page 89

v “sys/types.h” on page 90

v “ftok() — Generate an Interprocess Communication (IPC) key” on page 718

v “semctl() — Semaphore Control Operations” on page 1728

v “semop() — Semaphore Operations” on page 1734

semget

Chapter 3. Part 3. Library Functions 1733

semop() — Semaphore Operations

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

General Description

The semop() function performs semaphore operations atomically on a set of

semaphores associated with argument semid. The argument sops is a pointer to an

array of sembuf data structures. The argument nsops is the number of sembuf

structures in the array.

The structure sembuf is defined as follows:

 short sem_num Semaphore number in the range 0 to (nsems - 1)

 short sem_op Semaphore operation

 short sem_flg Operation flags

Each semaphore in the semaphore set, identified by sem_num, is represented by the

following anonymous data structure. This data structure for all semaphores is

updated atomically when semop() returns successfully:

 unsigned short int semval Semaphore value

pid_t sempid Process ID of last operation

unsigned sort int semcnt Number of processes waiting for semval to become

greater than current value

unsigned short int semzcnt Number of processes waiting for semval to become

zero

Each semaphore operation specified by sem_op is performed on the corresponding

semaphore specified by semid and sem_num.

The variable sem_op specifies one of three semaphore operations:

1. If sem_op is a negative integer and the calling process has alter permission, one

of the following will occur:

v If semval, see <sys/sem.h>, is greater than or equal to the absolute value of

sem_op, the absolute value of sem_op is subtracted from semval.

v If semval is less than the absolute value of sem_op and (sem_flg &

IPC_NOWAIT) is nonzero, semop() will return immediately.

semop

1734 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

v If semval is less than the absolute value of sem_op and (sem_flg &

IPC_NOWAIT) is zero, semop() will increment the semncnt associated with

the specified semaphore and suspend execution of the calling process until

one of the following conditions occurs:

– The value of semval becomes greater than or equal to the absolute value

of sem_op. When this occurs, the value of semncnt associated with the

specified semaphore is decremented, the absolute value of sem_op is

subtracted from semval.

– The semid for which the calling process is awaiting action is removed from

the system. When this occurs, errno is set equal to EIDRM and -1 is

returned.

– The calling process receives a signal that is to be caught. When this

occurs, the value of semncnt associated with the specified semaphore is

decremented, and the calling process resumes execution in the manner

prescribed in sigaction().

2. If sem_op is a positive integer and the calling process has alter permission, the

value of sem_op is added to semval.

3. If sem_op is zero and the calling process has read permission, one of the

following will occur:

v If semval is zero, semop() will return immediately.

v If semval is nonzero and (sem_flg&IPC_NOWAIT) is nonzero, semop() will

return immediately.

v If semval is nonzero and (sem_flg&IPC_NOWAIT) is 0, semop() will increment

the semzcnt associated with the specified semaphore and suspend execution

of the calling thread until one of the following occurs:

– The value of semval becomes 0, at which time the value of semzcnt

associated with the specified semaphore is decremented.

– The semid for which the calling process is awaiting action is removed from

the system. When this occurs, errno is set equal to EIDRM and -1 is

returned.

– The calling process receives a signal that is to be caught. When this

occurs, the value of semzcnt associated with the specified semaphore is

decremented, and the calling process resumes execution in the manner

prescribed in sigaction().

– Upon successful completion, the value of sempid for each semaphore

specified in the array pointed to by sops is set equal to the process ID of

the calling process.

sem_flg contains the IPC_NOWAIT and SEM_UNDO flags described as follows:

IPC_NOWAIT Will cause semop() to return EAGAIN rather than place the thread

into wait state.

SEM_UNDO Will result in semadj adjustment values being maintained for each

semaphore on a per process basis. If sem_op value is not equal to

zero and SEM_UNDO is specified, then sem_op value is subtracted

from the current process’s semadj value for that semaphore. When

the current process is terminated, see exit(), the semadj value(s) will

be added to the semval for each semaphore. The semctl()

command SETALL may be used to clear all semadj values in all

processes. If __IPC_BINSEM was specified on semget for this

semaphore, the Sem_UNDO flag will cause an error to be returned.

semop

Chapter 3. Part 3. Library Functions 1735

A semaphore set created with the __IPC_BINSEM flag must behave in the following

manner: number of semaphore operations must be 1 and the semop must be +1

with a semval of 0 or the semop must be -1 with a semval of 0 or 1. SEM_UNDO is

not allowed on a semop() with this option. The use of this flag will cause improved

performance if the PLO instruction is available on the hardware.

Returned Value

If successful, semop() returns 0. Also the semid parameter value for each

semaphore that is operated upon is set to the process ID of the calling process.

If unsuccessful, semop() returns −1 and sets errno to one of the following values:

Error Code Description

E2BIG The value nsops is greater than the system limit.

EACCES Operation permission is denied to the calling process. Read access

is required when sem_op is zero. Write access is required when

sem_op is not zero.

EAGAIN The operation would result in suspension of the calling process but

IPC_NOWAIT in sem_flg was specified.

EFBIG sem_num is less than zero or greater or equal to the number of

semaphores in the set specified on in semget() argument nsems.

EIDRM semid was removed from the system while the invoker was waiting.

EINTR semop() was interrupted by a signal.

EINVAL The value of argument semid is not a valid semaphore identifier.

For an __IPC_BINSEM semaphore set, the sem_op is other than

+1 for a sem_val of 0 or -1 for a sem_val of 0 or 1. Also, for an

__IPC_BINSEM semaphore set, the number of semaphore

operations is greater than one.

ENOSPC The limit on the number of individual processes requesting a

SEM_UNDO would be exceeded.

ERANGE An operation would cause semval or semadj to overflow the system

limit as defined in <sys/sem.h>.

Related Information

v “sys/ipc.h” on page 87

v “sys/sem.h” on page 88

v “sys/types.h” on page 90

v “exec Functions” on page 486

v “exit() — End Program” on page 494

v “_exit() — End a Process and Bypass the Cleanup” on page 496

v “fork() — Create a New Process” on page 632

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

v “semctl() — Semaphore Control Operations” on page 1728

v “semget() — Get a Set of Semaphores” on page 1731

v “__semop_timed() — Semaphore Operations With Timeout” on page 1737

semop

1736 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__semop_timed() — Semaphore Operations With Timeout

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R10

Format

#define _OPEN_SYS_TIMED_EXT 1

#include <time.h>

#include <sys/sem.h>

int __semop_timed(int semid, struct sembuf *sops, size_t nsops,

 struct timespec *set)

General Description

Performs semaphore operations atomically on a set of semaphores associated with

argument semid. The argument sops is a pointer to an array of sembuf data

structures. The argument nsops is the number of sembuf structures in the array. The

argument set the structure timespec with the timeout values.

The structure sembuf is defined as follows:

 short sem_num Semaphore number in the range 0 to (nsems - 1)

 short sem_op Semaphore operation

 short sem_flg Operation flags

Each semaphore in the semaphore set, identified by sem_num, is represented by the

following anonymous data structure. This data structure for all semaphores is

updated automatically when semop() returns successfully:

 unsigned short int semval Semaphore value

pid_t sempid Process ID of last operation

unsigned sort int semcnt Number of processes waiting for semval to become

greater than current value

unsigned short int semzcnt Number of processes waiting for semval to become

zero

Each semaphore operation specified by sem_op is performed on the corresponding

semaphore specified by semid and sem_num.

The variable sem_op specifies one of three semaphore operations:

1. If sem_op is a negative integer and the calling process has alter permission, one

of the following will occur:

v If semval, see <sys/sem.h>, is greater than or equal to the absolute value of

sem_op, the absolute value of sem_op is subtracted from semval.

v If semval is less than the absolute value of sem_op and (sem_flg &

IPC_NOWAIT) is nonzero, semop() will return immediately.

__semop_timed

Chapter 3. Part 3. Library Functions 1737

v If semval is less than the absolute value of sem_op and (sem_flg &

IPC_NOWAIT) is zero, semop() will increment the semncnt associated with

the specified semaphore and suspend execution of the calling process until

one of the following conditions occurs:

– The value of semval becomes greater than or equal to the absolute value

of sem_op. When this occurs, the value of semncnt associated with the

specified semaphore is decremented, the absolute value of sem_op is

subtracted from semval.

– The semid for which the calling process is awaiting action is removed from

the system. When this occurs, errno is set equal to EIDRM and -1 is

returned.

– The calling process receives a signal that is to be caught. When this

occurs, the value of semncnt associated with the specified semaphore is

decremented, and the calling process resumes execution in the manner

prescribed in sigaction().

2. If sem_op is a positive integer and the calling process has alter permission, the

value of sem_op is added to semval.

3. If sem_op is zero and the calling process has read permission, one of the

following will occur:

v If semval is zero, semop() will return immediately.

v If semval is nonzero and (sem_flg&IPC_NOWAIT) is nonzero, semop() will

return immediately.

v If semval is nonzero and (sem_flg&IPC_NOWAIT) is 0, semop() will increment

the semzcnt associated with the specified semaphore and suspend execution

of the calling thread until one of the following occurs:

– The value of semval becomes 0, at which time the value of semzcnt

associated with the specified semaphore is decremented.

– The semid for which the calling process is awaiting action is removed from

the system. When this occurs, errno is set equal to EIDRM and -1 is

returned.

– The calling process receives a signal that is to be caught. When this

occurs, the value of semzcnt associated with the specified semaphore is

decremented, and the calling process resumes execution in the manner

prescribed in sigaction().

– Upon successful completion, the value of sempid for each semaphore

specified in the array pointed to by sops is set equal to the process ID of

the calling process.

The variable, set, gives the timeout specification.

v If the __semop_timed() function finds that none of the semaphores specified by

semid are received, it waits for the time interval specified in the timespec

structure referenced by set. If the timespec structure pointed to by set is

zero-valued and if none of the semaphores specified by semid are received, then

__semop_timed() returns immediately with EAGAIN. A timespec with the tv_sec

field set with INT_MAX, as defined in <limits.h>, will cause the __semop_timed()

service to wait until a semaphore is received. If set is the NULL pointer, it will be

treated the same as when timespec structure was supplied with with the tv_sec

field set with INT_MAX.

Returned Value

If successful, __semop_timed() returns 0. Also the semid parameter value for each

semaphore that is operated upon is set to the process ID of the calling process.

__semop_timed

1738 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If unsuccessful, __semop_timed() returns −1 and sets errno to one of the following

values:

Error Code Description

E2BIG The value nsops is greater than the system limit.

EACCES Operation permission is denied to the calling process. Read access

is required when sem_op is zero. Write access is required when

sem_op is not zero.

EAGAIN The operation would result in suspension of the calling process but

IPC_NOWAIT in sem_flg was specified. This would result if the

timeout specified expires before a semop is posted.

EFBIG sem_num is less than zero or greater or equal to the number of

semaphores in the set specified on in semget() argument nsems.

EIDRM semid was removed from the system while the invoker was waiting.

EINTR __semop_timed() was interrupted by a signal.

EINVAL The value of argument semid is not a valid semaphore identifier.

ENOSPC The limit on the number of individual processes requesting a

SEM_UNDO would be exceeded.

ERANGE An operation would cause semval or semadj to overflow the system

limit as defined in <sys/sem.h>.

Related Information

v “sys/sem.h” on page 88

v “time.h” on page 93

v “semop() — Semaphore Operations” on page 1734

__semop_timed

Chapter 3. Part 3. Library Functions 1739

send() — Send Data on a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

ssize_t send(int socket, const void *buffer, size_t length, int flags);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

int send(int socket, char *buffer, int length, int flags);

General Description

The send() function sends data on the socket with descriptor socket. The send() call

applies to all connected sockets.

Parameter Description

socket The socket descriptor.

msg The pointer to the buffer containing the message to transmit.

length The length of the message pointed to by the msg parameter.

flags The flags parameter is set by If more than one flag is specified, the

logical OR operator (|) must be used to separate them.

MSG_OOB

 Sends out-of-band data on sockets that support this

notion. Only SOCK_STREAM sockets support

out-of-band data. The out-of-band data is a single

byte.

 Before out-of-band data can be sent between two

programs, there must be some coordination of

effort. If the data is intended to not be read inline,

the recipient of the out-of-band data must specify

the recipient of the SIGURG signal that is

generated when the out-of-band data is sent. If no

recipient is set, no signal is sent. The recipient is

set up by using F_SETOWN operand of the fcntl

command, specifying either a pid or gid. For more

information on this operand, refer to the fcntl

command.

 The recipient of the data determines whether to

receive out-of-band data inline or not inline by the

setting of the SO_OOBINLINE option of

send

1740 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

setsockopt(). For more information on receiving

out-of-band data, refer to the setsockopt(), recv(),

recvfrom() and recvmsg() commands.

MSG_DONTROUTE

The SO_DONTROUTE option is turned on for the

duration of the operation. This is usually used only

by diagnostic or routing programs.

If there is not enough available buffer space to hold the socket data to be

transmitted, and the socket is in blocking mode, send() blocks the caller until

additional buffer space becomes available. If the socket is in nonblocking mode,

send() returns -1 and sets the error code to EWOULDBLOCK. See “fcntl() —

Control Open File Descriptors” on page 527 or “ioctl() — Control Device” on page

977 for a description of how to set nonblocking mode.

For datagram sockets, this call sends the entire datagram, provided that the

datagram fits into the TCP/IP buffers. Stream sockets act like streams of information

with no boundaries separating data. For example, if an application wishes to send

1000 bytes, each call to this function can send 1 byte, or 10 bytes, or the entire

1000 bytes. Therefore, applications using stream sockets should place this call in a

loop, calling this function until all data has been sent.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, send() returns 0 or greater indicating the number of bytes sent.

However, this does not assure that data delivery was complete. A connection can

be dropped by a peer socket and a SIGPIPE signal generated at a later time if data

delivery is not complete.

If unsuccessful, send() returns −1 indicating locally detected errors and sets errno

to one of the following values. No indication of failure to deliver is implicit in a

send() routine.

Error Code Description

EBADF socket is not a valid socket descriptor.

ECONNRESET

A connection was forcibly closed by a peer.

EDESTADDRREQ

The socket is not connection-oriented and no peer address is set.

EFAULT Using the msg and length parameters would result in an attempt to

access storage outside the caller’s address space.

EINTR A signal interrupted send() before any data was transmitted.

EIO There has been a network or transport failure.

EMSGSIZE The message was too big to be sent as a single datagram.

ENOBUFS Buffer space is not available to send the message.

ENOTCONN The socket is not connected.

send

Chapter 3. Part 3. Library Functions 1741

ENOTSOCK The descriptor is for a file, not for a socket.

EOPNOTSUPP

The socket argument is associated with a socket that does not

support one or more of the values set in flags.

EPIPE For a connected stream socket the connection to the peer socket

has been lost. A SIGPIPE signal is sent to the calling process.

EWOULDBLOCK

socket is in nonblocking mode and no data buffers are available.

Related Information

v “sys/socket.h” on page 89

v “connect() — Connect a Socket” on page 325

v “fcntl() — Control Open File Descriptors” on page 527

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “read() — Read From a File or Socket” on page 1602

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “recv() — Receive Data on a Socket” on page 1628

v “recvfrom() — Receive Messages on a Socket” on page 1631

v “recvmsg() — Receive Messages on a Socket and Store in an Array of Message

Headers” on page 1635

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “sendmsg() — Send Messages on a Socket” on page 1747

v “sendto() — Send Data on a Socket” on page 1752

v “socket() — Create a Socket” on page 1970

v “write() — Write Data on a File or Socket” on page 2464

v “writev() — Write Data on a File or Socket from an Array” on page 2472

send

1742 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

send_file() — Send File Data Over a Socket

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R6

Format

#define _OPEN_SYS_SOCK_EXT2

#include <sys/socket.h>

int send_file(int *socket_ptr, struct sf_parms *sf_struct, int options);

General Description

The send_file() function sends data from the file associated with the open file

handle over the connection associated with the socket.

The function takes the following arguments:

socket_ptr A socket file descriptor.

sf_parms A structure that contains variables needed by sendfile - header

information, file information, trailer information and results of

operation.

options Specifies one of the following options:

SF_CLOSE Close the connection after the data has been

successfully sent or queued for transmission.

SF_REUSE Prepare the socket for reuse after the data has

been successfully sent or queued for transmission

and the existing connection closed.

Send_File Structure - sf_parms

The sf_parms is a structure that contains the file descriptor, a header data buffer,

and a trailer data buffer.

sf_parms is defined in <sys/sockets.h> and contains the following variables:

header_data Pointer to a buffer that contains header data which is to be sent

before the file data. It may be a NULL pointer if header_length is

zero.

header_length Specifies the number of bytes in the header_data. It must be set to

zero to indicate that header data is not to be sent.

file_descriptor File descriptor for a file that has been opened for read. This is the

descriptor for the file that contains the data to be transmitted.

file_size The size, in bytes, of the file associated with file_descriptor. This

field is filled in by the system.

file_offset Specifies the byte offset into the file from which to start sending

data.

file_bytes Specifies the number of bytes from the file to be transmitted.

Setting file_bytes to −1 will transmit the entire file from the offset. In

send_file

Chapter 3. Part 3. Library Functions 1743

this case the system will replace the −1 with (actual file size -

file_offset). Setting file_bytes to 0 will result in no file data being

transmitted and file_descriptor is ignored. If file_descriptor is not a

regular file it may be necessary to supply a specific value for

file_bytes unless a normal End Of File (EOF) indication is expected

from file_descriptor during this operation or you simply want the

operation to run forever transferring bytes as they arrive.

trailer_data Pointer to a buffer that contains trailer data which is to be sent after

the file data.

trailer_length Specifies the number of bytes in the trailer_data.

bytes_sent Number of bytes that were sent in this call to send_file(). If it takes

multiple calls to send_file() to send all the data (due to

signal-handling) then this field contains the value for the last call to

send_file(), it is not a running total. This field is set by the system.

Usage Notes

The send_file() function attempts to write header_length bytes from the buffer

pointed to by header_data, followed by file_bytes from the file associated with

file_descriptor, followed by trailer_length bytes from the buffer pointed to by

trailer_data, over the connection associated with the socket pointed to by

socket_ptr.

As data is sent, the system will update variables in the sf_parms structure so that if

the send_file() function is interrupted by a signal, the application simply needs to

reissue send_file()

If the application sets file_offset > the actual file size, or file_bytes > (the actual file

size - file_offset), the return value will be −1 with an EINVAL error.

SF_CLOSE and SF_REUSE will only be effective after all the data has been sent

successfully.

If options = SF_REUSE, and socket reuse is not supported, the system will close the

socket and set the socket pointed to by socket_ptr to −1. See “Application Usage”

for details.

Application Usage

send_file() is designed to work with accept_and_recv() to provide an efficient file

transfer capability for a connection oriented server with short connection times and

high connection rates.

On the first call to accept_and_recv(), it is recommended that the application set the

socket pointed to by accept_socket to −1. This will cause the system to assign the

accepting socket. On the call to send_file(), if the application requests socket reuse

(options = SF_REUSE) and the system does not support it, the system will close the

socket pointed to by socket_ptr and will set the socket pointed to by socket_ptr to

−1. The application then passes this value onto the next call to accept_and_recv()

(by setting accept_socket = *socket_ptr).

To take full advantage of the performance improvements offered by the

accept_and_recv() and send_file() functions, a process/thread model different from

the one where a parent accepts in a loop and spins off child process threads is

needed. The parent/process thread is eliminated. Multiple worker processes/threads

send_file

1744 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

are created, and each worker process/thread then executes the accept_and_recv()

and send_file() functions in a loop. The performance benefits of accept_and_recv()

and send_file() include fewer buffer copies, recycled sockets, and optimal

scheduling.

Returned Value

If successful, send_file() returns 0.

If unsuccessful, send_file() returns −1. Check errno for more information.

send_file() returns 1 if the request was interrupted by a signal, or because a

nonblocking descriptor would have blocked, while sending data. Since the sf_parms

structure is updated by the system to account for the data that has been sent you

can continue the operation from where is was interrupted by recalling send_file()

without changing the sf_parms structure.

Restrictions

If O_NONBLOCK is set on the socket file descriptor, the function may return −1 with

errno set to EWOULDBLOCK or EAGAIN, or it may complete before all the data is sent. If

O_NONBLOCK is not set, send_file() blocks until the requested data can be sent.

Errors

If unsuccessful, send_file() returns −1 and sets errno to one of the following values:

Error Code Description

EACCESS The calling process does not have the appropriate privileges.

EBADF One of two errors occurred:

1. The socket pointed to by socket_ptr is not a valid descriptor.

2. file_descriptor is not a valid descriptor.

ECONNABORTED

A connection has been aborted.

ECONNRESET

A connection has been forcibly closed by a peer.

EFAULT The data buffer pointed to by socket_ptr, file_size, header_data, or

trailer_data was not valid.

EINTR send_file() was interrupted by a signal that was caught before any

data was sent.

EINVAL The value specified by options is not valid.

EIO An I/O error occurred.

EMSGSIZE The message is too large to be sent all at once, as the socket

requires.

ENETDOWN The local interface to reach the destination is unknown.

ENETUNREACH

No route to the destination is present.

ENOBUFS No buffer space is available.

ENOMEM There was insufficient memory available to complete the operation.

send_file

Chapter 3. Part 3. Library Functions 1745

ENOSR There were insufficient STREAMS resources available for the

operation to complete.

ENOSYS This function is not supported in the current environment.

ENOTCONN The socket is not connected.

ENOTSOCK The file descriptor pointed to by the socket_ptr argument does not

refer to a socket.

EPIPE The socket is shutdown for writing, or the socket is in connection

mode and is no longer connected.

EWOULDBLOCK

A descriptor is marked nonblocking and the operation could not be

performed without blocking.

Related Information

v “sys/socket.h” on page 89

v “accept_and_recv() — Accept Connection and Receive First Message” on page

123

v “read() — Read From a File or Socket” on page 1602

v “send() — Send Data on a Socket” on page 1740

v “socket() — Create a Socket” on page 1970

send_file

1746 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sendmsg() — Send Messages on a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

ssize_t sendmsg(int socket, struct msghdr *msg, int flags);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

int sendmsg(int socket, struct msghdr *msg, int flags);

General Description

The sendmsg() function sends messages on a socket with descriptor socket passed

in an array of message headers.

Parameter Description

socket The socket descriptor.

msg An array of message headers from which messages are sent.

flags The flags parameter is set by specifying one or more of the

following flags. If more than one flag is specified, the logical OR

operator (|) must be used to separate them.

MSG_OOB Sends out-of-band data on the socket. Only

SOCK_STREAM sockets support out-of-band data.

The out-of-band data is a single byte.

 Before out-of-band data can be sent between two

programs, there must be some coordination of

effort. If the data is intended to not be read inline,

the recipient of the out-of-band data must specify

the recipient of the SIGURG signal that is

generated when the out-of-band data is sent. If no

recipient is set, no signal is sent. The recipient is

set up by using F_SETOWN operand of the fcntl

command, specifying either a pid or gid. For more

information on this operand, refer to the fcntl

command.

 The recipient of the data determines whether to

receive out-of-band data inline or not inline by the

setting of the SO_OOBINLINE option of

setsockopt(). For more information on receiving

out-of-band data, refer to the setsockopt(), recv(),

recvfrom() and recvmsg() commands.

sendmsg

Chapter 3. Part 3. Library Functions 1747

||||

|
|
||

|

MSG_DONTROUTE

The SO_DONTROUTE option is turned on for the

duration of the operation. This is usually used only

by diagnostic or routing programs.

A message header is defined by the msghdr structure, which can be found in the

sys/socket.h include file and contains the following elements:

Element Description

msg_iov An array of iovec buffers containing the message.

msg_iovlen The number of elements in the msg_iov array.

msg_name The optional pointer to the buffer containing the recipient’s address.

msg_namelen The size of the address buffer.

caddr_t msg_accrights

Access rights sent/received (ignored if specified by the user). This

field is ignored by z/OS UNIX services.

int msg_accrightslen

Length of access rights data (ignored if specified by the user). This

field is ignored by z/OS UNIX services.

msg_control Ancillary data, see below.

msg_controllen

Ancillary data buffer length.

msg_flags Flags on received message.

Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr

structure followed by a data array. The data array contains the ancillary data

message, and the cmsghdr structure contains descriptive information that allows

an application to correctly parse the data.

The sys/socket.h header file defines the cmsghdr structure that includes at least

the following members:

Element Description

cmsg_len Data byte count, including header.

cmsg_level Originating protocol.

cmsg_type Protocol-specific type.

The sys/socket.h header file defines the following macro for use as the

cmsg_type value when cmsg_level is SOL_SOCKET:

SCM_RIGHTS Indicates that the data array contains the access rights to be sent

or received. This option is valid only for the AF_UNIX domain.

The sys/socket.h header file defines the following macros to gain access to the

data arrays in the ancillary data associated with a message header:

CMSG_DATA(cmsg)

If the argument is a pointer to a cmsghdr structure, this macro

returns an unsigned character pointer to the data array associated

with the cmsghdr structure.

sendmsg

1748 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

CMSG_NXTHDR(mhdr,cmsg)

If the first argument is a pointer to a msghdr structure and the

second argument is a pointer to a cmsghdr structure in the

ancillary data, pointed to by the msg_control field of that msghdr

structure, this macro returns a pointer to the next cmsghdr

structure, or a NULL pointer if this structure is the last cmsghdr in

the ancillary data.

CMSG_FIRSTHDR(mhdr)

If the argument is a pointer to a msghdr structure, this macro

returns a pointer to the first cmsghdr structure in the ancillary data

associated with this msghdr structure, or a NULL pointer if there is

no ancillary data associated with the msghdr structure.

The sendmsg() call applies to sockets regardless of whether they are in the

connected state.

This call returns the length of the data sent. If there is not enough available buffer

space to hold the socket data to be transmitted, and the socket is in blocking mode,

sendmsg() blocks the caller until additional buffer space becomes available. If the

socket is in nonblocking mode, sendmsg() returns -1 and sets the error code to

EWOULDBLOCK. See “fcntl() — Control Open File Descriptors” on page 527 or

“ioctl() — Control Device” on page 977 for a description of how to set nonblocking

mode.

For datagram sockets, this call sends the entire datagram, provided that the

datagram fits into the TCP/IP buffers. Stream sockets act like streams of information

with no boundaries separating data. For example, if an application wishes to send

1000 bytes, each call to this function can send 1 byte, or 10 bytes, or the entire

1000 bytes. Therefore, applications using stream sockets should place this call in a

loop, calling this function until all data has been sent.

Socket Address Structure for IPv6

For an AF_INET6 socket, if msg_name is specified then the address should be in a

sockaddr_in6 address structure. The sockaddr_in6 structure is defined in the

header file netinet/in.h.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The sendmsg() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, sendmsg() returns the length of the message in bytes.

A value of 0 or greater indicates the number of bytes sent, however, this does not

assure that data delivery was complete. A connection can be dropped by a peer

socket and a SIGPIPE signal generated at a later time if data delivery is not

complete.

If unsuccessful, sendmsg() returns −1 and sets errno to one of the following values:

sendmsg

Chapter 3. Part 3. Library Functions 1749

Error Code Description

EADDRNOTAVAIL

The ipi6_addr is not available for use on the ipi6_ifindex interface.

EAFNOSUPPORT

The address family is not supported (it is not AF_UNIX, AF_INET,

or AF_INET6).

EBADF socket is not a valid socket descriptor.

ECONNREFUSED

The attempt to connect was rejected.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT Using msg would result in an attempt to access storage outside the

caller’s address space.

EHOSTUNREACH

No route to the destination exists over the interface specified by

ifi6_index.

EINTR A signal interrupted sendmsg() before any data was transmitted.

EINVAL msg_namelength is not the size of a valid address for the specified

address family.

EIO There has been a network or transport failure.

EMSGSIZE The message was too big to be sent as a single datagram. The

default is large-envelope-size. (Envelopes are used to hold

datagrams and fragments during TCP/IP processing. Large

envelopes hold UDP datagrams greater than 2KB while they are

processed for output, and when they are waiting for an application

program to receive them on input.)

ENETDOWN The interface specified by ipi6_ifindex is not enabled for IPv6 use.

ENOBUFS Buffer space is not available to send the message.

ENOTCONN The socket is not connected.

ENOTSOCK The descriptor is for a file, not for a socket.

ENXIO The interface specified by ipi6_ifindex does not exist.

EOPNOTSUPP

The socket argument is associated with a socket that does not

support one or more of the values set in flags.

EPIPE For a connected stream socket the connection to the peer socket

has been lost. A SIGPIPE signal is sent to the calling process.

EWOULDBLOCK

socket is in nonblocking mode and no data buffers are available.

The following are for AF_UNIX only:

Error Code Description

EACCES Search permission is denied for a component of the path prefix, or

write access to the named socket is denied.

EIO An I/O error occurred while reading from or writing to the file

system.

sendmsg

1750 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ELOOP Too many symbolic links were encountered in translating the

pathname in the socket address.

ENAMETOOLONG

A component of a pathname exceeded NAME_MAX characters, or

an entire pathname exceeded PATH_MAX characters.

ENOENT A component of the pathname does not name an existing file or the

pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname in the socket

address is not a directory.

Related Information

v “sys/socket.h” on page 89

v “connect() — Connect a Socket” on page 325

v “fcntl() — Control Open File Descriptors” on page 527

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “read() — Read From a File or Socket” on page 1602

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “recv() — Receive Data on a Socket” on page 1628

v “recvfrom() — Receive Messages on a Socket” on page 1631

v “recvmsg() — Receive Messages on a Socket and Store in an Array of Message

Headers” on page 1635

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “sendto() — Send Data on a Socket” on page 1752

v “setsockopt() — Set Options Associated with a Socket” on page 1843

v “socket() — Create a Socket” on page 1970

v “write() — Write Data on a File or Socket” on page 2464

v “writev() — Write Data on a File or Socket from an Array” on page 2472

sendmsg

Chapter 3. Part 3. Library Functions 1751

sendto() — Send Data on a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

ssize_t sendto(int socket, const void *buffer, size_t length, int flags,

 const struct sockaddr *address, size_t address_len);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

int sendto(int socket, char *buffer, int length, int flags,

 struct sockaddr *address, int address_len);

General Description

The sendto() function sends data on the socket with descriptor socket. The sendto()

call applies to either connected or unconnected sockets.

Parameter Description

socket The socket descriptor.

buffer The pointer to the buffer containing the message to transmit.

length The length of the message in the buffer pointed to by the msg

parameter.

flags Setting these flags is not supported in the AF_UNIX domain. The

following flags are available:

MSG_OOB Sends out-of-band data on the socket. Only

SOCK_STREAM sockets support out-of-band data.

The out-of-band data is a single byte.

 Before out-of-band data can be sent between two

programs, there must be some coordination of

effort. If the data is intended to not be read inline,

the recipient of the out-of-band data must specify

the recipient of the SIGURG signal that is

generated when the out-of-band data is sent. If no

recipient is set, no signal is sent. The recipient is

set up by using F_SETOWN operand of the fcntl()

command, specifying either a pid or gid. For more

information on this operand, refer to the fcntl()

command.

 The recipient of the data determines whether to

receive out-of-band data inline or not inline by the

setting of the SO_OOBINLINE option of

sendto

1752 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

setsockopt(). For more information on receiving

out-of-band data, refer to the setsockopt(), recv(),

recvfrom() and recvmsg() commands.

MSG_DONTROUTE

The SO_DONTROUTE option is turned on for the

duration of the operation. This is usually used only

by diagnostic or routing programs.

address The address of the target.

addr_len The size of the address pointed to by address.

If there is not enough available buffer space to hold the socket data to be

transmitted, and the socket is in blocking mode, sendto() blocks the caller until

additional buffer space becomes available. If the socket is in nonblocking mode,

sendto() returns -1 and sets the error code to EWOULDBLOCK. See “fcntl() —

Control Open File Descriptors” on page 527 or “ioctl() — Control Device” on page

977 for a description of how to set nonblocking mode.

For datagram sockets, this call sends the entire datagram, provided that the

datagram fits into the TCP/IP buffers. Stream sockets act like streams of information

with no boundaries separating data. For example, if an application wishes to send

1000 bytes, each call to this function can send 1 byte, or 10 bytes, or the entire

1000 bytes. Therefore, applications using stream sockets should place this call in a

loop, calling this function until all data has been sent.

Socket Address Structure for IPv6

The sockaddr_in6 structure is added to the netinit/in.h header. It is used to pass

IPv6 specific addresses between applications and the system.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Note: The sendto() function has a dependency on the level of the Enhanced ASCII

Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, sendto() returns the number of characters sent.

A value of 0 or greater indicates the number of bytes sent, however, this does not

assure that data delivery was complete. A connection can be dropped by a peer

socket and a SIGPIPE signal generated at a later time if data delivery is not

complete.

No indication of failure to deliver is implied in the return value of this call when used

with datagram sockets.

If unsuccessful, sendto() returns −1 and sets errno to one of the following values:

Error Code Description

EAFNOSUPPORT

The address family is not supported (it is not AF_UNIX or

AF_INET).

sendto

Chapter 3. Part 3. Library Functions 1753

EBADF socket is not a valid socket descriptor.

ECONNREFUSED

The attempt to connect was rejected.

ECONNRESET

A connection was forcibly closed by a peer.

EFAULT Using the msg and length parameters would result in an attempt to

access storage outside the caller’s address space.

EINTR A signal interrupted sendto() before any data was transmitted.

EINVAL addr_len is not the size of a valid address for the specified address

family.

EIO There has been a network or transport failure.

EMSGSIZE The message was too big to be sent as a single datagram. The

default is large-envelope-size. (Envelopes are used to hold

datagrams and fragments during TCP/IP processing. Large

envelopes hold UDP datagrams greater than 2KB while they are

processed for output, and when they are waiting for an application

program to receive them on input.)

ENOBUFS Buffer space is not available to send the message.

ENOTCONN The socket is not connected.

ENOTSOCK The descriptor is for a file, not for a socket.

EOPNOTSUPP

The socket argument is associated with a socket that does not

support one or more of the values set in flags.

EPIPE For a connected stream socket the connection to the peer socket

has been lost. A SIGPIPE signal is sent to the calling process.

EPROTOTYPE

The protocol is the wrong type for this socket. A SIGPIPE signal is

sent to the calling process.

EWOULDBLOCK

socket is in nonblocking mode and no data buffers are available.

The following are for AF_UNIX only:

Error Code Description

EACCES Search permission is denied for a component of the path prefix, or

write access to the named socket is denied.

EIO An I/O error occurred while reading from or writing to the file

system.

ELOOP Too many symbolic links were encountered in translating the

pathname in the socket address.

ENAMETOOLONG

A component of a pathname exceeded NAME_MAX characters, or

an entire pathname exceeded PATH_MAX characters.

ENOENT A component of the pathname does not name an existing file or the

pathname is an empty string.

sendto

1754 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ENOTDIR A component of the path prefix of the pathname in the socket

address is not a directory.

Related Information

v “sys/socket.h” on page 89

v “read() — Read From a File or Socket” on page 1602

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “recv() — Receive Data on a Socket” on page 1628

v “recvfrom() — Receive Messages on a Socket” on page 1631

v “recvmsg() — Receive Messages on a Socket and Store in an Array of Message

Headers” on page 1635 “select(), pselect() — Monitor Activity on Files/Sockets

and Message Queues” on page 1715

v “send() — Send Data on a Socket” on page 1740

v “sendmsg() — Send Messages on a Socket” on page 1747

v “socket() — Create a Socket” on page 1970

v “write() — Write Data on a File or Socket” on page 2464

v “writev() — Write Data on a File or Socket from an Array” on page 2472

sendto

Chapter 3. Part 3. Library Functions 1755

__server_classify() — Set Classify Area Field

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <sys/server.h>

int __server_classify(server_classify_t handle,

 server_classify_field_t field,

 const char *value);

General Description

The __server_classify() function sets fields in a classify data area. The ’classify data

area’ is created and initialized by invoking the __server_classify_create() function.

This ’classify data area’ is subsequently used with the __server_pwu() function to

interface with WorkLoad Manager (WLM).

The handle argument is a ’classify data area’ created on a previous invocation of

the __server_classify_create() function.

The field argument must be one of the following values:

_SERVER_CLASSIFY_ACCTINFO

Set the accounting information. When specified, value contains a

NULL-terminated character string of up to 143 characters containing

the account information for the work unit to be created.

_SERVER_CLASSIFY_COLLECTION

Set the customer defined name for a group of associated packages.

When specified, value contains a NULL-terminated character string

of up to 18 characters containing the collection name associated

with the work unit to be created.

_SERVER_CLASSIFY_CONNECTION

Set the name associated with the environment creating the work

unit. When specified, value contains a NULL-terminated character

string of up to 8 characters containing the connection name

associated with the environment creating the work unit.

_SERVER_CLASSIFY_CONNTKN

Set the connection token that was returned on a call to

__ConnectWorkMgr() or __ConnectServerMgr(). When specified,

value contains a integer value representing the connection token

returned on a call to __ConnectWorkMgr() or

__ConnectServerMgr().

_SERVER_CLASSIFY_CORRELATION

Set the name associated with the user/program creating the work

unit. When specified, value contains a NULL-terminated character

string of up to 12 characters that contains the name associated with

the user/program creating the work unit.

_SERVER_CLASSIFY_LUNAME

Set the local LU name associated with the requester. When

__server_classify

1756 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

specified, value contains a NULL-terminated character string of up

to 8 characters containing the local LU name associated with the

requester.

_SERVER_CLASSIFY_NETID

Set the network ID associated with the requester. When specified,

value contains a NULL-terminated character string of up to 8

characters containing the network ID associated with the requester.

_SERVER_CLASSIFY_PACKAGE

Set the package name for a set of associated SQL statements.

When specified, value contains a NULL-terminated character string

of up to 8 characters containing the package name associated with

the work unit to be created.

_SERVER_CLASSIFY_PERFORM

Set the performance group number (PGN) associated with the work

unit. When specified, value contains a NULL-terminated character

string of up to 8 characters containing the PGN associated with the

work unit to be created.

_SERVER_CLASSIFY_PLAN

Set the access plan name for a set of associated SQL statements.

When specified, value contains a NULL-terminated character string

of up to 8 characters containing the access plan name associated

with the work unit to be created.

_SERVER_CLASSIFY_PRCNAME

Set the DB2 Stored SQL Procedure name associated with the work

unit. When specified, value contains a NULL-terminated character

string of up to 18 characters containing the DB2 Stored SQL

Procedure name associated with the work unit to be created.

_SERVER_CLASSIFY_PRIORITY

Set the priority associated with the work unit to be created. When

specified, value contains a integer value representing the priority of

the work unit to be created.

_SERVER_CLASSIFY_RPTCLSNM@

Set the pointer to an 8 character buffer to receive the output report

class name for the work unit to be created. When specified, value

contains the pointer to an 8 character buffer to receive the output

report class name for the work unit to be created.

_SERVER_CLASSIFY_SCHEDENV

Set the scheduling environment information. When specified, value

contains a NULL-terminated character string of up to 16 characters

containing the scheduling environment name associated with the

work unit.

_SERVER_CLASSIFY_SERVCLS@

Set the pointer to an integer field to receive the output service class

for the work unit to be created. When specified, value contains the

pointer to a integer field to receive the output service class for the

work unit to be created.

_SERVER_CLASSIFY_SERVCLSNM@

Set the pointer to an 8 character buffer to receive the output service

class name for the work unit to be created. When specified, value

contains the pointer to an 8 character buffer to receive the output

service class name for the work unit to be created.

__server_classify

Chapter 3. Part 3. Library Functions 1757

_SERVER_CLASSIFY_SOURCELU

Set the source LU name associated with the requester. When

specified, value contains a NULL-terminated character string of up

to 17 characters containing the source LU name associated with

the requester.

_SERVER_CLASSIFY_SUBCOLN

Set the subsystem collection name. When specified, the value

contains a NULL-terminated character string of up to 8 characters,

containing the subsystem collection name associated with the work

unit.

_SERVER_CLASSIFY_SUBSYSTEM_PARM

Set the transaction subsystem parameter. When specified, value

contains a NULL-terminated character string of up to 255

characters containing the subsystem parameter being used for the

__server_pwu() call.

_SERVER_CLASSIFY_TRANSACTION_CLASS

Set the transaction class. When specified, value contains a

NULL-terminated character string of up to 8 characters containing

the name of the transaction class for the __server_pwu() call.

_SERVER_CLASSIFY_TRANSACTION_NAME

Set the transaction name. When specified, value contains a

NULL-terminated character string of up to 8 characters containing

the name of the transaction for the __server_pwu() call.

_SERVER_CLASSIFY_USERID

Set the user ID. When specified, value contains a NULL-terminated

character string of up to 8 characters containing the name of the

user for the __server_pwu() call.

 The value argument is the value that the specified ’classify data area’ field is to be

set to. (For valid values, refer to z/OS MVS Programming: Workload Management

Services, SA22-7619.)

The classify area is specific to the calling thread. The __server_classify() function

call must be done on the same thread of execution as the

__server_classify_create(). Use of the classify area by another thread can lead to

unpredictable results.

Returned Value

If successful, __server_classify() returns 0.

If unsuccessful, __server_classify() returns -1 and sets errno to one of the following

values:

Error Code Description

E2BIG The character string specified for a classify field is too large.

EINVAL The classify field symbolic is not valid.

Related Information

v “sys/server.h” on page 89

v “__server_classify_create() — Create a Classify Area” on page 1760

v “__server_classify_destroy() — Delete a Classify Area” on page 1761

__server_classify

1758 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “__server_classify_reset() — Reset a Classify Area to an Initial State” on page

1762

v “__server_init() — Initialize Server” on page 1763

v “__server_pwu() — Process Server Work Unit” on page 1766

__server_classify

Chapter 3. Part 3. Library Functions 1759

__server_classify_create() — Create a Classify Area

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <sys/server.h>

server_classify_t __server_classify_create(void);

General Description

The __server_classify_create() function creates a classify data area to be used on a

subsequent __server_pwu() or CreateWorkUnit() call. The resulting classify data

area can be filled in by calls to the __server_classify() function. The information in

the classify area is used to establish the Transaction class, Transaction Name, user

ID, and subsystem parameters for the __server_pwu() call or to establish the

classification rules for the CreateWorkUnit() call.

The resulting classify area is specific to the calling thread. Use of the classify area

by another thread can lead to unpredictable results.

Returned Value

If successful, __server_classify_create() returns a classify_t which is a handle to the

classify area.

If unsuccessful, __server_classify_create() returns -1 and sets errno to one of the

following values:

Error Code Description

ENOMEM Not enough storage is available.

Related Information

The classify data area created by this function can be used without serialization

only by the creating thread. In addition, storage for this structure is automatically

freed at thread termination.

v “sys/server.h” on page 89

v “__server_classify() — Set Classify Area Field” on page 1756

v “__server_classify_destroy() — Delete a Classify Area” on page 1761

v “__server_classify_reset() — Reset a Classify Area to an Initial State” on page

1762

v “__server_init() — Initialize Server” on page 1763

v “__server_pwu() — Process Server Work Unit” on page 1766

__server_classify_create

1760 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

__server_classify_destroy() — Delete a Classify Area

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <sys/server.h>

void __server_classify_destroy(server_classify_t area);

General Description

The __server_classify_destroy() function deletes a classify data area previously

created by a __server_classify() call. The area parameter specifies the classify area

to be deleted. Storage for the classify area is freed. This function must be executed

by the same thread that created the classify area.

Returned Value

__server_classify_destroy() returns no values.

Related Information

v “sys/server.h” on page 89

v “__server_classify() — Set Classify Area Field” on page 1756

v “__server_classify_create() — Create a Classify Area” on page 1760

v “__server_classify_reset() — Reset a Classify Area to an Initial State” on page

1762

v “__server_init() — Initialize Server” on page 1763

v “__server_pwu() — Process Server Work Unit” on page 1766

__server_classify_destroy

Chapter 3. Part 3. Library Functions 1761

__server_classify_reset() — Reset a Classify Area to an Initial State

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <sys/server.h>

void __server_classify_reset(server_classify_t area);

General Description

The __server_classify_reset() function resets a classify data area to its initial state.

This is equivalent to destroying the classify area and creating another, and is

intended to be a higher performance path for applications which must repeatedly

change parameters in a classify area. The area parameter specifies the handle of

the classify area to be reset, and was previously obtained by a __server_classify()

call. This function must be executed by the same thread that created the classify

area.

Returned Value

__server_classify_reset() returns no values.

Related Information

v “sys/server.h” on page 89

v “__server_classify() — Set Classify Area Field” on page 1756

v “__server_classify_create() — Create a Classify Area” on page 1760

v “__server_classify_destroy() — Delete a Classify Area” on page 1761

v “__server_init() — Initialize Server” on page 1763

v “__server_pwu() — Process Server Work Unit” on page 1766

__server_classify_reset

1762 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__server_init() — Initialize Server

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <sys/server.h>

int __server_init(int *managertype, const char *subsystype,

 const char *subsysname, const char *applenv, int paralleleu);

General Description

The __server_init() function provides the ability for a server address space to

connect to WorkLoad Manager (WLM) for the purpose of queueing and servicing

work requests.

The parameters supported are:

*managertype Points to one or more of the following values that indicate the type

of WLM manager the caller is requesting to become. The following

are the supported values:

SRV_WORKMGR

Indicates that WLM work management services be

made available to the calling address space. This

value can be combined with the SRV_QUEUEMGR

and SRV_SERVERMGR values.

SRV_QUEUEMGR

Indicates that WLM queue management services be

made available to the calling address space. This

value can be combined with the SRV_WORKMGR

and SRV_SERVERMGR values.

SRV_SERVERMGR

Indicates that WLM server management services be

made available to the calling address space. This

value can be combined with the SRV_WORKMGR

and SRV_QUEUEMGR values.

SRV_SERVERMGRDYNAMIC

Indicates that the WLM work management is to

track the number of threads this address space will

need. It prepares the address space to support the

__service_thread_query() function. For

SRV_SERVERMGRDYNAMIC the paralleleu

parameter has the same effect as it does for

SRV_SERVERMGR, in that, it indicates the

maximum number of parallel work units that the

server can create. The server would initially create

some number of threads less than this maximum.

The dynamic capability then allows the server to tap

__server_init

Chapter 3. Part 3. Library Functions 1763

into WLM to tell the server when to increase or

decrease the number of threads in the address

space.

*subsystype Points to a NULL-terminated character string containing the generic

subsystem type (CICS, IMS, WEB, etc.). When SRV_WORKMGR is

specified for the managertype parameter this is the primary

category under which WLM classification rules are grouped. The

character string can be up to 4 bytes in length.

*subsysname Points to a NULL-terminated character string containing the

subsystem name used for classifying work requests when

SRV_WORKMGR is specified for the managertype parameter.

When SRV_SERVERMGR is specified for the managertype

parameter the subsystem name should match the subsystem name

specified on the corresponding call to __server_init() for a work

manager (SRV_WORKMGR managertype). The character string

can be up to 8 bytes in length. When SRV_QUEUEMGR is

specified for the managertype parameter the combination of the

subsystype and subsysname parameter values must be unique to a

single MVS system.

*applenv Points to a NULL-terminated character string that contains the

name of the application environment under which work requests are

served. The character string can be up to 32 bytes in length. This

parameter is only valid when SRV_SERVERMGR is specified for

the managertype parameter. It should be NULL for all other

managertype values.

paralleleu Specifies the maximum number of tasks within the address space

which will be created to process concurrent work requests. This

parameter is valid when both or either SRV_SERVERMGR and

SRV_SERVERMGRDYNAMIC are specified for the managertype

parameter. It is ignored for all other managertype values.

A successful call to __server_init() results in the calling address space being

connected to WLM for the WLM management services requested. Additionally, for a

successful server manager WLM connection call (SRV_SERVERMGR

managertype), the calling process is made a child of, and is placed in the session

and process group of the corresponding work manager. The corresponding work

manager is the process that called server_init() for the managertype combination

SRV_WORKMGR+SRV_QUEUEMGR with the same subsystype and subsysname

values specified as the server manager process. This parent/child relationship

allows the server manager and the work manager to use signals to communicate

with each other.

Returned Value

If successful, __server_init() returns 0.

If unsuccessful, __server_init() returns -1 and sets errno to one of the following

values:

Error Code Description

EINVAL The managertype parameter contains a value that

is not correct.

EMVSSAF2ERR An error occurred in the security product.

__server_init

1764 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EMVSWLMERROR A WLM service failed. Use __errno2() to obtain the

WLM service reason code for the failure.

EPERM The calling thread’s address space is not permitted

to the BPX.WLMSERVER Facility class. The

caller’s address space must be permitted to the

BPX.WLMSERVER Facility class, if the

BPX.WLMSERVER is defined. If

BPX.WLMSERVER is not defined, the calling

process is not defined as a superuser (UID=0).

Related Information

v “sys/server.h” on page 89

v “__server_classify() — Set Classify Area Field” on page 1756

v “__server_classify_create() — Create a Classify Area” on page 1760

v “__server_classify_destroy() — Delete a Classify Area” on page 1761

v “__server_classify_reset() — Reset a Classify Area to an Initial State” on page

1762

v “__server_pwu() — Process Server Work Unit” on page 1766

__server_init

Chapter 3. Part 3. Library Functions 1765

__server_pwu() — Process Server Work Unit

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <sys/server.h>

int __server_pwu(int fcncode, const char *transclass,

 const char *applenv, server_classify_t classify,

 int *appldatalen, void **appldata,

 struct __srv_fd_list **fdlstruc);

General Description

The __server_pwu() function provides a general purpose interface for managing

and processing work using WorkLoad Manager (WLM) services. The capabilities

this service provides include the ability to put work requests onto the WLM work

queues, obtain work from the WLM work queues, transfer work to other WLM work

servers, end units of work, delete WLM enclaves and refresh WLM work servers.

The parameters supported are:

fcncode Contains one or more of the following values that indicate the

function that is requested:

SRV_PUT_NEWWRK

Indicates that a new work request be put onto the

work queue for an application environment server

identified by the applenv parameter as part of a

newly created WLM enclave. This value cannot be

combined with any other fcncode value.

SRV_PUT_SUBWRK

Indicates that a new work request be put onto the

work queue for an application environment server

identified by the applenv parameter as part of the

WLM enclave associated with the calling thread.

This value can be combined with the

SRV_END_WRK fcncode value.

SRV_TRANSFER_WRK

Indicates that the last work request obtained by the

calling thread be transferred to the work queue of

the target application environment server. As part of

the transfer, the calling thread is disassociated from

its WLM enclave. This value cannot be combined

with any other fcncode value.

SRV_GET_WRK

Indicates that a new work request be obtained from

the WLM work queue for the calling application

environment server. The SRV_GET_WRK fcncode

also results in the calling thread being associated

with the WLM enclave of the work request. If the

__server_pwu

1766 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

calling thread is already associated with a WLM

enclave due to a prior call to __server_pwu() for

SRV_GET_WRK, it is disassociated from the prior

WLM enclave, as well as associated with the

obtained work request. When the calling thread

goes thru task termination or when its process is

terminated the work request is ended and the

associated WLM enclave is deleted if it is owned by

the terminating task or process. The

SRV_GET_WRK caller owns the enclave, if the

work was queued using the SRV_PUT_NEWWRK

or SRV_TRANSFER_WRK functions. If the caller is

a thread created using pthread_create (pthread),

the thread task owns the enclave. If the caller is not

a pthread, the process owns the enclave. This

value can be combined with the SRV_END_WRK

and SRV_DEL_ENC fcncode values.

SRV_REFRESH_WRK

Indicates that the servers associated with the

application environments managed by the calling

work and queue manager are to be refreshed. This

will cause all servers to complete existing work

requests and then terminate. New servers will then

be started to process new work. This value cannot

be combined with any other fcncode value.

SRV_END_WRK

Indicates that the calling thread is to be

disassociated from its WLM enclave. This value can

be combined with the SRV_DEL_ENC,

SRV_PUT_SUBWRK and SRV_GET_WRK fcncode

values.

SRV_DEL_ENC

Indicates that the WLM enclave associated with the

calling thread is to be deleted. This value can be

combined with the SRV_GET_WRK and

SRV_END_WRK fcncode values.

SRV_DISCONNECT

Indicates that the calling server’s connection to

WLM is to be severed. Once a server is

disconnected from WLM, it can no longer use this

service to process more requests for the application

environment it had been connected to (using a call

to the server_init() function). If a

SRV_DISCONNECT is performed by a work and

queue manager, all related server managers

implicitly lose their connection to WLM. This also

results in the related server managers losing their

ability to process more requests using this service.

SRV_DISCONNECT_COND

Indicates that the calling server’s connection to

WLM is to be severed only if the caller has no more

WLM enclaves that it is still managing. A work and

queue manager is still managing an enclave if it

__server_pwu

Chapter 3. Part 3. Library Functions 1767

has yet to be serviced by a server manager. Once

a server is disconnected from WLM, it can no

longer use this service to process more requests for

the application environment it had been connected

to (using a call to the server_init() function). If a

SRV_DISCONNECT_COND is performed by a work

and queue manager, all related server managers

implicitly lose their connection to WLM. This also

results in the related server managers losing their

ability to process more requests using this service.

*transclass Points to a NULL-terminated character string that represents the

name of the transaction class to be associated with the work

request. This parameter is only valid when the

SRV_PUT_NEWWRK fcncode parameter value is specified. It

should be NULL for the other fcncode parameter values. The

character string can be up to 8 bytes in length.

*applenv Points to a NULL-terminated character string that contains the

name of the application environment under which work requests are

served. This parameter is valid for the set of SRV_PUT fcncode

values, the SRV_TRANSFER_WRK fcncode value and the

SRV_REFRESH_WRK fcncode value. It should be NULL for the

other fcncode parameter values. The character string can be up to

32 bytes in length.

*classify Points to a character string that contains the classification

information for the work request macro.

*appldatalen When one of the SRV_PUT or SRV_TRANSFER fcncode

parameter values is specified this is a supplied parameter that

points to an integer containing the length of the application data

specified by the **appldata parameter. When the SRV_GET_WRK

fcncode value is specified, this is an output parameter where the

__server_pwu() function is to return the length of the application

data associated with the obtained work request. *appldatalen is only

valid when one of the SRV_PUT, SRV_GET_WRK or

SRV_TRANSFER fcncode parameter values is specified, it is

ignored otherwise. The maximum length supported for the

application data is 10 megabytes.

**appldata When one of the SRV_PUT or SRV_TRANSFER fcncode

parameter values is specified this is a supplied parameter that

points to the application data string. This application data allows the

caller to uniquely identify the specific work the caller is requesting.

When the SRV_GET_WRK fcncode value is specified, this is an

output parameter where the __server_pwu() function is to return a

pointer to the application data associated with the obtained work

request. The returned data area will be an identical copy of the data

area that was supplied on the corresponding __server_pwu() call to

put the work request on a WLM work queue. **appldata is only

valid when one of the SRV_PUT, SRV_GET_WRK or

SRV_TRANSER fcncode parameter values is specified, it is ignored

otherwise.

**fdlstruct When one of the SRV_PUT or SRV_TRANSFER fcncode

parameter values is specified the **fdlstruc parameter is an input

parameter that contains a pointer to a __srv_fd_list structure. The

__srv_fd_list structure contains the following members:

__server_pwu

1768 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

int fdcount count of file descriptiors

int flags flag SRV_FDCLOSE

int fd(SRV_FDS) file descriptor list

The supplied __srv_fd_list structure contains the count of file

descriptors to be propagated, followed by the list of file descriptors

that are to be propagated to the process that calls server_pwu() to

obtain the work request created by the call to this service. If the

SRV_FDCLOSE flag is turned on in the flags field of the

__srv_fd_list structure, all file descriptors in the list are closed in the

calling process. If a NULL pointer is specified, no file descriptors

are propagated. When the **fdlstruc parameter is used to propagate

file descriptors, the caller must ensure that all of the file descriptors

in the list are valid open file descriptors in the caller’s process, and

are not being closed during the processing of this service. If this is

not the case, then this function cannot guarantee the proper

propagation of the specified file descriptors. When the

SRV_GET_WRK fcncode parameter value is specified the **fdlstruc

parameter is an output parameter where the __server_pwu()

function returns a pointer to the __srv_fd_list structure associated

with the obtained work request. The returned __srv_fd_list structure

will contain the count of file descriptors in the returned structure,

followed by the list of remapped file descriptor values in the calling

process of the file descriptors that were supplied in the __srv_fd_list

structure on the corresponding __server_pwu() call to put the work

request on a WLM work queue. The flags field in the returned

__srv_fd_list structure will be NULL. The **fdlstruc parameter is

only valid when one of the SRV_PUT, SRV_TRANSFER or

SRV_GET_WRK fcncode parameter values are specified. It is

ignored otherwise. The maximum number of file descriptors

supported in the file descriptor list structure is 64.

A successful call to __server_pwu() for the SRV_PUT_NEWWRK fcncode not only

creates a work request that is placed onto a WLM work queue, but it also creates a

new WLM enclave for that work to run in when the work request is obtained. By

comparison, the SRV_PUT_SUBWRK and SRV_TRANSFER_WRK fcncodes,

queue work requests that are part of the existing WLM enclave of the calling thread.

A successful call to __server_pwu() for the SRV_GET_WRK fcncode not only

results in the caller obtaining a work request from a WLM work queue associated

with the caller’s application environment, but also results in the calling thread being

associated with the WLM enclave associated with the obtained work request.

Usage of the server_pwu function requires the calling address space to have

successfully issued a call to the __server_init() function.

For the SRV_PUT_NEWWRK function to run successfully, the caller must have

successfully issued a call to the __server_init() service for one of the following

managertype parameter combinations:

v SRV_WORKMGR + SRV_QUEUEMGR

v SRV_WORKMGR + SRV_QUEUEMGR + SRV_SERVERMGR

For the SRV_PUT_SUBWRK and SRV_TRANSFER_WRK functions to run

successfully, the caller must have successfully issued a call to the __server_init()

service for one of the following managertype parameter combinations:

v SRV_WORKMGR + SRV_QUEUEMGR SRV_SERVERMGR

__server_pwu

Chapter 3. Part 3. Library Functions 1769

v SRV_SERVERMGR

For the SRV_GET_WRK, SRV_END_WRK and SRV_DEL_ENC functions to run

successfully, the caller must have successfully issued a call to the __server_init()

service for one of the following managertype parameter combinations:

v SRV_WORKMGR + SRV_QUEUEMGR SRV_SERVERMGR

v SRV_SERVERMGR

For the SRV_REFRESH_WRK function to run successfully, the caller must have

successfully issued a call to the __server_init() service for any of the following

managertype parameter combinations:

v SRV_WORK_MGR + SRV_QUEUE_MGR

v SRV_WORK_MGR + SRV_QUEUE_MGR + SRV_SERVER_MGR

Returned Value

If successful, __server_pwu() returns 0.

If unsuccessful, __server_pwu() returns -1 and sets errno to one of the following

values:

Error Code Description

EAGAIN The requested service could not be performed at the current time.

Use __errno2() to obtain the reason code for the failure.

EFAULT An argument of this service contained an address that was not

accessible to the caller.

EINVAL The managertype parameter contains a value that is not correct.

EMVSERR A MVS environmental or internal error has occurred. Use __errno2()

to obtain the exact reason for the failure.

EMVSWLMERROR

A WLM service failed. Use __errno2() to obtain the WLM service

reason code for the failure.

Related Information

v “sys/server.h” on page 89

v “__server_classify() — Set Classify Area Field” on page 1756

v “__server_classify_create() — Create a Classify Area” on page 1760

v “__server_classify_destroy() — Delete a Classify Area” on page 1761

v “__server_classify_reset() — Reset a Classify Area to an Initial State” on page

1762

v “__server_init() — Initialize Server” on page 1763

__server_pwu

1770 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__server_threads_query() — Query the number of threads

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both OS/390 V2R10

Format

#include <sys/server.h>

int __server_threads_query(int *threads);

General Description

Provides information about the number of threads a server should be using for this

server environment. After a successful query, threads will contain the number of

threads that the WorkLoad Manager (WLM) recommends for this address space.

Usage Notes

This service is a privileged service that requires the caller to be authorized in one of

the following ways:

v Have read access to the BPX.WLMSERVER FACILTY class profile

v Have a UID=0 when the BPX.WLMSERVER FACILTY class profile is not defined

Returned Value

If successful, __server_threads_query() returns 0.

If unsuccessful, __server_threads_query() returns −1 and sets errno to one of the

following values:

Error Code Description

EINTR The wait was interrupted by an unblocked, caught signal. No further

waiting will occur for this call. __server_threads_query() can be

reissued to begin waiting again.

EPERM The caller is not permitted to perform the specified operation.

Related Information

v “sys/server.h” on page 89

__server_threads_query

Chapter 3. Part 3. Library Functions 1771

__set_exception_handler() — Register an Exception Handler Routine

Standards

 Standards / Extensions C or C++ Dependencies

both

Format

#include <__le_api.h>

int __set_exception_handler(void(*exception_handler) (struct __cib *, void *),

 void * user_data);

General Description

Restriction: This function is only valid for AMODE 64.

A nonstandard function that registers an ’Exception Handler’ function for the current

stack frame. Exception Handlers are used to process ’exceptions’ at the thread

level (unlike signal catchers which process signals at the process level).

Parameter Description

exception_handle

Address of a function descriptor that is associated with an

’Exception Handler’ function.

user_data A user definable token that will be passed to the ’Exception

Handler’ function.

Exception Handlers are invoked for the following conditions:

 Table 44. Invoked Exception Handlers

Exception Feedback Code Message

Number

Resulting Signal

Operation CEE341 CEE3201S SIGILL

Privileged-operation CEE342 CEE3202S SIGILL

Execute CEE343 CEE3203S SIGILL

Protection CEE344 CEE3204S SIGSEGV

Addressing CEE345 CEE3205S SIGSEGV

Specification CEE346 CEE3206S SIGILL

Data CEE347 CEE3207S SIGFPE

Fixed-point overflow

Note: Not processed in a

C/C++ application.

CEE348 CEE3208S SIGFPE

Fixed-point divide by zero CEE349 CEE3209S SIGFPE

Decimal overflow exception CEE34A CEE3210S SIGFPE

Decimal divide by zero CEE34B CEE3211S SIGFPE

Exponent overflow CEE34C CEE3212S SIGFPE

__set_exception_handler

1772 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 44. Invoked Exception Handlers (continued)

Exponent underflow

Note: Not processed in a

C/C++ application.

CEE34D CEE3213S SIGFPE

Significance

Note: Not processed in a

C/C++ application.

CEE34E CEE3214S SIGFPE

Floating-point divide by zero CEE34F CEE3215S SIGFPE

IEEE Binary Floating-Point

inexact (truncated)

CEE34G CEE3216S SIGFPE

IEEE Binary Floating-Point

inexact (incremented)

CEE34H CEE3217S SIGFPE

IEEE Binary Floating-Point

exponent underflow

CEE34I CEE3218S SIGFPE

IEEE Binary Floating-Point

exponent underflow inexact

(truncated)

CEE34J CEE3219S SIGFPE

IEEE Binary Floating-Point

exponent underflow inexact

(incremented)

CEE34K CEE3220S SIGFPE

IEEE Binary Floating-Point

exponent overflow

CEE34L CEE3221S SIGFPE

IEEE Binary Floating-Point

exponent overflow inexact

(truncated)

CEE34M CEE3222S SIGFPE

IEEE Binary Floating-Point

exponent overflow inexact

(incremented)

CEE34N CEE3223S SIGFPE

IEEE Binary Floating-Point

divide by zero

CEE34O CEE3224S SIGFPE

IEEE Binary Floating-Point

invalid operation

CEE34P CEE3225S SIGFPE

Retryable abend CEE35I CEE3250C SIGABND

When one of the exceptions listed above occurs, on a specific thread with a

registered Exception Handler, Language Environment will invoke the handler

function with the following syntax:

void exception_handler(struct __cib * cib, void * user_data);

Parameter Description

cib Address of the Language Environment Condition Information Block

(CIB).

user_data A user definable token that was specified when the Exception

Handler was registered.

An Exception Handler function should never return to Language Environment. It

should terminate the thread with pthread_exit(), terminate the process with exit(), or

resume execution at a predefined point with setjmp() and longjmp(). If the Exception

Handler returns to Language Environment, the thread will be abnormally terminated.

__set_exception_handler

Chapter 3. Part 3. Library Functions 1773

v In a Posix environment only the thread is abnormally terminated, and the thread

exit status is set to -1. Equivalent to:

pthread_exit((void *) -1);

v In a non-Posix environment the entire Language Environment (process as well as

thread) is abnormally terminated. Equivalent to:

exit(-1);

Returned Value

If successful, __set_exception_handler() returns 0. Otherwise, -1 is returned and

errno is set to indicate the error. The following is a possible value for errno:

v EINVAL — The Exception Handler is invalid.

Application Usage

 1. Multiple Exception Handlers may not be registered for a single stack frame.

Only the last one registered is honored.

 2. Exception Handlers may be nested, but they must be on different stack

frames.

 3. Once an Exception Handler is registered, it remains active across calls to

nested functions, and will be automatically unregistered once the flow returns

from the stack frame in which the call to __set_exception_handler() was

invoked.

 4. If an Exception Handler is registered, it remains active across subsequence

function calls (nested function calls), unless one of the nested functions

registers another exception handler. In which case the first exception handler is

suspended.

 5. Exception Handlers are automatically unregistered when a longjmp() returns to

a stack frame earlier on the stack then the frame on which the Exception

Handler was registered. All Exception Handlers that are associated with stack

frames that are traversed as a result of a longjmp() are automatically

unregistered.

 6. When an Exception Handler is given control, it is disabled. Any other Exception

Handler (that may have been previously registered) is not set active. In other

words, when the Exception Handler is given control there is no Exception

Handler active. It is suspended.

v Any exception that occurs while the Exception Handler is executing, will be

processed in the same way that Language Environment processes

exceptions when no Exception Handlers are present.

v If the Exception Handler needs to be able to handle exceptions that occur

during the execution of the Exception Handler, the handler must invoke

__set_exception_handler() to register another (or re-register the same)

Exception Handler.

 7. One and only one, Exception Handler will be invoked for a condition (the

Handler that is active for the stack frame on which the condition (or exception)

occurred).

 8. If an Exception Handler exists and the condition is one of those listed above,

all of the standard Language Environment condition processing is bypassed

(including, when POSIX(ON), the mapping of the exception into a signal).

Instead, the one active Exception Handler is given control, and it has one

opportunity to ’handle’ the exception. If it does not handle the exception then

abnormal termination will occur.

__set_exception_handler

1774 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

9. Functions used to affect the processing of signals, have no impact on the

processing of Exception Handlers. That is, blocking or ignoring SIGABND,

SIGFPE, SIGILL, or SIGSEGV will not prevent Exception Handlers from getting

control.

10. In order for Exception Handlers to work, the Language Environment ’TRAP’

run-time option must be set on (i.e., TRAP(ON) or TRAP(ON, NOSPIE)).

Related Information

v “exit() — End Program” on page 494

v “longjmp() — Restore Stack Environment” on page 1143

v “_longjmp() — Nonlocal Goto” on page 1147

v “pthread_exit() — Exit a Thread” on page 1455

v “__reset_exception_handler() — Unregister an Exception Handler Routine” on

page 1680

v “setjmp() — Preserve Stack Environment” on page 1802

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

__set_exception_handler

Chapter 3. Part 3. Library Functions 1775

setbuf() — Control Buffering

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

void setbuf(FILE *__restrict__stream, char *__restrict__buffer);

General Description

Controls buffering for the specified stream. The stream pointer must refer to an

open file, and setbuf() must be the first operation on the stream.

If the buffer argument is NULL, the stream is unbuffered. If not, the buffering mode

will be full buffer and the buffer must point to a character array of length at least

BUFSIZ, which is the buffer size defined in the stdio.h header file. I/O functions use

the buffer, which you specify here, for input/output buffering instead of the default

system-allocated buffer for the given stream. If the buffer does not meet the

requirements of the z/OS XL C/C++ product, the buffer is not used.

The setvbuf() function is more flexible than setbuf(), because you can specify the

type of buffering and size of buffer.

Attention: If you use setvbuf() or setbuf() to define your own buffer for a stream,

you must ensure that the buffer is available the whole time that the stream

associated with the buffer is in use.

For example, if the buffer is an automatic array (block scope) and is associated with

the stream s, leaving the block causes the storage to be deallocated. I/O operations

of stream s are prevented from using deallocated storage. Any operation on s would

fail because the operation would attempt to access the nonexistent storage.

To ensure that the buffer is available throughout the life of a program, make the

buffer a variable allocated at file scope. This can be achieved by using an identifier

of type array declared at file scope, or by allocating storage (with malloc() or

calloc()) and assigning the storage address to a pointer declared at file scope.

VSAM file types do not support unbuffered I/O, causing requests for unbuffered I/O

to fail.

Returned Value

setbuf() returns no values.

For details about errno values, and about buffers you may have set, see

discussions about buffering in z/OS XL C/C++ Programming Guide.

setbuf

1776 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Example

CELEBS01

/* CELEBS01

 This example opens the file myfile.dat for writing.

 It then calls the &setbuf. function to establish a buffer of

 length BUFSIZ.

 When string is written to the stream, the buffer buf is used

 and contains the string before it is flushed to the file.

 */

#include <stdio.h>

int main(void)

{

 char buf[BUFSIZ];

 char string[] = "hello world";

 FILE *stream;

 stream = fopen("myfile.dat", "wb,recfm=f");

 setbuf(stream,buf); /* set up buffer */

 fwrite(string, sizeof(string), 1, stream);

 printf("%s\n",buf); /* string is found in buf now */

 fclose(stream); /* buffer is flushed out to myfile.dat */

}

Related Information

v “stdio.h” on page 82

v “fclose() — Close File” on page 525

v “fflush() — Write Buffer to File” on page 584

v “fopen() — Open a File” on page 626

v “setvbuf() — Control Buffering” on page 1862

setbuf

Chapter 3. Part 3. Library Functions 1777

setcontext() — Restore User Context

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ucontext.h>

int setcontext(const ucontext_t *ucp);

General Description

The setcontext() function restores the user context pointed to by ucp. A successful

call to setcontext() does not return; program execution resumes at the point

specified by the ucp argument passed to setcontext(). The ucp argument should be

created either by a prior call to getcontext(), or by being passed as an argument to

a signal handler. If the ucp argument was created with getcontext(), program

execution continues as if the corresponding call of getcontext() had just returned. If

the ucp argument was modified with makecontext(), program execution continues

with the function passed to makecontext(). When that function returns, the process

continues as if after a call to setcontext() with the context pointed to by the uc_link

member of the ucontext_t structure if it is not equal to 0. If the uc_link member of

the ucontext_t structure pointed to by the ucp argument is equal to 0, then this

context is the main context, and the process will exit when this context returns. The

effects of passing a ucp argument obtained from any other source are undefined.

setcontext() is similar in some respects to siglongjmp() (and longjmp() and

_longjmp()). The getcontext()–setcontext() pair, the sigsetjmp()–siglongjmp() pair,

the setjmp()–longjmp() pair, and the _setjmp()–_longjmp() pair cannot be intermixed.

A context saved by getcontext() should be restored only by setcontext().

Notes:

1. Some compatibility exists with siglongjmp(), so it is possible to use siglongjmp()

from a signal handler to restore a context created with getcontext(), but it is not

recommended.

2. If the ucontext that is input to setcontext() has not been modified by

makecontext(), you must ensure that the function that calls getcontext() does

not return before you call the corresponding setcontext() function. Calling

setcontext() after the function calling getcontext() returns causes unpredictable

program behavior.

3. If setcontext() is used to jump back into an XPLINK routine, any alloca()

requests issued by the XPLINK routine after the earlier getcontext() was called

and before setcontext() is called are backed out. All storage obtained by these

alloca() requests is freed before the XPLINK routine is resumed.

4. If setcontext() is used to jump back into a non-XPLINK routine, alloca() requests

made after getcontext() and before setcontext() are not backed out.

This function is supported only in a POSIX program.

setcontext

1778 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|
|
|
|
|
|
|
|
|

The <ucontext.h> header file defines the ucontext_t type as a structure that

includes the following members:

mcontext_t uc_mcontext A machine-specific representation

 of the saved context.

ucontext_t *uc_link Pointer to the context that will

 be resumed when this context returns.

sigset_t uc_sigmask The set of signals that are blocked

 when this context is active.

stack_t uc_stack The stack used by this context.

Special Behavior for C++

If getcontext() and setcontext() are used to transfer control in a z/OS XL C++

program, the behavior in terms of the destruction of automatic objects is undefined.

This applies to both z/OS XL C++ and z/OS XL C/C++ ILC modules. The use of

getcontext() and setcontext() in conjunction with try(), catch(), and throw() is also

undefined.

Do not issue getcontext() in a C++ constructor or destructor, since the saved

context would not be usable in a subsequent setcontext() or swapcontext() after the

constructor or destructor returns.

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the V2R10 or later C compilers that are to

run with Language Environment V2R10 or later libraries and use the jmp_buf,

sigjmp_buf or ucontext_t types must not be compiled with C headers from

Language Environment V2R9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not define jmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Language Environment V2R10 and later

headers define a larger jmp_buf, sigjmp_buf or ucontext_t area that is

required by setjmp(), getcontext(), and related functions when they are called

from a XPLINK routine. If __XPLINK__ is not defined, the Language

Environment V2R10 and later headers define a shorter jmp_buf, sigjmp_buf or

ucontext_t area. The Language Environment headers before V2R10 also

define the shorter version of these data areas. If a XPLINK function calls

setjmp(), getcontext() or similar functions with a short jmp_buf, sigjmp_buf or

ucontext_t area, a storage overlay or program check may occur when the C

library tries to store past the end of the passed-in (too short) data area.

Special Behavior for AMODE 64

The stack frame of the caller of makecontext() must exist when any future call to

setcontext() or swapcontext() is made that references the context.

Returned Value

If successful, setcontext() does not return.

If unsuccessful, setcontext() returns −1.

setcontext

Chapter 3. Part 3. Library Functions 1779

|

|
|

There are no errno values defined.

Example

This example saves the context in main with the getcontext() statement. It then

returns to that statement from the function func using the setcontext() statement.

Since getcontext() always returns 0 if successful, the program uses the variable x to

determine if getcontext() returns as a result of setcontext() or not.

/* This example shows the usage of getcontext() and setcontext(). */

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdio.h>

#include <ucontext.h>

void func(void);

int x = 0;

ucontext_t context, *cp = &context;

int main(void) {

 getcontext(cp);

 if (!x) {

 printf("getcontext has been called\n");

 func();

 }

 else {

 printf("setcontext has been called\n");

 }

}

void func(void) {

 x++;

 setcontext(cp);

}

Output

getcontext has been called

setcontext has been called

Related Information

v “ucontext.h” on page 96

v “getcontext() — Get User Context” on page 750

v “longjmp() — Restore Stack Environment” on page 1143

v “_longjmp() — Nonlocal Goto” on page 1147

v “makecontext() — Modify User Context” on page 1169

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “swapcontext() — Save and Restore User Context” on page 2101

setcontext

1780 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setegid() — Set the Effective Group ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

Single UNIX Specification, Version 3

both

Format

#define _POSIX1_SOURCE 2

#include <unistd.h>

int setegid(gid_t gid);

General Description

Sets the effective group ID (GID) of a process to gid, if gid is equal to the real GID

or the saved set GID of the calling process, or if the process has appropriate

privileges. The real GID, the saved set GID, and any supplementary GIDs are not

changed.

Returned Value

If successful, setegid() returns 0.

If unsuccessful, setegid() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The value specified for gid is incorrect and is not supported by the

implementation.

EPERM The process does not have appropriate privileges, and gid does not

match the real GID or the saved set GID.

Example

CELEBS02

/* CELEBS02

 This example changes your effective GID.

 */

#define _POSIX1_SOURCE 2

#include <unistd.h>

#include <stdio.h>

main() {

 printf("your effective group id is %d\n", (int) getegid());

 if (setegid(500) != 0)

 perror("setegid() error");

 else

 printf("your effective group id was changed to %d\n",

 (int) getegid());

}

Output

your effective group id is 512

your effective group id was changed to 500

setegid

Chapter 3. Part 3. Library Functions 1781

||||

|
|
||

|

Related Information

v “unistd.h” on page 96

v “exec Functions” on page 486

v “getegid() — Get the Effective Group ID” on page 760

v “getgid() — Get the Real Group ID” on page 767

v “setgid() — Set the Group ID” on page 1789

setegid

1782 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setenv() — Add, Delete, and Change Environment Variables

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

Single UNIX Specification, Version 3

Language Environment

both

Format

POSIX - C only

#define _POSIX1_SOURCE 2

#include <stdlib.h>

int setenv(const char *var_name, const char *new_value, int change_flag)

Non-POSIX

#include <stdlib.h>

int setenv(const char *var_name, const char *new_value, int change_flag)

General Description

Adds, changes, and deletes environment variables.

To avoid infringing on the user’s name space, the non-POSIX version of this

function has two names. One name is prefixed with two underscore characters, and

one name is not. The name without the prefix underscore characters is exposed

only when you use LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

var_name is a pointer to a character string that contains the name of the

environment variable to be added, changed, or deleted. If setenv() is called with

var_name containing an equal sign (’=’), setenv() will fail, and errno will be set to

indicate that an invalid argument was passed to the function.

new_value is a pointer to a character string that contains the value of the

environment variable named in var_name. If new_value is a NULL pointer, it

indicates that all occurrences of the environment variable named in var_name be

deleted.

change_flag is a flag that can take any integer value:

Nonzero Change the existing entry. If var_name has already been defined

and exists in the environment variable table, its value will be

updated with new_value. If var_name was previously undefined, it

will be appended to the table.

0 Do not change the existing entry.

setenv

Chapter 3. Part 3. Library Functions 1783

||||

|
|
|

||

|

|

If var_name has already been defined and exists in the

environment variable table, its value will not be updated with

new_value. However, if var_name was previously undefined, it will

be appended to the table.

Notes:

1. The value of the change_flag is irrelevant if new_value=NULL.

2. You should not define environment variables that begin with ’_BPXK_’ since

they might conflict with variable names defined by z/OS UNIX services. setenv()

uses the BPX1ENV callable service to pass environment variables that begin

with ’_BPXK_’ to the kernel.

Also, do not use ’_EDC_’ and ’_CEE_’. They are used by the run-time library

and the Language Environment.

Environment variables set with the setenv() function will only exist for the life of the

program, and are not saved before program termination. Other ways to set

environment variables are found in “Using Environment Variables” in z/OS XL

C/C++ Programming Guide.

Special Behavior for POSIX C

Under POSIX, setenv() is available if one of the following is true:

v Code is compiled with the compiler option LANGLV(ANSI), uses #include

<env.h>, and has the POSIX feature tests turned on.

v Code is compiled with LONGNAME and prelinked with the OMVS option.

See “z/OS XL C/C++ applications with z/OS UNIX System Services C functions” on

page 13 for more information about using POSIX support.

Returned Value

If successful, setenv() returns 0.

If unsuccessful, setenv() returns −1 and sets errno to indicate the type of failure that

occurred.

Error Code

Description

EINVAL

 The name argument is a null pointer, points to an empty string, or points to

a string containing an ’=’ character.

Note: Starting with z/OS V1.9, environment variable _EDC_SUSV3 can be

used to control the behavior of setenv() with respect to setting

EINVAL when var_name is a null pointer, points to an empty string or

points to a string containing an ’=’ character. By default, setenv() will

not set EINVAL for these conditions. When _EDC_SUSV3 is set to 1,

setenv() will set errno to EINVAL if one of these conditions is true.

ENOMEM

Insufficient memory was available to add a variable or its value to the

environment.

Example

CELEBS03

setenv

1784 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|

|

|
|

|
|
|
|
|
|

|
|
|

/* CELEBS03

 This example (program 1) sets the environment variable

 _EDC_ANSI_OPEN_DEFAULT.

 A child program (program 2) is then initiated via a system

 call.

 The example illustrates that environment variables are

 propagated forward to a child program, but not backward to

 the parent.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char *x;

 /* set environment variable _EDC_ANSI_OPEN_DEFAULT to "Y" */

 setenv("_EDC_ANSI_OPEN_DEFAULT","Y",1);

 /* set x to the current value of the _EDC_ANSI_OPEN_DEFAULT*/

 x = getenv("_EDC_ANSI_OPEN_DEFAULT");

 printf("program1 _EDC_ANSI_OPEN_DEFAULT = %s\n",

 (x != NULL) ? x : "undefined");

 /* call the child program */

 system("program2");

 /* set x to the current value of the _EDC_ANSI_OPEN_DEFAULT*/

 x = getenv("_EDC_ANSI_OPEN_DEFAULT");

 printf("program1 _EDC_ANSI_OPEN_DEFAULT = %s\n",

 (x != NULL) ? x : "undefined");

}

CELEBS04

/* CELEBS04

 Program 2:

 A child program of CELEBS03, which is initiated via a system call.

 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char *x;

 /* set x to the current value of the _EDC_ANSI_OPEN_DEFAULT*/

 x = getenv("_EDC_ANSI_OPEN_DEFAULT");

 printf("program2 _EDC_ANSI_OPEN_DEFAULT = %s\n",

 (x != NULL) ? x : "undefined");

 /* clear the Environment Variables Table */

 setenv("_EDC_ANSI_OPEN_DEFAULT", NULL, 1);

 /* set x to the current value of the _EDC_ANSI_OPEN_DEFAULT*/

 x = getenv("_EDC_ANSI_OPEN_DEFAULT");

 printf("program2 _EDC_ANSI_OPEN_DEFAULT = %s\n",

 (x != NULL) ? x : "undefined");

}

setenv

Chapter 3. Part 3. Library Functions 1785

Output

program1 _EDC_ANSI_OPEN_DEFAULT = Y

program2 _EDC_ANSI_OPEN_DEFAULT = Y

program2 _EDC_ANSI_OPEN_DEFAULT = undefined

program1 _EDC_ANSI_OPEN_DEFAULT = Y

Related Information

v “Using Environment Variables” in z/OS XL C/C++ Programming Guide.

v “stdlib.h” on page 85

v “clearenv() — Clear Environment Variables” on page 291

v “getenv() — Get Value of Environment Variables” on page 761

v “__getenv() — Get an Environment Variable” on page 763

v “putenv() — Change or Add an Environment Variable” on page 1569

v “system() — Execute a Command” on page 2118

setenv

1786 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

seteuid() — Set the Effective User ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

Single UNIX Specification, Version 3

both

Format

#define _POSIX1_SOURCE 2

#include <unistd.h>

int seteuid(uid_t uid);

General Description

Sets the effective user ID (UID) to uid if uid is equal to the real UID or the saved

set user ID of the calling process, or if the process has appropriate privileges. The

real UID and the saved set UID are not changed.

The seteuid() function is not supported from an address space running multiple

processes, since it would cause all processes in the address space to have their

security environment changed unexpectedly.

seteuid() can be used by daemon processes to change the identity of a process in

order for the process to be used to run work on behalf of a user. In UNIX, changing

the identify of a process is done by changing the real and effective UIDs and the

auxiliary groups. In order to change the identity of the process on MVS completely,

it is necessary to also change the MVS security environment. The identity change

will only occur if the EUID value is specified, changing just the real UID will have no

effect on the MVS environment.

The seteuid() function invokes MVS SAF services to change the MVS identity of the

address space. The MVS identity that is used is determined as follows:

v If an MVS user ID is already known by the kernel from a previous call to a kernel

function (for example, getpwnam()) and the UID for this user ID matches the UID

specified on the seteuid() call, then this user ID is used.

v For nonzero target UIDs, if there is no saved user ID or the UID for the saved

user ID does not match the UID requested on the seteuid() call, the seteuid()

function queries the security database (for example, using getpwnam) to retrieve

a user ID. The retrieved user ID is then used.

v If the target UID=0 and a user ID is not known, the seteuid() function always sets

the MVS user ID to BPXROOT or the value specified on the SUPERUSER parm

in sysparms. BPXROOT is set up during system initialization as a superuser with

a UID=0. The BPXROOT user ID is not defined to the BPX.DAEMON FACILITY

class profile. This special processing is necessary to prevent a superuser from

gaining daemon authority.

v A nondaemon superuser that attempts to set a user ID to a daemon superuser

UID fails with an EPERM.

When the MVS identity is changed, the auxiliary list of groups is also set to the list

of groups for the new user ID.

seteuid

Chapter 3. Part 3. Library Functions 1787

||||

|
|
||

|

If the seteuid() function is issued from multiple tasks within one address space, use

synchronization to ensure that the seteuid() functions are not performed

concurrently. The execution of seteuid() function concurrently within one address

space can yield unpredictable results.

Returned Value

If successful, seteuid() returns 0.

If unsuccessful, seteuid() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The value specified for uid is incorrect and is not supported by the

implementation.

EPERM The process does not have appropriate privileges, and uid does not

match the real UID or the saved set UID.

Example

CELEBS05

/* CELEBS05

 This example changes the effective UID.

 */

#define _POSIX1_SOURCE 2

#include <unistd.h>

#include <stdio.h>

main() {

 printf("your effective user id is %d\n", (int) geteuid());

 if (seteuid(25) != 0)

 perror("seteuid() error");

 else

 printf("your effective user id was changed to %d\n",

 (int) geteuid());

}

Output

your effective user id is 0

your effective user id was changed to 25

Related Information

v “unistd.h” on page 96

v “geteuid() — Get the Effective User ID” on page 765

v “getuid() — Get the Real User ID” on page 878

v “setreuid() — Set Real and Effective User IDs” on page 1835

v “setuid() — Set the Effective User ID” on page 1857

seteuid

1788 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setgid() — Set the Group ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX1_SOURCE 2

#include <unistd.h>

int setgid(gid_t gid);

General Description

Sets one or more of the group IDs (GIDs) for the current process to gid.

If gid is the same as the process’s real GID or the saved set-group-ID, setgid()

always succeeds and sets the effective GID to gid.

If gid is not the same as the process’s real GID, setgid() succeeds only if the

process has appropriate privileges. If the process has such privileges, setgid() sets

the real GID, the effective GID, and saved set GID to gid.

setgid() does not change any supplementary GIDs of the calling process.

Returned Value

If successful, setgid() returns 0.

If unsuccessful, setgid() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The value of gid is incorrect.

EPERM The process does not have appropriate privileges to set the GID.

Example

CELEBS06

/* CELEBS06

 This example sets your GID.

 */

#define _POSIX_SOURCE 1

#include <unistd.h>

#include <stdio.h>

main() {

 printf("your group id is %d\n", (int) getgid());

 if (setgid(500) != 0)

 perror("setgid() error");

setgid

Chapter 3. Part 3. Library Functions 1789

||||

|
|
|
|

||

|

|
|

else

 printf("your group id was changed to %d\n",

 (int) getgid());

}

Output

your group id is 512

your group id was changed to 500

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “exec Functions” on page 486

v “getegid() — Get the Effective Group ID” on page 760

v “getgid() — Get the Real Group ID” on page 767

v “setuid() — Set the Effective User ID” on page 1857

setgid

1790 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setgrent() — Reset Group Database to First Entry

The information for this function is included in “endgrent() — Group Database Entry

Functions” on page 468.

setgrent

Chapter 3. Part 3. Library Functions 1791

setgroups() — Set the Supplementary Group ID List for the Process

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS

#include <sys/types.h>

#include <grp.h>

int setgroups(const int size, const gid_t list[]);

General Description

setgroups() sets the supplementary group IDs for the process to the list provided in

the list array. The argument size gives the number of gid_t elements in list array.

The maximum number of supplementary groups for a strictly conforming program is

NGROUPS_MAX, as defined in <limits.h> Or, refer to sysconf() (see “sysconf() —

Determine System Configuration Options” on page 2111) for information on

dynamically determining the number of supplementary groups allowed.

The caller of this function must be a superuser.

Returned Value

If successful, setgroups() returns 0.

If unsuccessful, setgroups() returns −1 and sets errno to one of the following

values:

Error Code Description

EFAULT The list and size specify an array that is partially or completely

outside of addressable storage for the process.

EINVAL The size parameter is greater than the maximum allowed.

EMVSERR An MVS environmental or internal error occurred.

EMVSSAF2ERR

The Security Authorization Facility (SAF) had an error.

EPERM The caller is not authorized, only authorized users are allowed to

alter the supplementary group IDs list.

Related Information

v “grp.h” on page 48

v “sys/types.h” on page 90

v “getgroups() — Get a List of Supplementary Group IDs” on page 775

v “initgroups() — Initialize the Supplementary Group ID List for the Process” on

page 974

setgroups

1792 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sethostent() — Open the Host Information Data Set

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

void sethostent(int stayopen);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

void sethostent(int stayopen);

General Description

The sethostent() function opens and rewinds the local host tables. If the stayopen

flag is nonzero, the local host tables remain open after each call.

You can use the X_SITE environment variable to specify different local host tables

and override those supplied by the z/OS global resolver during initialization.

Note: For more information on these local host tables or the environment variables,

see z/OS Communications Server: IP Configuration Guide, SC31-8775.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

sethostent() returns no values.

Related Information

v “netdb.h” on page 64

v “endhostent() — Close the Host Information Data Set” on page 470

v “endnetent() — Close Network Information Data Sets” on page 471

v “gethostbyaddr() — Get a Host Entry by Address” on page 779

v “gethostbyname() — Get a Host Entry by Name” on page 782

v “gethostent() — Get the Next Host Entry” on page 785

sethostent

Chapter 3. Part 3. Library Functions 1793

||||

|
|
||

|

setibmopt() — Set IBM TCP/IP Image

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

int setibmopt(int cmd, struct ibm_tcpimage *bfrp);

General Description

The setibmopt() function call is used to set TCP/IP options. Currently, the only

supported command is IBMTCP_IMAGE which allows the setibmopt() to choose the

active TCP/IP image stack the application will connect to.

To reset ibm_tcpimage to nothing chosen, set the name to all blanks.

The chosen transport is inherited over fork() and preserved over exec(). If this is not

desired, the child process should call setibmopt() with a blank name to reset the

TCP/IP image for the child.

Parameter Description

cmd The value in cmd must be set to the command to be performed.

Currently, only IBMTCP_IMAGE is supported and must be paired

with the bfrp parameter as described.

bfrp The pointer to a ibm_tcpimage structure.

To set the TCP/IP image for a socket, the application should set values in the

ibm_tpcimage structure as follows:

Element Description

status 0 means is not known and need not be checked. Currently, this is

the only value with meaning.

version 0 means the version is to be set on return if known.

name The name must be left justified, uppercase, padded with blanks,

and be the name of an active TCP stack.

Returned Value

If successful, setibmopt() returns 0.

If unsuccessful, setibmopt() returns -1 and sets errno to one of the following values:

Error Code Description

EFAULT Using the bfrp supplied would result in access of a

storage location that is inaccessible.

EIBMBADTCPNAME A name of a PFS was specified that either is not

configured or is not a Sockets PFS.

setibmopt

1794 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EOPNOTSUPP The cmd is a function that is not supported.

ENXIO The name that was specified did not match an

AF_INET socket stack, but Common Inet is not

configured on this system. Because this system

does not have multiple AF_INET socket transports

configured, there is already a natural affinity to one

single stack, and this failure may not be a problem

for the application.

Related Information

v “sys/socket.h” on page 89

v “__iptcpn() — Retrieve the Resolver Supplied Jobname or Userid” on page 1003

setibmopt

Chapter 3. Part 3. Library Functions 1795

setibmsockopt() — Set IBM Specific Options Associated with a Socket

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

int setibmsockopt(int s, int level, int optname, char *optval, size_t optlen);

General Description

These options are only valid on IBM systems and can be specified to allow

improved processing of requests on sockets.

Parameter Description

s The socket descriptor.

level The level for which the option is set.

optname The name of a specified socket option. The socket option currently

available is:

v SO_EioIfNewTP

optval The pointer to option data.

optlen The length of the option data.

Usage Note for SO_EioIfNewTP

The SO_EioIfNewTP option allows a socket application that has bound

INADDRANY to be notified if a new common inet transport provider was activated

after the socket was created. In order to activate this option, the option data should

have a value of 1. To deactivate this option, supply a value of 0 for the option data.

This option can be useful to a server that is listening - waiting for requests to come

in from a number of sources. When a new transport provider is activated while this

option is in effect, the application program will receive an EIO on the next accept,

select or read request. Once this happens, the application should close the current

socket and create a new one - thus enabling the socket to communicate with the

new transport provider.

Returned Value

If successful, setibmsockopt() returns 0.

If unsuccessful, setibmsockopt() returns -1 and sets errno to one of the following

values:

Error Code Description

EBADF The s parameter is not a valid socket descriptor.

EFAULT Using optval and optlen parameters would result in an attempt to

access storage outside the caller’s address space.

setibmsockopt

1796 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ENOPROTOOPT

The optname parameter is unrecognized. The level parameter is not

SOL_SOCKET. The domain of the socket descriptor is not

AF_INET. The socket descriptor is not a datagram type socket.

Related Information

v “sys/socket.h” on page 89

v “fcntl() — Control Open File Descriptors” on page 527

v “getibmsockopt() — Get the Options Associated with a Bulk Mode Socket” on

page 790

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ibmsflush() — Flush the Application-side Datagram Queue” on page 918

v “setsockopt() — Set Options Associated with a Socket” on page 1843

setibmsockopt

Chapter 3. Part 3. Library Functions 1797

setipv4sourcefilter — Set source filter

Standards

 Standards / Extensions C or C++ Dependencies

RFC3678 both z/OS V1.9

Format

#define _OPEN_SYS_SOCK_EXT3

#include <netinet/in.h>

int setipv4sourcefilter(int s, struct in_addr interface, struct in_addr group,

 uint32_t fmode, uint32_t numsrc, struct in_addr *slist);

General Description

This function allows applications to set and replace the current multicast filtering

state for a tuple consisting of socket, interface, and multicast group values.

A multicast filter is described by a filter mode, which is MCAST_INCLUDE or

MCAST_EXCLUDE, and a list of source addresses which are filtered.

This function is IPv4-specific, must be used only on AF_INET sockets with an open

socket of type SOCK_DGRAM or SOCK_RAW.

If the function is unable to obtain the required storage, control will not return to the

caller. Instead the application will terminate due to an out of memory condition (if

the reserve stack is available and the caller is not XPLINK), or it will terminate with

an abend indicating that storage could not be obtained.

Argument

Description

s Identifies the socket.

interface

Holds the local IP address of the interface.

group Holds the IP multicast address of the group.

fmode Identifies the filter mode. The value of this field must be either

MCAST_INCLUDE or MCAST_EXCLUDE, which are likewise defined in

<netinet/in.h>.

numsrc

Holds the number of source addresses in the slist array.

slist Points to an array of IP addresses of sources to include or exclude

depending on the filter mode.

Returned Value

If successful, the function returns 0. Otherwise, it returns -1 and sets errno to one of

the following values.

errno Description

EADDRNOTAVAIL

The specified interface address is incorrect for this host, or the specified

interface address is not multicast capable.

setipv4sourcefilter

1798 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|

||

|
|

||

||
|
|

|
|

||
|

|

|
|

||

|
|
|

EBADF

s is not a valid socket descriptor.

EINVAL

Interface or group is not a valid IPv4 address, or the socket s has already

requested multicast setsockopt options.

ENOBUFS

The number of the source addresses exceeds the allowed limit.

EPROTOTYPE

The socket s is not of type SOCK_DGRAM or SOCK_RAW.

 Related Information

v “netinet/in.h” on page 68

v “getipv4sourcefilter — Get source filter” on page 795

setipv4sourcefilter

Chapter 3. Part 3. Library Functions 1799

|
|

|
|
|

|
|

|
|

|

|

|

setitimer() — Set Value of an Interval Timer

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/time.h>

int setitimer(int which, struct itimerval *value, struct itimerval *ovalue);

General Description

setitimer() sets the value of an interval timer. An interval timer is a timer which

sends a signal after each repetition (interval) of time.

The which argument indicates what kind of time is being controlled. Values for

which are:

ITIMER_REAL This timer is marking real (clock) time. A SIGALRM

signal is generated after each interval of time.

Note: alarm() also sets the real interval timer.

ITIMER_VIRTUAL This timer is marking process virtual time. Process

virtual time is the amount of time spent while

executing in the process, and can be thought of as

a CPU timer. A SIGVTALRM signal is generated

after each interval of time.

ITIMER_PROF This timer is marking process virtual time plus time

spent while the system is running on behalf of the

process. A SIGPROF signal is generated after each

interval of time.

Note: In a multithreaded environment, each of the above timers is specific to a

thread of execution for both the generation of the time interval and the

measurement of time. For example, an a ITIMER_VIRTUAL timer will mark

execution time for just the thread, not the entire process.

The value argument points to an itimerval structure containing the timer value to

be set. The structure contains:

it_interval timer interval

 When it_interval is nonzero, it is used as the value which

it_value is initialized to after each timer expiration. If it_interval

is zero, the timer is disabled after the next expiration, subject to

the value in it_value.

it_value current timer value to be set

 When it_value is nonzero, it is used as the initial value to establish

the timer with, that is, the time to the next timer expiration. If

it_value is zero, the timer is immediately disabled.

setitimer

1800 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The ovalue argument points to an itimerval structure in which the current value of

the timer is returned. If ovalue is a NULL pointer, the current timer value is not

returned. The structure contains:

it_interval current timer interval

it_value current timer value

For both itimerval structures, each of the fields (it_interval and it_value) is a

timeval structure, and contains:

tv_sec seconds since January 1, 1970 Coordinated Universal Time (UTC)

tv_usec microseconds

Returned Value

If successful, setitimer() returns 0, and if ovalue was non-NULL, ovalue points to the

itimerval structure containing the old timer values.

If unsuccessful, setitimer() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL which is not a valid timer type, or the value argument has an

incorrect (noncanonical) form. The tv_seconds field must be a

nonnegative integer, and the tv_usec field must be a nonnegative

integer in the range of 0-1,000,000.

Usage of the ITIMER_PROF timer generates a SIGPROF signal which may interrupt

an in-progress function. Thus, programs using this timer may need to be able to

restart an interrupted function.

Related Information

v “sys/time.h” on page 89

v “alarm() — Set an Alarm” on page 180

v “getitimer() — Get Value of an Interval Timer” on page 797

v “gettimeofday() — Get Date and Time” on page 876

v “sleep() — Suspend Execution of a Thread” on page 1959

v “ualarm() — Set the Interval Timer” on page 2282

v “usleep() — Suspend Execution for an Interval” on page 2316

setitimer

Chapter 3. Part 3. Library Functions 1801

setjmp() — Preserve Stack Environment

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <setjmp.h>

int setjmp(jmp_buf env);

General Description

Saves a stack environment that can subsequently be restored by longjmp(). The

setjmp() and longjmp() functions provide a way to perform a nonlocal goto. They

are often used in signal handlers.

A call to setjmp() causes it to save the current stack environment in env. A

subsequent call to longjmp() restores the saved environment and returns control to

a point corresponding to the setjmp() call. The values of all variables, except

register variables and nonvolatile automatic variables, accessible to the function

receiving control, contain the values they had when longjmp() was called. The

values of register variables are unpredictable. Nonvolatile auto variables that are

changed between calls to setjmp() and longjmp() are also unpredictable.

An invocation of setjmp() must appear in one of the following contexts only:

v The entire controlling expression of a selection or iteration statement.

v One operand of a relational or equality operator with the other operand an

integral constant expression, with the resulting expression being the entire

controlling expression of a selection or iteration statement.

v The operand of a unary “!” operator with the resulting expression being the entire

controlling expression of a selection or iteration.

v The entire expression of an expression statement (possibly cast to void).

Note: Ensure that the function that calls setjmp() does not return before you call

the corresponding longjmp() function. Calling longjmp() after the function

calling setjmp() returns causes unpredictable program behavior.

Special Behavior for POSIX C

To save and restore a stack environment that includes a signal mask, use

sigsetjmp() and siglongjmp(), instead of setjmp(). See “z/OS XL C/C++ applications

with z/OS UNIX System Services C functions” on page 13 for more information

about using POSIX support.

setjmp

1802 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

The sigsetjmp()—siglongjmp() pair, the setjmp()—longjmp() pair, the

_setjmp()—_longjmp() pair, and the getcontext()—setcontext() pair cannot be

intermixed. A stack environment saved by setjmp() can only be restored by

longjmp().

Special Behavior for C++

If setjmp() and longjmp() are used to transfer control in a z/OS XL C++ program,

the behavior in terms of the destruction of automatic objects is undefined. This

applies both to z/OS XL C++ and z/OS XL C/C++ ILC modules. The use of

setjmp() and longjmp() in conjunction with try(), catch(), and throw() is also

undefined.

Special Behavior for XPG4.2

In a program that was compiled with the feature test macro

_XOPEN_SOURCE_EXTENDED defined, another pair of functions,

_setjmp()—_longjmp(), are available. On this implementation, these calls are

functionally identical to setjmp()—longjmp(). Therefore it is possible, but not

recommended, to intermix the setjmp()—longjmp() pair with the

_setjmp()—_longjmp() pair.

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the V2R10 or later C compilers that are to

run with Language Environment V2R10 or later libraries and use the jmp_buf,

sigjmp_buf or ucontext_t types must not be compiled with C headers from

Language Environment V2R9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not define jmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Language Environment V2R10 and later

headers define a larger jmp_buf, sigjmp_buf or ucontext_t area that is

required by setjmp(), getcontext(), and related functions when they are called

from an XPLINK routine. If __XPLINK__ is not defined, the Language

Environment V2R10 and later headers define a shorter jmp_buf, sigjmp_buf or

ucontext_t area. The Language Environment headers before V2R10 also

define the shorter version of these data areas. If an XPLINK function calls

setjmp(), getcontext() or similar functions with a short jmp_buf, sigjmp_buf or

ucontext_t area, a storage overlay or program check may occur when the C

library tries to store past the end of the passed-in (too short) data area.

Returned Value

setjmp() returns 0 after saving the stack environment.

If setjmp() returns as a result of a longjmp() call, it returns the value argument of

longjmp(), or the value 1 if the value argument of longjmp() is equal to 0.

setjmp

Chapter 3. Part 3. Library Functions 1803

Example

This example stores the stack environment at the statement:

if(setjmp(mark) != 0) ...

When the system first performs the if statement, it saves the environment in mark

and sets the condition to FALSE because setjmp() returns 0 when it saves the

environment. The program prints the message: setjmp has been called.

The subsequent call to function p tests for a local error condition, which can cause

it to perform the longjmp() function. Then control returns to the original setjmp()

function using the environment saved in mark. This time the condition is TRUE

because −1 is the returned value from the longjmp() function. The program then

performs the statements in the block and prints: longjmp has been called. Finally,

the program calls the recover function and exits.

/* This example shows the effect of having set the stack environment. */

#include <stdio.h>

#include <setjmp.h>

jmp_buf mark;

void p(void);

void recover(void);

int main(void)

{

 if (setjmp(mark) != 0) {

 printf("longjmp has been called\n");

 recover();

 exit(1);

 }

 printf("setjmp has been called\n"); ...
 p(); ...
}

void p(void)

{

 int error = 0; ...
 error = 9; ...
 if (error != 0)

 longjmp(mark, -1); ...
}

void recover(void)

{ ...
}

Related Information

v “setjmp.h” on page 77

v “getcontext() — Get User Context” on page 750

v “longjmp() — Restore Stack Environment” on page 1143

v “_longjmp() — Nonlocal Goto” on page 1147

v “setcontext() — Restore User Context” on page 1778

v “_setjmp() — Set Jump Point for a Nonlocal Goto” on page 1806

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

setjmp

1804 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “swapcontext() — Save and Restore User Context” on page 2101

setjmp

Chapter 3. Part 3. Library Functions 1805

_setjmp() — Set Jump Point for a Nonlocal Goto

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <setjmp.h>

int _setjmp(jmp_buf env);

General Description

The _setjmp() function saves a stack environment that can subsequently be

restored by _longjmp(). The _setjmp() and _longjmp() functions provide a way to

perform a nonlocal goto. They are often used in signal handlers.

A call to _setjmp() causes it to save the current stack environment in env. A

subsequent call to _longjmp() restores the saved environment and returns control to

a point corresponding to the _setjmp() call. The values of all variables, except

register variables, and except nonvolatile automatic variables, accessible to the

function receiving control contain the values they had when _longjmp() was called.

The values of register variables are unpredictable. Nonvolatile auto variables that

are changed between calls to _setjmp() and _longjmp() are also unpredictable.

An invocation of _setjmp() must appear in one of the following contexts only:

1. The entire controlling expression of a selection or iteration statement.

2. One operand of a relational or equality operator with the other operand an

integral constant expression, with the resulting expression being the entire

controlling expression of a selection or iteration statement.

3. The operand of a unary ″!″ operator with the resulting expression being the

entire controlling expression of a selection or iteration.

4. The entire expression of an expression statement (possibly cast to void).

The X/Open standard states that _setjmp() and _longjmp() are functionally identical

to longjmp() and setjmp(), respectively, with the addition restriction that _setjmp()

and _longjmp() do not manipulate the signal mask. However, on this implementation

longjmp() and setjmp() do not manipulate the signal mask. So on this

implementation _setjmp() and _longjmp() are literally identical to longjmp() and

setjmp(), respectively.

To save and restore a stack environment, including the current signal mask, use

sigsetjmp() and siglongjmp() instead of _setjmp() and _longjmp(), or setjmp() and

longjmp().

The _setjmp()—_longjmp() pair, the setjmp()—longjmp() pair, the

sigsetjmp()—siglongjmp() pair, and the getcontext()—setcontext() pair cannot be

intermixed. A stack environment saved by _setjmp() can be restored only by

_longjmp().

_setjmp

1806 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

Notes:

1. However, on this implementation, since the _setjmp()—_longjmp() pair are

functionally identical to the setjmp()—longjmp() pair it is possible to intermix

them, but it is not recommended.

2. Ensure that the function that calls _setjmp() does not return before you call the

corresponding _longjmp() function. Calling _longjmp() after the function calling

_setjmp() returns causes unpredictable program behavior.

Special Behavior for C++

If _setjmp() and _longjmp() are used to transfer control in a z/OS XL C++ program,

the behavior in terms of the destruction of automatic objects is undefined. This

applies both to z/OS XL C++ and z/OS XL C/C++ ILC modules. The use of

_setjmp() and _longjmp() in conjunction with try(), catch(), and throw() is also

undefined.

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the V2R10 or later C compilers that are to

run with Language Environment V2R10 or later libraries and use the jmp_buf,

sigjmp_buf or ucontext_t types must not be compiled with C headers from

Language Environment V2R9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not define jmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Language Environment V2R10 and later

headers define a larger jmp_buf, sigjmp_buf or ucontext_t area that is

required by setjmp(), getcontext(), and related functions when they are called

from an XPLINK routine. If __XPLINK__ is not defined, the Language

Environment V2R10 and later headers define a shorter jmp_buf, sigjmp_buf or

ucontext_t area. The Language Environment headers before V2R10 also

define the shorter version of these data areas. If an XPLINK function calls

setjmp(), getcontext() or similar functions with a short jmp_buf, sigjmp_buf or

ucontext_t area, a storage overlay or program check may occur when the C

library tries to store past the end of the passed-in (too short) data area.

Returned Value

_setjmp() returns 0 after saving the stack environment.

If _setjmp() returns as a result of a _longjmp() call, it returns the value argument of

_longjmp(), or 1 if the value argument of _longjmp() was 0.

Related Information

v “setjmp.h” on page 77

v “getcontext() — Get User Context” on page 750

v “longjmp() — Restore Stack Environment” on page 1143

v “_longjmp() — Nonlocal Goto” on page 1147

v “setcontext() — Restore User Context” on page 1778

v “setjmp() — Preserve Stack Environment” on page 1802

_setjmp

Chapter 3. Part 3. Library Functions 1807

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

v “swapcontext() — Save and Restore User Context” on page 2101

_setjmp

1808 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setkey() — Set Encoding Key

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

void setkey(const char *key);

General Description

The setkey() function transforms the key argument array into data encryption keys

which are used by the encrypt() function to encode blocks of data.

The key argument of setkey() is an array of length 64 bytes containing only the

bytes with numerical value of 0 and 1. If this 64 byte array is divided into groups of

8, the low-order byte of each group is ignored. The setkey() function transforms the

remaining 56 bytes, each with values 0 or 1, into 16 48-bit keys according to the

Data Encryption Standard (DES) key algorithm.

Special Behavior for z/OS UNIX Services

When setkey() is called from a thread, the array of 16 bit-bit keys produced by

setkey() is unique to the thread. Thus, for each thread from which the encrypt()

function is called by a threaded application, the setkey() function must first be called

from each thread.

Returned Value

setkey() returns no values.

Special Behavior for z/OS UNIX Services

The setkey() function will fail if:

Error Code Description

EINVAL 64 byte input array contains bytes with values other than 0x00 or

0x01.

ENOMEM Unable to allocate storage for DES keys on thread from which

setkey() invoked.

Note: Because setkey() returns no values, applications wishing to check for errors

should set errno to 0, call setkey(), then test errno and, if it is nonzero,

assume an error has occurred.

Related Information

v “stdlib.h” on page 85

v “__cnvblk() — Convert Block” on page 307

setkey

Chapter 3. Part 3. Library Functions 1809

||||

|
|
|

||

|

v “crypt() — String Encoding Function” on page 371

v “encrypt() — Encoding Function” on page 466

setkey

1810 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setlocale() — Set Locale

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

SAA

Language Environment

z/OS UNIX

C99

Single UNIX Specification, Version 3

both

Format

#include <locale.h>

char *setlocale(int category, const char *locale);

General Description

Sets, changes, or queries locale categories or groups of categories. It does this

action according to values of the locale and category arguments.

A locale is the complete definition of the part of a user’s program that depends on

language and cultural conventions. You can accept the default value of locale, or

you can set it to one of the supplied locales listed in the appendix , “Supplied

Locales”, in z/OS XL C/C++ Programming Guide. Some examples of the supplied

locales are: “C”, “POSIX”, “SAA”, “S370”, “Fr_BE.IBM-1047”, “En_GB.IBM-285”,

“En_US.IBM_1047”, “Fr_BE.IBM-1148@euro”, and “Fr_BE.IBM-1148”.

Note that non-POSIX programs may exploit the POSIX style of locale support. This

use of environment variables also applies to non-POSIX programs that use POSIX

locale support.

Effect of setlocale() on Language Environment

The current locale set with the setlocale() function affects only some C library

functions. (See Table 45). It does not affect the CEE locale set and query functions

available under Language Environment and described in the IBM Language

Environment Programming Reference.

The Category Argument

The category argument may be set to one of these values:

 Table 45. Values for Category Arguments of setlocale()

Category Purpose

LC_ALL Specifies all categories associated with the program’s locale.

setlocale

Chapter 3. Part 3. Library Functions 1811

||||

|
|
|
|
|
|
|
|
|

||

|

Table 45. Values for Category Arguments of setlocale() (continued)

Category Purpose

LC_COLLATE Defines the collation sequence, that is, the relative order of

collation elements (characters and multicharacter collation

elements) in the program’s locale. The collation sequence

definition is used by regular expression, pattern matching, and

sorting functions.

These string functions are affected by the defined collation

sequence: strcoll(), strxfrm(), wcscoll(), and wcsxfrm().

LC_CTYPE, LC_COLLATE, and LC_SYNTAX should refer to the

same locale. Changing just one of them may invalidate another.

LC_CTYPE Defines character classification and case conversion for

characters in the program’s locale. Affects the behavior of

character-handling functions defined in the ctype.h header file:

csid(), isalnum(), isalpha(), isblank(), iswblank() iscntrl(), isdigit(),

isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),

iswalnum(), iswalpha(), iswcntrl(), iswctype(), iswdigit(), iswgraph(),

iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(),

iswxdigit(), isxdigit(), tolower(), toupper(), towlower(), towupper(),

wcsid(), and wctype().

Affects behavior of the printf() and scanf() families of functions:

fprintf(), printf(), sprintf(), fscanf(), scanf(), and sscanf().

Affects the behavior of wide-character input/output functions:

fgetwc(), fgetws(), getwc(), getwchar(), fputwc(), fputws(), putwc(),

putwchar(), and ungetwc().

Affects the behavior of multibyte and wide-character functions:

mblen(), mbtowc(), mbstowcs(), wctomb(), wcstombs(), mbrlen(),

mbrtowc(), mbsrtowcs(), wcrtomb(), wcsrtombs(), wcswidth(),

wcwidth(), wcstod(), wcstol(), and wcstoul().

LC_CTYPE, LC_COLLATE, and LC_SYNTAX should refer to the

same locale. Changing just one of them may invalidate another.

LC_MESSAGES Under z/OS XL C/C++ support, it affects the messages returned

by the nl_langinfo() function and it also has an effect on rpmatch().

The LC_MESSAGES category will not affect the messages for the

following functions: perror(), strerror(), and regerror().

In the locale of a C program running with POSIX(ON), it defines

affirmative and negative response patterns.

LC_MONETARY Affects monetary information returned by localeconv() and the

strfmon() function. It defines the rules and symbols used to format

monetary numeric information in the program’s locale. The

formatting rules and symbols are strings. localeconv() returns

pointers to these strings with names found in the locale.h header

file.

setlocale

1812 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 45. Values for Category Arguments of setlocale() (continued)

Category Purpose

LC_NUMERIC Affects the decimal-point character for the formatted input/output

and string conversion functions, and the non-monetary formatting

information returned by the localeconv() function, specifically:

v The printf() family of functions

v The scanf() family of functions

v strtod()

v atof()

The formatting rules and symbols are strings. localeconv() returns

pointers to the strings with names found in the locale.h header file.

LC_TIME Defines time and date format information in the program’s locale

used by the strftime(), strptime(), and wcsftime() functions.

LC_SYNTAX Affects the behavior of functions that use encoded values to

format characters:

v printf() family of functions

v scanf() family of functions

v regcomp()

v strfmon()

LC_SYNTAX also affects values that may be retrieved using the

getsyntx() function.

LC_CTYPE, LC_COLLATE, and LC_SYNTAX should refer to the

same locale. Changing just one of them may invalidate another.

LC_TOD Affects the behavior of the functions related to time zone and

Daylight Savings Time information in the program’s locale, when

time zone and Daylight Savings Time information is not defined by

the TZ environment variable. This information is used by ctime(),

localtime(), mktime(), and strftime().

For a POSIX program, the functions ctime(), localtime(), mktime(), setlocale(), and

strftime() call the tzset() function to override LC_TOD category information when TZ

is defined and valid. See “z/OS XL C/C++ applications with z/OS UNIX System

Services C functions” on page 13 for more information about using POSIX support.

The Locale Argument

Identifies the locale. For a list of locales provided by IBM refer to the appendix ,

“Supplied Locales”, in z/OS XL C/C++ Programming Guide.

If the value of an environment variable is used, it must be a valid locale name. If

this is the case, setlocale() sets the specified category to the named locale, and

returns a string giving the name of the locale. Otherwise, setlocale() does not

change the program’s locale and returns a NULL pointer. Valid category names

include names of locales provided by IBM. Also, names of locales, which are

created using the z/OS XL C/C++ locale definition mechanism, are valid.

The Null-String (″″) Locale Value

If “” is specified, the locale-related environment variables are checked. If the locale

name is not defined by the environment variables, the default is ″S370″ when

running POSIX(OFF) and ″C″ when running POSIX(ON). See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

setlocale

Chapter 3. Part 3. Library Functions 1813

For both C and C++ languages, and whether you are using POSIX or not, if a

program using POSIX-style locale support specifies ″″ for the value of locale, then

setlocale() interrogates locale-related environment variables in the program’s

environment to find a locale name or names to use. The locale name is chosen

according to the first of the following conditions that applies:

1. If the environment variable LC_ALL is defined and is not NULL, the value of

LC_ALL is used. That value is applied to all categories.

2. If individual environmental variables are defined, then their values are used for

the categories.

3. If the environment variable LANG is defined and is not NULL, the value of

LANG is used.

4. If no non-NULL environment variable is present to supply a value, ″C″ is used.

If a program using POSIX-style locale support specifies LC_ALL for the value of

category and ″″ for the value of locale, setlocale() searches environment variables

in the way just described to obtain a locale name for each category. If all the locale

names obtained identify valid locales, setlocale() sets each category to the

appropriate locale and returns a string naming the locale associated with each

category. Otherwise, setlocale() does not change the program’s locale and returns a

NULL pointer.

Default Locale

The relationship between the POSIX C and SAA C locales is as follows.

Using C or C++ languages with the run-time option POSIX(OFF):

1. The SAA C locale definition is the default. ″C″, ″SAA″, and ″S370″ are

synonyms for the SAA C locale definition, which is prebuilt into the library.

The source file EDC$SAAC LOCALE is provided for reference, but cannot be used

to alter the definition of this prebuilt locale.

2. Issuing setlocale(category, "") has the following effect:

v Locale-related environment variables are checked to find the name of locales)

to use to set the category specified. Querying the locale with

setlocale(category, NULL) returns the name of the locales specified by the

appropriate environment variables.

v If no non-NULL environment variable is present, it is the equivalent of having

issued setlocale(category, "S370"). That is, the locale chosen is the SAA

C locale definition, and querying the locale with setlocale(category, NULL),

returns ″S370″ as the locale name.

3. If no setlocale() function is issued or setlocale(LC_ALL, "C") is used, then the

locale chosen is the prebuilt SAA C locale, and querying the locale with

setlocale(category, NULL), returns ″C″ as the locale name.

4. For setlocale(LC_ALL,"SAA"), the locale chosen is the prebuilt SAA C locale,

and querying the locale with setlocale(category, NULL), returns ″SAA″ as the

locale name.

5. For setlocale(LC_ALL,"S370"), the locale chosen is the prebuilt SAA C locale,

and querying the locale with setlocale(category, NULL), returns ″S370″ as the

locale name.

6. For setlocale(LC_ALL,"POSIX"), the locale chosen is the prebuilt POSIX C

locale, and querying the locale with setlocale(category, NULL), returns

″POSIX″ as the locale name.

Using z/OS XL C with the run-time option POSIX(ON):

setlocale

1814 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

1. The POSIX C locale definition is the default. ″C″ and ″POSIX″ are synonyms for

the POSIX C locale definition, which is prebuilt into the library.

The source file EDC$POSX LOCALE is provided for reference, but cannot be used

to alter the definition of this prebuilt locale.

2. Issuing setlocale(category, "") has the following effect:

v Locale-related environment variables are checked to find the name of locales

that can set the category specified. Querying the locale with

setlocale(category, NULL) returns the name of the locale specified by the

appropriate environment variables.

v If no non-NULL environment variable is present, the result is equivalent to

having issued setlocale(category,"C"). That is, the locale chosen is the

POSIX C locale definition, and querying the locale with setlocale(category,

NULL), returns ″C″ as the locale name.

3. If no setlocale() function is issued or if setlocale(LC_ALL, "C") is used, the

locale chosen is the prebuilt POSIX C locale. Querying the locale with

setlocale(category, NULL) returns ″C″ as the locale name.

4. For setlocale(LC_ALL,"POSIX") the locale chosen is the prebuilt POSIX C

locale. Querying the locale with setlocale(category, NULL) returns ″POSIX″ as

the locale name.

5. For setlocale(LC_ALL,"SAA") the locale chosen is the prebuilt SAA C locale.

Querying the locale with setlocale(category, NULL) returns ″SAA″ as the

locale name.

6. For setlocale(LC_ALL,"S370") the locale chosen is the prebuilt SAA C locale.

Querying the locale with setlocale(category, NULL) returns ″S370″ as the

locale name.

The setlocale() function supports locales built by using the localedef utility, as well

as locales built using the assembler language source and produced by the

EDCLOC macro. Find more information about old format locales in

“Internationalization: Locales and Character Sets”, in z/OS XL C/C++ Programming

Guide.

Special Behavior for z/OS UNIX Services

The LOCPATH environment variable specifies a colon separated list of HFS

directories. If LOCPATH is defined, setlocale() searches HFS directories in the order

specified by LOCPATH for locale object files it requires. Locale object files in the

HFS are produced by the localedef utility running under z/OS UNIX. If LOCPATH is

not defined and setlocale() is called by a POSIX program, setlocale() looks in the

default HFS locale directory, /usr/lib/nls/locale, for locale object files it requires. If

setlocale() does not find a locale object it requires in the HFS, it converts the locale

name to a PDS member name as described in z/OS XL C/C++ Programming Guide

and searches locale PDS load libraries associated with the program calling

setlocale().

Locale names may be filenames, relative pathnames, or absolute pathnames.

LOCPATH is used if filename rather than pathname is specified. Also, // preceding a

filename tells setlocale() to skip HFS search and to convert the name to a load

module name of the form EDC$xxxx, and to search MVS load libraries for a

member to load with this name. Also, // preceding a filename tells setlocale() to skip

HFS search, to convert the name to a load module PDS name. XPLINK locale

object PDS names begin with EDC. Non-XPLINK locale object load module names

begin with CEH. See z/OS XL C/C++ Programming Guide, section titled Locale

Naming Conventions for further information regarding locale object names.

setlocale

Chapter 3. Part 3. Library Functions 1815

All locales supplied by IBM come in two versions: non-XPLINK and XPLINK. The

HFS-resident XPLINK locale objects are distinguished from their non-XPLINK

versions by an ″.xplink″ suffix on the HFS pathname. PDS-resident XPLINK locale

objects are distinguished from their non-XPLINK versions by a ″CEH″ prefix. The

non-XPLINK PDS-resident locale objects have a prefix of ″EDC″.

It is the convention to specify locales using the locale descriptive names as they are

listed in Appendix D of z/OS XL C/C++ Programming Guide. The run-time loads the

non-XPLINK or XPLINK locale as appropriate.

It is also possible to specify a locale’s relative or full pathname on the setlocale call.

However, the run-time does nothing to ensure the locale is the appropriate version.

Setlocale uses the locale object exactly as specified if it is a relative or fully

qualified pathname. For example, setlocale() will fail if it is given an XPLINK locale

full pathname but the application is a non-XPLINK application. Similarly, setlocale()

will fail if it is given a non-XPLINK locale full pathname but the application is an

XPLINK application. These problems are avoided if the locale names are the

descriptive locale names.

Invocation Sequence for setlocale()

In all three variations of the setlocale() function call, a pointer to a string that

represents the locale value is returned. Also, in all variations, if the value for either

category or locale is invalid, setlocale() returns a NULL pointer and the operating

environment is not changed.

Each variation causes a different function to be performed:

1. setlocale(category, locale);

When an explicit locale is named, the category named in the call is set

according to the named locale.

2. setlocale(category, "");

When the locale argument of the setlocale() function is given as a NULL string

(″″), the setlocale() function sets the locale environment according to the

environment variables. If these are not set, the default locale ″S370″ is used.

This locale may be customized when the z/OS XL C/C++ product is installed.

See “Using Environment Variables” in z/OS XL C/C++ Programming Guide.

The environment variables are not currently supported under all z/OS XL C/C++

environments. The processing above will allow the setlocale() function to use

the environment variables if they are available, and to use the ″S370″ locale

otherwise.

3. setlocale(category, (char *) 0);

When a NULL pointer is given as a locale, a pointer to a string that represents

the current locale for the specified category is returned. The string has the

property that if it were specified as the locale of a subsequent setlocale() call of

the same category, the current locale would be restored. For example, the

following sequence is effectively a no-op:

setlocale(category, setlocale(category, (char *) 0));

When called with a NULL string (for example, setlocale(LC_ALL,""), setlocale()

determines the locale to be set, using the environment variables, and checking

them in this order:

1. LC_ALL. If set, it specifies the name for all categories; it can override the values

in the other environmental variables.

setlocale

1816 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

2. LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC,

LC_TIME, LC_SYNTAX, and LC_TOD. If set, these variables specify the locale

name for the given category.

3. LANG.

The setlocale() function uses the getenv() function to retrieve the environment

variables if the system supports the getenv() function. Under CICS it is not

supported.

Querying the Locale

When locale is set to a NULL pointer, setlocale() returns a string indicating the

program’s locale without changing it. This provides a means to query the program’s

current locale. To query the locale, give a NULL pointer as the second parameter.

For example, to query all the categories of your locale, use a statement like the

following:

char *string = setlocale(LC_ALL, NULL);

Returned Value

If successful, setlocale() returns a pointer to the string associated with the specified

category for the new locale. The string can be used on a subsequent call to restore

that part of the program’s locale.

Note: Because the string that a successful call to setlocale() points to may be

overwritten by subsequent calls to the setlocale() function, you should copy

the string if you plan to use it later.

If unsuccessful, setlocale() returns a NULL pointer and the program’s locale is not

changed.

If successful, setlocale() returns a string whose contents depend on the values of

the category and locale arguments as shown in the following table.

 Table 46. Return String as Determined by Category and Locale Values

Category Value Locale Value Return String

Specific category NULL pointer current-locale-name for category

new-locale-name new-locale-name for category

″″

(Null string)

If the environmental variables are set,

new-locale-name: environment-variable-value

or C.

If the environmental variables are not set,

and if non-POSIX Program, then S370 or

SAA.

LC_ALL NULL pointer One of these:

v locale-name

v locale-name-list: locale-name1,

locale-name2, ..., if different names for

one or more categories.

new-locale-name new-locale-name (same for all categories)

setlocale

Chapter 3. Part 3. Library Functions 1817

Table 46. Return String as Determined by Category and Locale Values (continued)

Category Value Locale Value Return String

″″

(Null string)

One of these:

v new-locale-name: environment-variable-
value or C

v locale-name-list: environment-variable-
value-list if different names for one or

more categories.

If environmental variables are not set, and if

non-POSIX program, then S370 (same for all

categories).

If the string returned contains a locale name list, the names have the following

order:

1. LC_COLLATE locale-name

2. LC_CTYPE locale-name

3. LC_MONETARY locale-name

4. LC_NUMERIC locale-name

5. LC_TIME locale-name

6. LC_TOD locale-name

7. LC_MESSAGES locale-name

8. LC_SYNTAX locale-name

If unsuccessful, setlocale() returns a NULL pointer and does not change the

program’s locale. Failure can result if:

v An incorrect category value is used.

v An incorrect locale value is used.

v The value of the environment variable used by setlocale() when the value of

locale is ″″ is an undefined or incorrect locale name.

Note: If setlocale() is called and an application has called pthread_create() to

create another thread, setlocale() returns a NULL pointer and does not

change the current locale.

Example

CELEBS07

/* CELEBS07

 This example sets the locale of the program to be

 Fr_FR.IBM−1047 and prints the string that is associated with

 the locale.

 */

#include <stdio.h>

#include <locale.h>

char *string;

int main(void)

{

 string = setlocale(LC_ALL, "Fr_FR.IBM−1047");

 if (string != NULL)

 printf(" %s \n",string);

}

setlocale

1818 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

CELEBS08

/* CELEBS08

 This example uses &setenv. to set the value of the

 environment variable LC_TIME to FRAN, calls &setloc. to set

 all categories to default values, uses &setloc. to query all

 categories, and uses &printf. to print results.

 */

#include <stdio.h>

#include <stdlib.h>

#include <env.h>

#include <locale.h>

int main(void)

{

 char *string;

 setenv("LC_TIME", "FRAN", 1);

 setlocale(LC_ALL, "");

 string = setlocale(LC_ALL, NULL);

 printf("string = %s \n", string);

}

Output

If the example is run with POSIX(OFF), the result of printf() is:

string = "S370,S370,S370,S370,FRAN,S370,S370,S370"

If the example is run with POSIX(ON), the result of printf() is:

string = "C,C,C,C,FRAN,C,C,C"

Example

The following example shows euro currency support:

/* EUROSAMP

 This example sets the locale of the program to be

 Fr_BE.IBM-1148 and Fr_BE.IBM-1148@euro and prints

 the string associated with each locale.

*/

#include <stdio.h>

#include <locale.h>

int main(void)

{

 char *string;

 string = setlocale(LC_ALL,"Fr_BE.IBM-1148");

 if (string != NULL)

 printf("String = %s \n",string);

 string = setlocale(LC_ALL,"Fr_BE.IBM-1148@euro");

 if (string != NULL)

 printf("String = %s \n",string);

}

Output

String = Fr_BE.IBM-1148

String = Fr_BE.IBM-1148@euro

setlocale

Chapter 3. Part 3. Library Functions 1819

Related Information

v “localdef.h” on page 56

v “locale.h” on page 57

v “getenv() — Get Value of Environment Variables” on page 761

v “localeconv() — Query Numeric Conventions” on page 1117

v “nl_langinfo() — Retrieve Locale Information” on page 1306

setlocale

1820 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setlogmask() — Set the Mask for the Control Log

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <syslog.h>

int setlogmask(int maskpri);

General Description

The setlogmask() function sets the log priority mask for the current process to

maskpri and returns the previous mask. If the maskpri argument is 0 (zero), the

current log mask is not modified. Calls by the current process to the syslog()

function with a priority not set in maskpri are rejected. The mask for an individual

priority pri is calculated by the macro LOG_MASK(pri) ; The mask for all priorities up

to and including toppri is given by the macro LOG_UPTO(toppri) The default log

mask allows all priorities to be logged.

Returned Value

If successful, setlogmask() returns the value of the previous mask setting.

No errors are defined.

Related Information

v “syslog.h” on page 87

v “closelog() — Close the Control Log” on page 304

v “openlog() — Open the System Control Log” on page 1324

v “syslog() — Send a Message to the Control Log” on page 2116

setlogmask

Chapter 3. Part 3. Library Functions 1821

||||

|
|
||

|

setnetent() — Open the Network Information Data Set

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

void setnetent(int stayopen);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

void setnetent(int stayopen);

General Description

The setnetent() function opens and rewinds the tcpip.HOSTS.ADDRINFO data set,

which contains information about known networks. If the stayopen flag is nonzero,

the tcpip.HOSTS.ADDRINFO remains open after each call to setnetent().

You can use the X_ADDR environment variable to specify a data set other than

tcpip.HOSTS.ADDRINFO.

Note: For more information on these data sets and environment variables,

tcpip.HOSTS.ADDRINFO, see z/OS Communications Server: IP

Configuration Guide, SC31-8775.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

setnetent() returns no values.

Related Information

v “netdb.h” on page 64

v “endhostent() — Close the Host Information Data Set” on page 470

v “endnetent() — Close Network Information Data Sets” on page 471

v “getnetbyaddr() — Get a Network Entry by Address” on page 811

v “getnetbyname() — Get a Network Entry by Name” on page 813

v “getnetent() — Get the Next Network Entry” on page 815

setnetent

1822 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

set_new_handler() — Register a Function for set_new_handler()

Standards

 Standards / Extensions C or C++ Dependencies

ISO/ANSI C++ C++ only

Format

#include <new>

new_handler set_new_handler(new_handler ph) throw();

General Description

The set_new_handler() function is part of the z/OS XL C++ error handling

mechanism. If you have registered a new-handler function with set_new_handler(),

that new-handler function will be called by the new operator if it is unable to allocate

storage. If you have not registered a new-handler function, the default behavior is

for the new operator to return NULL.

The argument supplied to set_new_handler() is of type new_handler as defined in

the header <new> (that is, a pointer to a function with a void return type and no

arguments).

For C++ applications that are compiled NOXPLINK, the variable containing the

address of the new handler function is statically bound with the executable. This

means that each executable has its own new handler function which is shared only

by the other functions that are linkedited as part of that executable. This is true

even if multiple threads are using that same executable. This means that you

cannot issue a set_new_handler() from within a non-XPLINK DLL if the new handler

function is to be invoked outside of that DLL.

For C++ applications that are compiled XPLINK, the new handler function is truly

global, so the DLL restriction is lifted. In a multithreaded environment consisting of

XPLINK executables, the new handler function created by a call to

set_new_handler() still applies to all threads in the (POSIX) process.

The required behavior of a new handler is to perform one of the following

operations:

v Make more storage available for allocation and then return.

v Call either abort() or exit(int).

v Throw an object of type bad_alloc.

Returned Value

Returns a value of type new_handler. The function pointed to is the function that

was previously called by the set_new_handler() function, or NULL if a new handler

function was not established.

Refer to z/OS XL C/C++ Language Reference for more information about z/OS XL

C++ error handling, including the new operator and the set_new_handler()

functions.

set_new_handler

Chapter 3. Part 3. Library Functions 1823

Related Information

v “new” on page 70

set_new_handler

1824 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setpeer() — Preset the Socket Peer Address

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int setpeer(int socket, struct sockaddr *address, int length, char *name);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

int setpeer(int socket, struct sockaddr *address, int length, char *name);

General Description

The setpeer() function presets the peer address associated with a socket.

Note: Neither AF_INET, AF_UNIX, nor AF_INET6 support this function.

Parameter Description

socket The socket descriptor.

address The address of the socket peer.

length The length of the socket address.

name The name of a field indicating the conditions of the peer request.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

setpeer() always returns −1.

Error Code Description

EINVAL The request is invalid or not supported.

Related Information

v “sys/socket.h” on page 89

setpeer

Chapter 3. Part 3. Library Functions 1825

setpgid() — Set Process Group ID for Job Control

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

General Description

Sets the process group ID (PGID) of a process within the session of the calling

process, so you can reassign a process to a different process group, or start a new

process group with the specified process as its group leader.

pid_t pid is the process ID (PID) of the process whose PGID you want to change.

This must either be the caller of setpgid() or one of its children, and it must be in

the caller’s session. It cannot be the PID of a session leader. If pid is zero, the

system uses the PID of the process calling setpgid().

pid_t pgid is the new PGID you want to assign to the process identified by pid. If

pgid indicates an existing process group, it must be in the caller’s session. If pgid is

zero, the system uses the PID of the process indicated by pid as the ID for the new

process group. The new group is created in the caller’s session.

Returned Value

If successful, setpgid() returns 0.

If unsuccessful, setpgid() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The value of pid matches the PID of a child of the calling process,

but the child has successfully run one of the EXEC functions.

EINVAL pgid is less than zero or has some other unsupported value.

EPERM The caller cannot change the PGID of the specified process. Some

possible reasons are:

v The specified process is a session leader.

v pid matches the PID of a child of the calling process, but the

child is not in the same session as the caller.

v pgid does not match the PID of the process specified by pid, and

it does not match the PGID of any other process in the caller’s

session.

ESRCH pid does not match the PID of the calling process or any of its

children.

setpgid

1826 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

Example

CELEBS09

/* CELEBS09

 This example sets the PGID.

 */

#define _POSIX_SOURCE

#include <unistd.h>

#include <sys/types.h>

#include <stdio.h>

main() {

 pid_t pid;

 int p1[2], p2[2];

 char c='?';

 if (pipe(p1) != 0)

 perror("pipe() #1 error");

 else if (pipe(p2) != 0)

 perror("pipe() #2 error");

 else

 if ((pid = fork()) == 0) {

 printf("child's process group id is %d\n", (int) getpgrp());

 write(p2[1], &c, 1);

 puts("child is waiting for parent to complete task");

 read(p1[0], &c, 1);

 printf("child's process group id is now %d\n", (int) getpgrp());

 exit(0);

 }

 else {

 printf("parent's process group id is %d\n", (int) getpgrp());

 read(p2[0], &c, 1);

 printf("parent is performing setpgid() on pid %d\n", (int) pid);

 if (setpgid(pid, 0) != 0)

 perror("setpgid() error");

 write(p1[1], &c, 1);

 printf("parent's process group id is now %d\n", (int) getpgrp());

 sleep(5);

 }

}

Output

parent’s process group id is 5767174

child’s process group id is 5767174

parent is performing setpgid() on pid 131084

parent’s process group id is now 5767174

child is waiting for parent to complete task

child’s process group id is now 131084

Related Information

v “unistd.h” on page 96

v “exec Functions” on page 486

v “getpgrp() — Get the Process Group ID” on page 824

v “setpgrp() — Set Process Group ID” on page 1828

v “setsid() — Create Session, Set Process Group ID” on page 1841

v “tcsetpgrp() — Set the Foreground Process Group ID” on page 2179

setpgid

Chapter 3. Part 3. Library Functions 1827

setpgrp() — Set Process Group ID

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

pid_t setpgrp(void);

General Description

If the calling process is not already a session leader, setpgrp() sets the process

group ID of the calling process to the process ID of the calling process. If a new

process group is created, it is created within the session of the calling process.

Returned Value

If successful, setpgrp() returns the new process group ID.

If unsuccessful, setpgrp() returns -1 and sets errno to one of the following values:

Error Code Description

EPERM The calling process is a session leader.

Related Information

v “unistd.h” on page 96

v “exec Functions” on page 486

v “getpgrp() — Get the Process Group ID” on page 824

v “setpgid() — Set Process Group ID for Job Control” on page 1826

v “setsid() — Create Session, Set Process Group ID” on page 1841

v “tcsetpgrp() — Set the Foreground Process Group ID” on page 2179

setpgrp

1828 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

setpriority() — Set Process Scheduling Priority

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/resource.h>

int setpriority(int which, id_t who, int priority);

General Description

setpriority() sets the scheduling priority of a process, process group or user.

Processes are specified by the values of the which and who arguments. The which

argument may be any one of the following set of symbols defined in the

sys/resource.h include file:

PRIO_PROCESS

indicates that the who argument is to be interpreted as a process

ID

PRIO_PGRP indicates that the who argument is to be interpreted as a process

group ID

PRIO_USER indicates that the who argument is to be interpreted as a user ID

The who argument specifies the ID (process, process group, or user). A 0 (zero)

value for the who argument specifies the current process, process group or user ID.

The priority argument specifies the scheduling priority. It is specified as a signed

integer in the range, -20 to 19. Negative priorities cause more favorable scheduling.

The default priority is 0. If the value specified to setrlimit() is less than the system’s

lowest supported priority value, the system’s lowest supported value is used; if it is

greater than the system’s highest supported value, the system’s highest supported

value is used. The setting of a process’s scheduling priority value has the

equivalent effect on a process’s nice value, since they both represent the process’s

relative CPU priority. For example, setting one’s scheduling priority value to its

maximum value (19) has the equivalent effect of increasing one’s nice value to its

maximum value ((2*NZERO)-1), and will be reflected on the nice(), getpriority() and

setpriority() functions.

If more than one process is specified, setpriority() sets the priorities of all of the

specified processes to the specified value.

Only a process with appropriate privilege can lower its priority.

Returned Value

If successful, setpriority() returns 0.

If unsuccessful, setpriority() returns −1 and sets errno to one of the following

values:

setpriority

Chapter 3. Part 3. Library Functions 1829

||||

|
|
||

|

Error Code Description

EACCES The priority is being changed to a lower value and the current

process does not have the appropriate privilege.

EINVAL The symbol specified in the which argument was not recognized, or

the value of the who argument is not a valid process ID, process

group ID or user ID.

ENOSYS The system does not support this function.

EPERM A process was located, but neither the real nor effective user ID of

the executing process match the effective user ID of the process

whose priority is to be changed.

ESRCH No process could be located using the which and who argument

values specified.

Related Information

v “sys/resource.h” on page 88

v “getpriority() — Get Process Scheduling Priority” on page 831

v “nice() — Change Priority of a Process” on page 1304

setpriority

1830 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setprotoent() — Open the Protocol Information Data Set

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

void setprotoent(int stayopen);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

void setprotoent(int stayopen);

General Description

The setprotoent() function opens and rewinds the /etc/protocol or the

tcpip.ETC.PROTO data set. If the stayopen flag is nonzero, the /etc/protocol or the

tcpip.ETC.PROTO data set remains open after each call.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

setprotoent() returns no values.

Related Information

v “netdb.h” on page 64

v “endprotoent() — Work with a Protocol Entry” on page 472

v “getprotobyname() — Get a Protocol Entry by Name” on page 833

v “getprotobynumber() — Get a Protocol Entry by Number” on page 835

v “getprotoent() — Get the Next Protocol Entry” on page 837

setprotoent

Chapter 3. Part 3. Library Functions 1831

||||

|
|
||

|

setpwent() — Reset User Database Search

The information for this function is included in “endpwent() — User Database

Functions” on page 473.

setpwent

1832 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setregid() — Set Real and Effective Group IDs

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int setregid(gid_t rgid, gid_t egid);

General Description

The setregid() function sets the real and/or effective GIDs for the calling process to

the values specified by the input real and effective GID values. If a specified value

is equal to -1, the corresponding real or effective GID of the calling process is left

unchanged.

A process with appropriate privileges can set the real and effective GID to any valid

GID value. An unprivileged process can only set the effective GID if the EGID

argument is equal to either the real, effective, or saved GID of the process. An

unprivileged process can only set the real GID if the RGID argument is equal to

either the real, effective, or saved GID of the process.

If the setregid() function is issued from multiple tasks within one address space, use

synchronization to ensure that the setregid() functions are not performed

concurrently. The execution of setregid() function concurrently within one address

space can yield unpredictable results.

The setregid() function does not change any supplementary GIDs of the calling

process.

Returned Value

If successful, setregid() returns 0.

If unsuccessful, neither of the group IDs will be changed, setregid() returns -1 and

sets errno to one of the following values:

Error Code Description

EINVAL The value of the rgid or egid argument is invalid or out-of-range.

EMVSSAF2ERR

The SAF call IRRSSU00 incurred an error.

EPERM The processes does not have appropriate privileges and a change

other than changing the real group ID to the saved set-group-ID, or

changing the effective group ID to the real group ID or the saved

group ID, was requested.

Related Information

v “unistd.h” on page 96

v “exec Functions” on page 486

setregid

Chapter 3. Part 3. Library Functions 1833

||||

|
|
||

|

v “getuid() — Get the Real User ID” on page 878

v “setreuid() — Set Real and Effective User IDs” on page 1835

v “setuid() — Set the Effective User ID” on page 1857

setregid

1834 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setreuid() — Set Real and Effective User IDs

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

General Description

The setreuid() function sets the real and/or effective UIDs for the calling process to

the values specified by the input real and effective UID values. If a specified value

is equal to -1, the corresponding real or effective UID of the calling process is left

unchanged.

A process with appropriate privileges can set the real and effective UID to any valid

UID value. An unprivileged process can only set the effective UID if the EUID

argument is equal to either the real, effective, or saved UID of the process. An

unprivileged process can only set the real UID if the RUID argument is equal to

either the real, effective, or saved UID of the process.

The setreuid() function is not supported from an address space running multiple

processes, since it would cause all processes in the address space to have their

security environment changed unexpectedly.

setreuid() can be used by daemon processes to change the identity of a process in

order for the process to be used to run work on behalf of a user. In UNIX, changing

the identify of a process is done by changing the real and effective UIDs and the

auxiliary groups. In order to change the identity of the process on MVS completely,

it is necessary to also change the MVS security environment. The identity change

will only occur if the EUID value is specified, changing just the real UID will have no

effect on the MVS environment.

The setreuid() function invokes MVS SAF services to change the MVS identity of

the address space. The MVS identity that is used is determined as follows:

v If an MVS user ID is already known by the kernel from a previous call to a kernel

function (for example, getpwnam()) and the UID for this user ID matches the UID

specified on the setreuid() call, then this user ID is used.

v For nonzero target UIDs, if there is no saved user ID or the UID for the saved

user ID does not match the UID requested on the setreuid() call, the setreuid()

function queries the security database (for example, using getpwnam()) to

retrieve a user ID. The retrieved user ID is then used.

v If the target UID=0 and a user ID is not known, the setreuid() function always

sets the MVS user ID to BPXROOT or the value specified on the SUPERUSER

parm in sysparms. BPXROOT is set up during system initialization as a

superuser with a UID=0. The BPXROOT user ID is not defined to the

BPX.DAEMON FACILITY class profile. This special processing is necessary to

prevent a superuser from gaining daemon authority.

setreuid

Chapter 3. Part 3. Library Functions 1835

||||

|
|
||

|

v A nondaemon superuser that attempts to set a user ID to a daemon superuser

UID fails with an EPERM.

When the MVS identity is changed, the auxiliary list of groups is also set to the list

of groups for the new user ID.

If the setreuid() function is issued from multiple tasks within one address space, use

synchronization to ensure that the setreuid() functions are not performed

concurrently. The execution of setreuid() function concurrently within one address

space can yield unpredictable results.

Returned Value

If successful, setreuid() returns 0.

If unsuccessful, neither of the group IDs will be changed, setreuid() returns -1, and

sets errno to one of the following values:

Error Code Description

EINVAL The value of the rgid or egid argument is invalid or out-of-range.

EMVSSAF2ERR

The SAF call IRRSSU00 incurred an error.

EPERM The processes does not have appropriate privileges and a change

other than changing the real group ID to the saved set-group-ID, or

changing the effective group ID to the real group ID or the saved

group ID, was requested.

Related Information

v “unistd.h” on page 96

v “exec Functions” on page 486

v “getuid() — Get the Real User ID” on page 878

v “seteuid() — Set the Effective User ID” on page 1787

v “setuid() — Set the Effective User ID” on page 1857

setreuid

1836 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setrlimit() — Control Maximum Resource Consumption

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/resource.h>

int setrlimit(int resource, const struct rlimit *rlp);

General Description

The setrlimit() function sets resource limits for the calling process. A resource limit is

a pair of values; one specifying the current (soft) limit, the other a maximum (hard)

limit.

The soft limit may be modified to any value that is less than or equal to the hard

limit. For certain resource values, (RLIMIT_CPU, RLIMIT_NOFILE, RLIMIT_AS), the soft

limit cannot be set lower than the existing usage.

The hard limit may be lowered to any value that is greater than or equal to the soft

limit. The hard limit can be raised only by a process which has superuser authority.

Both the soft limit and hard limit can be changed by a single call to setrlimit().

The value RLIM_INFINITY defined in <sys/resource.h>, is considered to be larger

than any other limit value. If a call to getrlimit() returns RLIM_INFINITY for a

resource, it means the implementation does not enforce limits on that resource.

Specifying RLIM_INFINITY as any resource limit values on a successful call to

setrlimit() inhibits enforcement of that resource limit.

The resource argument specifies which resource to set the hard and/or soft limits

for, and may be one of the following values:

RLIMIT_CORE

The maximum size of a dump of memory (in bytes) allowed for the

process. A value of 0 (zero) prevents file creation. Dump file

creation will stop at this limit. .

RLIMIT_CPU The maximum amount of CPU time (in seconds) allowed for the

process. If the limit is exceeded, a SIGXCPU signal is sent to the

process and the process is granted a small CPU time extension to

allow for signal generation and delivery. If the extension is used up,

the process is terminated with a SIGKILL signal. An attempt to set

the CPU limit lower than that already used will result in an EINVAL

errno.

RLIMIT_DATA The maximum size of the break value for the process, in bytes. In

this implementation, this resource always has a hard and soft limit

value of RLIM_INFINITY. A call to setrlimit() to set this resource to

any value other than RLIM_INFINITY will fail with an errno of

EINVAL.

setrlimit

Chapter 3. Part 3. Library Functions 1837

||||

|
|
||

|

RLIMIT_FSIZE

The maximum file size (in bytes) allowed for the process. A value of

0 (zero) prevents file creation. If the size is exceeded, a SIGXFSZ

signal is sent to the process. If the process is blocking, catching, or

ignoring SIGXFSZ, continued attempts to increase the size of a file

beyond the limit will fail with an errno of EFBIG.

RLIMIT_NOFILE

The maximum number of open file descriptors allowed for the

process. This number is one greater than the maximum value that

may be assigned to a newly created descriptor. (That is, it is

one-based.) Any function that attempts to create a new file

descriptor beyond the limit will fail with an EMFILE errno. An

attempt to set the open file descriptors limit lower than that already

used will result in an EINVAL errno.

Restrictions: This value may not exceed 524288

RLIMIT_STACK

The maximum size of the stack for a process, in bytes. Note that in

z/OS UNIX services, the stack is a per-thread resource. In this

implementation, this resource always has a hard and soft limit value

of RLIM_INFINITY. A call to setrlimit() to set this resource to any

value other than RLIM_INFINITY will fail with an errno of EINVAL.

RLIMIT_AS The maximum address space size for the process, in bytes. If the

limit is exceeded, malloc() and mmap() functions will fail with an

errno of ENOMEM. Also, automatic stack growth will fail.

The rlp argument points to a rlimit structure. This structure contains the following

members:

rlim_cur The current (soft) limit

rlim_max The maximum (hard) limit

Refer to the <sys/resource.h> header for more detail.

The resource limit values are propagated across exec and fork.

Special Behavior for z/OS UNIX Services

An exception exists for exec processing in conjunction with daemon support. If a

daemon process invokes exec and it had previously invoked setuid() before exec,

the RLIMIT_CPU, RLIMIT_AS, RLIMIT_CORE, RLIMIT_FSIZE, and RLIMIT_NOFILE limit

values are set based on the limit values specified in the kernel parmlib member

BPXPRMxx.

For processes which are not the only process within an address space, the

RLIMIT_CPU and RLIMIT_AS limits are shared with all the processes within the

address space. For RLIMIT_CPU, when the soft limit is exceeded, action will be taken

on the first process within the address space. If the action is termination, all

processes within the address space will be terminated.

In addition to the RLIMIT_CORE limit values, the dump file defaults are set by

SYSMDUMP defaults. Refer to z/OS MVS Initialization and Tuning Reference for

more information on setting up SYSMDUMP defaults using the IEADMR00 parmlib

member.

setrlimit

1838 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Dumps of memory are taken in 4160 byte increments. Therefore, RLIMIT_CORE

values affect the size of memory dumps in 4160 byte increments. For example, if

the RLIMIT_CORE soft limit value is 4000, the dump will contain no data. If the

RLIMIT_CORE soft limit value is 8000, the maximum size of a memory dump is

4160 bytes.

When setting RLIMIT_NOFILE, the hard limit cannot exceed the system defined

limit of 524288.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on memory sizes of 2 gig and larger.

File size and offset fields will be enlarged to 63 bits in width so any other function

operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, setrlimit() returns 0.

If unsuccessful, setrlimit() returns -1 and sets errno to one of the following values:

Error Code Description

EINVAL An invalid resource was specified, or the soft limit to set exceeds

the hard limit to set, the soft limit to set is below the current usage,

or the resource does not allow any value other than RLIM_INFINITY.

EPERM The limit specified to setrlimit() would have raised the maximum

limit value, and the calling process does not have appropriate

privileges.

Related Information

v “stropts.h” on page 86

v “sys/resource.h” on page 88

v “brk() — Change Space Allocation” on page 216

v “fork() — Create a New Process” on page 632

v “getdtablesize() — Get the File Descriptor Table Size” on page 759

v “getrlimit() — Get Current/Maximum Resource Consumption.” on page 846

v “malloc() — Reserve Storage Block” on page 1172

v “open() — Open a File” on page 1313

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

v “sigaltstack() — Set and/or Get Signal Alternate Stack Context” on page 1901

v “sysconf() — Determine System Configuration Options” on page 2111

v “ulimit() — Get/Set Process File Size Limits” on page 2287

setrlimit

Chapter 3. Part 3. Library Functions 1839

setservent() — Open the Network Services Information Data Set

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <netdb.h>

void setservent(int stayopen);

Berkeley Sockets

#define _OE_SOCKETS

#include <netdb.h>

void setservent(int stayopen);

General Description

The setservent() function opens and rewinds the /etc/services or the

tcpip.ETC.SERVICES data set. For more information on /etc/services or the

tcpip.ETC.SERVICES data set, see z/OS Communications Server: IP Configuration

Guide. If the stayopen flag is nonzero, the tcpip.ETC.SERVICES data set remains

open after each call.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

setservent() returns no values.

Related Information

v “netdb.h” on page 64

v “endservent() — Close Network Services Information Data Sets” on page 474

v “getservbyname() — Get a Server Entry by Name” on page 852

v “getservent() — Get the Next Service Entry” on page 856

setservent

1840 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

setsid() — Create Session, Set Process Group ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

pid_t setsid(void);

General Description

Creates a new session with the calling process as its session leader. The caller

becomes the process group leader of a new process group. The calling process

must not be a process group leader already. The caller does not have a controlling

terminal.

The process group ID (PGID) of the new process group is equal to the process ID

(PID) of the caller. The caller starts as the only process in the new process group

and in the new session.

Returned Value

If successful, setsid() returns the value of the caller’s new PGID.

If unsuccessful, setsid() returns −1 and sets errno to one of the following values:

Error Code Description

EPERM One of the following error conditions exists:

v The caller is already a process group leader.

v The caller’s PID matches the PGID of some other process.

Example

CELEBS10

/* CELEBS10

 This example creates a new session.

 */

#define _POSIX_SOURCE

#include <unistd.h>

#include <sys/types.h>

#include <stdio.h>

main() {

 pid_t pid;

 int p[2];

 char c='?';

 if (pipe(p) != 0)

 perror("pipe() error");

setsid

Chapter 3. Part 3. Library Functions 1841

||||

|
|
|
|

||

|

else

 if ((pid = fork()) == 0) {

 printf("child's process group id is %d\n", (int) getpgrp());

 write(p[1], &c, 1);

 setsid();

 printf("child's process group id is now %d\n", (int) getpgrp());

 exit(0);

 }

 else {

 printf("parent's process group id is %d\n", (int) getpgrp());

 read(p[0], &c, 1);

 sleep(5);

 }

}

Output

child’s process group id is 262152

child’s process group id is now 262150

parent’s process group id is 262152

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “exec Functions” on page 486

v “_exit() — End a Process and Bypass the Cleanup” on page 496

v “fork() — Create a New Process” on page 632

v “getpid() — Get the Process ID” on page 826

v “kill() — Send a Signal to a Process” on page 1055

v “setpgid() — Set Process Group ID for Job Control” on page 1826

v “sigaction() — Examine or Change a Signal Action” on page 1880

setsid

1842 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setsockopt() — Set Options Associated with a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name,

 const void *option_value, socklen_t option_length);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/types.h>

#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name,

 char *option_value, int *option_length);

ip_mreq Structure

To include the ip_mreq structure in your program, add the following code:

#define _XOPEN_SOURCE 500

#include <netinet/in.h>

or

#define _OPEN_SYS_SOCK_EXT3

#include <netinet/in.h>

group_req Structure

To include the group_req structure in your program, add the following code:

#define _OPEN_SYS_SOCK_EXT3

#include <netinet/in.h>

group_source_req Structure

To include the group_source_req structure in your program, add the following code:

#define _OPEN_SYS_SOCK_EXT3

#include <netinet/in.h>

ipv6_mreq Structure

To include the ipv6_mreq structure in your program, add the following code:

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/in.h>

icmp6_filter Structure

To include the icmp6_filter structure in your program, add the following code:

setsockopt

Chapter 3. Part 3. Library Functions 1843

||||

|
|
||

|

|

|

|
|

|

|

|
|

#define _OPEN_SYS_SOCK_IPV6

#include <netinet/icmp6.h>

General Description

The setsockopt() function sets options associated with a socket. Options can exist

at multiple protocol levels.

Parameter Description

socket The socket descriptor.

level The level for which the option is being set.

option_name The name of a specified socket option.

option_value The pointer to option data.

option_length The length of the option data.

When manipulating socket options, you must specify the level at which the option

resides and the name of the option. To manipulate options at the socket or IP level,

the level parameter must be set to SOL_SOCKET or IPPROTO_IP as defined in

sys/socket.h. To manipulate options at any other level, such as the TCP level,

supply the appropriate protocol number for the protocol controlling the option. The

getprotobyname() call can be used to return the protocol number for a named

protocol.

The option_value and option_length parameters are used to pass data used by the

particular set command. The option_value parameter points to a buffer containing

the data needed by the set command. The option_value parameter is optional and

can be set to the NULL pointer, if data is not needed by the command. The

option_length parameter must be set to the size of the data pointed to by

option_value.

All of the socket-level options except SO_LINGER expect option_value to point to

an integer and option_length to be set to the size of an integer. When the integer is

nonzero, the option is enabled. When it is zero, the option is disabled. The

SO_LINGER option expects option_value to point to a linger structure, as defined

in sys/socket.h. This structure is defined in the following example:

struct linger

{

 int l_onoff; /* option on/off */

 int l_linger; /* linger time */

};

The l_onoff field is set to 0 if the SO_LINGER option is begin disabled. A nonzero

value enables the option. The l_linger field specifies the amount of time to linger on

close. The units of l_linger are seconds.

The following options are recognized at the IP level:

Option Description

IP_ADD_MEMBERSHIP

This option is used to join a multicast group on a specific interface

(an interface has to be specified with this option). Only applications

that want to receive multicast datagrams need to join multicast

groups. Applications that only transmit will not need to do so.

 The multicast IP address and the interface IP address will be

passed in the following structure available in netinet/in.h:

setsockopt

1844 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

struct ip_mreq

{

 struct in_addr imr_multiaddr; /* IP multicast addr of group */

 struct in_addr imr_interface; /* local IP addr of interface */

};

If INADDR_ANY is specified on the interface address of the mreq

structure passed a default interface will be chosen as follows:

v If the group address specified in the mreq structure was specified

on a GATEWAY statement use that interface.

v If 224.0.0.0 was specified on GATEWAY statement use that

interface.

v If DEFAULTNET was specified and is multicast capable use that

interface.

IP_ADD_SOURCE_MEMBERSHIP

This option is used to join a source-specific multicast group

specified by the ip_mreq_source structure. The ip_mreq_source

structure is defined in netinet/in.h.

IP_BLOCK_SOURCE

This option is used to block from a given source to a given

multicast group (e.g., if the user ″mutes″ that source). The source

multicast group is specified by the ip_mreq_source structure which

is defined in netinet/in.h.

IP_DROP_MEMBERSHIP

This option is used to leave a multicast group.

 The multicast IP address and the interface IP address will be

passed in the following structure available in netinet/in.h:

struct ip_mreq

{

 struct in_addr imr_multiaddr; /* IP multicast addr of group */

 struct in_addr imr_interface; /* local IP addr of interface */

};

If INADDR_ANY is specified on the interface address of the mreq

structure passed the system will drop the first group that matches

the group (class D) address without regard to the interface.

IP_DROP_SOURCE_MEMBERSHIP

This option is used to leave a source-specific multicast group

specified by the ip_mreq_source structure. The ip_mreq_source

structure is defined in netinet/in.h.

IP_MULTICAST_IF

Sets the interface for sending outbound multicast datagrams from

this socket application. Multicast datagrams will be transmitted only

on one interface at a time. An IP address is passed using struct

in_addr.

 If INADDR_ANY is specified for the interface address passed a

default interface will be chosen as follows:

v If 224.0.0.0 was specified on GATEWAY statement use that

interface.

v If DEFAULTNET was specified and is multicast capable use that

interface.

IP_MULTICAST_LOOP

Enables/disables loopback of outgoing multicast datagrams. Default

setsockopt

Chapter 3. Part 3. Library Functions 1845

|
|
|
|

|
|
|
|
|

|
|
|
|

is enable. When it is enabled, multicast applications that have

joined the outgoing multicast group can receive a copy of the

multicast datagrams destined for that address/port pair. The

loopback indicator is passed in as u_char. 0 is specified to disable

loopback. 1 is specified to enable loopback.

IP_MULTICAST_TTL

Sets the IP time-to-live of outgoing multicast datagrams. Default

value is 1 (that is, multicast only to the local subnet). The TTL value

is passed in as u_char.

IP_UNBLOCK_SOURCE

This option is used to undo the operation performed with the

IP_BLOCK_SOURCE option (e.g., if the user ″mutes″ that source).

The source group is specified by the ip_mreq_source structure

which is defined in netinet/in.h.

MCAST_BLOCK_SOURCE

This option is used to block data from a given source to a given

group (e.g., if the user ″mutes″ that source). The source is specified

by the group_source_req structure which is defined in netinet/in.h.

MCAST_JOIN_GROUP

This option is used to to join an any-source group. The group is

specified by the group_req structure. The group_req structure is

defined in netinet/in.h.

MCAST_JOIN_SOURCE_GROUP

This option is used to join a source-specific group. The source is

specified by the group_source_req structure which is defined in

netinet/in.h.

MCAST_LEAVE_GROUP

This option is used to to leave an any-source group. The group is

specified by the group_req structure. The group_req structure is

defined in netinet/in.h.

MCAST_LEAVE_SOURCE_GROUP

This option is used to leave a source-specific group. The source is

specified by the group_source_req structure which is defined in

netinet/in.h.

MCAST_UNBLOCK_SOURCE

This option is used to undo the operation performed with the

MCAST_BLOCK_SOURCE option (e.g., if the user then ″unmutes″

the source). The source is specified by the group_source_req

structure which is defined in netinet/in.h.

The following options are recognized at IPv6 level:

Option Description

IPV6_CHECKSUM

For a RAW (non-ICMPv6) socket, this option instructs the kernel to

compute and store a checksum for output and verifies the received

checksum on input. This prevents applications from having to

perform source address selection on the packets sent. This option

specifies an integer value into the user data where the checksum is

located. This option can be disabled by specifying an option value

of -1.

setsockopt

1846 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

IPV6_DONTFRAG

This option turns off the automatic inserting of a fragment header in

the packet for UDP and raw sockets.

IPV6_DSTOPTS

The application can remove any sticky destination options header

by calling setsockopt() for this option with a zero option length.

IPV6_HOPOPTS

The application can remove any sticky hop-by-hop options header

by calling setsockopt() for this option with a zero option length.

IPV6_JOIN_GROUP

Controls the receipt of multicast packets by joining the multicast

group specified by the ipv6_mreq structure that is passed. The

ipv6_mreq structure is defined in netinet/in.h.

IPV6_LEAVE_GROUP

Controls the receipt of multicast packets by leaving the multicast

group specified by the ipv6_mreq structure that is passed. The

ipv6_mreq structure is defined in netinet/in.h.

IPV6_MULTICAST_HOPS

Sets the hop limit for outgoing multicast packets. The hop limit

value is passed in as an int.

IPV6_MULTICAST_IF

Sets the interface for outgoing multicast packets. An interface index

is used to specify the interface. It is passed in as a u_int.

IPV6_MULTICAST_LOOP

If a multicast datagram is sent to a group to which the sending host

itself belongs (on the outgoing interface), a copy of the datagram is

looped back by the IP layer for local delivery if this option is set to

one. If this option is set to zero, a copy is not looped back. Other

option values return an errno of EINVAL. The default is one

(loopback). The option value is passed in as an int.

IPV6_NEXTHOP

Specifies the next hop for the datagram as a socket address

structure.

IPV6_PATHMTU

This is a getsockopt() option only. It is used to retrieve the current

path MTU value for the destination of a connected socket.

IPV6_PKTINFO

Directs packets to be sent out over the specified interface with the

specified IP address as the packet’s source. The option value is

passed in as an in6_pktinfo structure as defined in netinet/in.h.

IPV6_RECVDSTOPTS

To receive destination options header this option must be enabled.

IPV6_RECVHOPLIMIT

When this option is enabled, the received hop limit from an

incoming packet will be returned to the application as ancillary data

on recvmsg(). The option value is specified as an int. A non-zero

value enables the option, zero disables the option.

setsockopt

Chapter 3. Part 3. Library Functions 1847

IPV6_RECVHOPOPTS

To receive a hop-by-hop options header this option must be

enabled.

IPV6_RECVPATHMTU

Enables the receipt of of the IPV6_PATHMTU ancillary data item.

IPV6_RECVPKTINFO

When this option is enabled, the destination address from an

incoming packet and the interface over which the packet was

received will be returned to the application as ancillary data on

recvmsg(). The option value is specified as an int. A non-zero value

enables the option, zero disables the option.

IPV6_RECVRTHDR

To receive a routing header this option must be enabled.

IPV6_RECVTCLASS

To receive the traffic class this option must be enabled.

IPV6_RTHDR The application can remove any sticky routing header by calling

setsockopt() for this option with a zero option length.

IPV6_RTHDRDSTOPTS

The application can remove any sticky destination options header

by calling setsockopt() for this option with a zero option length.

IPV6_TCLASS To specify the traffic class value this option must be enabled.

IPV6_UNICAST_HOPS

Used to control hop limit in outgoing unicast IPv6 packets. The hop

limit value is passed in as an int.

IPV6_USE_MIN_MTU

Indicates whether the IP layer will use the minimu MTU size (1280)

for sending packets, bypassing path MTU discovery. The option

value is passed back as int. A value of -1 causes the default values

for unicast (disabled) and multicast (enabled) destinations to be

used. A value of 0 disables this option for unicast and multicast

destinations. A value of 1 enables this option for unicast and

multicast destinations and the minimum MTU size will be used.

IPV6_V6ONLY Used to determine whether a socket is restricted to IPv6

communications only. The default setting is off. The option value is

passed in as an int. A non-zero value means the option is enabled

(socket can only be used for IPv6 communications). 0 means the

option is disabled.

Note: To use these options, you must use the Feature Test Macro #define

_OPEN_SYS_SOCK_IPV6.

The following options are recognized at the ICMPv6 level:

Option Description

ICMP6_FILTER

Used to filter ICMPv6 messages. The option value is passed in as

an icmp6_filter structure. The icmp6_filter structure is defined in

netinet/icmp6.h.netinet/icmp6.h.

The following options are recognized at the socket level:

setsockopt

1848 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Option Description

SO_BROADCAST

Toggles the ability to broadcast messages. If enabled, this option

allows the application program to send broadcast messages over

socket, if the interface specified in the destination supports

broadcasting of packets. This option has no meaning for stream

sockets.

SO_DEBUG Turns on recording of debugging information. This option enables or

disables debugging in the underlying protocol modules. This option

takes an int value.

SO_KEEPALIVE

Toggles the TCP keep-alive mechanism for a stream socket. When

activated, the keep-alive mechanism periodically sends a packet on

an otherwise idle connection. If the remote TCP does not respond

to the packet or to retransmissions of the packet, the connection is

terminated with the error ETIMEDOUT.

SO_LINGER Lingers on close if data is present. When this option is enabled and

there is unsent data present when close() is called, the calling

application program is blocked during the close() call, until the data

is transmitted or the connection has timed out. If this option is

disabled, the TCP/IP address space waits to try to send the data.

Although the data transfer is usually successful, it cannot be

guaranteed, because the TCP/IP address space waits only a finite

amount of time trying to send the data. The close() call returns

without blocking the caller. This option has meaning only for stream

sockets.

SO_OOBINLINE

Toggles the reception of out-of-band data. When this option is

enabled, it causes out-of-band data to be placed in the normal data

input queue as it is received, making it available to recv(),

recvfrom(), and recvmsg() without having to specify the MSG_OOB

flag in those calls. When this option is disabled, it causes

out-of-band data to be placed in the priority data input queue as it

is received, making it available to recv(), recvfrom(), and recvmsg()

only by specifying the MSG_OOB flag in those calls. This option

has meaning only for stream sockets.

_SO_PROPAGATEUSERID

Toggles propagating a user ID (UID) over a socket. When enabled,

user (UID) information is extracted from the system when the

connect() function is invoked and presented over the socket when

the accept() function is invoked.

SO_RCVBUF Sets receive buffer size. This option takes an int value.

SO_REUSEADDR

 Toggles local address reuse. When enabled, this option allows local

addresses that are already in use to be bound. This alters the

normal algorithm used in the bind() call.

 The system checks at connect time to ensure that the local address

and port do not have the same foreign address and port. The error

EADDRINUSE is returned if the association already exists.

setsockopt

Chapter 3. Part 3. Library Functions 1849

|
|
|

|
|
|

After the ’SO_REUSEADDR’ option is active, the following situation

is supported:

 A server can bind() the same port multiple times as long as every

invocation uses a different local IP address and the wildcard

address INADDR_ANY is used only one time per port.

SO_SNDBUF Sets send buffer size. This option takes an int value.

SO_SECINFO Toggles receiving security information. When enabled on an

AF_UNIX UDP socket, the recvmsg() function will return security

information about the sender of each datagram as ancillary data.

This information contains the sender’s user ID, uid, gid, and

jobname and it is mapped by the secsinfo structure in

sys/socket.h.

Note: To use these options, you must use the Feature Test Macro #define

_OPEN_SYS_SOCK_IPV6.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, setsockopt() returns 0.

If unsuccessful, setsockopt() returns −1 and sets errno to one of the following

values:

Error Code Description

EADDRNOTAVAIL

The ipi6_addr is not available for use on the ipi6_ifindex interface or

the tuple consisting of socket, interface, and multicast group values

does not exist..

EBADF The socket parameter is not a valid socket descriptor.

EFAULT Using option_value and option_length parameters would result in an

attempt to access storage outside the caller’s address space.

EHOSTUNREACH

No route to the destination exists over the interface specified by

ifi6_ifindex.

EINVAL The specified option is invalid at the specified socket level or the

socket has been shut down.

ENETDOWN The interface specified by ipi6_ifindex is not enabled for IPv6 use.

ENOBUFS Insufficient system resources are available to complete the call or a

maximum of 64 source filters can be specified per multicast group,

interface pair.

ENOPROTOOPT

The option_name parameter is unrecognized, or the level

parameter is not SOL_SOCKET.

ENOSYS The function is not implemented. You attempted to use a function

that is not yet available.

setsockopt

1850 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|
|
|

|
|
|

||
|
|

ENOTSOCK The descriptor is for a file, not for a socket.

ENXIO The interface specified by ipi6_ifindex does not exist.

Example

The following are examples of the setsockopt() call. See “getsockopt() — Get the

Options Associated with a Socket” on page 861 for examples of how the

getsockopt() options set are queried.

int rc;

int s;

int option_value;

struct linger l;

int setsockopt(int s, int level, int option_name, char *option_value,

 int option_len); ...
/* I want out of band data in the normal input queue */

option_value = 1;

rc = setsockopt(s, SOL_SOCKET, SO_OOBINLINE, (char *) &option_value, sizeof(int));

 ...
/* I want to linger on close */

l.l_onoff = 1;

l.l_linger = 100;

rc = setsockopt(s, SOL_SOCKET, SO_LINGER, (char *) &l, sizeof(l));

Related Information

v “netinet/in.h” on page 68

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “fcntl() — Control Open File Descriptors” on page 527

v “getprotobyname() — Get a Protocol Entry by Name” on page 833

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “socket() — Create a Socket” on page 1970

setsockopt

Chapter 3. Part 3. Library Functions 1851

setsourcefilter — Set source filter

Standards

 Standards / Extensions C or C++ Dependencies

RFC3678 both z/OS V1.9

Format

#define _XOPEN_SYS_SOCK_EXT3

#include <netinet/in.h>

int setsourcefilter(int s, uint32_t interface, struct sockaddr *group,

 socklen_t grouplen, uint32_t fmode, uint32_t numsrc,

 struct sockaddr_storage *slist);

General Description

This function allow applications to set and replace the current multicast filtering

state for a tuple consisting of socket, interface, and multicast group values.

A multicast filter is described by a filter mode, which is MCAST_INCLUDE or

MCAST_EXCLUDE, and a list of source addresses which are filtered.

This function is protocol-independent. It can be on either AF_INET or AF_INET6

sockets of the type SOCK_DGRAM or SOCK_RAW.

If the function is unable to obtain the required storage, control will not return to the

caller. Instead the application will terminate due to an out of memory condition (if

the reserve stack is available and the caller is not XPLINK), or it will terminate with

an abend indicating that storage could not be obtained.

Argument

Description

s Identifies the socket.

interface

Holds the local the index of the interface.

group Points to either a sockaddr_in structure for IPv4 or a sockaddr_in6 structure

for IPv6 that holds the IP multicast address of the group.

grouplen

Gives the length of the sockaddr_in or sockaddr_in6 structure.

fmode Identifies the filter mode. The value of this field will be either

MCAST_INCLUDE or MCAST_EXCLUDE, which are likewise defined in

<netinet/in.h>.

numsrc

Holds the number of source addresses in the slist array.

slist Points to an array of IP addresses of sources to include or exclude

depending on the filter mode.

Returned Value

If successful, the function returns 0. Otherwise, it returns -1 and sets errno to one of

the following values.

setsourcefilter

1852 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|

||

|
|

||
|

|
|

||
|
|

|
|

||
|

|

|
|

errno Description

EBADF

s is not a valid socket descriptor.

EAFNOSUPPORT

The address family of the input sockaddr is not AF_INET or AF_INET6.

EPROTOTYPE

The socket s is not of type SOCK_DGRAM or SOCK_RAW.

EINVAL

Interface or group is not a valid address, or the socket s has already

requested multicast setsockopt options (refer to z/OS Communications

Server: IP Sockets Application Programming Interface Guide and Reference

for details.) Or if the group address family is AF_INET and grouplen is not

at least size of sockaddr_in or if the group address family is AF_INET6 and

grouplen is not at least size of sockaddr_in6 or if grouplen is not at least

size of sockaddr_in.

ENOBUFS

The number of the source addresses exceeds the allowed limit.

 Related Information

v “netinet/in.h” on page 68

v “getsourcefilter — Get source filter” on page 868

setsourcefilter

Chapter 3. Part 3. Library Functions 1853

||

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|

|

|

setstate() — Change Generator for random()

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

char *setstate(const char *state);

General Description

The setstate() function allows switching between state arrays used by the random()

function once a state has been initialized. The array defined by the state argument

is used for further random-number generation by the calling thread until initstate() is

called or setstate() is called again. The setstate() function returns a pointer to the

previous state array.

After initialization, a state array can be restarted at a different point by calling

setstate() with the desired state, followed by srandom() with the desired seed.

Returned Value

If successful, setstate() returns a pointer to the previous state array.

If unsuccessful, setstate() returns a NULL pointer. The function will fail and write a

message to standard error if it detects that the state information has been

damaged.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “initstate() — Initialize Generator for random()” on page 975

v “rand() — Generate Random Number” on page 1598

v “rand_r() — Pseudo-Random Number Generator” on page 1600

v “random() — A Better Random-Number Generator” on page 1601

v “srandom() — Use Seed to Initialize Generator for random()” on page 2004

setstate

1854 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

set_terminate() — Register a Function for terminate()

Standards

 Standards / Extensions C or C++ Dependencies

ANSI/ISO C++ C++ only

Format

#include <exception>

terminate_handler set_terminate(terminate_handler ph) throw();

General Description

The set_terminate() function is part of the z/OS XL C++ error handling mechanism.

The argument supplied to set_terminate() is of type terminate_handler as defined in

the header <exception> (that is, a pointer to a function with a void return type and

no arguments). The function specified will be called by the terminate() function.

Note that the function registered for terminate() must terminate execution of the

program without returning to its caller(). If set_terminate() has not yet been called,

then terminate() calls a system-defined default terminate handler, which calls

abort().

In a multithreaded environment, the terminate function created by the issuance of a

set_terminate() call applies to all threads in the (POSIX) process. If a thread throws

an exception which is not caught by that thread of execution, then terminate() is

called. The default terminate() action calls abort() which by default cause a

SIGABRT signal. If there is no signal handler, then SIGABRT terminates the

process. You can override this with a thread-level termination by supplying a

function which invokes pthread_exit() as a terminate function. This terminates the

thread but not the process.

Returned Value

set_terminate() returns the address of the previous terminate_handler.

Refer to z/OS XL C/C++ Language Reference for more information about z/OS XL

C++ exception handling, including the set_terminate() function.

Related Information

v “exception” on page 44

v “terminate() — Terminate After Failures in C++ Error Handling” on page 2192

set_terminate

Chapter 3. Part 3. Library Functions 1855

_SET_THLIIPADDR() — Set the Client’s IP Address

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#include <sys/__ussos.h>

int _SET_THLIIPADDR(ln, ipaddr);

General Description

The _SET_THLIIPADDR() macro provides a way for daemons to set a client’s IP

address.

_SET_THLIIPADDR() takes the following arguments:

ln The length of the IP address as specified by ipaddr. The IP address

length can be between 1 and 16 inclusive. The argument is

specified as an unsigned int.

ipaddr Pointer to the IP address.

Usage Notes

The intent of the _SET_THLIIPADDR() macro is to provide a way for daemons to

set the IP address of a client for Security Authorization Facility (SAF) exits when

performing security related functions.

Restrictions

Results are unpredictable if _SET_THLIIPADDR() is issued outside of the z/OS

UNIX environment.

Returned Value

If the client’s IP address is set, _SET_THLIIPADDR() returns nonzero.

_SET_THLIIPADDR() returns 0 and does not set the IP address of the client when:

v The base level of z/OS UNIX is not OS/390 R5.

v The setting of the IP address is not supported.

v The length of the IP address is less then 1 or greater than 16.

Related Information

v “sys/__ussos.h” on page 91

_SET_THLIIPADDR

1856 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setuid() — Set the Effective User ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int setuid(uid_t uid);

General Description

Sets the real, effective, or saved set user IDs (UIDs) for the current process to uid.

If uid is the same as the real UID or the saved set-user-ID of the process, setuid()

always succeeds and sets the effective UID. the real user ID and saved set-user-ID

will remain unchanged.

The setuid() function will not affect the supplementary group list in any way.

If uid is not the same as the real UID of the process, setuid() succeeds only if the

process has appropriate privileges. If the process has such privileges, setuid() sets

the real group ID (UID), effective UID, and saved set UID to uid.

The setuid() function is not supported from an address space running multiple

processes, since it would cause all processes in the address space to have their

security environment changed unexpectedly.

setuid() can be used by daemon processes to change the identity of a process in

order for the process to be used to run work on behalf of a user. In UNIX, changing

the identify of a process is done by changing the real and effective UIDs and the

auxiliary groups. In order to change the identity of the process on MVS completely,

it is necessary to also change the MVS security environment. The identity change

will only occur if the EUID value is specified, changing just the real UID will have no

effect on the MVS environment.

The setuid() function invokes MVS SAF services to change the MVS identity of the

address space. The MVS identity that is used is determined as follows:

v If an MVS user ID is already known by the kernel from a previous call to a kernel

function (for example, getpwnam()) and the UID for this user ID matches the UID

specified on the setuid() call, then this user ID is used.

v For nonzero target UIDs, if there is no saved user ID or the UID for the saved

user ID does not match the UID requested on the setuid() call, the setuid()

function queries the security database (for example, using getpwnam()) to

retrieve a user ID. The retrieved user ID is then used.

v If the target UID is 0 and a user ID is not known, the setuid() function always

sets the MVS user ID to BPXROOT or the value specified on the SUPERUSER

parm in sysparms. BPXROOT is set up during system initialization as a

setuid

Chapter 3. Part 3. Library Functions 1857

||||

|
|
|
|

||

|

superuser with a UID=0. The BPXROOT user ID is not defined to the

BPX.DAEMON FACILITY class profile. This special processing is necessary to

prevent a superuser from gaining daemon authority.

Note: When running under UID=0, some servers will issue setuid(0) in order to

test whether they are running UID=0. The problem with this is that the

setuid function will change the userid to BPXROOT which will likely cause

the daemon to fail on subsequent function requests.

v When changing from a nonzero UID to a UID=0, the MVS user ID is not

changed. When using the su shell command without specifying user name to

become a superuser, the new shell retains the original MVS user ID.

v A nondaemon superuser that attempts to set a user ID to a daemon superuser

UID fails with an EPERM.

When the MVS identity is changed, the daemon must make a call to initgroups() to

set the auxiliary list of groups to the list of groups for the new user ID.

If the setuid() function is issued from multiple tasks within one address space, use

synchronization to ensure that the setuid() functions are not performed concurrently.

The execution of setuid() function concurrently within one address space can yield

unpredictable results.

Returned Value

If successful, setuid() returns 0.

If unsuccessful, setuid() returns −1 and sets errno to one of the following values:

Error Code Description

EAGAIN The process is currently not able to change UIDs.

EINVAL The value of uid is incorrect.

EPERM The process does not have appropriate privileges to set the UID to

uid.

Example

CELEBS11

/* CELEBS11

 This example changes the effective UID.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

main() {

 printf("prior to setuid(), uid=%d, effective uid=%d\n",

 (int) getuid(), (int) geteuid());

 if (setuid(25) != 0)

 perror("setuid() error");

 else

 printf("after setuid(), uid=%d, effective uid=%d\n",

 (int) getuid(), (int) geteuid());

}

Output

setuid

1858 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

before setuid(), uid=0, effective uid=0

after setuid(), uid=25, effective uid=25

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “exec Functions” on page 486

v “geteuid() — Get the Effective User ID” on page 765

v “getuid() — Get the Real User ID” on page 878

v “seteuid() — Set the Effective User ID” on page 1787

v “setgid() — Set the Group ID” on page 1789

v “setreuid() — Set Real and Effective User IDs” on page 1835

setuid

Chapter 3. Part 3. Library Functions 1859

set_unexpected() — Register a Function for unexpected()

Standards

 Standards / Extensions C or C++ Dependencies

ANSI/ISO C++ C++ only

Format

#include <exception>

unexpected_handler set_unexpected(unexpected_handler ph) throw();

General Description

The set_unexpected() function is part of the z/OS XL C++ error handling

mechanism. The argument supplied to set_unexpected() is of type

unexpected_handler as defined in the header <exception> (that is, a pointer to a

function with a void return type and no arguments). The function specified will be

called by the unexpected() function.

Note that the function registered for unexpected() must not return to its caller. It

may terminate execution by:

v Throwing an object of a type listed in the exception specification (or an object of

any type if the unexpected handler is called directly by the program).

v Throwing an object of type bad_exception.

v Calling terminate(), abort(), or exit(int).

If set_unexpected() has not yet been called, then unexpected() calls terminate().

In a multithreaded environment, the unexpected() function created by the issuance

of a set_unexpected() call applies to all threads in the (POSIX) process.

Returned Value

set_unexpected() returns the address of the previous unexpected_handler.

Refer to z/OS XL C/C++ Language Reference for more information about z/OS XL

C++ exception handling, including the set_unexpected() function.

Related Information

v “exception” on page 44

v “unexpected() — Handle Exception Not Listed in Exception Specification” on

page 2305

set_unexpected

1860 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

setutxent() — Reset to Start of utmpx Database

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <utmpx.h>

void setutxent(void);

General Description

The setutxent() function resets the input to the beginning of the utmpx database

opened by previous calls to getutxid(), getutxent(), getutxline(), or pututxline() calls

from the current thread. This should be done before each getutxid() and getutxline()

search for a new entry if it is desired that the entire database be examined.

Because the setutxent() function processes thread-specific data the setutxent()

function can be used safely from a multithreaded application. If multiple threads in

the same process open the database, then each thread opens the database with a

different file descriptor. The thread’s database file descriptor is closed when the

calling thread terminates or the endutxent() function is called by the calling thread.

Returned Value

setutxent() returns no values.

Related Information

v “utmpx.h” on page 98

v “endutxent() — Close the utmpx Database” on page 475

v “getutxent() — Read Next Entry in utmpx Database” on page 881

v “getutxline() — Search by Line utmpx Database” on page 885

v “getutxid() — Search by ID utmpx Database” on page 883

v “pututxline() — Write Entry to utmpx Database” on page 1576

v “__utmpxname() — Change the utmpx Database Name” on page 2322

setutxent

Chapter 3. Part 3. Library Functions 1861

||||

|
|
||

|

setvbuf() — Control Buffering

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int setvbuf(FILE * __restrict__stream, char * __restrict__buf, int type, size_t size);

General Description

Controls the buffering strategy and buffer size for a specified stream. The stream

pointer must refer to an open file, and setvbuf() must be the first operation on the

file.

To provide an ASCII input/output format for applications using this function, define

the feature test macro __LIBASCII as described in topic 2.1.

The location pointed to by buf designates an area that you provide that the z/OS XL

C/C++ Run-Time Library may choose to use as a buffer for the stream. A buf value

of NULL indicates that no such area is supplied and that the z/OS XL

C/C++ Run-Time Library is to assume responsibility for managing its own buffers

for the stream. If you supply a buffer, it must exist until the stream is closed.

If type is _IOFBF or _IOLBF, size is the size of the supplied buffer. If buf is NULL, the

C library will take size as the suggested size for its own buffer. If type is _IONBF,

both buf and size are ignored. Unbuffered I/O is allowed for memory files and

hierarchical file system (HFS) files. However, it is not permitted for Hiperspace

memory files. If the size of the supplied buffer for hiperspace memory files is

greater than 4k, only the first 4k of the buffer will be used.

Value Meaning

_IONBF No buffer is used.

_IOFBF Full buffering is used for input and output. Use buf as the buffer and

size as the size of the buffer.

_IOLBF Line buffering is used for text stream I/O and terminal I/O. The

buffer is flushed when a newline character is used (text stream),

when the buffer is full, or when input is requested (terminal). The

value for size must be greater than 0.

The value for size must be greater than 0.

Attention: If you use setvbuf() or setbuf() to define your own buffer for a stream,

you must ensure that either the buffer is available after program termination, or the

setvbuf

1862 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

stream is closed or flushed, before you call exit(). This can be done by defining the

array with file scope or by dynamically allocating the storage for the array using

malloc().

For example, if the buffer is declared within the scope of a function block, the

stream must be closed before the function is terminated. This prevents the storage

allocated to the buffer from being freed.

Returned Value

If successful, even if it chooses not to use your buffer. setvbuf() returns 0.

If an invalid value was specified in the parameter list, or if the request cannot be

performed, setvbuf() returns nonzero.

Example

/* This example sets up a buffer of buf for stream1 and specifies that

 input from stream2 is to be unbuffered.

 */

#include <stdio.h>

#define BUF_SIZE 1024

char buf[BUF_SIZE];

int main(void)

{

 FILE *stream1, *stream2;

 stream1 = fopen("myfile1.dat", "r");

 stream2 = fopen("myfile2.dat", "r");

 /* stream1 uses a user-assigned buffer of BUF_SIZE bytes */

 if (setvbuf(stream1, buf, _IOFBF, sizeof(buf)) != 0)

 printf("Incorrect type or size of buffer 1");

 /* stream2 is unbuffered */

 if (setvbuf(stream2, NULL, _IONBF, 0) != 0)

 printf("Incorrect type or size of buffer 2"); ...
}

Related Information

v One of the section s about I/O Operations in z/OS XL C/C++ Programming

Guide.

v “stdio.h” on page 82

v “fclose() — Close File” on page 525

v “fflush() — Write Buffer to File” on page 584

v “fopen() — Open a File” on page 626

v “setbuf() — Control Buffering” on page 1776

setvbuf

Chapter 3. Part 3. Library Functions 1863

shmat() — Shared Memory Attach Operation

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

General Description

The shmat() function attaches the shared memory segment associated with the

shared memory identifier, shmid, to the address space of the calling process. The

segment is attached at the address specified by one of the following criteria:

v If shmaddr is a NULL pointer, the segment is attached at the first available

address as selected by the system.

v If shmaddr is not a NULL pointer, and the flag, SHM_RND was specified, the

segment is attached at the address given by (shmaddr−((prtdiff_t)shmaddr
%SHMLBA)) where % is the ’C’ language remainder operator.

v If shmaddr is not a NULL pointer, and the flag, SHM_RND was not specified, the

segment is attached at the address given by shmaddr.

v The segment is attached for reading if the flag, SHM_RDONLY, is specified with

shmflg and the calling process has read permission. If the flag is not set and the

process has both read and write permission, the segment is attached for reading

and writing.

The first attach of newly created __IPC_MEGA segment, as well as subsequent

attaches, will have write access to the segment, regardless of the SHM_RDONLY

option.

v All attaches to an __IPC_MEGA shared memory segment have the same Write

or Read access authority. If a segment is enabled for writes then all attaches

have the ability to read and write to the segment. If the segment is disabled for

writes, then all attaches have the ability to read from the segment and cannot

write to the segment

The first attach of newly created __IPC_MEGA segment, as well as subsequent

attaches, will have write access to the segment, regardless of the SHM_RDONLY

option. Write/Read access can be changed by the shmctl() function, Shared

Memory Control Operations.

An __IPC_MEGA shared memory segment is attached as follows:

v If shmaddr is zero and __IPC_MEGA segment, then the segment will be attached

at the first available address selected by the system on a segment boundary.

v If shmaddr is not zero and SHM_RND is specified and __IPC_MEGA segment,

the segment address will be truncated to the segment boundary (last 20 bits

zero).

v If shmaddr is not zero and SHM_RND is not specified and __IPC_MEGA

segment, the segment address must be a megabyte multiple (segment

boundary).

shmat

1864 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

Returned Value

If successful, shmat() increments the value of shm_nattach in the data structure

associated with the shared memory ID of the attached shared memory segment

and returns the segment’s starting address.

If unsuccessful, shmat() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES Operation permission is denied to the calling process.

EINVAL The value of shmid is not a valid shared memory identifier; the

shmaddr is not a NULL pointer and the value of

(shmaddr−((ptrdiff_t)shmaddr%SHMLBA)) is an illegal address for

attaching shared memory segments; or the shmaddr is not a NULL

pointer, SHM_RND was specified, and the value of shmaddr is an

illegal address for attaching shared memory segments.

 The shared memory address, *shmaddr, is not zero, is not on a

megabyte boundary, and SHM_RND was not specified.

EMFILE The number of shared memory segments attached to the calling

process would exceed the system-imposed limit.

ENOMEM The available data space is not large enough to accommodate the

shared memory segment.

Related Information

v “sys/shm.h” on page 89

v “exit() — End Program” on page 494

v “_exit() — End a Process and Bypass the Cleanup” on page 496

v “fork() — Create a New Process” on page 632

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

v “shmctl() — Shared Memory Control Operations” on page 1866

v “shmdt() — Shared Memory Detach Operation” on page 1868

v “shmget() — Get a Shared Memory Segment” on page 1869

shmat

Chapter 3. Part 3. Library Functions 1865

shmctl() — Shared Memory Control Operations

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

General Description

The shmctl() function provides a variety of shared memory control operations on the

shared memory segment identified by the argument, shmid.

The argument cmd specifies the shared memory control operation and may be any

of the following values:

IPC_STAT This command obtains status information for the shared memory

segment specified by the shared memory identifier, shmid. It places

the current value of each member of the shmid_ds data structure

associated with shmid into the structure pointed to by buf. The

contents of this structure is defined in <sys/shm.h>. This command

requires read permission.

IPC_SET Set the value of the following members of the shmid_ds data

structure associated with shmid to the corresponding value in the

structure pointed to by buf:

 shm_perm.uid

 shm_perm.gid

 shm_perm.mode (only the low-order 9 bits)

 This command can only be executed by a process that has an

effective user ID equal to either that of a process with appropriate

privileges or to the value of shm_perm.cuid or shm_perm.uid in the

shmid_ds data structure associated with shmid.

 Using the IPC_SET function to change the IPC_MODE for an

__IPC_MEGA shared memory segment will have an immediate

effect on all attaches to the target segment. That is, the read and

write access of all current attachers is immediately affected by the

permissions specified in the new IPC_MODE. To determine how the

new mode affects access, you must consider the effect of all three

parts of the mode field (the owner permissions, group permissions

and other permissions). If all three read and all three write

permissions in the new mode are set off, then the access for all

attachors is changed to read. If any of the three read permission

bits is set on but the corresponding write permission bit is off, then

the access for all attachors is changed to read. Otherwise, the

access of all attachors is changed to write.

shmctl

1866 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

IPC_RMID Remove the shared memory identified specified by shmid from the

system and destroy the shared memory segment and shmid_ds

data structure associated with shmid. This command can only be

executed by a process that has an effective user ID equal to either

that of a process with appropriate privileges or to the value of

shm_perm.cuid or shm_perm.uid in the shmid_ds data structure

associated with shmid. The remove will be completed asynchronous

to the return from the shmctl() function, when the last attachment is

detached. When IPC_RMID is processed, no further attaches will

be allowed.

Returned Value

If successful, shmctl() returns 0.

If unsuccessful, shmctl() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The argument cmd is equal to IPC_STAT but the calling process

does not have read permission.

EINVAL The value of shmid is not a valid shared memory identifier or the

value of cmd is not a valid command.

EPERM The argument cmd is equal to either IPC_RMID or IPC_SET and

the effective user ID of the calling process is not equal to that of a

process with appropriate privileges and it is not equal to the value

of shm_perm.cuid or shm_perm.uid in the data structure associated

with shmid.

Related Information

v “sys/shm.h” on page 89

v “sys/ipc.h” on page 87

v “shmat() — Shared Memory Attach Operation” on page 1864

v “shmdt() — Shared Memory Detach Operation” on page 1868

v “shmget() — Get a Shared Memory Segment” on page 1869

shmctl

Chapter 3. Part 3. Library Functions 1867

shmdt() — Shared Memory Detach Operation

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <sys/shm.h>

int shmdt(const void *shmaddr);

General Description

The shmdt() function detaches from the calling process’s address space the shared

memory segment located at the address specified by the argument shmaddr.

Storage in the user address space for a segment with the __IPC_SHAREAS

attribute is not cleaned up unless the segment is no longer attached to by other

processes in the address space.

Returned Value

If successful, shmdt() decrements the value of shm_nattach in the data structure

associated with the shared memory ID of the attached shared memory segment

and returns 0.

If unsuccessful, shmdt() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The value of shmaddr is not the data segment start address of a

shared memory segment.

Related Information

v “sys/shm.h” on page 89

v “exit() — End Program” on page 494

v “_exit() — End a Process and Bypass the Cleanup” on page 496

v “fork() — Create a New Process” on page 632

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

v “shmat() — Shared Memory Attach Operation” on page 1864

v “shmctl() — Shared Memory Control Operations” on page 1866

v “shmget() — Get a Shared Memory Segment” on page 1869

shmdt

1868 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

shmget() — Get a Shared Memory Segment

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

General Description

The shmget() function returns the shared memory identifier associated with key.

A shared memory identifier, associated data structure and shared memory segment

of at least size bytes, see <sys/shm.h>, are created for key if one of the following is

true:

1. Argument key has a value of IPC_PRIVATE

2. Argument key does not already have a shared memory identifier associated with

it and the flag IPC_CREAT was specified

Specify __IPC_MEGA to request segment level sharing. The resulting shared

memory segment will be allocated in units of segments instead of units of pages.

The shared memory size parameter still reflects the number of bytes required but

must be in megabyte multiples. A shared memory size parameter of 0 or one which

is not a megabyte multiple will result in the request failing.

The first shmget to define the shared memory segment determines whether the

segment has the __IPC_MEGA attribute or not. Subsequent shmgets, those that

use existing shared memory segments, will use the __IPC_MEGA attribute defined

by that segment. The __IPC_MEGA option will have no effect for these shmgets

and will be ignored.

Specification of the __IPC_MEGA option for large segments will result in significant

real storage savings and reduced ESQA usage, especially as the number of shares

increases.

Valid values for the argument shmflg include any combination of the following

constants defined in <sys/ipc.h> and <sys/modes.h>:

__IPC_SHAREAS

This flag enables the sharing of the same storage area from

multiple processes in the same address space. When specified by

an AMODE 31 application, this flag is only honored when

__IPC_MEGA is also specified, otherwise it is ignored. When

specified by an AMODE 64 application, this flag is honored for any

type of shared memory segment that is obtained above the bar.

__IPC_BELOWBAR

Forces the memory object to be allocated from below the 2

shmget

Chapter 3. Part 3. Library Functions 1869

||||

|
|
|

||

|

gigabyte address range. This can be used to allow AMODE 64

applications to share objects with non-AMODE 64 applications. This

option is mutually exclusive with the __IPC_GIGA option. If a 31-bit

application specifies this option, then the request will be failed with

EINVAL.

IPC_CREAT Create a shared memory segment if the key specified does not

already have an associated ID. IPC_CREAT is ignored when

IPC_PRIVATE is specified.

IPC_EXCL Causes the shmget() function to fail if the key specified has an

associated ID. IPC_EXCL is ignored when IPC_CREAT is not

specified or IPC_PRIVATE is specified.

__IPC_GIGA Requests a shared memory segment with a size in gigabyte

multiples. Use of this option requires that the size parameter be

specified as a gigabyte multiple. Failure to use a gigabyte multiple

will result in a failure. [EINVAL] This option is mutually exclusive

with the __IPC_BELOWBAR and __IPC_MEGA options.

__IPC_MEGA Requests a shared memory segment with the size in megabyte

multiples. Use of this option requires that the size parameter, size_t,

be in a megabyte multiple. The __IPC_MEGA option is required to

create the shared memory segment but the __IPC_MEGA option is

not required to acquire access to a previously defined/created

shared memory segment that has the __IPC_MEGA attribute. When

specified by an AMODE 64 application, option __IPC_BELOWBAR

is implied and megaroo sharing will be in effect. This option is

mutually exclusive with the __IPC_GIGA option.

S_IRGRP Permits read access when the effective group ID of the caller

matches either shm_perm.cgid or shm_perm.gid.

S_IROTH Permits other read access.

S_IRUSR Permits read access when the effective user ID of the caller

matches either shm_perm.cuid or shm_perm.uid.

S_IWGRP Permits write access when the effective group ID of the caller

matches either shm_perm.cgid or shm_perm.gid.

S_IWOTH Permits other write access.

S_IWUSR Permits write access when the effective user ID of the caller

matches either shm_perm.cuid or shm_perm.uid.

When a shared memory segment associated with argument key already exists,

setting IPC_EXCL and IPC_CREAT in argument shmflg will force shmget() to fail.

The following fields are initialized when a shmid_ds data structure is created:

v The fields shm_perm.cuid and shm_perm.uid are set equal to the effective user ID

of the calling process

v The fields shm_perm.cgid and sem_perm.gid are set equal to the effective group

ID of the calling process

v The low-order 9 bits of shm_perm.mode are set to the value in the low-order 9 bits

of shmflg

v The field shm_segsz is set equal to the value of the argument size

v The field shm_lpid, shm_nattach, shm_atime, and shm_dtime are set equal to zero

v The value of shm_ctime is set equal to the current time

shmget

1870 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Usage Notes

v Shared memory segments created with __IPC_MEGA will show this bit in

S_MODE byte returned with w_getipc.

Special behavior for AMODE 64

Applications will not be allowed to change the address to which a shared memory

segment allocated is attached, when it resides above the 2 gigabyte address range.

The size parameter is rounded up to a megabyte multiple for AMODE 64 users.

Returned Value

If successful, shmget() returns a nonnegative integer, namely a shared memory

identifier.

If unsuccessful, shmget() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES A shared memory identifier exists for the argument key, but

operation permission as specified by the low-order 9 bits of shmflg

could not be granted

EEXIST A shared memory identifier exists for the argument key and both

IPC_CREAT and IPC_EXCL are specified in shmflg

EINVAL A shared memory identifier does not exist for the argument key

specified and the value of argument size is less than the

system-imposed minimum or greater than the system-imposed

maximum.

 OR a shared memory identifier exists for the argument key, but the

size of the segment associated with it is less that specified by

argument size.

 OR __IPC_MEGA is specified and the segment size, size_t, is not

in megabyte multiples.

ENOENT A shared memory identifier does not exist for the argument, key,

and IPC_CREAT is not specified.

ENOMEM A shared memory identifier and associated shared memory

segment are to be created but the amount of available system

storage was insufficient to fill the request.

ENOSPC A shared memory identifier is to be created but the system-imposed

limit on the maximum number of allocated shared memory

identifiers, system-wide, would be exceeded.

When shmflg equals 0, the following applies:

v If a shared memory identifier has already been created with key earlier, and the

calling process of this shmget() has read and/or write permissions to it, then

shmget() returns the associated semaphore identifier.

v If a semaphore identifier has already been created with key earlier, and the

calling process of this shmget() does not have read and/or write permissions to it,

then shmget() returns-1 and sets errno to EACCES.

v If a semaphore identifier has not been created with key earlier, then shmget()

returns -1 and sets errno to ENOENT.

shmget

Chapter 3. Part 3. Library Functions 1871

Related Information

v “sys/ipc.h” on page 87

v “sys/shm.h” on page 89

v “sys/types.h” on page 90

v “ftok() — Generate an Interprocess Communication (IPC) key” on page 718

v “shmat() — Shared Memory Attach Operation” on page 1864

v “shmctl() — Shared Memory Control Operations” on page 1866

v “shmdt() — Shared Memory Detach Operation” on page 1868

shmget

1872 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

shutdown() — Shut Down All or Part of a Duplex Connection

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int shutdown(int socket, int how);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

long shutdown(int *s, int how);

General Description

The shutdown() function shuts down all or part of a duplex connection.

Parameter Description

socket The socket descriptor.

how The condition of the shutdown. The values 0, 1, or 2 set the

condition. how sets the condition for shutting down the connection

to the socket indicated by socket.

 how can have a value of:

v SHUT_RD, which ends communication from the socket indicated

by socket.

v SHUT_WR, which ends communication to the socket indicated

by socket.

v SHUT_RDWR, which ends communication both to and from the

socket indicated by socket.

Note: You should issue a shutdown() call before you issue a close() call for a

socket.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, shutdown() returns 0.

If unsuccessful, shutdown() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF socket is not a valid socket descriptor.

shutdown

Chapter 3. Part 3. Library Functions 1873

||||

|
|
||

|

EINVAL The how parameter was not set to one of the valid values.

ENOBUFS Insufficient system resources are available to complete the call.

ENOTCONN The socket is not connected.

ENOTSOCK The descriptor is for a file, not for a socket.

Related Information

v “sys/socket.h” on page 89

v “accept() — Accept a New Connection on a Socket” on page 120

v “close() — Close a File” on page 299

v “connect() — Connect a Socket” on page 325

v “socket() — Create a Socket” on page 1970

shutdown

1874 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__shutdown_registration() — Register OMVS Shutdown Options

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R3

Format

#define _OPEN_SYS

#include <signal.h>

int __shutdown_registration(int regtype, int regscope, int regoptions);

General Description

The __shutdown_registration() function is used to register OMVS Shutdown

characteristics for the process. The process can be registered as one of the

following:

v a shutdown blocking process

v a permanent process

v a shutdown notification process

These types are mutually exclusive. A shutdown blocking process will prevent

OMVS Shutdown from proceeding until it either de-registers as a blocking process

or ends. A permanent process will survive across an OMVS Shutdown. Most OMVS

process attributes will be checkpointed during the Shutdown and restored during the

Restart. A shutdown notification process will be informed when an OMVS Shutdown

is initiated. It neither blocks Shutdown nor survives Shutdown. Blocking and

permanent processes can also register to be informed when OMVS Shutdown is

initiated. For more information on OMVS Shutdown see z/OS UNIX System

Services Planning, GA22-7800.

Registration can be done for the invoking process only, or for all of the tasks in the

job. The process can also modify the behavior of OMVS requests issued by

permanent processes while OMVS shutdown and restart is in progress.

Checkpointed permanent process attributes include the following:

v process user and group identity

v process, session and process group identities

v process file mode creation mask

v zombie child processes

v signal registration, signal actions, signal mask data and pending signals

v current working directory

v open file and socket descriptors

Zombie child process ending status is checkpointed so that the permanent process

can retrieve it after the restart.

If the current working directory pathname cannot be resolved after restart, then the

current working directory is set to a dummy root which will cause relative pathname

lookup to fail.

__shutdown_registration()

Chapter 3. Part 3. Library Functions 1875

All of the checkpointed file descriptors will be marked invalid after restart, and any

I/O requests other than close() will cause EIO errors.

Timer events are not checkpointed. Timer events which expire before the restart

completes are lost. Timer events which have not expired after restart is complete

will still be in effect.

Non-checkpointable permanent process attributes include the following:

v semaphores

v shared library programs

v __map() shared memory blocks

v message queues

v memory mapped files

v all other UNIX System Services resources

If any non-checkpointable resources are being used by a permanent process, the

shutdown request will fail.

Registration is at the process level, not the thread level. For multithreaded

applications, the SIGDANGER signal is sent to the process and not to any

particular thread.

If a process is registered as a blocking process or a permanent process, the

process must de-register before attempting to register with a different registration

type. For example, a blocking process must de-register as a blocking process

before attempting to register as a permanent process.

Registration remains in effect for the life of the process, or until the process

de-registers. Registration remains in place across an exec() syscall because the

new program image runs in the same process. Registration does not propagate to

child processes as a result of fork() and spawn() syscalls.

regtype defines the type of registration. The possible values are listed below. These

values are all mutually exclusive.

regtype Description

_SDR_BLOCKING The process will prevent OMVS Shutdown from

proceeding for as long as it the process remains

registered as a blocking process. If the process

exits or de-registers as a blocking process then

OMVS Shutdown can proceed.

_SDR_PERMANENT The process will not be terminated during OMVS

Shutdown and Restart processing.

_SDR_NOBLOCKING The process will no longer block an OMVS

Shutdown.

_SDR_NOPERMANENT The process will no longer be a permanent process.

_SDR_NOTIFY The process will be notified by SIGDANGER signal

delivery once OMVS Shutdown is initiated.

_SDR_NONOTIFY The process will no longer be notified by

SIGDANGER signal delivery if OMVS Shutdown is

initiated.

__shutdown_registration()

1876 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The _SDR_BLOCKING and _SDR_PERMANENT registrations are restricted. The

invoker must meet one of the following criteria in order for these two registration

types to succeed:

v The calling address space is a system started task address space.

v The caller is running authorized (APF Authorized, System Key (0-7) or Supervisor

State).

v The caller is a privileged UNIX process. It must either have a superuser identity

or have read permission to BPX.SHUTDOWN.

regscope defines the registration scope. The possible values are listed below. The

two values are mutually exclusive.

regscope Definition

_SDR_REGJOB All the processes in the Job are registered.

_SDR_REGPROCESS Only the calling process is registered.

regoptions defines various options for the registered process. The possible values

are listed below. Multiple options may be specified by or’ing the values together.

The default behavior for kernel calls issued by permanent processes while z/OS

UNIX is not up is to fail the request with errno set to EMVSERR and the reason

code (__errno2() value) set to JrKernelReady. Those kernel calls which which do

not return a return code will end with an EC6 abend and reason code xxxx8039.

regoptions Definition

_SDR_NOOPTIONS No options are requested. This request code is not

valid for _SDR_NOTIFY registration.

_SDR_BLOCKSYSCALLS Kernel calls issued from permanent processes while

OMVS is not up will hang, and return to the caller

once UNIX System Services is back up. This

request is mutually exclusive with

_SDR_ABENDSYSCALLS, and is valid only for

permanent process registration.

_SDR_ABENDSYSCALLS Kernel calls issued from permanent processes while

OMVS is not up will ABEND. This request is

mutually exclusive with _SDR_BLOCKSYSCALLS,

and is valid only for permanent process registration.

_SDR_SENDSIGDANGER Kernel sends SIGDANGER signal to the process

when OMVS Shutdown is initiated. This option

MUST be specified on _SDR_NOTIFY registration.

This option may be specified for _SDR_BLOCKING

and _SDR_PERMANENT registration. It may be

combined with either _SDR_BLOCK_SYSCALLS or

_SDR_ABENDSYSCALLS on _SDR_PERMANENT

registration.

Returned Value

If successful, __shutdown_registration() returns zero. the service completes without

error, otherwise it returns

There are no documented errnos for this function.

__shutdown_registration()

Chapter 3. Part 3. Library Functions 1877

If unsuccessful, __shutdown_registration() returns -1 and sets errno and __errno2()

to indicate the cause of the failure. The _errno2() values are documented as reason

codes in z/OS UNIX System Services Messages and Codes.

The values of errno are:

Error Code Description

EINVAL Failed for one of the following reasons:

v The callable service is rejected because the job step process

must be registered before registering a lower process of the job

step process.

v The request to register a blocking process or job, or a request to

register a permanent process or job cannot be performed as a

shutdown is currently in progress.

v The request to register a blocking process or job, or a request to

register a permanent process or job cannot be performed as the

job can not be de-registered while a lowerprocess is still

registered.

v The request to deregister a blocking process or job, or a request

to deregister a permanent process or job cannot be performed

because the job or the current process is not registered.

v One of the parameters was invalid.

EPERM Failed for one of the following reasons:

v Invoker does not have superuser or equivalent authority.

v Caller must be given read permission to BPX.SHUTDOWN

facility class profile in order to use __shutdown_registration()

successfully.

EMVSSAF2ERR

Internal Security product error. Hexadecimal Reason code value

contains the two byte security product return code xx and reason

code yy.

Example

/*

Register the process as a blocking process and request notification

of shutdown initiation by way of SIGDANGER signal.

*/

#define _OPEN_SYS

#include <signal.h>

...

if (-1 == (rc = __shutdown_registration(_SDR_ BLOCKING, _SDR_REGPROCESS,

 _SDR_SENDSIGDANGER)))

 printf("Error during __shutdown_registration errno=%d,

 errno2=0x%08x\n", errno, __errno2())

/*

Register the process as a permanent process and don’t ask for

SIGDANGER signals.

*/

#define _OPEN_SYS

#include <sys>

if (-1 == (rc = __shutdown_registration(_SDR_PERMANENT, _SDR_REGPROCESS,

 _SDR_NOOPTIONS)))

 printf("Error during __shutdown_registration errno=%d,

 errno2=0x%08x\n", errno, __errno2())

__shutdown_registration()

1878 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “signal.h” on page 77

__shutdown_registration()

Chapter 3. Part 3. Library Functions 1879

sigaction() — Examine or Change a Signal Action

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _POSIX_SOURCE

#include <signal.h>

int sigaction(int sig, const struct sigaction *__restrict__ new,

 struct sigaction *__restrict__ old);

General Description

Examines and changes the action associated with a specific signal.

int sig is the number of a recognized signal. sigaction() examines and sets the

action to be associated with this signal. Refer to Table 47 on page 1881 for the

values of sig, as well as the signals supported by z/OS UNIX services. The sig

argument must be one of the macros defined in the signal.h header file.

const struct sigaction *new may be a NULL pointer. If so, sigaction() merely

determines the action currently defined to handle sig. It does not change this action.

If new is not NULL, it should point to a sigaction structure. The action specified in

this structure becomes the new action associated with sig.

struct sigaction *old points to a memory location where sigaction() can store a

sigaction structure. sigaction() uses this memory location to store a sigaction

structure describing the action currently associated with sig. old can also be a NULL

pointer, in which case sigaction() does not store this information.

This function is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

Special Behavior for C++

v The behavior when mixing signal-handling with C++ exception handling is

undefined. Also, the use of signal-handling with constructors and destructors is

undefined.

v C++ and C language linkage conventions are incompatible, and therefore

sigaction() cannot receive C++ function pointers. If you attempt to pass a C++

function pointer to sigaction(), the compiler will flag it as an error. Therefore, to

use the sigaction() function in the C++ language, you must ensure that signal

handler routines established have C linkage, by declaring them as extern "C".

sigaction

1880 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

|
|
|
|
|

Signals

 Table 47. Signals

Value

Default

Action Meaning

SIGABND 1 Abend.

SIGABRT 1 Abnormal termination (sent by abort()).

SIGALRM 1 A timeout signal (sent by alarm()).

SIGBUS 1 Bus error (available only when running on MVS 5.2 or

higher).

SIGFPE 1 Arithmetic exceptions that are not masked, for example,

overflow, division by zero, and incorrect operation.

SIGHUP 1 A controlling terminal is suspended, or the controlling

process ended.

SIGILL 1 Detection of an incorrect function image.

SIGINT 1 Interactive attention.

SIGKILL 1 A termination signal that cannot be caught or ignored.

SIGPIPE 1 A write to a pipe that is not being read.

SIGPOLL 1 Pollable event occurred (available only when running on

MVS 5.2 or higher).

SIGPROF 1 Profiling timer expired (available only when running on MVS

5.2 or higher).

SIGQUIT 1 A quit signal for a terminal.

SIGSEGV 1 Incorrect access to memory.

SIGSYS 1 Bad system call issued (available only when running on

MVS 5.2 or higher).

SIGTERM 1 Termination request sent to the program.

SIGTRAP 1 Internal for use by dbx or ptrace.

SIGURG 2 High bandwidth data is available at a socket (available only

when running on MVS 5.2 or higher).

SIGUSR1 1 Intended for use by user applications.

SIGUSR2 1 Intended for use by user applications.

SIGVTALRM 1 Virtual timer has expired (available only when running on

MVS 5.2 or higher).

SIGXCPU 1 CPU time limit exceeded (available only when running on

MVS 5.2 or higher). If a process runs out of CPU time and

SIGXCPU is caught or ignored, a SIGKILL is generated.

SIGXFSZ 1 File size limit exceeded.

SIGCHLD 2 An ended or stopped child process (SIGCLD is an alias

name for this signal).

SIGDCE 2 Signal is used by DCE.

SIGIO 2 Completion of input or output.

SIGIOERR 2 A serious I/O error was detected.

SIGWINCH 2 Window size has changed (available only when running on

MVS 5.2 or higher).

SIGSTOP 3 A stop signal that cannot be caught or ignored.

sigaction

Chapter 3. Part 3. Library Functions 1881

Table 47. Signals (continued)

Value

Default

Action Meaning

SIGTSTP 3 A stop signal for a terminal.

SIGTTIN 3 A background process attempted to read from a controlling

terminal.

SIGTTOU 3 A background process attempted to write to a controlling

terminal.

SIGCONT 4 If stopped, continue.

The Default Actions in Table 47 on page 1881 are:

1 Normal termination of the process.

2 Ignore the signal.

3 Stop the process.

4 Continue the process if it is currently stopped. Otherwise, ignore the signal.

If the main program abends in a way that is not caught or handled by the operating

system or application, z/OS UNIX terminates the running application with a KILL -9.

If z/OS UNIX gets control in EOT or EOM and the terminating status has not been

set, z/OS UNIX sets it to appear as if a KILL -9 occurred.

If a signal catcher for a SIGABND, SIGFPE, SIGILL or SIGSEGV signal runs as a

result of a program check or an ABEND, and the signal catcher executes a

RETURN statement, the process will be terminated.

sigaction Structure

The sigaction structure is defined as follows:

 struct sigaction {

 void (*sa_handler)(int);

 sigset_t sa_mask;

 int sa_flags;

 void (*sa_sigaction)(int, siginfo_t *, void *);

 };

The following are members of the structure:

void (*)(int) sa_handler

A pointer to the function assigned to handle the signal. The value of this

member can also be SIG_DFL (indicating the default action) or SIG_IGN

(indicating that the signal is to be ignored).

 Special Behavior for XPG4.2:

 This member and sa_sigaction are mutually exclusive of each other. When

the SA_SIGINFO flag is set in sa_flags then sa_sigaction is used.

Otherwise, sa_handler is used.

sigset_t sa_mask

A signal set identifies a set of signals that are to be added to the signal

mask of the calling process before the signal-handling function sa_handler

or sa_sigaction (in XPG4.2) is invoked. For more on signal sets, see

“sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page

1905

sigaction

1882 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

1904. You cannot use this mechanism to block SIGKILL or SIGSTOP. If

sa_mask includes these signals, they will simply be ignored; sigaction() will

not return an error.

 sa_mask must be set by using one or more of the signal set manipulation

functions: sigemptyset(), sigfillset(), sigaddset(), or sigdelset()

int sa_flags

A collection of flag bits that affect the behavior of signals. The following flag

bits can be set in sa_flags:

_SA_IGNORE

This bit is output only and cannot be specified by the application.

The handler value will be saved and returned on subsequent calls,

but the signal is ignored.

SA_NOCLDSTOP

Tells the system not to issue a SIGCHLD signal when child

processes stop. This is relevant only when the sig argument of

sigaction() is SIGCHLD.

SA_NOCLDWAIT

Tells the system not to create ’zombie’ processes when a child

process dies. This is relevant only when the sig argument of

sigaction() is SIGCHLD. If the calling process subsequently waits

for its children, and the process has no unwaited for children that

were transformed into zombie processes, it will block until all of its

children terminate. The wait(), waitid(), or waitpid() will fail and set

errno to ECHILD.

SA_NODEFER

Tells the system to bypass automatically blocking this signal when

invoking a signal handler function.

_SA_OLD_STYLE

Tells the C run-time library to use ANSI signal delivery rules,

instead of POSIX rules. It is supported for compatibility with

applications that use signal() to set signal action. (See “signal() —

Handle Interrupts” on page 1917.) For a description of ANSI and

POSIX.1 signal delivery rules, find “Handling Error Conditions and

Signals” in z/OS XL C/C++ Programming Guide.

SA_ONSTACK

Tells the system to use the alternate signal stack (see “sigaltstack()

— Set and/or Get Signal Alternate Stack Context” on page 1901 or

“sigstack() — Set and/or Get Signal Stack Context” on page 1939)

when invoking a signal handler function. If an alternate signal stack

has not been declared, the signal handler function will be invoked

with the current stack.

SA_RESETHAND

Tells the system to reset the signal’s action to SIG_DFL and clear

the SA_SIGINFO flag before invoking a signal handler function

(Note: SIGILL and SIGTRAP cannot be automatically reset when

delivered. However, no error will be generated should this situation

exist). Otherwise, the disposition of the signal will not be modified

on entry to the signal handler.

 In addition, if this flag is set, sigaction() behaves as if the

SA_NODEFER flag were also set.

sigaction

Chapter 3. Part 3. Library Functions 1883

SA_RESTART

Tells the system to restart certain library functions if they should be

interrupted by a signal. The functions that this restartability applies

to are all of those that are defined as interruptible by signals and

set errno to EINTR (except pause(), sigpause(), and sigsuspend()).

 This is the list of restartable functions:

 1) accept()

 2) catclose()

 3) catgets()

 4) chmod()

 5) chown()

 6) close()

 7) closedir()

 8) connect()

 9) creat()

10) dup2()

11) endgrent()

12) fchmod()

13) fchown()

14) fclose()

15) fcntl()

16) fflush()

17) fgetc()

18) fgetwc()

19) fopen()

20) fputc()

21) fputwc()

22) freopen()

23) fseek()

24) fstatvfs()

25) fsync()

26) ftruncate()

27) getgrgid()

28) getgrnam()

29) getmsg()

30) getpass()

31) getpwnam()

32) getpwuid()

33) ioctl()

34) lchown()

35) lockf()

36) mkfifo()

37) msgrcv()

38) msgxrcv()

39) msgsnd()

40) open()

41) poll()

42) putmsg()

43) read()

44) readv()

45) recv()

46) recvfrom()

47) recvmsg()

48) select()

49) semop()

50) send()

51) sendmsg()

52) sendto()

53) statvfs()

54) tcdrain()

55) tcflow()

56) tcflush()

57) tcgetattr()

58) tcgetpgrp()

59) tcsendbreak()

60) tcsetattr()

61) tcsetpgrp()

62) tmpfile()

63) umount()

64) wait()

65) waitid()

66) waitpid()

67) write()

SA_SIGINFO

Tells the system to use the signal action specified by sa_sigaction

instead of sa_handler.

 When this flag is off and the action is to catch the signal, the signal

handler function specified by sa_handler is invoked as:

 void function(int signo);

Where signo is the only argument to the signal handler and it

specifies the type of signal that has caused the signal handler

function to be invoked.

 When this flag is on and the action is to catch the signal, the signal

handler function specified by sa_sigaction is invoked as:

 void function(int signo, siginfo_t *info, void *context);

Where two additional arguments are passed to the signal handler

function. If the second argument is not a NULL pointer, it will point

to an object of type siginfo_t which provides additional information

about the source of the signal. A siginfo_t object is a structure

contains the following members:

si_signo

Contains the system-generated signal number

sigaction

1884 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

si_errno

Contains the implementation-specific error information (it is

not used on this implementation)

si_code

Contains a code identifying the cause of the signal (refer to

the <signal.h> include file for a list of these codes and for

their meanings, see Table 48 on page 1919).

 If si_signo contains SIGPOLL then si_code can be set to

SI_ASYNCIO. Otherwise, if the value of si_code is less

than or equal to zero then the signal was generated by

another process and the si_pid and si_uid members

respectively indicate the process ID and the real user ID of

the sender of this signal.

 If the value of si_code is less than or equal to zero, then

the signal was generated by another process and the

si_pid and si_uid members respectively indicate the

process ID and the real user ID of the sender of this signal.

si_pid If the value of si_code is less than or equal to zero, then

this member will indicate the process ID of the sender of

this signal. Otherwise, this member is meaningless.

si_uid If the value of si_code is less than or equal to zero, then

this member will indicate the real user ID of the sender of

this signal. Otherwise, this member is meaningless.

si_value

If si_code is SI_ASYNCIO the si_value contains the

application specified value. Otherwise, the contents of

si_value are undefined

The third argument will point to an object of type ucontext_t (refer

to the <ucontext.h> include file for a description of the contents of

this object).

Note: The remaining flag bits are reserved for system use. There is no

guarantee that the integer value of ″int sa_flags″ will be the same

upon return from sigaction(). However, all flag bits defined above will

remain unchanged.

void (*)(int, siginfo_t *, void *) sa_sigaction

A pointer to the function assigned to handle the signal, or SIG_DFL, or

SIG_IGN. This function will be invoked passing three parameters. The first

is of type ’int’ that contains the signal type for which this function is being

invoked. The second is of type ’pointer to siginfo_t’ where the siginfo_t

contain additional information about the source of the signal. The third is of

type ’pointer to void’ but will actually point to a ucontext_t containing the

context information at the time of the signal interrupt.

Notes:

1. The user must cast SIG_IGN or SIG_DFL to match the sa_sigaction

definition. (indicating that the signal is to be ignored).

2. Special Behavior for XPG4.2: This member and sa_handler are

mutually exclusive of each other. When the SA_SIGINFO flag is set in

sa_flags then sa_sigaction is used. Otherwise, sa_handler is used.

sigaction

Chapter 3. Part 3. Library Functions 1885

When a signal handler installed by sigaction(), with the _SA_OLD_STYLE flag set

off, catches a signal, the system calculates a new signal mask by taking the union

of the current signal mask, the signals specified by sa_mask, and the signal that

was just caught (if the SA_NODEFER flag is not set). This new mask stays in effect

until the signal handler returns, or sigprocmask(), sigsuspend(), siglongjmp(),

sighold(), sigpause(), or sigrelse() is called. When the signal handler ends, the

original signal mask is restored.

After an action has been specified for a particular signal, using sigaction() or

signal(), it remains installed until it is explicitly changed with another call to

sigaction(), signal(), one of the exec functions, bsd_signal(), sigignore(), sigset(), or

until the SA_RESETHAND flag causes it to be reset to SIG_DFL.

After an action has been specified for a particular signal, using sigaction() with the

_SA_OLD_STYLE flag not set, it remains installed until it is explicitly changed with

another call to sigaction(), signal(), or one of the exec functions.

After an action has been specified for a particular signal, using sigaction() with the

_SA_OLD_STYLE flag set or using signal(), it remains installed until it is explicitly

changed with another call to sigaction(), signal(), or one of the exec functions, or a

signal catcher is driven, where it will be reset to SIG_DFL.

Successful setting of signal action to SIG_IGN for a signal that is pending causes

the pending signal to be discarded, whether or not it is blocked. This provides the

ability to discard signals that are found to be blocked and pending by sigpending().

Special Behavior for XPG4.2

v If a process sets the action of the SIGCHLD signal to SIG_IGN, child processes

of the calling process will not be transformed into ’zombie’ processes when they

terminate. If the calling process subsequently waits for its children, and the

process has no unwaited for children that were transformed into ’zombie’

processes, it will block until all of its children terminate. The wait(), waitid(), or

waitpid() function will fail and set errno to ECHILD.

v If the SA_SIGINFO flag is set, the signal-catching function specified by

sa_sigaction is invoked as:

 void function(int signo, siginfo_t *info, void *context);

Where function is the specified signal-catching function, signo is the signal

number of the signal being delivered, info points to an object of type siginfo_t

associated with the signal being delivered, and context points to an object of type

ucontext_t.

Considerations for Asynchronous Signal-Catching Functions

Some of the functions have been restricted to be serially reusable with respect to

asynchronous signals. That is, the library will not allow an asynchronous signal to

interrupt the execution of one of these functions until it has completed.

This restriction needs to be taken into consideration when a signal-catching function

is invoked asynchronously because it causes the behavior of some of the library

functions to become unpredictable.

Thus, when you are producing a strictly compliant POSIX C or X/Open application,

only the following functions should be assumed to be reentrant with respect to

sigaction

1886 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

asynchronous signals. Use only these functions in your signal-catching functions:

 access() alarm()

cfgetispeed() cfgetospeed()

cfsetispeed() cfsetospeed()

chdir() chmod()

chown() close()

creat() dup()

dup2() execle()

execve() _exit()

fcntl() fork()

fstat() getegid()

geteuid() getgid()

getgroups() getpgrp()

getpid() getppid()

getuid() kill()

link() lseek()

mkdir() mkfifo()

open() pathconf()

pause() pipe()

pthread_cond_broadcast() pthread_cond_signal()

pthread_mutex_trylock() read()

rename() rmdir()

setgid() setpgid()

setsid() setuid()

sigaction() sigaddset()

sigdelset() sigemptyset()

sigfillset() sigismember()

sigpending() sigprocmask()

sigsuspend() sleep()

stat() sysconf()

tcdrain() tcflow()

tcflush() tcgetattr()

tcgetpgrp() tcsendbreak()

tcsetattr() tcsetpgrp()

time() times()

umask() uname()

unlink() utime()

wait() waitpid()

write()

Special Behavior for XPG4.2

Adds the following functions to the list of functions above that may be used in

signal-catching functions in strictly compliant X/Open applications:

v fpathconf()

v raise()

v signal()

The macro versions of getc() and putc() are not reentrant, even though the library

versions of these functions are.

For nonportable POSIX applications, most of the library functions can be used in a

signal-catching function. However, do not use the following functions:

v getenv()

sigaction

Chapter 3. Part 3. Library Functions 1887

v getgrent()

v getgrgid()

v getgrnam()

v getpwent()

v getpwnam()

v getpwuid()

v ttyname()

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the V2R10 or later C compilers that are to

run with Language Environment V2R10 or later libraries and use the jmp_buf,

sigjmp_buf or ucontext_t types must not be compiled with C headers from

Language Environment V2R9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not define jmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Language Environment V2R10 and later

headers define a larger jmp_buf, sigjmp_buf or ucontext_t area that is

required by setjmp(), getcontext(), and related functions when they are called

from an XPLINK routine. If __XPLINK__ is not defined, the Language

Environment V2R10 and later headers define a shorter jmp_buf, sigjmp_buf or

ucontext_t area. The Language Environment headers before V2R10 also

define the shorter version of these data areas. If an XPLINK function calls

setjmp(), getcontext() or similar functions with a short jmp_buf, sigjmp_buf or

ucontext_t area, a storage overlay or program check may occur when the C

library tries to store past the end of the passed-in (too short) data area.

4. The sigaction() function supersedes the signal() interface, and should be the

preferred usage. In particular, sigaction() and signal() must not be used in the

same process to control the same signal.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned value

If successful, sigaction() returns 0.

If unsuccessful, no new signal handler is installed, sigaction() returns −1, and sets

errno to one of the following values:

Error Code Description

EINVAL The value of sig is not a valid signal for one of the following

reasons:

v The sig is not recognized.

v The process tried to ignore a signal that cannot be ignored.

v The process tried to catch a signal that cannot be caught.

sigaction

1888 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The default action for SIGCHILD and SIGIO is for the signal to be ignored. A

sigaction() to set the action to SIG_IGN for SIGIO will result in an error, with errno

equal to EINVAL.

Example

CELEBS13

/* CELEBS13

 The first part of this example determines whether the SIGCHLD

 signal is currently being ignored.

 With a NULL pointer for the new argument, the current signal

 handler action is not changed.

 */

#define _POSIX_SOURCE

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdio.h>

#include <signal.h>

void main(void) {

struct sigaction info;

if (sigaction(SIGCHLD,NULL,&info) != −1)

 if (info.sa_handler == SIG_IGN)

 printf("SIGCHLD being ignored.\n");

 else if (info.sa_handler == SIG_DFL)

 printf("SIGCHLD being defaulted.\n");

}

CELEBS14

/* CELEBS14

 This fragment initializes a sigaction structure to specify

 mysig as a signal handler and then sets the signal handler

 for SIGCHLD.

 Information on the previous signal handler for SIGCHLD is

 stored in info.

 */

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

#include <stdio.h>

void mysig(int a) { printf("In mysig\n"); }

void main(void) {

 struct sigaction info, newhandler;

 if (sigaction(SIGCHLD,NULL,&info) != −1)

 if (info.sa_handler == SIG_IGN)

 printf("SIGCHLD being ignored.\n");

 else if(info.sa_handler == SIG_DFL)

 printf("SIGCHLD being defaulted.\n");

 newhandler.sa_handler = &mysig;

 sigemptyset(&(newhandler.sa_mask));

 newhandler.sa_flags = 0;

 if (sigaction(SIGCHLD,&newhandler,&info) != −1)

 printf("New handler set.\n"); }

Related Information

v “signal.h” on page 77

v “alarm() — Set an Alarm” on page 180

v “bsd_signal() — BSD Version of signal()” on page 218

sigaction

Chapter 3. Part 3. Library Functions 1889

v “exec Functions” on page 486

v “getcontext() — Get User Context” on page 750

v “kill() — Send a Signal to a Process” on page 1055

v “makecontext() — Modify User Context” on page 1169

v “raise() — Raise Signal” on page 1595

v “setcontext() — Restore User Context” on page 1778

v “__sigactionset() — Examine and/or Change Signal Actions” on page 1891

v “sigaddset() — Add a Signal to the Signal Mask” on page 1899

v “sigaltstack() — Set and/or Get Signal Alternate Stack Context” on page 1901

v “sigdelset() — Delete a Signal from the Signal Mask” on page 1903

v “sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page 1905

v “sigfillset() — Initialize a Signal Mask to Include All Signals” on page 1907

v “sigignore() — Set Disposition to Ignore a Signal” on page 1910

v “siginterrupt() — Allow Signals to Interrupt Functions” on page 1911

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigstack() — Set and/or Get Signal Stack Context” on page 1939

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

v “swapcontext() — Save and Restore User Context” on page 2101

v “wait() — Wait for a Child Process to End” on page 2349

v “wait3() — Wait for Child Process to Change State” on page 2358

sigaction

1890 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__sigactionset() — Examine and/or Change Signal Actions

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both POSIX(ON)

OS/390 V2R6

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

int __sigactionset(size_t newct, const __sigactionset_t new[],

 size_t *oldct, __sigactionset_t old[],

 int options);

General Description

Examines and changes the actions associated with one or more signals. This

function is equivalent to using sigaction() one or more times.

The parameters are:

size_t newct newct is the number of __sigactionset_t structures to be

processed in the new array. The value of newct must be from 0 to

64. If this parameter is 0, the new parameter is ignored, and may

be NULL. If the newct parameter is not 0, new must be an array

containing at least newct __sigactionset_t structures.

const __sigactionset_t new[]

new is an optional array of __sigactionset_t structures. When

newct is 0, new may be NULL, and no signal actions will be

changed.

 When newct is not 0, the data in the new array of

__sigactionset_t structures will cause the actions associated with

one or more signals to be changed. The system will change the

signal actions as if sigaction() were called multiple times. The first

newct __sigactionset_t structures in the new array are processed

in order, and may cause the actions for one or more signals to be

set. For each array entry, the effect is the same as calling

sigaction() once for each signal whose bit is on in the __sa_signals

signal set. The fields __sa_handler, __sa_mask, __sa_flags, and

__sa_sigaction correspond to the sa_handler, sa_mask, sa_flags,

and sa_sigaction fields in the sigaction structure for sigaction().

 If a signal appears in more than one __sa_signals signal set in the

new array, the last action specified for that signal will be in effect

when __sigactionset() returns. If all bits in all __sa_signals signal

sets in the new parameter are off, no signal actions will be

changed.

size_t*oldct oldct is both an input and output parameter. It points to a word

containing the number of output entries allowed, used, or needed in

the old array.

 When __sigactionset() is called, *oldct is the maximum number of

__sigactionset_t structures in the old array that the system can fill

__sigactionset

Chapter 3. Part 3. Library Functions 1891

in. The value of *oldct must be from 0 to 64. If this parameter is 0,

the old parameter is ignored, and may be NULL. If the *oldct

parameter is not 0, old must be an array of __sigactionset_t

structures that the system can fill in. The number of array entries in

old must be at least *oldct. If not 0, *oldct must be large enough to

allow the system to pass back all the unique actions currently

associated with all signals. If *oldct is not large enough,

__sigactionset() will fail and the errno will be set to ENOMEM.

 If __sigactionset() returns with no error and *oldct was not 0, *oldct

is set to the number of __sigactionset_t array entries in old that

are filled in. If *oldct was too small, causing an ENOMEM error, *oldct

is set to the number of __sigactionset_t structures the system

would need in order to fill in all the distinct current signal actions. If

*oldct was 0 when __sigactionset() was called, it is not updated.

__sigactionset_t old[]

old is an optional array of __sigactionset_t structures.

 When *oldct is not 0, the structures in the old array will be filled in

with the signal actions currently in effect before any changes are

made. The __sigactionset_t structure entries in old are filled in

with all the distinct signal actions currently in effect, starting with the

first array entry. Each __sigactionset_t structure in the array will

contain information about one or more signals. Bits in the

__sa_signals signal set in each array entry will indicate which

signals that entry applies to. The system will try to use as few array

entries as possible when passing back the different signal actions.

The signal actions for SIGKILL and SIGSTOP will not be returned.

 The output information in each array entry is similar to that returned

from sigaction(). In the __sigactionset_t structure, the fields

__sa_handler, __sa_mask, __sa_flags, and __sa_sigaction

correspond to the sa_handler, sa_mask, sa_flags, and sa_sigaction

fields in the sigaction structure filled in by sigaction(). The signal

action as described by these fields applies to all signals whose bits

are on in the __sa_signals signal set in the array entry.

 If old is not large enough to contain information about all distinct

signal actions currently in effect, __sigactionset() fails, and ENOMEM is

returned. There is no way to obtain the current signal actions for a

specified subset of signals.

 When old is NULL, the system does not return any information

about the current signal actions.

int options options is a collection of flag bits that affects the operation

__sigactionset(). The following flag bit can be set in options:

__SSET_IGINVALID

Tells the system to ignore invalid bits in the

__sa_signals field in all __sigactionset_t array

entries in the new parameter. Also, the system will

ignore attempts to set SIGKILL or SIGSTOP to an

action other than SIG_DFL, or SIGIO to SIG_IGN.

 If this option bit is off, the system will fail the

__sigactionset() request if any invalid bits are found

in any __sa_signals signal set in any new array

entry. Also, __sigactionset() will fail if an attempt it

__sigactionset

1892 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

made to set SIGKILL or SIGSTOP to something other

than SIG_DFL, or to set SIGIO to SIG_IGN.

 This function is supported only in a POSIX(ON) program.

Special Behavior for C++

The behavior when mixing signal-handling with C++ exception handling is

undefined. Also, the use of signal-handling with constructors and destructors is

undefined.

C++ and C language linkage conventions are incompatible, and therefore

__sigactionset() cannot receive C++ function pointers. If you attempt to pass a C++

function pointer to __sigactionset(), the compiler will flag it as an error. Therefore to

use the __sigactionset() function in the C++ language, you must ensure that signal

handler routines have C linkage, by declaring them as extern ″C″.

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the V2R10 or later C compilers that are to

run with Language Environment V2R10 or later libraries and use the jmp_buf,

sigjmp_buf or ucontext_t types must not be compiled with C headers from

Language Environment V2R9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not define jmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Language Environment V2R10 and later

headers define a larger jmp_buf, sigjmp_buf or ucontext_t area that is

required by setjmp(), getcontext(), and related functions when they are called

from an XPLINK routine. If __XPLINK__ is not defined, the Language

Environment V2R10 and later headers define a shorter jmp_buf, sigjmp_buf or

ucontext_t area. The Language Environment headers before V2R10 also

define the shorter version of these data areas. If an XPLINK function calls

setjmp(), getcontext() or similar functions with a short jmp_buf, sigjmp_buf or

ucontext_t area, a storage overlay or program check may occur when the C

library tries to store past the end of the passed-in (too short) data area.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

__sigactionset_t type

The __sigactionset_t type is defined as follows:

 typedef struct __sigactionset_s

 {

 sigset_t __sa_signals;

 int __sa_flags;

 void (*__sa_handler)(int);

 sigset_t __sa_mask;

 void (*__sa_sigaction)(int, siginfo_t *, void *);

 } __sigactionset_t;

__sigactionset

Chapter 3. Part 3. Library Functions 1893

The following are members of the structure:

sigset_t __sa_signals This is a signal set. It contains the signals whose

actions are described by the other members in this

structure. For more information on signal sets, see

“sigemptyset() — Initialize a Signal Mask to Exclude

All Signals” on page 1905.

 In the new array of _sigactionset_t structures, the

caller sets bits in this signal set. The signal action

for each signal in the signal set will be set as

described by the other members of the structure.

 __sa_signals must be set using one or more of the

signal set manipulation functions: sigaddset(),

sigdelset(), sigemptyset(), or sigfillset().

 In the old array of __sigactionset_t structures, the

system sets the bits in the __sa_signals field. The

current signal action for each member of the signal

set is described by the other members of the

structure. All signals in the set have the same

signal action.

int __sa_flags A collection of flag bits that affect the behavior of

the specified signal.

 The flag bits in the __sa_flags field are the same

as those in the sa_flags member of the sigaction

structure. See “sigaction() — Examine or Change a

Signal Action” on page 1880 for a detailed

description of these flag bits.

void (* __sa_handler)(int) A pointer to the function assigned to handle the

signals in the __sa_signals signal set. This function

will be invoked passing one parameter of type int

that contains the signal type for which this function

is being invoked. The value of this member can

also be SIG_DFL (indicating the default action) or

SIG_IGN (indicating that the signal is to be ignored).

Note: This member and __sa_sigaction are

mutually exclusive. When the SA_SIGINFO

flag is set in __sa_flags, __sa__sigaction is

used. Otherwise, __sa_handler is used.

sigset_t __sa_mask This signal set identifies a set of signals that are to

be added to the signal mask of the calling thread

before the signal-handling function __sa_handler or

__sa_sigaction is invoked. For more information on

signal sets, see “sigemptyset() — Initialize a Signal

Mask to Exclude All Signals” on page 1905. You

cannot use this mechanism to block SIGKILL or

SIGSTOP. If __sa_mask includes these signals, they

will simply be ignored; __sigactionset() will not

return an error.

 __sa_mask must be set by using one or more of the

signal set manipulation functions: sigaddset(),

sigdelset(), sigemptyset(), or sigfillset().

__sigactionset

1894 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

void (*_sa_sigaction)(int, siginfo_t *, void *)

A pointer to the function assigned to handle the

signal, or SIG_DFL, or SIG_IGN. This function will be

invoked passing three parameters. The first is of

type int that contains the signal type for which this

function is being invoked. The second is of type

siginfo_t* where the siginfo_t contain additional

information about the source of the signal. The third

is of type void* but will actually point to a

ucontext_t containing the context information at the

of time the signal interrupt.

Notes:

1. The user must cast SIG_DFL or SIG_IGN to

match the __sa_sigaction definition.

2. This member and sa_handler are mutually

exclusive. When the SA_SIGINFO flag is set in

__sa_flags, __sa_sigaction is used. Otherwise,

__sa_handler is used.

 When a signal handler installed by __sigactionset(), with the _SA_OLD_STYLE flag set

off, catches a signal, the system calculates a new signal mask by taking the union

of the current signal mask at the time of the signal interrupt, the signals specified by

__sa_mask, and the signal that was just caught (if the SA_NODEFER flag is not set).

This new mask stays in effect until the signal handler returns, or sigprocmask(),

sigsuspend(), siglongjmp(), sighold(), sigpause(), or sigrelse() is called. When the

signal handler ends, the original signal mask is restored.

After an action has been specified for a particular signal, using __sigactionset() with

the _SA_OLD_STYLE flag not set, it remains installed until it is explicitly changed with

another call to __sigactionset(), sigaction(), signal(), bsd_signal(), sigset(),

sigignore(), one of the exec functions, or until the SA_RESETHAND flag causes it to be

reset to SIG_DFL.

After an action has been specified for a particular signal, using __sigactionset() with

the _SA_OLD_STYLE flag set or using signal(), it remains installed until it is explicitly

changed with another call to __sigactionset(), sigaction(), bsd_signal(), sigset(),

signal(), sigignore(), one of the exec functions, or a signal catcher is driven, where it

will be reset to SIG_DFL.

Successful setting of a signal action to SIG_IGN for a signal that is pending causes

the pending signal to be discarded, whether or not it is blocked. This provides the

ability to discard signals that are found to be blocked and pending by sigpending().

A signal is discarded across a call to __sigactionset() if any __sigactionset_t

structure in the new array causes the action for that signal to be set to SIG_IGN.

This happens even if a later __sigactionset_t structure in the new array sets the

signal action to something other than SIG_IGN before __sigactionset() returns.

If a process sets the action of the SIGCHLD signal to SIG_IGN, child processes of the

calling process will not be transformed into zombie processes when they terminate.

If the calling process subsequently waits for its children, and the process has no

unwaited from children that were transformed into zombie processes, it will block

until all of its children terminate. The wait(), waitid(), or waitpid() function will fail and

set errno to ECHILD.

__sigactionset

Chapter 3. Part 3. Library Functions 1895

If the SA_SIGINFO flag is set, the signal catching function specified by

__sa_sigaction is invoked as:

void function(int signo, siginfo_t *info, void * context);

where function is the specified signal-catching function, signo is the signal number

of the signal being delivered, info points to an object of type siginfo_t associated

with the signal being delivered, and context points to an object of type ucontext_t.

For a signal catcher that has been loaded by fetch() or fetchep(), the address

returned by __sigactionset() in the __sa_handler or __sa_sigaction fields may be

different than the value originally passed in to sigaction() or __sigactionset() (when

the signal action was first set). This signal catcher address can be passed in again

to sigaction() or __sigactionset() to reestablish the same signal catcher. The effect

will be similar to passing in the original catcher address obtained from fetch() or

fetchep(). However, this address should not be used for any other purpose, such as

directly calling the signal catcher. Always use the original address obtained from

fetch() or fetchep() when calling the catcher directly.

Considerations for Asynchronous Signal-Catching Functions

Some of the functions have been restricted to be serially reusable with respect to

asynchronous signals. For more information on these functions, see “sigaction() —

Examine or Change a Signal Action” on page 1880.

Returned Value

If successful, __sigactionset() returns 0.

If unsuccessful, no signal actions are changed, __sigactionset() returns −1 and sets

errno to one of the following values:

Error Code Description

EINVAL This error can occur if:

v An unsupported signal bit was on in the __sa_signals signal set

in the new parameter. This error will not be reported if the

__SSET_IGINVALID flag is set in options. To obtain more

information in this case, use __errno2().

v An attempt was made to set the signal action for SIGSTOP or

SIGKILL to something other than SIG_DFL. This error will not be

reported if the __SSET_IGINVALID flag is set in options. To obtain

more information in this case, use __errno2().

v The newct or oldct parameters are not in the range from 0 to 64.

v newct was not 0 and new was NULL.

v oldct was not 0 and old was NULL.

EMVSERR An MVS environmental or internal error has occurred. Use

__errno2() to obtain more information about this error.

ENOMEM The input value in oldct was not 0, and was too small to let the

system pass back all distinct current signal actions. When

__sigactionset() returns, *oldct will be set to the number of array

entries needed by the system.

__sigactionset

1896 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Example

/*

 * Note: This is just a code fragment

 */

void catch_sigchld(int, siginfo_t *, void *);

 ...

 __sigactionset_t new[2], old[64];

 int options;

 int rc;

 size_t oldct = 64;

/*

 * Set SIGUSR1 and SIGUSR2 to SIG_IGN

 * Set SIGCHLD to new-style catcher catch_sigchld()

 * Save original signal setup in variable old

 */

 bzero(new, sizeof new);

 (void)sigemptyset(&(new[0].__sa_signals));

 (void)sigaddset (&(new[0].__sa_signals), SIGUSR1);

 (void)sigaddset (&(new[0].__sa_signals), SIGUSR2);

 (void)sigemptyset(&(new[1].__sa_signals));

 (void)sigaddset (&(new[1].__sa_signals), SIGCHLD);

 new[0].__sa_handler = SIG_IGN;

 new[1].__sa_sigaction = &catch_sigchld;

 new[1].__sa_flags = SA_SIGINFO;

 rc = __sigactionset((size_t)2, new, &oldct, old, __SSET_IGINVALID);

Related Information

v “signal.h” on page 77

v “alarm() — Set an Alarm” on page 180

v “bsd_signal() — BSD Version of signal()” on page 218

v “exec Functions” on page 486

v “getcontext() — Get User Context” on page 750

v “kill() — Send a Signal to a Process” on page 1055

v “makecontext() — Modify User Context” on page 1169

v “raise() — Raise Signal” on page 1595

v “setcontext() — Restore User Context” on page 1778

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigaddset() — Add a Signal to the Signal Mask” on page 1899

v “sigaltstack() — Set and/or Get Signal Alternate Stack Context” on page 1901

v “sigdelset() — Delete a Signal from the Signal Mask” on page 1903

v “sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page 1905

v “sigfillset() — Initialize a Signal Mask to Include All Signals” on page 1907

v “sigignore() — Set Disposition to Ignore a Signal” on page 1910

v “siginterrupt() — Allow Signals to Interrupt Functions” on page 1911

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigstack() — Set and/or Get Signal Stack Context” on page 1939

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

__sigactionset

Chapter 3. Part 3. Library Functions 1897

v “swapcontext() — Save and Restore User Context” on page 2101

v “wait() — Wait for a Child Process to End” on page 2349

v “wait3() — Wait for Child Process to Change State” on page 2358

__sigactionset

1898 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sigaddset() — Add a Signal to the Signal Mask

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <signal.h>

int sigaddset(sigset_t *set, int signal);

General description

Adds a signal to the set of signals already recorded in set.

sigaddset() is part of a family of functions that manipulate signal sets. Signal sets

are data objects that let a process keep track of groups of signals. For example, a

process can create one signal set to record which signals it is blocking, and another

signal set to record which signals are pending. In general, signal sets are used to

manipulate groups of signals used by other functions (such as sigprocmask()) or to

examine signal sets returned by other functions (such as sigpending()).

Applications should call either sigemptyset() or sigfillset() at least once for each

object of type sigset_t prior to any other use of that object. If such an object is not

initialized in this way, but is nonetheless supplied as an argument to any of

pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigismember(), sigpending(),

sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or sigwaitinfo(), the results

are undefined.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned value

If the signal is successfully added to the signal set, sigaddset() returns 0.

If signal is not supported, sigaddset() returns −1 and sets errno to EINVAL.

Example

CELEBS15

/* CELEBS15

 This example adds a set of signals.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

void catcher(int signum) {

sigaddset

Chapter 3. Part 3. Library Functions 1899

||||

|
|
|
|

||

|

|
|
|
|
|
|

puts("catcher() has gained control");

}

main() {

 struct sigaction sact;

 sigset_t sigset;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGUSR1, &sact, NULL);

 puts("before first kill()");

 kill(getpid(), SIGUSR1);

 puts("before second kill()");

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 kill(getpid(), SIGUSR1);

 puts("after second kill()");

}

Output

before first kill()

catcher() has gained control

before second kill()

after second kill()

Related Information

v “signal.h” on page 77

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigdelset() — Delete a Signal from the Signal Mask” on page 1903

v “sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page 1905

v “sigfillset() — Initialize a Signal Mask to Include All Signals” on page 1907

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigismember() — Test If a Signal Is in a Signal Mask” on page 1912

v “signal() — Handle Interrupts” on page 1917

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

sigaddset

1900 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sigaltstack() — Set and/or Get Signal Alternate Stack Context

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

int sigaltstack(const stack_t *__restrict__ ss, stack_t *__restrict__ oss);

General Description

The sigaltstack() function allows a thread to define and examine the state of an

alternate stack for signal handlers. Signals that have been explicitly declared to

execute on the alternate stack will be delivered on the alternate stack.

Note: To explicitly declare that a signal catcher is to run on the alternate signal

stack, the SA_ONSTACK flag must be set in the sa_flags when the signal

action is set using sigaction().

If ss is not a NULL pointer, it points to a stack_t structure that specifies the

alternate signal stack that will take effect upon return from sigaltstack(). The

ss_flags member specifies the new stack state. If it is set to SS_DISABLE, the

stack is disabled and ss_sp and ss_size are ignored. Otherwise the stack will be

enabled, and the ss_sp and ss_size members specify the new address and size of

the stack.

AMODE 64 considerations: Storage for this stack must be above the 2GB bar. It

may not be storage acquired with the __malloc24() or

__malloc31() functions.

The range of addresses starting at ss_sp, up to but not including ss_sp + ss_size,

is available to the implementation for use as the stack. This interface makes no

assumptions regarding which end is the stack base and in which direction the stack

grows as items are pushed.

If oss is not a NULL pointer, on successful completion it will point to a stack_t

structure that specifies the alternate signal stack that was in effect before the call to

sigaltstack(). The ss_sp and ss_size members specify the address and size of that

stack. The ss_flags member specifies the stack’s state, and may contain one of the

following values:

SS_ONSTACK

The thread is currently executing on the alternate signal stack.

Attempts to modify the alternate signal stack while the thread is

executing on it fails. This flag must not be modified by threads.

SS_DISABLE The alternate signal stack is currently disabled.

The value SIGSTKSZ is a system default specifying the number of bytes that would

be used to cover the usual case when manually allocating an alternate stack area.

The value MINSIGSTKSZ is defined to be the minimum stack size for a signal handler.

sigaltstack

Chapter 3. Part 3. Library Functions 1901

||||

|
|
||

|

|
|
|
|

In computing an alternate signal stack size, a program should add that amount to

its stack requirements to allow for the system implementation overhead. The

constants SS_ONSTACK, SS_DISABLE, SIGSTKSZ, and MINSIGSTKSZ are

defined in <signal.h>.

After a successful call to one of the exec functions, there are no alternate signal

stacks in the new process image.

Notes:

1. If a signal handler is enabled to run on an alternate stack, then all functions

called by that signal handler must be compiled with the same linkage. For

example, if the signal handler is compiled with XPLINK, then all functions it calls

must also be compiled XPLINK. Since only one alternate stack can be supplied,

no mixing of linkages (which would require both upward and downward-growing

alternate stacks) is allowed. The type of stack created will be based on the

attributes of the signal handler to be given control. If the signal handler has

been compiled with XPLINK, then a downward-growing stack will be created in

the alternate stack, including, in AMODE 31, using enough storage in the user

stack to create a 4k read-only guard page (aligned on a 4k boundary).

2. If a new signal is received while a signal handler is running on an alternate

stack, and that new signal specified a signal handler that also runs on the

alternate stack, then both signal handlers must have been compiled with the

same linkage (XPLINK versus non-XPLINK).

Returned Value

If successful, sigaltstack() returns 0.

If unsuccessful, sigaltstack() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL ss argument is not a NULL pointer, and the ss_flags member

pointed to by ss contains flags other than SS_DISABLE.

ENOMEM The size of the alternate stack area is less than MINSIGSTKSZ.

EPERM An attempt was made to modify an active stack.

Related Information

v “signal.h” on page 77

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

v “sigstack() — Set and/or Get Signal Stack Context” on page 1939

sigaltstack

1902 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sigdelset() — Delete a Signal from the Signal Mask

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <signal.h>

int sigdelset(sigset_t *set, int signal);

General Description

Removes the specified signal from the list of signals recorded in set.

The sigdelset() function is part of a family of functions that manipulate signal sets.

Signal sets are data objects that let a process keep track of groups of signals. For

example, a process can create one signal set to record which signals it is blocking,

and another signal set to record which signals are pending. In general, signal sets

are used to manipulate groups of signals used by other functions (such as

sigprocmask()) or to examine signal sets returned by other functions (such as

sigpending()).

Applications should call either sigemptyset() or sigfillset() at least once for each

object of type sigset_t prior to any other use of that object. If such an object is not

initialized in this way, but is nonetheless supplied as an argument to any of

pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigismember(), sigpending(),

sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or sigwaitinfo(), the results

are undefined.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

If the signal is successfully deleted from the signal set, sigdelset() returns 0.

If signal is not supported, sigdelset() returns −1 and sets errno to EINVAL.

Example

CELEBS16

/* CELEBS16

 This example deletes specific signals.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

sigdelset

Chapter 3. Part 3. Library Functions 1903

||||

|
|
|
|

||

|

|
|
|
|
|
|

void catcher(int signum) {

 puts("catcher() has gained control");

}

main() {

 struct sigaction sact;

 sigset_t sigset;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGUSR1, &sact, NULL);

 sigfillset(&sigset);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 puts("before kill()");

 kill(getpid(), SIGUSR1);

 puts("before unblocking SIGUSR1");

 sigdelset(&sigset, SIGUSR1);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 puts("after unblocking SIGUSR1");

}

Output

before kill()

before unblocking SIGUSR1

catcher() has gained control

after unblocking SIGUSR1

Related Information

v “signal.h” on page 77

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigaddset() — Add a Signal to the Signal Mask” on page 1899

v “sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page 1905

v “sigfillset() — Initialize a Signal Mask to Include All Signals” on page 1907

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigismember() — Test If a Signal Is in a Signal Mask” on page 1912

v “signal() — Handle Interrupts” on page 1917

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

sigdelset

1904 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sigemptyset() — Initialize a Signal Mask to Exclude All Signals

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <signal.h>

int sigemptyset(sigset_t *set);

General Description

Initializes a signal set set to the empty set. All recognized signals are excluded.

sigemptyset() is part of a family of functions that manipulate signal sets. Signal sets

are data objects that let a process keep track of groups of signals. For example, a

process can create one signal set to record which signals it is blocking, and another

signal set to record which signals are pending. Signal sets are used to manipulate

groups of signals used by other functions (such as sigprocmask()) or to examine

signal sets returned by other functions (such as sigpending()).

Returned Value

If successful, sigemptyset() returns 0.

There are no documented errno values.

Example

CELEBS17

/* CELEBS17

 This example initializes a set of signals to an empty set.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

main() {

 struct sigaction sact;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = SIG_IGN;

 sigaction(SIGUSR2, &sact, NULL);

 puts("before kill()");

 kill(getpid(), SIGUSR2);

 puts("after kill()");

}

sigemptyset

Chapter 3. Part 3. Library Functions 1905

||||

|
|
|
|

||

|

Output

before kill()

after kill()

Related Information

v “signal.h” on page 77

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigaddset() — Add a Signal to the Signal Mask” on page 1899

v “sigdelset() — Delete a Signal from the Signal Mask” on page 1903

v “sigfillset() — Initialize a Signal Mask to Include All Signals” on page 1907

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigismember() — Test If a Signal Is in a Signal Mask” on page 1912

v “signal() — Handle Interrupts” on page 1917

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

sigemptyset

1906 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sigfillset() — Initialize a Signal Mask to Include All Signals

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <signal.h>

int sigfillset(sigset_t *set);

General Description

Initializes a signal set set to the complete set of supported signals.

sigfillset() is part of a family of functions that manipulate signal sets. Signal sets are

data objects that let a process keep track of groups of signals. For example, a

process can create one signal set to record which signals it is blocking, and another

signal set to record which signals are pending. Signal sets are used to manipulate

groups of signals used by other functions (such as sigprocmask()) or to examine

signal sets returned by other functions (such as sigpending()).

Returned Value

If successful, sigfillset() returns 0.

There are no documented errno values.

Example

CELEBS18

/* CELEBS18

 This example initializes a set of signals to a complete set.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

main() {

 sigset_t sigset;

 sigfillset(&sigset);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 puts("before kill()");

 kill(getpid(), SIGSEGV);

 puts("after kill()");

}

Output

sigfillset

Chapter 3. Part 3. Library Functions 1907

||||

|
|
|
|

||

|

before kill()

after kill()

Related Information

v “signal.h” on page 77

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigaddset() — Add a Signal to the Signal Mask” on page 1899

v “sigdelset() — Delete a Signal from the Signal Mask” on page 1903

v “sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page 1905

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigismember() — Test If a Signal Is in a Signal Mask” on page 1912

v “signal() — Handle Interrupts” on page 1917

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

sigfillset

1908 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sighold() — Add a Signal to a Thread

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

int sighold(int sig);

General description

The sighold() function provides a simplified method for adding the signal specified

by the argument sig to the calling thread’s signal mask.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned value

If successful, sighold() returns 0.

If unsuccessful, sighold() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The value of the argument sig is not a valid signal type or it is

SIGKILL or SIGSTOP.

Related Information

v “signal.h” on page 77

v “sigaddset() — Add a Signal to the Signal Mask” on page 1899

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigrelse() — Remove a Signal from a Thread” on page 1932

sighold

Chapter 3. Part 3. Library Functions 1909

||||

|
|
||

|

sigignore() — Set Disposition to Ignore a Signal

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

int sigignore(int sig);

General description

The sigignore() function provides a simplified method for setting the signal action of

the signal specified by the argument sig to SIG_IGN.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned value

If successful, sigignore() returns 0.

If unsuccessful, sigignore() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The value of the argument sig is not a valid signal type or it is

SIGKILL or SIGSTOP.

Related information

v “signal.h” on page 77

v “bsd_signal() — BSD Version of signal()” on page 218

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “signal() — Handle Interrupts” on page 1917

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

sigignore

1910 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

siginterrupt() — Allow Signals to Interrupt Functions

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

int siginterrupt(int sig, int flag);

General Description

The siginterrupt() function provides a simplified method for changing the restart

behavior when a function is interrupted by the signal specified in the argument sig.

The argument flag serves as a binary switch to enable or disable restart behavior.

When flag is nonzero, restart behavior will be disabled. Otherwise it is enabled.

Returned Value

If successful, siginterrupt() returns 0.

If unsuccessful, siginterrupt() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL The value of the argument sig is not a valid signal type.

Related Information

v “signal.h” on page 77

v “sigaction() — Examine or Change a Signal Action” on page 1880

siginterrupt

Chapter 3. Part 3. Library Functions 1911

||||

|
|
||

|

sigismember() — Test If a Signal Is in a Signal Mask

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <signal.h>

int sigismember(const sigset_t *set, int signal);

General Description

Tests whether a specified signal number signal is a member of a signal set set.

sigismember() is part of a family of functions that manipulate signal sets. Signal

sets are data objects that let a process keep track of groups of signals. For

example, a process can create one signal set to record which signals it is blocking,

and another signal set to record which signals are pending. Signal sets are used to

manipulate groups of signals used by other functions (such as sigprocmask()) or to

examine signal sets returned by other functions (such as sigpending()).

Applications should call either sigemptyset() or sigfillset() at least once for each

object of type sigset_t prior to any other use of that object. If such an object is not

initialized in this way, but is nonetheless supplied as an argument to any of

pthread_sigmask(), sigaction(), sigaddset(), sigdelset(), sigismember(), sigpending(),

sigprocmask(), sigsuspend(), sigtimedwait(), sigwait(), or sigwaitinfo(), the results

are undefined.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

sigismember() returns 1 if signal is in set, and it returns 0 if it is not.

If unsuccessful, sigismember() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL The value of signal is not one of the supported signals.

Example

CELEBS19

/* CELEBS19

 This example tests signals.

 */

#define _POSIX_SOURCE

sigismember

1912 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

|
|
|
|
|
|

#include <stdio.h>

#include <signal.h>

void check(sigset_t set, int signum, char *signame) {

 printf("%−8s is ", signame);

 if (!sigismember(&set, signum))

 printf("not ");

 puts("in the set");

}

main() {

 sigset_t sigset;

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigaddset(&sigset, SIGKILL);

 sigaddset(&sigset, SIGCHLD);

 check(sigset, SIGUSR1, "SIGUSR1");

 check(sigset, SIGUSR2, "SIGUSR2");

 check(sigset, SIGFPE, "SIGFPE");

 check(sigset, SIGKILL, "SIGKILL");

}

Output

SIGUSR1 is in the set

SIGUSR2 is not in the set

SIGFPE is not in the set

SIGKILL is in the set

Related Information

v “signal.h” on page 77

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigaddset() — Add a Signal to the Signal Mask” on page 1899

v “sigdelset() — Delete a Signal from the Signal Mask” on page 1903

v “sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page 1905

v “sigfillset() — Initialize a Signal Mask to Include All Signals” on page 1907

v “sighold() — Add a Signal to a Thread” on page 1909

v “signal() — Handle Interrupts” on page 1917

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

sigismember

Chapter 3. Part 3. Library Functions 1913

siglongjmp() — Restore the Stack Environment and Signal Mask

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <setjmp.h>

void siglongjmp(sigjmp_buf env, int val);

General Description

For a stack environment previously saved in env by sigsetjmp(), the siglongjmp()

function restores all the stack environment and, optionally, the signal mask,

depending on whether it was saved by sigsetjmp(). The sigsetjmp() and

siglongjmp() functions provide a way to perform a nonlocal goto.

env is an address for a sigjmp_buf structure.

val is the return value from siglongjmp().

siglongjmp() is similar to longjmp(), except for the optional capability of restoring the

signal mask. The sigsetjmp()—siglongjmp() pair, the setjmp()—longjmp() pair, the

_setjmp()—_longjmp() pair, and the getcontext()—setcontext() pair cannot be

intermixed. A stack environment and signal mask saved by sigsetjmp() can be

restored only by siglongjmp().

A call to sigsetjmp() causes the current stack environment including, optionally, the

signal mask to be saved in env. A subsequent call to siglongjmp() restores the

saved environment and signal mask (if saved by sigsetjmp()) and returns control to

a point in the program corresponding to the sigsetjmp() call. Execution resumes as

if the sigsetjmp() call had just returned the given value. All variables (except register

variables) that are accessible to the function that receives control contain the values

they had when you called siglongjmp(). The values of register variables are

unpredictable. Nonvolatile auto variables that are changed between calls to

sigsetjmp() and siglongjmp() are also unpredictable.

Notes:

1. If you call siglongjmp(), the function in which the corresponding call to

sigsetjmp() was made must not have returned first. After the function calling

sigsetjmp() returns, calling siglongjmp() causes unpredictable program behavior.

2. If siglongjmp() is used to jump back into an XPLINK routine, any alloca()

requests issued by the XPLINK routine after the earlier sigsetjmp() (or

getcontext(),and so on.) was called and before siglongjmp() is called are backed

out. All storage obtained by these alloca() requests is freed before the XPLINK

routine is resumed.

3. If siglongjmp() is used to jump back into a non-XPLINK routine, alloca()

requests made after sigsetjmp() and before siglongjmp() are not backed out.

siglongjmp

1914 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

The value argument passed to siglongjmp() must be nonzero. If you give a zero

argument for value, siglongjmp() substitutes the value 1 in its place.

siglongjmp() does not use the normal function call and return mechanisms.

siglongjmp() restores the saved signal mask only if the env parameter was

initialized by a call to sigsetjmp() with a nonzero savemask argument.

Special Behavior for C++

If sigsetjmp() and siglongjmp() are used to transfer control in a z/OS XL C++

program, the behavior is undefined in terms of the destruction of automatic objects.

Additionally, if any automatic objects would be destroyed by a thrown exception

transferring control to another (destination) point in the program, then a call to

siglongjmp() at the throw point that transfers control to the same (destination) point

has undefined behavior. This applies to both z/OS XL C++ and z/OS XL C/C++

ILC modules. The use of sigsetjmp() and siglongjmp() in conjunction with try(),

catch(), and throw() is also undefined.

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the V2R10 or later C compilers that are to

run with Language Environment V2R10 or later libraries and use the jmp_buf,

sigjmp_buf or ucontext_t types must not be compiled with C headers from

Language Environment V2R9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not define jmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Language Environment V2R10 and later

headers define a larger jmp_buf, sigjmp_buf or ucontext_t area that is

required by setjmp(), getcontext(), and related functions when they are called

from an XPLINK routine. If __XPLINK__ is not defined, the Language

Environment V2R10 and later headers define a shorter jmp_buf, sigjmp_buf or

ucontext_t area. The Language Environment headers before V2R10 also

define the shorter version of these data areas. If an XPLINK function calls

setjmp(), getcontext() or similar functions with a short jmp_buf, sigjmp_buf or

ucontext_t area, a storage overlay or program check may occur when the C

library tries to store past the end of the passed-in (too short) data area.

Returned Value

siglongjmp() returns no values.

There are no documented errno values.

Example

This example saves the stack environment and signal mask at the statement:

if(sigsetjmp(mark,1) != 0) ...

siglongjmp

Chapter 3. Part 3. Library Functions 1915

When the system first performs the if statement, it saves the environment and

signal mask in mark and sets the condition to false, because sigsetjmp() returns 0

when it saves the environment. The program prints the message: sigsetjmp() has

been called

The subsequent call to function p() tests for a local error condition, which can cause

it to perform siglongjmp(). Then control returns to the original sigsetjmp() function

using the environment saved in mark and restores the signal mask. This time the

condition is true because −1 is the return value from siglongjmp(). The example

then performs the statements in the block and prints: siglongjmp() has been

called Then it performs your recover() function and leaves the program.

#define _POSIX_SOURCE

#include <stdio.h>

#include <setjmp.h>

sigjmp_buf mark;

void p(void);

void recover(void);

int main(void)

{

 if (sigsetjmp(mark) != 0) {

 printf("siglongjmp() has been called\n");

 recover();

 exit(1);

 }

 printf("sigsetjmp() has been called\n"); ...
 p(); ...
}

void p(void) {

 int error = 0; ...
 error = 9; ...
 if (error != 0)

 siglongjmp(mark, -1); ...
}

void recover(void) { ...
}

Related Information

v “setjmp.h” on page 77

v “getcontext() — Get User Context” on page 750

v “longjmp() — Restore Stack Environment” on page 1143

v “_longjmp() — Nonlocal Goto” on page 1147

v “setcontext() — Restore User Context” on page 1778

v “setjmp() — Preserve Stack Environment” on page 1802

v “_setjmp() — Set Jump Point for a Nonlocal Goto” on page 1806

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

v “swapcontext() — Save and Restore User Context” on page 2101

siglongjmp

1916 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

signal() — Handle Interrupts

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

POSIX.4a

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <signal.h>

void(*signal(int sig, void(*func)(int)))(int);

General Description

Allows a process to choose one of several ways to handle an interrupt signal sig

from the operating system or from the raise() function.

The sig argument must be one of the macros defined in the signal.h header file.

See Table 48 on page 1919.

The func argument must be one of the macros, SIG_DFL or SIG_IGN, defined in

the signal.h header file, or a function address.

If the value of func is SIG_DFL, default handling for that signal will occur. If the

value of func is SIG_IGN, the signal will be ignored. Otherwise, func points to a

function to be called when that signal occurs. Such a function is called a signal

handler.

When a signal occurs, if func points to a function:

1. First the equivalent of signal(sig,SIG_DFL); is executed or an

implementation-defined blocking of the system is performed. (If the value of sig

is SIGILL, the occurrence of the reset to SIG_DFL is implementation-defined.)

2. Next, the equivalent of (*func)(sig); is executed. The function func may

terminate by executing a return statement or by calling the abort(), exit(), or

longjmp() function. If func executes a return statement and the value of sig was

SIGFPE or any other implementation-defined value corresponding to a

computational exception, the behavior is undefined. Otherwise, the program will

resume execution at the point it was interrupted.

If a signal occurs for a reason other than having called the abort() or raise()

function, the behavior is undefined if the signal handler calls any function in the

standard library other than the signal() function itself (with a first argument of the

signal number corresponding to the signal that caused the invocation of the

handler). Behavior is also undefined if the signal handler refers to any object with

static storage duration other than by assigning a value to a static storage duration

variable of type volatile sig_atomic_t. Furthermore, if such a call to the signal()

function returns SIG_ERR, the value of errno is indeterminate.

signal

Chapter 3. Part 3. Library Functions 1917

||||

|
|
|
|
|
|
|

||

|

At program startup, the equivalent of signal(sig, SIG_IGN); may be executed for

some selected signals. The equivalent of signal(sig, SIG_DFL); is executed for all

other signals.

The action taken when the interrupt signal is received depends on the value of func.

Value Meaning

SIG_DFL Default handling for the signal will occur.

SIG_IGN The signal is to be ignored.

As of Language Environment Release 3, the defaults for SIGUSR1, SIGUSR2,

SIGINT, and SIGTERM are changed from the signal being ignored to abnormal

termination. To compensate for this change, you would explicitly register that the

signal is to be ignored, using a call sequence such as:

signal(SIGUSR1, SIG_IGN);

signal(SIGUSR2, SIG_IGN);

signal(SIGINT, SIG_IGN);

signal(SIGTERM, SIG_IGN);

These calls may be made either in the source or they can be made from the HLL

user exit CEEBINT, which will require a re-link.

Special Behavior for POSIX

For a z/OS UNIX C application running POSIX(ON), the interrupt signal can also

come from kill() or from another process. A program can use sigaction() to establish

a signal handler; sigaction() blocks the signal while the signal handler has control. If

you use signal() to establish a signal handler, the signal reverts back to the default

action. If you want the signal handler to get control for the next signal of this type,

you must reissue signal().

See “z/OS XL C/C++ applications with z/OS UNIX System Services C functions” on

page 13 for more information about using POSIX support.

signal(sig, func) is equivalent to sigaction(sig, &act, NULL), where act points

to a sigaction structure containing an sa_action of func, an sa_mask by

sigemptyset(), and an sa_flags containing _SA_OLD_STYLE.

Note: The sigaction() function supersedes the signal() interface, and should be the

preferred usage. In particular, sigaction() and signal() must not be used in

the same process to control the same signal.

For a list of considerations for coding signal-catching functions that will support

asynchronous signals, refer to “sigaction() — Examine or Change a Signal Action”

on page 1880.

The sig argument must be one of the macros defined in the signal.h header file.

Special Behavior for C++

v The behavior when mixing signal-handling with C++ exception handling is

undefined. Also, the use of signal-handling with constructors and destructors is

undefined.

v C++ and C language linkage conventions are incompatible, and therefore signal()

cannot receive C++ function pointers. If you attempt to pass a C++ function

pointer to signal(), the compiler will flag it as an error. Therefore, to use the

signal

1918 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

signal() function in the C++ language, you must ensure that signal handler

routines established have C linkage, by declaring them as extern "C".

The signals supported are listed below.

 Table 48. Signals Supported by C or C++ — POSIX(OFF)

Value

Default

Action Meaning

SIGABND 1 Abend

SIGABRT 1 Abnormal termination (sent by abort())

SIGFPE 1 Arithmetic exceptions that are not masked, for example,

overflow, division by zero, and incorrect operation

SIGILL 1 Detection of an incorrect function image

SIGINT 1 Interactive attention

SIGSEGV 1 Incorrect access to memory

SIGTERM 1 Termination request sent to the program

SIGUSR1 1 Intended for use by user applications

SIGUSR2 1 Intended for use by user applications

SIGIOERR 2 A serious I/O error was detected.

In Table 48, the Default Actions are:

1 Normal termination of the process.

2 Ignore the signal.

When the runtime option POSIX(ON) is specified, if a signal catcher for a

SIGABND, SIGFPE, SIGILL or SIGSEGV signal runs as a result of a program

check or an ABEND, and the signal catcher executes a RETURN statement, the

process will be terminated.

Returned Value

If successful, signal() returns the most recent value of func.

If unsuccessful, signal() returns a value of SIG_ERR and a positive value in errno.

There are no documented errno values. If an error occurs, issue perror() using the

errno value.

Example

CELEBS20

/* CELEBS20

 This example shows you how to establish a signal handler.

 */

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

#define ONE_K 1024

#define OUT_OF_STORAGE (SIGUSR1)

/* The SIGNAL macro does a signal() checking the return code */

signal

Chapter 3. Part 3. Library Functions 1919

#define SIGNAL(handler, StrCln) { \

 if (signal((handler), (StrCln)) == SIG_ERR) { \

 perror("Could not signal user signal"); \

 abort(); \

 } \

}

#ifdef __cplusplus /* the __cplusplus macro */

extern "C" void StrCln(int); /* is automatically defined */

#else /* by the C++/MVS compiler */

void StrCln(int);

#endif

void DoWork(char **, int);

int main(int argc, char *argv[]) {

 int size;

 char *buffer;

 signal(OUT_OF_STORAGE, StrCln);

 if (argc != 2) {

 printf("Syntax: %s size \n", argv[0]);

 return(−1);

 }

 size = atoi(argv[1]);

 DoWork(&buffer, size);

 return(0);

}

void StrCln(int SIG_TYPE) {

 printf("Failed trying to malloc storage\n");

 signal(SIG_TYPE, SIG_DFL);

 exit(0);

}

void DoWork(char **buffer, int size) {

 int rc;

 while (*buffer !=NULL)

 *buffer = (char *)malloc(size*ONE_K);

 if (*buffer == NULL) {

 if (raise(OUT_OF_STORAGE)) {

 perror("Could not raise user signal");

 abort();

 }

 }

 return;

}

Related Information

v Signal-handling in z/OS XL C/C++ Programming Guide.

v “signal.h” on page 77

v “abort() — Stop a Program” on page 116

v “atexit() — Register Program Termination Function” on page 196

v “bsd_signal() — BSD Version of signal()” on page 218

v “exit() — End Program” on page 494

v “kill() — Send a Signal to a Process” on page 1055

v “pthread_kill() — Send a Signal to a Thread” on page 1474

v “raise() — Raise Signal” on page 1595

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigignore() — Set Disposition to Ignore a Signal” on page 1910

signal

1920 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

v “waitid() — Wait for Child Process to Change State” on page 2352

v “wait3() — Wait for Child Process to Change State” on page 2358

signal

Chapter 3. Part 3. Library Functions 1921

signbit() — Determines whether the sign of its argument is negative

Standards

 Standards / Extensions C or C++ Dependencies

 C99

Single UNIX Specification, Version 3

both z/OS V1R9

Format

#define _ISOC99_SOURCE

#include <math.h>

int signbit(real-floating x);

#define __STDC_WANT_DEC_FP__

#include <math.h>

int signbit(real-floating x or decimal-floating x);

General Description

The signbit() macro determines whether the sign of its argument value is negative.

 Function Hex IEEE

signbit X X

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v This function works in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The signbit() macro returns 1 if the sign of its argument value is negative, else

returns 0.

Related Information

v “math.h” on page 60

signbit

1922 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|
|
|
|
|

|
|

|
|

__signgam() — Return signgam Reference

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _XOPEN_SOURCE

#include <math.h>

int *__signgam(void);

#define signgam (*__signgam())

General Description

The __signgam() function returns the address of the calling thread’s storage for the

signgam external variable used by the gamma() and lgamma() functions. This

extended mechanism is necessary for multithreaded processes which use either of

these two functions, since each thread has its own instance of signgam. The

<math.h> header defines signgam to an invocation of __signgam(), so generally, all

references to signgam will be mapped to calls to __signgam(). If the user eliminates

this definition, either by not including the header, or by using #undef, then

references to signgam will refer to the actual signgam external variable, which

contains the signgam value for the IPT only. In the absence of the definition of

signgam to a call to __signgam(), signgam values in threads other than the IPT are

inaccessible.

Returned Value

__signgam() is always successful.

Related Information

v “math.h” on page 60

v “gamma() — Calculate Gamma Function” on page 736

v “lgamma(), lgammaf(), lgammal() — Log Gamma Function” on page 1096

__signgam

Chapter 3. Part 3. Library Functions 1923

sigpause() — Unblock a Signal and Wait for a Signal

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

int sigpause(int sig);

General Description

The sigpause() function provides a simplified method for removing a signal,

specified by the argument sig, from the calling thread’s signal mask and suspending

this thread until a signal is received whose action is either to execute a signal

catcher function or to terminate the process.

Usage Note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

If successful, sigpause() returns −1 and sets errno to EINTR.

If unsuccessful, sigpause() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The value of the argument sig is not a valid signal type or it is

SIGKILL.

Related Information

v “signal.h” on page 77

v “pause() — Suspend a Process Pending a Signal” on page 1340

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

sigpause

1924 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

sigpending() — Examine Pending Signals

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <signal.h>

int sigpending(sigset_t *set);

General Description

Returns the union of the set of signals that are blocked from delivery and pending

for the calling thread and the set that are pending for the process. If there is only

one thread, it does the same for the calling process. This information is represented

as a signal set stored in set. For more information on examining the signal set

pointed to by set, see “sigismember() — Test If a Signal Is in a Signal Mask” on

page 1912.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

If successful, sigpending() returns 0.

If unsuccessful, sigpending() returns −1.

There are no documented errno values.

Example

CELEBS22

/* CELEBS22

 This example returns blocked or pending signals.

 */

#define _POSIX_SOURCE

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

void catcher(int signum) {

 puts("inside catcher!");

}

void check_pending(int signum, char *signame) {

 sigset_t sigset;

 if (sigpending(&sigset) != 0)

 perror("sigpending() error");

sigpending

Chapter 3. Part 3. Library Functions 1925

||||

|
|
|
|

||

|

else if (sigismember(&sigset, signum))

 printf("a %s signal is pending\n", signame);

 else

 printf("no %s signals are pending\n", signame);

}

main() {

 struct sigaction sigact;

 sigset_t sigset;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 if (sigaction(SIGUSR1, &sigact, NULL) != 0)

 perror("sigaction() error");

 else {

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 if (sigprocmask(SIG_SETMASK, &sigset, NULL) != 0)

 perror("sigprocmask() error");

 else {

 puts("SIGUSR1 signals are now blocked");

 kill(getpid(), SIGUSR1);

 printf("after kill: ");

 check_pending(SIGUSR1, "SIGUSR1");

 sigemptyset(&sigset);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 puts("SIGUSR1 signals are no longer blocked");

 check_pending(SIGUSR1, "SIGUSR1");

 }

 }

}

Output

SIGUSR1 signals are now blocked

after kill: a SIGUSR1 signal is pending

inside catcher!

SIGUSR1 signals are no longer blocked

no SIGUSR1 signals are pending

Related Information

v “signal.h” on page 77

v “sigismember() — Test If a Signal Is in a Signal Mask” on page 1912

v “sigprocmask() — Examine or Change a Thread” on page 1927

sigpending

1926 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sigprocmask() — Examine or Change a Thread

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <signal.h>

int sigprocmask(int option, const sigset_t *__restrict__ new_set,

 sigset_t *__restrict__ old_set);

General Description

Examines, changes, or examines and changes the signal mask of the calling

thread. If there is only one thread, it does the same for the calling process.

Typically, sigprocmask(SIG_BLOCK, ..., ...) is used to block signals during a

critical section of code. At the end of the critical section of code,

sigprocmask(SIG_SETMASK, ..., ...) is used to restore the mask to the previous

value returned by sigprocmask(SIG_BLOCK, ..., ...).

option Indicates the way in which the existing set of blocked signals

should be changed. The following are the possible values for

option, defined in the signal.h header file:

SIG_BLOCK Indicates that the set of signals given by new_set

should be blocked, in addition to the set currently

being blocked.

SIG_UNBLOCK

Indicates that the set of signals given by new_set

should not be blocked. These signals are removed

from the current set of signals being blocked.

SIG_SETMASK

Indicates that the set of signals given by new_set

should replace the old set of signals being blocked.

new_set Points to a signal set giving the new signals that should be blocked

or unblocked (depending on the value of option) or it points to the

new signal mask if the option was sig_setmask. Signal sets are

described in “sigemptyset() — Initialize a Signal Mask to Exclude All

Signals” on page 1905. If new_set is a NULL pointer, the set of

blocked signals is not changed. sigprocmask() determines the

current set and returns this information in *old_set. If new_set is

NULL, the value of option is not significant.

 The signal set manipulation functions: sigemptyset(), sigfillset(),

sigaddset(), and sigdelset() must be used to establish the new

signal set pointed to by new_set.

old_set Points to a memory location where sigprocmask() can store a signal

sigprocmask

Chapter 3. Part 3. Library Functions 1927

||||

|
|
|
|

||

|

|
|
|
|
|

set. If new_set is NULL, old_set returns the current set of signals

being blocked. When new_set is not NULL, the set of signals

pointed to by old_set is the previous set.

If there are any pending unblocked signals, either at the process level or at the

current thread’s level after sigprocmask() has changed the signal mask, then at

least one of those signals is delivered to the thread before sigprocmask() returns.

The signals SIGKILL or SIGSTOP cannot be blocked. If you attempt to use

sigprocmask() to block these signals, the attempt is simply ignored. sigprocmask()

does not return an error status.

SIGFPE, SIGILL, and SIGSEGV signals that are not artificially generated by kill(),

killpg(), raise(), sigqueue(), or pthread_kill() (that is, were generated by the system

as a result of a hardware or software exception) will not be blocked.

If an artificially raised SIGFPE, SIGILL, or SIGSEGV signal is pending and blocked

when an exception causes another SIGFPE, SIGILL, or SIGSEGV signal, both the

artificial and exception-caused signals may be delivered to the application.

If sigprocmask() fails, the signal mask of the thread is not changed.

Usage Note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

If successful, sigprocmask() returns 0.

If unsuccessful, sigprocmask() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL option does not have one of the recognized values.

Example

CELEBS23

/* CELEBS23

 This example changes the signal mask.

 */

#define _POSIX_SOURCE

#include <signal.h>

#include <stdio.h>

#include <time.h>

#include <unistd.h>

void catcher(int signum) {

 puts("inside catcher");

}

main() {

 time_t start, finish;

 struct sigaction sact;

 sigset_t new_set, old_set;

 double diff;

 sigemptyset(&sact.sa_mask);

sigprocmask

1928 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

sact.sa_flags = 0;

 sact.sa_handler = catcher;

 if (sigaction(SIGALRM, &sact, NULL) != 0)

 perror("sigaction() error");

 else {

 sigemptyset(&new_set);

 sigaddset(&new_set, SIGALRM);

 if (sigprocmask(SIG_BLOCK, &new_set, &old_set) != 0)

 perror("1st sigprocmask() error");

 else {

 time(&start);

 printf("SIGALRM signals blocked at %s", ctime(&start));

 alarm(1);

 do {

 time(&finish);

 diff = difftime(finish, start);

 } while (diff < 10);

 if (sigprocmask(SIG_SETMASK, &old_set, NULL) != 0)

 perror("2nd sigprocmask() error");

 else

 printf("SIGALRM signals unblocked at %s", ctime(&finish));

 }

 }

}

Output

SIGALRM signals blocked at Fri Jun 16 12:24:19 2001

inside catcher

SIGALRM signals unblocked at Fri Jun 16 12:24:29 2001

Related Information

v “signal.h” on page 77

v “kill() — Send a Signal to a Process” on page 1055

v “killpg() — Send a Signal to a Process Group” on page 1058

v “pthread_kill() — Send a Signal to a Thread” on page 1474

v “raise() — Raise Signal” on page 1595

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigaddset() — Add a Signal to the Signal Mask” on page 1899

v “sigdelset() — Delete a Signal from the Signal Mask” on page 1903

v “sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page 1905

v “sigfillset() — Initialize a Signal Mask to Include All Signals” on page 1907

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigismember() — Test If a Signal Is in a Signal Mask” on page 1912

v “signal() — Handle Interrupts” on page 1917

v “sigpending() — Examine Pending Signals” on page 1925

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigrelse() — Remove a Signal from a Thread” on page 1932

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

sigprocmask

Chapter 3. Part 3. Library Functions 1929

sigqueue() — Queue a Signal to a Process

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R9

Format

#define _XOPEN_SOURCE 500

#include <sys/types.h>

#include <signal.h>

int sigqueue(pid_t pid, int signo, const union sigval value);

General Description

Causes the signal specified by signo to be sent with the value specified by value to

the process specified by pid. If signo is zero (the null signal), error checking is

performed but no signal is actually sent. The null signal can be used to check the

validity of pid. The conditions required for a process to have permission to queue a

signal to another process are the same as for the kill() function.

The sigqueue() function returns immediately. If the resources were available to

queue the signal, the signal is queued and sent to the receiving process. The fact

that SA_SIGINFO is not set for signo does not effect this processing and queueing

of the signal.

If the value of pid causes signo to be generated for the sending process, and if

signo is not blocked for the calling thread and if no other thread has signo

unblocked or is waiting in a sigwait() function for signo, either signo or at least the

pending, unblocked signal will be delivered to the calling thread before sigqueue()

returns.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Since in AMODE 64 programs, sigval is 64 bits long, and in AMODE 31 programs

sigval is only 32 bits long, when passing sigval data between an AMODE 31 and

AMODE 64 process, there are the following restrictions:

v In AMODE 64, the sival_int field covers only the first 4 bytes of the sigval field --

only the sival_ptr field can access all 8 bytes of the sigval field.

v When an AMODE 64 program passes a sival_ptr value to an AMODE 31

program, the AMODE 31 program receives only the low 32 bits of the original

sival_ptr.

v When an AMODE 31 program passes a sival_ptr value to an AMODE 64

program, the original sival_ptr value is received in the low 32 bits of the AMODE

64 sival_ptr.

v When an AMODE 64 program tries to pass a value to an AMODE 31 program

using the sival_int field, the AMODE 31 program will receive 0 in sigval.

v When an AMODE 31 program sends a value to an AMODE 64 program using

sival_int, the AMODE 64 program will receive a 0 value in sival_int, but it can

access the original value as the low 32 bits of the AMODE 64 sival_ptr field.

sigqueue

1930 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

Returned Value

If successful, sigqueue() returns 0.

If unsuccessful, sigqueue() returns -1 and sets errno to one of the following values:

Error Code Description

EAGAIN No resources available to queue the signal or the system-wide

resource limit, defined by MAXQUEUEDSIGS, has been exceeded.

EINVAL The value of the signo argument is an invalid or unsupported signal

number.

EPERM The process does not have the appropriate privilege to send the

signal to the receiving process.

ESRCH The process pid does not exist.

Related Information

v “signal.h” on page 77

v “sys/types.h” on page 90

v “kill() — Send a Signal to a Process” on page 1055

sigqueue

Chapter 3. Part 3. Library Functions 1931

sigrelse() — Remove a Signal from a Thread

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

int sigrelse(int sig);

General description

The sigrelse() function provides a simplified method for removing the signal

specified by the argument sig from the calling thread’s signal mask.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned value

If successful, sigrelse() returns 0.

If unsuccessful, sigrelse() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The value of the argument sig is not a valid signal type or it is

SIGKILL or SIGSTOP.

Related Information

v “signal.h” on page 77

v “sighold() — Add a Signal to a Thread” on page 1909

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigprocmask() — Examine or Change a Thread” on page 1927

sigrelse

1932 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

sigset() — Change a Signal Action and/or a Thread

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

void (*sigset(int sig, void (*disp)(int)))(int);

General Description

The sigset() function provides a simplified method for changing the action

associated with a specific signal and unblock the signal, or to block this signal.

sig The number of a recognized signal. sigset() sets the action associated with

this signal and unblock this signal, or adds this signal to the calling thread’s

signal mask (thus blocking this signal). Refer to Table 47 on page 1881 for

a list of the supported values of sig.

 The value of sig can be any valid signal type except SIGKILL or SIGSTOP.

disp There are four possible value that disp can have. Three are actions that

can be associated with the signal, sig: SIG_DFL, SIG_IGN, or a pointer to a

function. The fourth value is not a signal action, but a flag to sigset() that

affects whether the signal action is changed.

The values that disp is permitted to have are:

SIG_DFL Set the signal action to the signal-specific default.

v The default actions for each signal is shown in Table 47 on page

1881.

v If disp is set to SIG_DFL, sigset() will change the signal action

associated with sig and remove this signal from the calling

thread’s signal mask (thus unblocking this signal).

v If the default action is to stop the process, the execution of that

process is temporarily suspended. When a process stops, a

SIGCHLD signal will be generated for its parent process, unless

the parent process has set the SA_NOCLDSTOP flag. While a

process is stopped, any additional signals that are sent to the

process will not be delivered until the process is continued,

except SIGKILL which always terminates the receiving process. A

process that is a member of an orphaned process group will not

be allowed to stop in response to the SIGTSTP, SIGTTIN, or

SIGTTOU signals. In cases where delivery of one of these

signals would stop such a process, the signal will be discarded.

v Setting a signal action to SIG_DFL for a signal that is pending,

and whose default action is to ignore the signal (for example

SIGCHLD), will cause the pending signal to be discarded.

SIG_IGN Set the signal action to ignore the signal.

v Delivery of the signal will have no effect on the process.

sigset

Chapter 3. Part 3. Library Functions 1933

||||

|
|
||

|

v If disp is set to SIG_IGN, sigset() will change the signal action

associated with sig and remove this signal from the calling

thread’s signal mask (thus unblocking this signal).

v Setting a signal action to SIG_IGN for a signal that is pending

will cause the pending signal to be discarded. This provides the

ability to discard signals that are found to be blocked and

pending by sigpending().

v If sig is SIGCHLD, child processes of the calling process will not

be transformed into ’zombie’ processes when they terminate. If

the calling process subsequently waits for its children, and the

process has no unwaited from children that were transformed

into ’zombie’ processes, it will block until all of its children

terminate. The wait(), waitid(), or waitpid() function will fail and

set errno to ECHILD.

SIG_HOLD Set the calling thread’s signal mask to block signal, sig.

v The signal action associated with sig is not changed.

Pointer to function

Set the signal action to catch the signal.

v sigset() will change the signal action associated with sig and

remove this signal from the calling thread’s signal mask (thus

unblocking this signal).

v On delivery of the signal, the receiving process is to execute the

signal-catching function at the specified address. After returning

from the signal-catching function, the receiving process will

resume execution at the point at which it was interrupted.

v The signal-catching function specified by disp is invoked as:

 void function(int signo);

Where function is the specified signal-catching function and signo

is the signal number of the signal being delivered.

After an action has been specified for a particular signal, using sigset(), it remains

installed until it is explicitly changed with another call to sigset(), sigaction(),

signal(), one of the exec functions, bsd_signal(), or sigignore().

Special Behavior for C++

v The behavior when mixing signal-handling with C++ exception handling is

undefined. Also, the use of signal-handling with constructors and destructors is

undefined.

v C++ and C language linkage conventions are incompatible, and therefore

sigaction() cannot receive C++ function pointers. If you attempt to pass a C++

function pointer to sigaction(), the compiler will flag it as an error. Therefore, to

use the sigaction() function in the C++ language, you must ensure that signal

handler routines established have C linkage, by declaring them as extern "C".

Usage Note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

If successful, sigset() returns SIG_HOLD if the signal had been blocked and the

signal’s previous action if it had not been blocked.

sigset

1934 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If unsuccessful, sigset() returns SIG_ERR and sets errno to one of the following

values:

Error Code Description

EINVAL The value of the argument sig was not a valid signal type, or it was

SIGKILL ignore a signal that cannot be ignored.

Related Information

v “signal.h” on page 77

v “bsd_signal() — BSD Version of signal()” on page 218

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sighold() — Add a Signal to a Thread” on page 1909

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

sigset

Chapter 3. Part 3. Library Functions 1935

sigsetjmp() — Save Stack Environment and Signal Mask

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savemask);

General Description

Saves the current stack environment including, optionally, the current signal mask.

The stack environment and signal mask saved by sigsetjmp() can subsequently be

restored by siglongjmp().

env is an address for a sigjmp_buf structure. savemask is a flag used to determine

if the signal mask is to be saved. If it has a value of 0, the current signal mask is

not to be saved or restored as part of the environment. Any other value means the

current signal mask is saved and restored.

sigsetjmp() is similar to setjmp() and _setjmp(), except for the optional capability of

saving the signal mask. Like setjmp() and longjmp(), the sigsetjmp() and

siglongjmp() functions provide a way to perform a nonlocal goto.

The sigsetjmp()—siglongjmp() pair, the setjmp()—longjmp() pair, the

_setjmp()—_longjmp() pair and the getcontext()—setcontext() pair cannot be

intermixed. A stack environment and signal mask saved by sigsetjmp() can be

restored only by siglongjmp().

A call to sigsetjmp() causes it to save the current stack environment in env. If the

value of the savemask parameter is nonzero, it will also save the current signal

mask in env. A subsequent call to siglongjmp() restores the saved environment and

signal mask (if saved by sigsetjmp()), and returns control to a point corresponding

to the sigsetjmp() call. The values of all variables (except register variables)

accessible to the function receiving control contain the values they had when

siglongjmp() was called. The values of register variables are unpredictable.

Nonvolatile auto variables that are changed between calls to sigsetjmp() and

siglongjmp() are also unpredictable.

Note: Ensure that the function that calls sigsetjmp() does not return before you call

the corresponding siglongjmp() function. Calling siglongjmp() after the

function calling sigsetjmp() returns causes unpredictable program behavior.

Special Behavior for C++

If sigsetjmp() and siglongjmp() are used to transfer control in a z/OS XL C++

program, the behavior in terms of the destruction of automatic objects is undefined.

sigsetjmp

1936 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

This applies to both z/OS XL C++ and z/OS XL C/C++ ILC modules. The use of

sigsetjmp() and siglongjmp() in conjunction with try(), catch(), and throw() is also

undefined.

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the V2R10 or later C compilers that are to

run with Language Environment V2R10 or later libraries and use the jmp_buf,

sigjmp_buf or ucontext_t types must not be compiled with C headers from

Language Environment V2R9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not define jmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Language Environment V2R10 and later

headers define a larger jmp_buf, sigjmp_buf or ucontext_t area that is

required by setjmp(), getcontext(), and related functions when they are called

from an XPLINK routine. If __XPLINK__ is not defined, the Language

Environment V2R10 and later headers define a shorter jmp_buf, sigjmp_buf or

ucontext_t area. The Language Environment headers before V2R10 also

define the shorter version of these data areas. If an XPLINK function calls

setjmp(), getcontext() or similar functions with a short jmp_buf, sigjmp_buf or

ucontext_t area, a storage overlay or program check may occur when the C

library tries to store past the end of the passed-in (too short) data area.

Returned Value

sigsetjmp() returns 0 when it is invoked to save the stack environment and signal

mask.

sigsetjmp() returns the value val, specified on siglongjmp() (or 1 if the value of val is

zero), when siglongjmp() causes control to be transferred to the place in the user’s

program where sigsetjmp() was issued.

There are no documented errno values.

Example

The following saves the stack environment and signal mask at the statement:

 if(sigsetjmp(mark,1) != 0) ...

When the system first performs the if statement, it saves the environment and

signal mask in mark and sets the condition to false because sigsetjmp() returns 0

when it saves the environment. The program prints the message:

 sigsetjmp() has been called

The subsequent call to function p() tests for a local error condition, which can cause

it to perform siglongjmp(). Then control returns to the original sigsetjmp() function

using the environment saved in mark and the restored signal mask. This time the

condition is true because −1 is the return value from siglongjmp(). The program

then performs the statements in the block and prints:

siglongjmp() has been called

sigsetjmp

Chapter 3. Part 3. Library Functions 1937

Then the program performs the sample recover() function and exits.

#define _POSIX_SOURCE

#include <stdio.h>

#include <setjmp.h>

sigjmp_buf mark;

void p(void);

void recover(void);

int main(void)

{

 if (sigsetjmp(mark,1) != 0) {

 printf("siglongjmp() has been called\n");

 recover();

 exit(1);

 }

 printf("sigsetjmp() has been called\n"); ...
 p(); ...
}

void p(void)

{

 int error = 0; ...
 error = 9; ...
 if (error != 0)

 siglongjmp(mark, -1); ...
}

void recover(void)

{ ...
}

Related Information

v “setjmp.h” on page 77

v “getcontext() — Get User Context” on page 750

v “longjmp() — Restore Stack Environment” on page 1143

v “_longjmp() — Nonlocal Goto” on page 1147

v “setcontext() — Restore User Context” on page 1778

v “setjmp() — Preserve Stack Environment” on page 1802

v “_setjmp() — Set Jump Point for a Nonlocal Goto” on page 1806

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

v “swapcontext() — Save and Restore User Context” on page 2101

sigsetjmp

1938 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sigstack() — Set and/or Get Signal Stack Context

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <signal.h>

int sigstack(struct sigstack *ss, struct sigstack *oss);

General Description

The sigstack() function allows the calling thread to indicate, to the system, an area

of its address space to be used for processing signals received by this thread.

Note: To explicitly declare that a signal catcher is to run on the alternate signal

stack, the SA_ONSTACK flag must be set in the sa_flags when the signal

action is set using sigaction().

If the ss argument is not a NULL pointer, it must point to a sigstack structure. The

length of the application-supplied stack must be at least SIGSTKSZ bytes. If the

alternate signal stack overflows, the resulting behavior is undefined.

v The value of the ss_onstack member indicates whether the thread wants the

system to use an alternate signal stack when delivering signals.

v The value of the ss_sp member indicates the desired location of the alternate

signal stack area in the process’s address space.

AMODE 64: Storage for this stack must be above the 2GB bar. It may not be

storage acquired with the __malloc24() or __malloc31() functions.

v If the ss argument is a NULL pointer, the current alternate signal stack context is

not changed.

If the oss argument is not a NULL pointer, it must point to a sigstack structure into

which the current alternate signal stack context is placed. The value stored in the

ss_onstack member of this sigstack structure will be nonzero if the thread is

currently executing on the alternate signal stack. If the oss argument is a NULL

pointer, the current alternate signal stack context is not returned.

When a signal’s action indicates its handler should execute on the alternate signal

stack (specified by calling sigaction()), the implementation checks to see if the

thread is currently executing on the alternate signal stack. If it is not, the system will

switch to the alternate signal stack for the duration of the signal handler’s execution.

After a successful call to one of the exec functions, there are no alternate signal

stacks in the new process image.

Notes:

1. If a signal handler is enabled to run on an alternate stack, then all functions

called by that signal handler must be compiled with the same linkage. For

example, if the signal handler is compiled with XPLINK, then all functions it calls

must also be compiled XPLINK. Since only one alternate stack can be supplied,

sigstack

Chapter 3. Part 3. Library Functions 1939

no mixing of linkages (which would require both upward and downward-growing

alternate stacks) is allowed. The type of stack created will be based on the

attributes of the signal handler to be given control. If the signal handler has

been compiled with XPLINK, then a downward-growing stack will be created in

the alternate stack, including, in AMODE 31, using enough storage in the user

stack to create a 4k read-only guard page (aligned on a 4k boundary).

2. If a new signal is received while a signal handler is running on an alternate

stack, and that new signal specified a signal handler that also runs on the

alternate stack, then both signal handlers must have been compiled with the

same linkage (XPLINK versus non-XPLINK).

3. This function is kept for historical reasons. It was part of the Legacy Feature in

Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. New applications

should use sigaltstack() instead of sigstack().

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If successful, sigstack() returns 0.

If unsuccessful, sigstack() returns −1 and sets errno to one of the following values:

Error Code Description

EPERM An attempt was made to modify an active stack.

Related Information

v “signal.h” on page 77

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigaltstack() — Set and/or Get Signal Alternate Stack Context” on page 1901

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

sigstack

1940 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|
|
|

sigsuspend() — Change Mask and Suspend the Thread

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _POSIX_SOURCE

#include <signal.h>

int sigsuspend(const sigset_t *mask);

General Description

Replaces the current signal mask of a thread with the signal set given by *mask

and then suspends execution of the calling thread. The thread does not resume

running until a signal is delivered whose action is either to execute a

signal-handling function or to end the process. (Signal sets are described in more

detail in “sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page

1905.)

The signal mask indicates a set of signals that should be blocked. Such signals do

not “wake up” the suspended function. The signals SIGSTOP and SIGKILL cannot

be blocked or ignored; they are delivered to the thread no matter what the mask

argument specifies.

If an incoming unblocked signal ends the thread, sigsuspend() never returns to the

caller. If an incoming signal is handled by a signal-handling function, sigsuspend()

returns after the signal-handling function returns. The signal mask of the thread is

restored to whatever it was before sigsuspend() was called, unless the

signal-handling functions explicitly changed the mask.

This function is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

Usage Note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

If sigsuspend() returns, it always returns −1.

If unsuccessful, sigsuspend() sets errno to one of the following values:

Error Code Description

EINTR A signal was received and handled successfully.

Example

CELEBS25

sigsuspend

Chapter 3. Part 3. Library Functions 1941

||||

|
|
|
|

||

|

/* CELEBS25

 This example replaces the signal mask and then suspends execution.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <signal.h>

#include <time.h>

#include <unistd.h>

void catcher(int signum) {

 switch (signum) {

 case SIGUSR1: puts("catcher caught SIGUSR1");

 break;

 case SIGUSR2: puts("catcher caught SIGUSR2");

 break;

 default: printf("catcher caught unexpected signal %d\n",

 signum);

 }

}

main() {

 sigset_t sigset;

 struct sigaction sact;

 time_t t;

 if (fork() == 0) {

 sleep(10);

 puts("child is sending SIGUSR2 signal − which should be blocked");

 kill(getppid(), SIGUSR2);

 sleep(5);

 puts("child is sending SIGUSR1 signal − which should be caught");

 kill(getppid(), SIGUSR1);

 exit(0);

 }

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 if (sigaction(SIGUSR1, &sact, NULL) != 0)

 perror("1st sigaction() error");

 else if (sigaction(SIGUSR2, &sact, NULL) != 0)

 perror("2nd sigaction() error");

 else {

 sigfillset(&sigset);

 sigdelset(&sigset, SIGUSR1);

 time(&t);

 printf("parent is waiting for child to send SIGUSR1 at %s",

 ctime(&t));

 if (sigsuspend(&sigset) == −1)

 perror("sigsuspend() returned −1 as expected");

 time(&t);

 printf("sigsuspend is over at %s", ctime(&t));

 }

}

Output

parent is waiting for child to send SIGUSR1 at Fri Jun 16 12:30:57 2001

child is sending SIGUSR2 signal - which should be blocked

child is sending SIGUSR1 signal - which should be caught

catcher caught SIGUSR2

sigsuspend

1942 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

catcher caught SIGUSR1

sigsuspend() returned −1 as expected: Interrupted function call

sigsuspend is over at Fri Jun 16 12:31:12 2001

Related Information

v “signal.h” on page 77

v “bsd_signal() — BSD Version of signal()” on page 218

v “kill() — Send a Signal to a Process” on page 1055

v “killpg() — Send a Signal to a Process Group” on page 1058

v “pause() — Suspend a Process Pending a Signal” on page 1340

v “pthread_kill() — Send a Signal to a Thread” on page 1474

v “raise() — Raise Signal” on page 1595

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigaddset() — Add a Signal to the Signal Mask” on page 1899

v “sigdelset() — Delete a Signal from the Signal Mask” on page 1903

v “sigemptyset() — Initialize a Signal Mask to Exclude All Signals” on page 1905

v “sigfillset() — Initialize a Signal Mask to Include All Signals” on page 1907

v “sigignore() — Set Disposition to Ignore a Signal” on page 1910

v “signal() — Handle Interrupts” on page 1917

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

sigsuspend

Chapter 3. Part 3. Library Functions 1943

sigtimedwait() — Wait for Queued Signals

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R7

Format

#define _XOPEN_SOURCE 500

#include <signal.h>

int sigtimedwait(const sigset_t *set, siginfo_t *info

 const struct timespec *timeout);

General Description

The sigtimedwait() function selects a pending signal from the sigset_t object

(signal set) pointed to by set, automatically clearing it from the system’s set of

pending signals, and returning that signal number. If there are multiple pending

signals, the lowest numbered signal will be selected.

If no signal in the signal set is pending at the time of the call to sigtimedwait(), the

thread is suspended until one or more of the signals specified in the signal set

become pending or until it is interrupted by an unblocked, caught signal. The

signals defined in the sigset_t object (signal set) pointed to by set may be

unblocked during the call to this routine and will be blocked when the thread returns

from the call unless some other thread is currently waiting for one of those signals.

If more than one thread is using sigtimedwait() to wait for the same signal, only one

of these threads will return from this routine with the signal number, until a second

signal of the same type is received.

The function sigtimedwait() behaves the same as the sigwait() function if the info

argument is NULL. If the info argument is not NULL, then in addition to behaving

the same as sigwait(), sigtimedwait() places the selected signal number in the

si_signo member, places the cause of the signal in the si_code member, and, if

any value is queued to the selected signal, sigtimedwait() will place it in the

si_value member of info. However, if there is no value queued for the selected

signal then the content of si_value is undefined.

If the sigtimedwait() function finds that none of the signals specified by set are

pending, it waits for the time interval specified in the timespec structure referenced

by timeout If the timespec structure pointed to by timeout is zero-valued and if none

of the signals specified by set are pending, then sigtimedwait() returns immediately

with an error. A timespec with the tv_sec field set with INT_MAX, as defined in

<limits.h>, will cause the sigtimedwait() service to wait until a signal is received. If

timeout is the NULL pointer, the behavior is not necessarily the same on all

platforms but for this platform it will be treated the same as when timespec structure

was supplied with with the tv_sec field set with INT_MAX.

Usage Note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

sigtimedwait

1944 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

Returned Value

If successful, sigtimedwait() returns the signal number.

If unsuccessful, sigtimedwait() returns −1 and sets errno to one of the following

values:

Error Code Description

EAGAIN No signal specified by set was generated within the specified time

out period.

EINTR The wait was interrupted by an unblocked, caught signal. No further

waiting will occur for this call. sigtimedwait() can be reissued to

begin waiting again.

EINVAL set points to a sigset_t that contains a signal number that is either

not valid or not supported.

Related Information

v “signal.h” on page 77

v “time.h” on page 93

v “pause() — Suspend a Process Pending a Signal” on page 1340

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

v “sigwait() — Wait for an Asynchronous Signal” on page 1946

sigtimedwait

Chapter 3. Part 3. Library Functions 1945

sigwait() — Wait for an Asynchronous Signal

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

Single UNIX Specification, Version 3

both

Format

#define _OPEN_THREADS

#include <signal.h>

int sigwait(sigset_t *set);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <signal.h>

int sigwait(const sigset_t *__restrict__ set, int *__restrict__ sig);

General Description

Causes a thread to wait for an asynchronous signal by choosing a pending signal

from set, automatically clearing it from the system’s set of pending signals, and

returning that signal number in the return code.

If no signal in set is pending at the time of the call, the thread is suspended until

one or more of the signals in set become pending. The signals defined by set may

be unblocked during the call to this routine, and will be blocked when the thread

returns from the call unless some other thread is currently waiting for one of those

signals.

If more than one thread is using this routine to wait for the same signal, only one of

these threads will return from this routine with the signal number.

Special Behavior for SUSV3

The sigwait() function selects a pending signal from set, atomically clear it from the

system’s set of pending signals, and return that signal number in the location

referenced by sig.

 Argument Description

sig location reference where the signal number

is stored

Usage Note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

If successful, sigwait() returns the signal number.

If unsuccessful, sigwait() returns −1 and sets errno to one of the following values:

Error Code Description

sigwait

1946 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

|

|
|
|

|||

||
|
|

EINVAL The set argument contains an invalid or unsupported signal

number.

Special Behavior for SUSV3

Upon successful completion, sigwait() stores the signal number of the received

signal at the location referenced by sig and return zero. Otherwise, an error number

is returned to indicate the error.

Example

CELEBS26

/* CELEBS26 */

#define _OPEN_THREADS

#include <stdio.h>

#include <errno.h>

#include <signal.h>

#include <pthread.h>

#include <unistd.h>

void *threadfunc(void *parm)

{

 int threadnum;

 int *tnum;

 sigset_t set;

 tnum = parm;

 threadnum = *tnum;

 printf("Thread %d executing\n", threadnum);

 sigemptyset(&set);

 if(sigaddset(&set, SIGUSR1) == −1) {

 perror("Sigaddset error");

 pthread_exit((void *)1);

 }

 if(sigwait(&set) != SIGUSR1) {

 perror("Sigwait error");

 pthread_exit((void *)2);

 }

 pthread_exit((void *)0);

}

main() {

 int status;

 int threadparm = 1;

 pthread_t threadid;

 int thread_stat;

 status = pthread_create(&threadid, NULL,

 threadfunc,

 (void *)&threadparm);

 if (status < 0) {

 perror("pthread_create failed");

 exit(1);

 }

 sleep(5);

 status = pthread_kill(threadid, SIGUSR1);

 if (status < 0)

 perror("pthread_kill failed");

sigwait

Chapter 3. Part 3. Library Functions 1947

|

|
|
|

status = pthread_join(threadid, (void *)&thread_stat);

 if (status < 0)

 perror("pthread_join failed");

 exit(0);

}

CELEBP73

/* CELEBS73

 This example demonstrates the use of the sigwait() function.

 The program will wait until a SIGINT signal is received from the

 command line.

 Expected output:

 SIGINT was received

*/

#define _POSIX_C_SOURCE 200112L

#include <signal.h>

#include <stdio.h>

#include <errno.h>

void main() {

 sigset_t set;

 int sig;

 int *sigptr = &sig;

 int ret_val;

 sigemptyset(&set);

 sigaddset(&set, SIGINT);

 sigprocmask(SIG_BLOCK, &set, NULL);

 printf("Waiting for a SIGINT signal\n");

 ret_val = sigwait(&set,sigptr);

 if(ret_val == −1)

 perror("sigwait failed\n");

 else {

 if(*sigptr == 2)

 printf("SIGINT was received\n");

 else

 printf("sigwait returned with sig: %d\n", *sigptr);

 }

}

Related Information

v “signal.h” on page 77

v “bsd_signal() — BSD Version of signal()” on page 218

v “pause() — Suspend a Process Pending a Signal” on page 1340

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigignore() — Set Disposition to Ignore a Signal” on page 1910

v “sigpause() — Unblock a Signal and Wait for a Signal” on page 1924

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

sigwait

1948 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sigwaitinfo() — Wait for Queued Signals

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R7

Format

#define _XOPEN_SOURCE 500

#include <signal.h>

int sigwaitinfo(const sigset_t *set, siginfo_t *info);

General Description

The sigwaitinfo() function selects a pending signal from the sigset_t object (signal

set) pointed to by set, automatically clearing it from the system’s set of pending

signals, and returning that signal number. If there are multiple pending signals, the

lowest numbered signal will be selected.

If no signal in the signal set is pending at the time of the call to sigwaitinfo(), the

thread is suspended until one or more of the signals specified in the signal set

become pending or until it is interrupted by an unblocked, caught signal. The

signals defined in the sigset_t object (signal set) pointed to by set may be

unblocked during the call to this routine and will be blocked when the thread returns

from the call unless some other thread is currently waiting for one of those signals.

If more than one thread is using sigwaitinfo() to wait for the same signal, only one

of these threads will return from this routine with the signal number, until a second

signal of the same type is received.

The function sigwaitinfo() behaves the same as the sigwait() function if the info

argument is NULL. If the info argument is not NULL, then in addition to behaving

the same as sigwait(), sigwaitinfo() places the selected signal number in the

si_signo member, places the cause of the signal in the si_code member, and, if

any value is queued to the selected signal, sigwaitinfo() will place it in the si_value

member of info. However, if there is no value queued for the selected signal then

the content of si_value is undefined.

Usage note

The use of the SIGTHSTOP and SIGTHCONT signal is not supported with this function.

Returned Value

If successful, sigwaitinfo() returns the signal number.

If unsuccessful, sigwaitinfo() returns −1 and sets errno to one of the following

values:

Error Code Description

EINTR The wait was interrupted by an unblocked, caught signal. No further

waiting will occur for this call. sigwaitinfo() can be reissued to begin

waiting again.

sigwaitinfo

Chapter 3. Part 3. Library Functions 1949

||||

|
|
||

|

EINVAL set points to a sigset_t that contains a signal number that is either

not valid or not supported.

Related Information

v “signal.h” on page 77

v “time.h” on page 93

v “pause() — Suspend a Process Pending a Signal” on page 1340

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigpending() — Examine Pending Signals” on page 1925

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

v “sigwait() — Wait for an Asynchronous Signal” on page 1946

sigwaitinfo

1950 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sin(), sinf(), sinl() — Calculate Sine

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double sin(double x);

float sin(float x); /* C++ only */

long double sin(long double x); /* C++ only */

float sinf(float x);

long double sinl(long double x);

General Description

Calculates the sine of x, with x expressed in radians.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

If successful, the function returns the calculated value, expressed as a double, float,

or long double.

Otherwise, if the result underflows, the function returns 0 and sets the errno to

ERANGE.

Example

CELEBS27

/* CELEBS27

 This example computes y as the sine of &pi.&slr.2.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double pi, x, y;

 pi = 3.1415926535;

 x = pi/2;

 y = sin(x);

 printf("sin(%lf) = %lf\n", x, y);

}

sin, sinf, sinl

Chapter 3. Part 3. Library Functions 1951

||||

|
|
|
|
|
|
|

||

|

Output

sin(1.570796) = 1.000000

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

sin, sinf, sinl

1952 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sind32(), sind64(), sind128() — Calculate Sine

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 sind32(_Decimal32 x);

_Decimal64 sind64(_Decimal64 x);

_Decimal128 sind128(_Decimal128 x);

_Decimal32 sin(_Decimal32 x); /* C++ only */

_Decimal64 sin(_Decimal64 x); /* C++ only */

_Decimal128 sin(_Decimal128 x); /* C++ only */

General Description

Calculates the sine of x, with x expressed in radians.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, the function returns the calculated value, expressed as a _Decimal32,

_Decimal64, or _Decimal128.

If x is outside prescribed limits, the value is not calculated. Instead, the function

returns 0 and sets errno to EDOM.

Example

/* CELEBS69

 This example illustrates the sind32() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal32 pi, x, y;

 pi = 3.141593DF;

 x = pi/2.0DF;

 y = sind32(x);

 printf("sind32(%Hf) = %Hf\n", x, y);

}

sind32, sind64, sind128

Chapter 3. Part 3. Library Functions 1953

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related Information

v “math.h” on page 60

v “cosd32(), cosd64(), cosd128() — Calculate Cosine” on page 352

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

sind32, sind64, sind128

1954 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double sinh(double x);

float sinh(float x); /* C++ only */

long double sinh(long double x); /* C++ only */

float sinhf(float x);

long double sinhl(long double x);

General Description

Calculates the hyperbolic sine of x, with x expressed in radians.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

If successful, the function returns the calculated value.

Otherwise, if the result is too large, the function sets errno to ERANGE and returns

±HUGE_VAL, depending on the value of x. If the value underflows, the function

returns 0 and sets errno to ERANGE.

Special Behavior for IEEE

If successful, the function returns the hyperbolic sine of x with x expressed in

radians.

If the result would overflow, the function returns ±HUGE_VAL, according to the

value of x, and sets errno to ERANGE. No other errors can occur.

Example

CELEBS28

/* CELEBS28

 This example computes y as the hyperbolic sine of &pi.&slr.2.

 */

#include <math.h>

#include <stdio.h>

int main(void)

sinh, sinhf, sinhl

Chapter 3. Part 3. Library Functions 1955

||||

|
|
|
|
|
|
|

||

|

{

 double pi, x, y;

 pi = 3.1415926535;

 x = pi/2;

 y = sinh(x);

 printf("sinh(%lf) = %lf\n", x, y);

}

Output

sinh(1.570796) = 2.301299

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

sinh, sinhf, sinhl

1956 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__sinpid32(), __sinpid64(), __sinpid128() — Calculate Sine of pi * x

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 __sinpid32(_Decimal32 x);

_Decimal64 __sinpid64(_Decimal64 x);

_Decimal128 __sinpid128(_Decimal128 x);

General Description

Calculates the sine of pi * x, with x expressed in radians.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, the function returns the calculated value, expressed as a _Decimal32,

_Decimal64, or _Decimal128 number.

If x is outside prescribed limits, the value is not calculated. Instead, the function

returns 0 and sets errno to EDOM.

Example

/* CELEBS70

 This example illustrates the __sinpid64() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal64 x, y;

 x = 0.5DD;

 y = __sinpid64(x);

 printf("__sinpid64(%Df) = %Df\n", x, y);

}

Related Information

v “math.h” on page 60

sinpid32, sinpid64, sinpid128

Chapter 3. Part 3. Library Functions 1957

|

|

||||

|||
|

|

|
|
|
|
|
|

|

|

|

|
|

|
|

|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

v “__cospid32(), __cospid64(), __cospid128() — Calculate Cosine of pi *x” on page

356

sinpid32, sinpid64, sinpid128

1958 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

sleep() — Suspend Execution of a Thread

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _POSIX_SOURCE

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

General Description

Suspends thread execution for a specified number of seconds. Because of

processor delays, the thread can sleep slightly longer than this specified time. An

unblocked signal received during this time (for which the action is to invoke a signal

handler function or to end the thread) “wakes up” the thread prematurely. When that

function returns, sleep() returns immediately even if there is sleep time remaining.

This function is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

Returned Value

If the thread slept for the full specified time, sleep() returns 0.

If the thread awoke prematurely because of a signal whose action is to invoke a

signal-handling function or to end the thread, sleep() returns the number of seconds

remaining in its sleep time (that is, the value of seconds minus the actual number of

seconds that the thread was suspended).

sleep() always succeeds, so there is no failure return. An abend is generated when

any failures are encountered that prevent this function from completing successfully.

There are no documented errno values.

Example

CELEBS29

/* CELEBS29

 This example suspends execution for a specified time.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <time.h>

#include <unistd.h>

main() {

 unsigned int ret;

 time_t t;

sleep

Chapter 3. Part 3. Library Functions 1959

||||

|
|
|
|

||

|

time(&t);

 printf("starting sleep at %s", ctime(&t));

 ret = sleep(10);

 time(&t);

 printf("naptime over at %s", ctime(&t));

 printf("sleep() returned %d\n", ret);

}

Output

starting sleep at Fri Jun 16 07:44:47 2001

naptime over at Fri Jun 16 07:44:58 2001

sleep() returned 0

Related Information

v “signal.h” on page 77

v “unistd.h” on page 96

v “alarm() — Set an Alarm” on page 180

v “bsd_signal() — BSD Version of signal()” on page 218

v “kill() — Send a Signal to a Process” on page 1055

v “killpg() — Send a Signal to a Process Group” on page 1058

v “longjmp() — Restore Stack Environment” on page 1143

v “_longjmp() — Nonlocal Goto” on page 1147

v “pause() — Suspend a Process Pending a Signal” on page 1340

v “pthread_kill() — Send a Signal to a Thread” on page 1474

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sigignore() — Set Disposition to Ignore a Signal” on page 1910

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “signal() — Handle Interrupts” on page 1917

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “sigset() — Change a Signal Action and/or a Thread” on page 1933

v “sigsuspend() — Change Mask and Suspend the Thread” on page 1941

sleep

1960 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__smf_record() — Record an SMF Record

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

int __smf_record(int smf_record_type,

 int smf_record_subtype,

 int smf_record_length,

 char *smf_record);

General Description

The __smf_record() function writes an SMF record pointed to by smf_record of

length smf_record_length for SMF record type smf_record_type and subtype

smf_record_subtype to the SMF data set.

The service can also be used to determine if a particular type or subtype of SMF

record is being recorded to avoid the overhead of data collection if the SMF record

is not going to be recorded. See z/OS MVS System Management Facilities (SMF),

SA22-7630 for more information on SMF record types and layout.

The caller of this service must be permitted to the BPX.SMF facility class profile.

For information on creating and using this profile and the restrictions on its use,

refer to z/OS UNIX System Services Planning, GA22-7800.

Returned Value

If successful, __smf_record() returns 0.

If unsuccessful, __smf_record() returns -1 and sets errno to one of the following

values:

Error Code Description

EINVAL The value specified on the length operand was incorrect.

EMVSERR The SMF service returned a nonzero return code. Use __errno2() to

determine why the error occurred. The following reason codes can

accompany the return code: JRSMFNotAccepting, JRSMFError,

JRBadAddress, or JRInternalError.

ENOMEM Not enough storage.

EPERM The calling process is not permitted to the BPX.SMF facility class.

Related Information

None.

__smf_record

Chapter 3. Part 3. Library Functions 1961

snprintf() — Format and write data

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R6

Format

#define _ISOC99_SOURCE

#include <stdio.h>

int snprintf(char *__restrict__ s, size_t n, const char *__restrict__ format, ...);

General Description

Equivalent to fprintf(), except that the output is written into an array (specified by

argument s) rather than to a stream. If n is zero, nothing is written, and s may be a

null pointer. Otherwise, output characters beyond the n-1st are discarded rather

than being written to the array, and a null character is written at the end of the

characters actually written into the array. If copying takes place between objects

that overlap, the behavior is undefined.

Returned Value

Returns the number of characters that would have been written had n been

sufficiently large, not counting the terminating null character, or a negative value if

an encoding error occurred. Thus, the null-terminated output has been completely

written if and only if the returned value is nonnegative and less than n.

Errors

Function fails if:

v The value of n is greater than {INT_MAX} or the number of bytes needed to hold

the output excluding the terminating null is greater than {INT_MAX}. In this case,

the function returns a negative value and sets errno to EOVERFLOW

snprintf

1962 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

sockatmark — Determine whether a socket is at the out-of-band mark

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R9

Format

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <sys/socket.h>

int sockatmark(int s);

General Description

The sockatmark() function determines whether the socket specified by the

descriptor s is at the out-of-band data mark. If the protocol for the socket supports

out-of-band data by marking the stream with an out-of-band data mark, the

sockatmark() function returns 1 when all data preceding the mark has been read

and the out-of-band data mark is the first element in the receive queue. The

sockatmark() function does not remove the mark from the stream.

 Argument Description

s the descriptor used to determine if the socket

is at the out-of-band data mark

Returned Value

Upon successful completion, the sockatmark() function returns a value indicating

whether the socket is at an out-of-band data mark. If the protocol has marked the

data stream and all data preceding the mark has been read, the return value is 1; if

there is no mark, or if data precedes the mark in the receive queue, the

sockatmark() function returns 0. Otherwise, it returns a value of -1 and set errno to

indicate the error.

Error Code

Description

EBADF

The s argument is not a valid file descriptor.

ENOTTY

The s argument does not specify a descriptor for a socket.

Example

CELEBS74

/* CELEBS74

 This example demonstrates the use of the sockatmark() function.

 Expected output:

 C: Sending regular data

 C: Sending OOB data

 S: Received "123a"

 S: At the mark

sockatmark

Chapter 3. Part 3. Library Functions 1963

|

|

||||

|||
|

|

|

|
|
|
|

|

|
|
|
|
|
|

|||

||
|
|

|

|
|
|
|
|
|

|
|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|

S: Received "b"

*/

#define _POSIX_C_SOURCE 200112L

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main(int argc, char **argv) {

 struct sockaddr_in saddr;

 socklen_t addr_len = sizeof(saddr);

 int port = 12121, n, ld, connfd, servfd;

 char buffer[25];

 pid_t pid;

 if((ld = socket(AF_INET,SOCK_STREAM,0)) == −1){

 printf("socket error\n");

 return 0;

 }

 saddr.sin_family = AF_INET;

 saddr.sin_port = 12121;

 if(bind(ld,(struct sockaddr *)&saddr,addr_len) == −1){

 printf("bind error\n");

 return 0;

 }

 if(listen(ld,5) == −1){

 printf("listen error\n");

 return 0;

 }

 pid = fork();

 if(pid==0){

 if((connfd = socket(AF_INET,SOCK_STREAM,0)) == −1){

 printf("socket error\n");

 exit(0);

 }

 if(connect(connfd,(struct sockaddr *)&saddr,addr_len) == −1){

 printf("connect error\n");

 exit(0);

 }

 printf("C: Sending regular data\n");

 send(connfd,"123",3,0);

 printf("C: Sending OOB data\n");

 send(connfd,"ab",2,MSG_OOB);

 close(connfd);

 exit(0);

 }

 else {

 servfd = accept(ld,(struct sockaddr *)&saddr,&addr_len);

 if(servfd == −1) {

 printf("accept error\n");

 exit(0);

 }

 sleep(5);

 memset(buffer,0,sizeof(buffer));

 recv(servfd,&buffer,sizeof(buffer),0);

sockatmark

1964 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

printf("S: Received \"%s\"\n",buffer);

 memset(buffer,0,sizeof(buffer));

 n = sockatmark(servfd);

 if(n == 1) printf("S: At the mark\n");

 recv(servfd,&buffer,sizeof(buffer),MSG_OOB);

 printf("S: Received \"%s\"\n",buffer);

 close(servfd);

 close(ld);

 }

}

Related Information

v “sys/socket.h” on page 89

sockatmark

Chapter 3. Part 3. Library Functions 1965

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

sock_debug() — Provide Syscall Tracing Facility

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

void sock_debug(int onoff);

General Description

The sock_debug() call provides the UNIT tracing facility. The onoff parameter can

have a value of 0 or nonzero. If onoff is equal to 0 (the default), no UNIT tracing is

done. If onoff is a value other than zero, the system traces for UNIT calls and

interrupts.

As an alternative to calling sock_debug() with onoff set to a nonzero value, you can

include the statement SOCKDEBUG in the file /etc/resolv.conf or data set

tcpip.TCPIP.DATA. When the process is started, all the programs will begin the

UNIT trace and report the progress to the stderr data set.

Parameter Description

onoff A parameter that can be set to zero or nonzero.

Returned Value

sock_debug() returns no values.

Related Information

v “sys/socket.h” on page 89

sock_debug

1966 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sock_debug_bulk_perf0() — Produce a Report When a Socket

Configured

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

void sock_debug_bulk_perf0(int onoff);

General Description

Restriction: This function is not supported in AMODE 64.

When a socket is configured in bulk mode and sock_debug_bulk_perf0() is called,

data is collected and used to produce a report. The report is written to stderr when

the bulk mode socket is closed.

Parameter Description

onoff A boolean value either true to activate or false to deactivate the

report.

The following is an example of the report written to stderr for socket descriptor 3

when the socket was closed, and the sock_debug_bulk_perf0() function was issued

to start collecting data.

 Bulkmode performance for socket 3:

 Doing TESTSTOR (ie. testing addressability of buffers, etc.)

 Received 14601460 bytes,

 10001 datagrams, 846 UNIT’s 11.8

 datagrams/UNIT.

In this example, 3 is the socket descriptor for the socket running in bulk mode.

Doing TESTSTOR indicates that the library was checking for addressing errors on

socket calls, and 14 601 460 bytes of data were received in 10001 datagrams. 846

calls were done to read the datagrams for the socket with an average of 11.8

datagrams for each UNIT or Syscall.

As an alternative to calling sock_debug_bulk_perf0() with onoff set to a nonzero

value, you can include the statement SOCKDEBUGBULKPERF0 in the file

/etc/resolv.conf or data set tcpip.TCPIP.DATA. When the process is started, all the

programs using bulk mode sockets for this process will produce a report.

Returned Value

sock_debug_bulk_perf0() returns no values.

Related Information

v “sys/socket.h” on page 89

sock_debug_bulk_perf0

Chapter 3. Part 3. Library Functions 1967

sock_do_bulkmode() — Use Bulk Mode for Messages Read by the

Socket

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

void sock_do_bulkmode(int onoff);

General Description

Restriction: This function is not supported in AMODE 64.

The sock_do_bulkmode() function uses bulk mode for messages read by the socket

program.

Parameter Description

onoff A parameter that can be set to zero or nonzero.

If onoff is set to a nonzero value when a SOCK_DGRAM socket is created, the

socket is configured to use bulk mode for messages read by the socket program.

Use of bulk mode can improve program performance. Performance improvement

depends on the system load and the arrival pattern of the datagram messages at

the socket. As system load increases, the reduction in CPU use because of bulk

mode should also increase. When datagrams for the socket are processed, there

should be an even greater reduction in CPU usage. With bulk mode set on, if a

setibmsockopt() is not used to specify the receive and/or send queue size, a default

of 32768 will be used for the receive queue. The default value for the send queue is

0. The setibmsockopt() function must be used to specify a value for the send

queue, thus turning on bulk mode for sends.

If onoff is set to zero when a socket is created, the socket does not use bulk mode,

unless the socket program is using setibmsockopt() to specify bulk mode for the

individual socket.

As an alternative to calling sock_do_bulkmode() with onoff set to a nonzero value,

you can include the statement SOCKBULKMODE in the file /etc/resolv.conf or data

set tcpip.TCPIP.DATA. When the process is started, all the programs using

datagram sockets will be begin running in bulk mode for reads on the socket.

Returned Value

sock_do_bulkmode() returns no values.

Related Information

v “sys/socket.h” on page 89

sock_do_bulkmode

1968 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sock_do_teststor() — Check for Attempt to Access Storage Outside

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

void sock_do_teststor(int onoff);

General Description

The sock_do_teststor call is used to check for calls that attempt to access storage

outside the caller’s address space.

Parameter Description

onoff A parameter that can be set to zero or nonzero.

If onoff is set to a nonzero value, for either inbound or outbound sockets, both the

address of the message buffer and the message buffer are checked for

addressability for each bulk mode socket call. The EFAULT error condition is set if

there is an addressing problem. If onoff is set to 0, address checking is not done by

the socket library program. If an error occurs when onoff is 0, normal run-time error

handling reports the exception condition.

To improve response time, you can disable this checking when your program has

been tested.

As an alternative to calling sock_do_teststor, with onoff set to a nonzero value, you

can include the statement SOCKTESTSTOR in the file /etc/resolv.conf or data set

tcpip.TCPIP.DATA. When the process is started, all the programs using bulk mode

sockets for this process will validate the storage for the caller’s parameters.

Returned Value

sock_do_teststor() returns no values.

Related Information

v “sys/socket.h” on page 89

sock_do_teststor

Chapter 3. Part 3. Library Functions 1969

socket() — Create a Socket

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

int socket(int *domain, int type, int protocol);

General Description

The socket() function creates an endpoint for communication and returns a socket

descriptor representing the endpoint. Different types of sockets provide different

communication services.

Parameter Description

domain The address domain requested, either AF_INET, AF_INET6,

AF_UNIX, or AF_RAW.

type The type of socket created, either SOCK_STREAM,

SOCK_DGRAM, or SOCK_RAW.

protocol The protocol requested. Some possible values are 0,

IPPROTO_UDP, or IPPROTO_TCP.

The domain parameter specifies a communication domain within which

communication is to take place. This parameter selects the address family (format

of addresses within a domain) that is used. The families supported are AF_INET

and AF_INET6, which is the Internet domain, and AF_UNIX, which is the local

socket domain. These constants are defined in the sys/socket.h include file.

The type parameter specifies the type of socket created. The type is analogous with

the semantics of the communication requested. These socket type constants are

defined in the sys/socket.h include file. The types supported are:

Socket Type Description

SOCK_DGRAM

Provides datagrams, which are connectionless messages of a fixed

maximum length whose reliability is not guaranteed. Datagrams can

be corrupted, received out of order, lost, or delivered multiple times.

This type is supported in the AF_INET, AF_INET6, and AF_UNIX

domains.

SOCK_RAW Provides the interface to internal protocols (such as IP and ICMP).

socket

1970 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

||

This type is supported in the AF_INET and AF_INET6 domains. You

must be a superuser to use this type.

SOCK_STREAM

Provides sequenced, two-way byte streams that are reliable and

connection-oriented. They support a mechanism for out-of-band

data. This type is supported in the AF_INET, AF_INET6, and

AF_UNIX domains.

Understanding the socket() Parameters

The protocol parameter specifies a particular protocol to be used with the socket. In

most cases, a single protocol exists to support a particular type of socket in a

particular address family. If the protocol parameter is set to 0, the system selects

the default protocol number for the domain and socket type requested. Protocol

numbers are found in the tcpip.ETC.PROTO data set. Alternatively, the

getprotobyname() call can be used to get the protocol number for a protocol with a

known name.

Note: The protocol field must be set to 0, if the domain parameter is set to

AF_UNIX.

SOCK_STREAM sockets model duplex-byte streams. They provide reliable,

flow-controlled connections between peer application programs. Stream sockets are

either active or passive. Active sockets are used by clients who start connection

requests with connect(). By default, socket() creates active sockets. Passive

sockets are used by servers to accept connection requests with the connect() call.

You can transform an active socket into a passive socket by binding a name to the

socket with the bind() call and by indicating a willingness to accept connections with

the listen() call. After a socket is passive, it cannot be used to start connection

requests.

In the AF_INET and AF_INET6 domains, the bind() call applied to a stream socket

lets the application program specify the networks from which it is willing to accept

connection requests. The application program can fully specify the network interface

by setting the Internet address field in the address structure to the Internet address

of a network interface. Alternatively, the application program can use a wildcard to

specify that it wants to receive connection requests from any network. For AF_INET

sockets, this is done by setting the Internet address field in the address structure to

the constant INADDR_ANY, as defined in <netinet/in.h>. For AF_INET6 sockets,

this is done by setting the Internet address field in the address structure to

in6addr_any as defined in <netinet/in.h>.

After a connection has been established between stream sockets, any of the data

transfer calls can be used: (read(), readv(), recv(), recvfrom(), recvmsg(), send(),

sendmsg(), sendto(), write(), and writev()). Usually, the read()-write() or

send()-recv() pairs are used for sending data on stream sockets. If out-of-band data

is to be exchanged, the send()-recv() pair is normally used.

SOCK_DGRAM sockets model datagrams. They provide connectionless message

exchange without guarantees of reliability. Messages sent have a maximum size.

Datagram sockets are supported in the AF_UNIX domain.

There is no active or passive analogy to stream sockets with datagram sockets.

Servers must still call bind() to name a socket and to specify from which network

interfaces it wishes to receive packets. Wildcard addressing, as described for

socket

Chapter 3. Part 3. Library Functions 1971

|
|

stream sockets, applies for datagram sockets also. Because datagram sockets are

connectionless, the listen() call has no meaning for them and must not be used with

them.

After an application program has received a datagram socket, it can exchange

datagrams using the sendto() and recvfrom(), or sendmsg() and recvmsg() calls. If

the application program goes one step further by calling connect() and fully

specifying the name of the peer with which all messages will be exchanged, then

the other data transfer calls read(), write(), readv(), writev(), send(), and recv() can

also be used. For more information on placing a socket into the connected state,

see “connect() — Connect a Socket” on page 325.

Datagram sockets allow messages to be broadcast to multiple recipients. Setting

the destination address to be a broadcast address is network-interface-dependent

(it depends on the class of address and whether subnets—logical networks divided

into smaller physical networks to simplify routing—are used). The constant

INADDR_BROADCAST, defined in netinet/in.h, can be used to broadcast to the

primary network if the primary network configured supports broadcast.

Outgoing packets have an IP header prefixed to them. IP options can be set and

inspected using the setsockopt() and getsockopt() calls, respectively. Incoming

packets are received with the IP header and options intact.

Sockets are deallocated with the close() call.

Note: For AF_UNIX, when closing sockets that were bound, you should also use

unlink() to delete the file created at bind() time.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, socket() returns a nonnegative socket descriptor.

If unsuccessful, socket() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES Permission to create a socket of the specified type or protocol is

denied.

EAFNOSUPPORT

The address family is not supported (it is not AF_UNIX, AF_INET,

or AF_INET6).

EAGAIN Resource temporarily unavailable.

EINVAL The request is invalid or not supported.

EIO There has been a network or transport failure.

ENOBUFS Insufficient system resources are available to complete the call.

ENOENT There was no NETWORK statement in the parmlib member to

match the specified domain.

socket

1972 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EPROTONOSUPPORT

The protocol is not supported in this domain or this protocol is not

supported for this socket type.

EPROTOTYPE

The socket type is not supported by the protocol.

Example

The following are examples of the socket() call.

int s;

char *name;

int socket(int domain, int type, int protocol); ...
/* Get stream socket in Internet domain with default protocol */

s = socket(AF_INET, SOCK_STREAM, 0); ...
/* Get stream socket in local socket domain with default protocol */

s = socket(AF_UNIX, SOCK_STREAM, 0);

Related Information

v “sys/socket.h” on page 89

v “accept() — Accept a New Connection on a Socket” on page 120

v “bind() — Bind a Name to a Socket” on page 211

v “close() — Close a File” on page 299

v “connect() — Connect a Socket” on page 325

v “fcntl() — Control Open File Descriptors” on page 527

v “getprotobyname() — Get a Protocol Entry by Name” on page 833

v “getsockname() — Get the Name of a Socket” on page 859

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “read() — Read From a File or Socket” on page 1602

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “recv() — Receive Data on a Socket” on page 1628

v “recvfrom() — Receive Messages on a Socket” on page 1631

v “recvmsg() — Receive Messages on a Socket and Store in an Array of Message

Headers” on page 1635

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “send() — Send Data on a Socket” on page 1740

v “sendmsg() — Send Messages on a Socket” on page 1747

v “shutdown() — Shut Down All or Part of a Duplex Connection” on page 1873

v “write() — Write Data on a File or Socket” on page 2464

v “writev() — Write Data on a File or Socket from an Array” on page 2472

socket

Chapter 3. Part 3. Library Functions 1973

socketpair() — Create a Pair of Sockets

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/socket.h>

int socketpair(int *domain, int type, int protocol, int socket_vector[2]);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/socket.h>

int socketpair(int *domain, int type, int protocol, int sv[2]);

General Description

The socketpair() function acquires a pair of sockets of the type specified that are

unnamed and connected in the specified domain and using the specified protocol.

For socket pairs in the AF_UNIX domain, the protocol must be 0.

Parameter Description

domain The domain in which to open the socket. Although socket pairs can

be obtained for AF_INET domain sockets, it is recommended that

AF_UNIX domain sockets be used for socket pairs.

type The type of socket created, either SOCK_STREAM, or

SOCK_DGRAM.

protocol The protocol requested must be 0.

sv The descriptors used to refer to the obtained sockets.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, socketpair() returns a nonnegative socket descriptor.

If unsuccessful, socketpair() returns −1 and sets errno to one of the following

values:

Error Code Description

EACCES Permission to create a socket of the specified type or protocol is

denied.

EFAULT sv is not in the writable part of the user’s address space.

EINVAL The request is invalid or not supported.

socketpair

1974 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

EMFILE Too many files are open for this process.

ENFILE Too many files are open in the system.

ENOBUFS Insufficient system resources are available to complete the call.

EOPNOSUPPORT

The protocol does not allow for the creation of socket pairs.

EPROTONOSUPPORT

The protocol is not supported in this domain or this protocol is not

supported for this socket type.

EPROTOTYPE

The socket type is not supported by the protocol.

Example

The following are examples of the socketpair() call.

#include <types.h>

#include <sys/socket.h>

int sv[2]; ...
/* Get stream socket in UNIX domain with default protocol */

if (socketpair(AF_UNIX, SOCK_STREAM, 0, sv) < 0)

printf ("Error occurred while trying to get a socket pair.\n");

else ...

Related Information

v “sys/socket.h” on page 89

v “socket() — Create a Socket” on page 1970

socketpair

Chapter 3. Part 3. Library Functions 1975

spawn(), spawnp() — Spawn a New Process

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.4b

z/OS UNIX

both

Format

#define _POSIX_SOURCE

#include <spawn.h>

pid_t spawn(const char *path,

 const int fd_count,

 const int fd_map[],

 const struct inheritance *inherit,

 const char *argv[],

 const char *envp[]);

pid_t spawnp(const char *file,

 const int fd_count,

 const int fd_map[],

 const struct inheritance *inherit,

 const char *argv[],

 const char *envp[]);

General Description

The spawn() and spawnp() functions create a new process from the specified

process image. spawn() and spawnp() create the new process image from a regular

executable file called the new process image file.

To execute a C program as a result of this call, enter the function call as follows:

 int main (int argc, char *argv[]);

Where argc is the argument count and argv is an array of character pointers to the

arguments themselves. In addition, the following variable:

 extern char **environ;

is initialized as a pointer to an array of character pointers to the environment

strings. The argv and environ arrays are each terminated by a NULL pointer. The

NULL pointer terminating the argv array is not counted in argc.

Supported parameters are:

Parameter Description

path Pathname used by spawn() that identifies the new process image

file to execute.

file Used by spawnp() to construct pathname that identifies the new

process image file. If the file parameter contains a slash character,

spawnp() uses the file parameter as a pathname for the new

process image file. Otherwise, spawnp() obtains the path prefix for

this file by a search of the directories passed as the environment

variable PATH.

fd_count Specifies the number of file descriptors the child process inherits. It

spawn, spawnp

1976 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

may take values from zero to OPEN_MAX. Except for those file

descriptors designated by SPAWN_FDCLOSED, each of the child’s file

descriptors, x, in the range zero to fd_count-1 inherits descriptor

fd_map[x] from the parent process.

 The files from fd_count through OPEN_MAX are closed in the child

process, as are any elements of fd_map designated as

SPAWN_FDCLOSED.

fd_map If the fd_map parameter is NULL, fd_count and fd_map are

ignored. All file descriptors except those with the FD_CLOEXEC or

FD_CLOFORK attribute are inherited without reordering. File

descriptors with the FD_CLOEXEC or FD_CLOFORK attribute are closed

under simple inheritance.

 For those file descriptors that remain open, all other attributes of

the associated file descriptor object and open file description remain

unchanged by this operation.

 Directory streams open in the calling process are closed in the new

process image.

 If an element of fd_map refers to an invalid file descriptor, then the

(EBADF) spawn() or spawnp() posts the error status.

 The FD_CLOEXEC and FD_CLOFORK file descriptor attributes are never

inherited.

 The FD_CLOEXEC and FD_CLOFORK file descriptor attributes have no

effect on inheritance when the fd_map parameter is not NULL.

Note: For XTI endpoints, fd_map must not map to a number

greater than 65535 in the child process.

inherit The name of a data area that contains the inheritance structure.

 The ’struct inheritance’ is defined as follows:

 struct inheritance {

 short flags; --Flags

 pid_t pgroup; --Process group

 sigset_t sigmask; --Signal mask

 sigset_t sigdefault; --Signals set to SIG_DFL

 int ctlttyfd; --Cntl tty FD for tcsetpgrp()

 }

The inherit.flags effect spawn() and spawnp() as follows:

SPAWN_SETGROUP

If the SPAWN_SETGROUP flag is set in inherit.flags,

then the child’s process group is as specified in

inherit.pgroup.

 If the SPAWN_SETGROUP flag is set in inherit.flags

and inherit.prgroup is set to SPAWN_NEWPGROUP,

then the child is in a new process group with a

process group ID equal to its process ID.

 If the SPAWN_SETGROUP flag is not set in inherit.flags,

the new child process inherits the parent’s process

group ID.

SPAWN_SETSIGMASK

If the SPAWN_SETSIGMASK flag is set in inherit.flags,

spawn, spawnp

Chapter 3. Part 3. Library Functions 1977

the child process initially has the signal mask

specified in inherit.sigmask.

SPAWN_SETSIGDEF

If the SPAWN_SETSIGDEF flag is set in inherit.flags,

the signals specified in inherit.sigdefault are set

to their default actions in the child process. Signals

set to the default action in the parent process, are

set to the default action in the new process.

 Signals set to be caught by the calling process are

set to the default action in the child process.

 Signals set to be ignored by the calling process are

set to be ignored by the new process, unless

otherwise specified by the SPAWN_SETSIGDEF flag

being set in inherit.flags and the signal being

indicated in inherit.sigdefault.

SPAWN_SETTCPGRP

If the SPAWN_SETTCPGRP flag is set in inherit.flags,

the file descriptor specified in inherit.ctlttyfd is

used to set the controlling terminal file descriptor

(tcsetpgrp()) for the child’s foreground process

group. The child’s foreground process group is

inherited from the parent, unless the

SPAWN_SETGROUP flag in inherit.flags is set,

indicating that the value specified in inherit.pgroup

is to be used to determine the child’s process

group.

SPAWN_PROCESS_INITTAB

If this flag is set, spawn attempts to read the

/etc/inittab file and process the entries found there.

This processing involves the spawning of child shell

processes to run each of the commands identified

in the file. Only the SPAWN_SETSIGMASK flag can be

set in combination with this flag. All other flags will

be ignored. Use of this flag implies that only file

descriptors 0, 1, and 2 will be initially opened in the

child process. File descriptor 0 will be initially

opened as /dev/null, while file descriptors 1 and 2

will initially opened as /etc/log. The fd_count and

fd_map parameters will be ignored. This flag is

currently restricted to the /usr/sbin/init process. See

z/OS UNIX System Services Planningfor more

information on the /etc/inittab support.

argv The value in the first element of argv should point to a filename that

is associated with the process being started by the spawn() or

spawnp() operation.

 The number of bytes available for the new process’s combined

argument and environment lists is ARG_MAX.

envp The value envp contains the list of environmental variables that is

to be passed to the specified program.

If the set-user-ID mode bit of the new process image file is set, the effective user

ID of the new process image is set to the owner id of the new process image file.

spawn, spawnp

1978 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Similarly, if the set-group-ID mode bit of the new process image file is set, the

effective group ID of the new process image is set to the group id of the new

process image file. The real user ID, real group ID, and supplementary group IDs of

the new process image remain the same as those of the calling process image. The

effective user ID and effective group ID of the new process image are saved (as the

saved set-user-ID and the saved set-group-ID) for use by the setuid() function.

The new process image inherits the following attributes from the calling process

image:

v Process group ID (unless the SPAWN_SETGROUP flag is set in inherit.flags)

v Session membership

v Real user ID

v Real group ID

v Supplementary group IDs

v Priority

v Current working directory

v Root directory

v File creation mask

v Signal mask (unless the SPAWN_SETSIGMASK flag is set in inherit.flags)

v Signal actions specified as default (SIG_DFL)

v Signal actions specified as ignore (SIG_IGN) (except as modified by

inherit.sigdefault and the SPAWN_SETSIGDEF flag set in inherit.flags)

The following are differences between the parent process and the child process:

v Signals set to be caught by the calling process are set to the default action

(SIG_DFL).

v The process and system utilization times for the child are set to zero.

v Any file locks previously set by the parent are not inherited by the child.

v The child process has no alarms set.

v The child process has no interval timers set.

v The child has no pending signals.

v Memory mappings established by the parent are not inherited by the child.

If the process image was read from a writable file system, then upon successful

completion, the spawn() or spawnp() function mark for update the st_atime field of

the new process image file.

If the spawn() or spawnp() function is successful, the new child process image file

is opened, with all the effects of the open() function.

Special Behavior for z/OS UNIX Services

Note: If an application spawns a shell command or utility that performs terminal

I/O, the command may fail due to the fact that the shell file descriptors are

not initialized. The Shell file descriptors must be defined. An example of how

these can be defined in a C application are as follows:

stdin = fopen("/tmp/sys.stdin","r");

stdout = fopen("/tmp/sys.stdout","w");

stderr = fopen("/tmp/sys.stderr","w");

Aspects of spawn processing are controlled by environment variables. The

environment variables that affect spawn processing are the ones that are passed

into the spawn syscall and not the environment variables of the calling process. The

environment variables of the calling process do not affect spawn processing unless

they are the same as those that are passed in envp.

spawn, spawnp

Chapter 3. Part 3. Library Functions 1979

The _BPXK_JOBLOG environment variable can be used to specify that WTO

messages are to be written to an open HFS job log file. The following are the

allowable values:

Value Description

nn Job log messages are to be written to open file descriptor nn.

STDERR Job log messages are to be written to the standard error file

descriptor, 2.

None Job log messages are not to be written. This is the default.

The file that is used to capture messages can be changed at any time by calling the

oe_env_np service (BPX1ENV) and specifying _BPXK_JOBLOG with a different file

descriptor.

Message capturing is turned off if the specified file descriptor is marked for close on

a fork or exec.

Message capturing is process-related. All threads under a given process share the

same job log file. Message capturing may be initiated by any thread under that

process.

Multiple processes in a single address space can each have different files active as

the JOBLOG file; some or all of them can share the same file; and some processes

can have message capturing active while others do not.

Only files that can be represented by file descriptors may be used as job log files;

MVS data sets are not supported.

Message capturing will be propagated on a fork() or spawn(). In the case where a

file descriptor was specified, the physical file must be the same for message

capturing to continue in the forked or spawned process. If STDERR was specified,

the file descriptor may be re-mapped to a different physical file.

Message capturing may be overridden on exec() or spawn() by specifying the

_BPXK_JOBLOG environment variable as a parameter to the exec() or spawn().

Message capturing will only work in forked (BPXAS) address spaces.

Note: This is not true joblog support, messages that would normally go to the

JESYSMSG data set are captured, but messages that go to JESMSGLG are

not captured.

For more information on the use of environment variables, see z/OS UNIX System

Services Programming: Assembler Callable Services Reference, SA22-7803.

Security information from the parent’s address space is propagated to the child’s

address space, unless the _BPX_USERID environment variable specifies otherwise.

As a result, the child has a security environment equivalent to that of the parent.

The TASKLIB, STEPLIB, or JOBLIB DD data set allocations that are active for the

current task are propagated to the child’s address space, unless the STEPLIB

environment variable specifies otherwise. This causes the child address space to

have the same exact MVS program search order as the calling parent task.

spawn, spawnp

1980 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The accounting information of the parent’s address space is propagated to the

child’s address space. See z/OS UNIX System Services Planning, GA22-7800.

The jobname of the parent is propagated to the child and appended with a numeric

value in the range of 1-9 if the jobname is 7 characters or less. If the jobname is 8

characters, then it is propagated as-is. When a jobname is appended with a

numeric value, the count wraps back to 1 when it exceeds 9.

If the calling parent task is in a WLM enclave, the child is joined to the same WLM

enclave. This allows WLM to manage the parent and child as one ″business unit of

work″ entity for system accounting and management purposes.

To allow the caller to control whether the spawned child process runs in a separate

address space from the parent address space or in the same address space, the

spawn service allows for the specification of the _BPX_SHAREAS environment

variable. The following are the accepted values for the _BPX_SHAREAS

environment variable, and the actions taken for each value:

1. _BPX_SHAREAS=YES - Indicates that the child process that is to be created is

to run in the same address space as the parent. In the following circumstances,

the _BPX_SHAREAS=YES value cannot be honored, and the child process is

created in its own address space:

v If the program to be run is a set-user-ID or set-group-ID program that would

cause the effective user-ID or group-ID of the child process to be different

from that of the parent process.

v If the program to be run is an APF-authorized HFS or MVS program and the

caller is not running APF authorized.

v If the program to be run is an unauthorized HFS or MVS program and the

caller is running APF authorized.

v If the specified filename represents an external link or a sticky bit file.

However, if the program that is to be run is a shell script and

_BPX_SPAWN_SCRIPT=YES is set, the process runs in the same address

space. _BPX_SPAWN_SCRIPT only has an effect while running in the z/OS

shell (/bin/sh... NOT /bin/tcsh).

v If the address space of the parent lacks the necessary resources to create

another process within the address space.

Note that only one local spawned process per TSO address space is supported

at a given time. This is done to reduce conflict among multiple shells running in

the same address space.

2. _BPX_SHAREAS=MUST - Indicates that the child process that is to be created

must run in the same address space as the parent, or the spawn request will

fail. In the following circumstances, the _BPX_SHAREAS=MUST value cannot

be honored, and the spawn invocation fails:

v If the program to be run is a set-user-ID or set-group-ID program that would

cause the effective user ID or group ID of the child process to be different

from that of the parent process.

v If the program to be run is an APF-authorized HFS or MVS program and the

caller is not running APF authorized.

v If the program to be run is an unauthorized HFS or MVS program and the

caller is running APF authorized.

v If the address space of the parent lacks the necessary resources to create

another process within the address space.

3. _BPX_SHAREAS=REUSE - Indicates that the child process to be created is to

run in the same address space as the parent; also, that it will be created as a

spawn, spawnp

Chapter 3. Part 3. Library Functions 1981

medium-weight process. Specifying REUSE allows the caller to indicate that it

wants to reuse the existing process structure for locally spawned processes.

The same rules that apply to the creation of a local spawn process apply to the

specification of a local spawn medium-weight process. In addition, in the

following circumstances, the _BPX_SHAREAS=REUSE value cannot be

honored, and the child process will be created as a non-medium weight local

spawn process:

v If PTRACE is active for the process.

v If the program to execute is a REXX exec.

For performance reasons, the STEPLIB that is specified for each

medium-weight process that is created for the address space should be the

same.

4. _BPX_SHAREAS=NO - Indicates that the child process that is to be created is

to run in a separate address space from the address space of the parent. This

is the default behavior for the spawn service if the _BPX_SHAREAS

environment variable is not specified, or if it contains an unsupported value.

If you specify the _BPX_USERID environment variable, then spawn() creates the

new address space and image with the specified userid’s identity. The invoker of

spawn() must be authorized to change MVS identity. The resulting spawn() image

will emerge as if a program had done a fork(), setgid(), initgroups(), setuid(), and

exec.

The value of _BPX_USERID can be any 1-to-8-character XPG4 compliant

username. If you specify both _BPX_USERID and _BPX_SHAREAS, then spawn()

ignores _BPX_SHAREAS, and creates a new address space with the new identity.

If the caller of the spawn() function is the z/OS UNIX shell (i.e /bin/sh), then the

setting of the _BPX_SPAWN_SCRIPT= environment variable to YES is

recommended. The setting of this variable to YES provides a more efficient

mechanism to invoke z/OS UNIX shell scripts.

To support the creation and propagation of a STEPLIB environment to the new

process image, spawn() and spawnp() allow for the specification of a STEPLIB

environment variable. The following are the accepted values for the STEPLIB

environment variable and the actions taken for each:

v STEPLIB=NONE. No Steplib DD is to be created for the new process image.

v STEPLIB=CURRENT. The TASKLIB, STEPLIB or JOBLIB DD data set

allocations that are active for the calling task at the time of the call to spawn()

and spawnp() are propagated to the new process image, if found to be

cataloged. Uncataloged data sets are not propagated to the new process image.

v STEPLIB=Dsn1:Dsn2:,...DsnN. The specified data sets, Dsn1:Dsn2:...DsnN, are

built into a STEPLIB DD in the new process image.

Note: The actual name of the DD is not STEPLIB, but is a system-generated

name that has the same effect as a STEPLIB DD.

The data sets are concatenated in the order specified. The specified data sets must

follow standard MVS data set naming conventions. Data sets found to be in

violation of this standard are ignored. If the data sets do follow the standard, but:

v The caller does not have the proper security access to a data set.

v A data set is uncataloged or is not in load library format.

spawn, spawnp

1982 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

then the data set is ignored. Because the data sets in error are ignored, the

executable file may run without the proper STEPLIB environment. If a data set is in

error due to improper security access a X'913' abend is generated. The dump for

this abend can be suppressed by your installation.

If the STEPLIB environment variable is not specified, spawn() and spawnp() default

behavior is the same as if STEPLIB=CURRENT were specified.

If the program to be invoked is a set-user-ID or set-group-ID file and the user-ID or

group-ID of the file is different from that of the current process image, then the data

sets to be built into the STEPLIB environment for the new process image must be

found in the system sanction list for set-user-id and set-group-id programs. Only

those data sets that are found in the sanction list are built into the STEPLIB

environment for the new process image. For detailed information regarding the

sanction list, and for information on STEPLIB performance considerations, see z/OS

UNIX System Services Planning, GA22-7800.

Notes:

1. A prior loaded copy of an HFS program in the same address space is reused

under the same circumstances that apply to the reuse of a prior loaded MVS

unauthorized program from an unauthorized library by the MVS XCTL service

with the following exceptions:

v If the calling process is in Ptrace debug mode, a prior loaded copy is not

reused.

v If the calling process is not in Ptrace debug mode, but the only prior loaded

usable copy found of the HFS program is in storage modifiable by the caller,

the prior copy is not reused.

2. If the specified file name represents an external link or a sticky bit file, the

program is loaded from the caller’s MVS load library search order. For an

external link, the external name is only used if the name is eight characters or

less, otherwise the caller receives an error from the loadhfs service. For a sticky

bit program, the file name is used if it is eight characters or less. Otherwise, the

program is loaded from the HFS.

3. If the calling task is in a WLM enclave, the resulting task in the new process

image is joined to the same WLM enclave. This allows WLM to manage the old

and new process images as one ″business unit of work″ entity for system

accounting and management purposes.

Note: If you are expecting this function to take advantage of the z/OS UNIX magic

number support, the Language Environment run-time option to POSIX(ON)

must have been set when the process was initialized. Attempting to use

magic number support with a process initialized with POSIX(OFF) may

produce undesirable effects. See z/OS UNIX System Services Planning,

GA22-7800 and z/OS UNIX System Services User’s Guide, SA22-7801 for

details and uses of the z/OS UNIX magic number.

Returned Value

If successful, spawn() and spawnp() return the value of the process ID of the child

process to the parent process.

If unsuccessful, spawn() and spawnp() return −1, no child process is created, and

they set errno to one of the following values:

Error Code Description

spawn, spawnp

Chapter 3. Part 3. Library Functions 1983

E2BIG The number of bytes used by the argument and environment list of

the new process image is greater than the system-imposed limit of

ARG_MAX bytes.

EACCES Search permission is denied for a directory in the path of the new

process image file or the new process image file denies execution

permission, or the new process image file is not a regular file and

the implementation does not support execution of files of its type.

EAGAIN The system lacked the necessary resources to create another

process or the system-imposed limit on the total number of

processes or UIDs under execution by a single user would be

exceeded.

EBADF An entry in the fd_map array refers to an invalid file descriptor or the

controlling terminal file descriptor specified in the inherit.ctlttyfd

is not valid.

EFAULT The system detected an invalid address in attempting to use a

parameter of the call.

EINVAL One or more of the following conditions were detected:

v The username that was specified on the _BPX_USERID

environment variable has an incorrect length.

v An attribute that was specified in the inheritance structure

(BPXYINHE) is not valid or contains an unsupported value.

v The version number that was specified for the inheritance

structure (BPXYINHE) is not valid.

v The inheritance structure length that was specified by the

Inherit_area_len parameter or within the inheritance structure

does not contain a length that is appropriate for the BPXYINHE

version.

v The process group ID that was specified in the inheritance

structure is less than zero or has some other unsupported value.

The following reason codes can accompany the return code: JROK,

JRUserNameLenError, JRJsRacXtr, JRInheUserid, JRInheRegion,

JRInheCPUTime, JRInheDynamber, JRInheAccountData,

JRInheCWD, JRInheSetPgrp, JRInheVersion, and JRInheLength.

ELOOP A loop exists in symbolic links encountered during resolution file

argument. This error is issued if more than 8 symbolic links are

detected in the resolution of Filename.

EMVSERR An MVS internal error has occurred. This may indicate a problem

with security permissions for the user calling spawn() or spawnp().

EMVSSAF2ERR

The executable file is a set-user-ID or set-group-ID file and the

file owner’s UID or GID is not defined to the Security Authorization

Facility (SAF), or _BPX_USERID was specified and the specified

username was not defined to SAF with a z/OS UNIX segment.

ENAMETOOLONG

The length of the path or file arguments, or an element of the

environment variable PATH prefixed to file exceeds PATH_MAX, or

a pathname component is longer than NAME_MAX and

{_POSIX_NO_TRUNC} is in effect for that file.

spawn, spawnp

1984 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||
|

ENOENT One or more components of the pathname of the new process

image file do not exist or the path or file argument is empty.

ENOEXEC The new process image file has the appropriate access permission

but is not in the proper format.

Note: Reason codes further qualify the errno. For most of the

reason codes, see z/OS UNIX System Services Messages

and Codes.

For ENOEXEC, the reason codes are:

 Reason Code Explanation

X'xxxx0C27' The target HFS file is not in the correct format to

be an executable file.

X'xxxx0C31' The target HFS file is built at a level that is higher

than that supported by the running system.

ENOMEM The new process requires more memory than is permitted by the

hardware or the operating system.

ENOTDIR A component of the path prefix of the new process image file is not

a directory.

ENOTTY The tcsetpgrp() failed for the specified controlling terminal file

descriptor in inherit.ctlttyfd. The failure occurred because the

calling process does not have a controlling terminal, or the specified

file descriptor is not associated with the controlling terminal, or the

controlling terminal is no longer associated with the session of the

calling process.

EPERM The spawn failed for one of the following reasons:

v The spawned process is not a process group leader.

v The _BPX_USERID environment variable was specified, but the

invoker does not have appropriate privileges to change the MVS

identity.

v The invoker does not have the appropriate privileges to change

one or more of the attributes specified in the inheritance structure

(BPXYINHE).

The following reason codes can accompany the return code: JROK,

JRNoChangeIdentity, JRInheUserid, JRInheRegion,

JRInheCPUTime, JRInheUmask, and JRInheCWD.

ESRCH The process group ID specified in inherit.pgroup is not that of a

process group in the session of the calling process.

Example

The following is an example of a parent program that uses spawn to create a child

process.

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

#include <spawn.h>

#include <stdio.h>

#include <errno.h>

#include <sys/types.h>

/* This program uses spawn instead of fork/exec to create a child

spawn, spawnp

Chapter 3. Part 3. Library Functions 1985

* process and uses unnamed pipes to allow the parent and child to

 * exchange communication.

 */

void main(int argc, char *argv[]) {

 pid_t child;

 int fd_count, fd_map[10];

 struct inheritance inherit;

 const char *c_argv[10], *c_envp[10];

 char buf[256];

 int nbytes;

 int c_stdin[2], c_stdout[2], c_stderr[2]; /* Pipes for child

 * communication */

 /* Create pipes to communicate with child via stdin/stdout/stderr */

 if(pipe(c_stdin) ||

 pipe(c_stdout) ||

 pipe(c_stderr)) {

 perror("Bad pipe");

 exit(-1);

 }

 /* Set up file descriptor map for child process */

 fd_map[0]=dup(c_stdin[0]); /* child stdin is read end of pipe */

 fd_map[1]=dup(c_stdout[1]); /* child stdout is write end of pipe */

 fd_map[2]=dup(c_stderr[1]); /* child stderr is write end of pipe */

 fd_count=3;

 /* Close unused end of pipes for the parent */

 close(c_stdin[0]); close(c_stdout[1]); close(c_stderr[1]);

 /* Build the argument structure for child arguments.

 * [0] is the program name */

 c_argv[0]="spawnc";

 c_argv[1]="arg1"; c_argv[2]="arg2"; c_argv[3]=NULL;

 /* Build the environment structure which defines the child’s

 * environment variables */

 c_envp[0]="TEST_ENV=YES"; c_envp[1]="BPX_SHAREAS=NO"; c_envp[2]=NULL;

 /* Spawn the child process */

 child=spawnp("spawnc", fd_count, fd_map, &inherit, c_argv, c_envp);

 if(child==-1) {

 perror("Error on spawn");

 exit(-1);

 }

 else printf("Spawned %i\n", child);

 /* Test interaction with the child process */

 printf("parent: Asking child, \"what are you doing?\\n\"\n");

 strcpy(buf, "child from parent: what are you doing?\n");

 if(write(c_stdin[1], buf, sizeof(buf))==-1) {

 perror("write stdout");

 exit(-1);

 }

 memset(buf, 0, 255); /* Just zeroing out the buffer */

 printf("parent: reading from child now\n");

 if((nbytes=read(c_stdout[0], buf, 255))==-1) {

 perror("read error:");

 exit(-1);

 }

 printf("parent: child says, \"%s\"\n", buf);

 /* Cleanup pipes before exiting */

spawn, spawnp

1986 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

close(c_stdin[1]); close(c_stdout[0]); close(c_stderr[0]);

 exit(0);

}

Example

The following is an example of a child program used by spawn.

#include <stdlib.h>

#include <stdio.h>

/* This is a sample child program used by spawn. This program will

 * work stand-alone as well as from spawn or fork/exec. */

extern char ** environ; /* External used to access the environment

 directly instead of using getenv */

void main(int argc, char *argv[]) {

 char *e, **env=environ; /* Used to step through the environment

 * to write out to file. */

 char buf[256]={0};

 FILE *fp=fopen("spawntest.out","w");

 int i;

 /* Print out the environment variables */

 i=0;

 fprintf(fp, "Environment:\n");

 while(e=env[i++]) fprintf(fp, "%s\n", e);

 fprintf(fp, "\n\n");

 /* Just to prove getenv works */

 fprintf(fp, "TEST_ENV envvar = %s", getenv("TEST_ENV"));

 /* Print out the command line arguments */

 i=0;

 fprintf(fp,"Args:\n");

 while(e=argv[i++]) fprintf(fp,"%s\n", e);

 fprintf(fp, "\n\n");

 /* Print out what was sent on stdin */

 fprintf(fp, "Child/parent\n");

 if(!gets(buf)) {

 ferror(stdin);

 exit(-1);

 }

 fprintf(fp, "child from parent: %i bytes,[%s]\n", strlen(buf), buf);

 /* Send something to stdout */

 printf("nothing");

 fclose(fp);

 exit(0);

}

Related Information

v “spawn.h” on page 78

v “sys/wait.h” on page 91

v “alarm() — Set an Alarm” on page 180

v “chmod() — Change the Mode of a File or Directory” on page 280

v “exit() — End Program” on page 494

v “_exit() — End a Process and Bypass the Cleanup” on page 496

v “fcntl() — Control Open File Descriptors” on page 527

spawn, spawnp

Chapter 3. Part 3. Library Functions 1987

v “fork() — Create a New Process” on page 632

v “kill() — Send a Signal to a Process” on page 1055

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

v “setuid() — Set the Effective User ID” on page 1857

v “__spawn2(), __spawnp2() — Spawn a New Process Using Enhanced

Inheritance Structure” on page 1989

v “stat() — Get File Information” on page 2008

v “times() — Get Process and Child Process Times” on page 2206

v “wait() — Wait for a Child Process to End” on page 2349

v “waitpid() — Wait for a Specific Child Process to End” on page 2354

spawn, spawnp

1988 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__spawn2(), __spawnp2() — Spawn a New Process Using Enhanced

Inheritance Structure

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

both POSIX(ON)

Format

#include <spawn.h>

pid_t __spawn2(const char *path,

 const int fd_count,

 const int fd_map[],

 const struct __inheritance *inherit,

 const char *argv[],

 const char *envp[]);

pid_t __spawnp2(const char *file,

 const int fd_count,

 const int fd_map[],

 const struct __inheritance *inherit,

 const char *argv[],

 const char *envp[]);

General Description

The __spawn2() and __spawnp2() functions creates a new process from the

specified process image. The new process image is constructed from a regular

executable file called the new process image file.

To execute a C program as a result of this call, enter the function call as follows:

 int main (int argc, char *argv[]);

Where argc is the argument count and argv is an array of character pointers to the

arguments themselves. In addition, the following variable:

 extern char **environ;

is initialized as a pointer to an array of character pointers to the environment

strings. The argv and environ arrays are each terminated by a NULL pointer. The

NULL pointer terminating the argv array is not counted in argc.

Supported parameters are:

Parameter Description

path Pathname used by __spawn2() that identifies the new process

image file to execute.

file Used by __spawnp2() to construct a pathname that identifies the

new process image file. If the file parameter contains a slash

character, the file parameter shall be used as a pathname for the

new process image file. Otherwise, the path prefix for this file shall

be obtained by a search of the directories passed as the

environment variable PATH.

fd-count Specifies the number of file descriptors the child process shall

__spawn2, __spawnp2

Chapter 3. Part 3. Library Functions 1989

inherit. It may take values from zero to OPEN_MAX. Except those

file descriptors designated by SPAWN_FDCLOSED, each of the

child’s file descriptors, x, in the range zero to fd_count-1 shall

inherit descriptor fd_map(x) from the parent process.

 The files from fd_count through OPEN_MAX are closed in the child

process, as are any elements of fd_map designated as

SPAWN_FDCLOSED.

fd-map If the fd_map parameter is NULL, fd_count and fd_map are

ignored. All file descriptors except those with the FD_CLOEXEC or

FD_CLOFORK attribute are inherited without reordering. File

descriptors with the FD_CLOEXEC or FD_CLOFORK attribute are closed

under simple inheritance.

 For those file descriptors that remain open, all other attributes of

the associated file descriptor object and open file description shall

remain unchanged by this operation.

 Directory streams open in the calling process image shall be closed

in the new process image, with the effect of the closedir() operation.

 If an element of fd_map refers to an invalid file descriptor, then the

(EBADF) error status shall be posted by __spawn2() or

__spawnp2().

 The FD_CLOEXEC and FD_CLOFORK file descriptor attributes are never

inherited.

 The FD_CLOEXEC and FD_CLOFORK file descriptor attributes have no

effect on inheritance when the fd_map parameter is not NULL.

Note: For XTI endpoints, fd_map must not map to a number

greater than 65535 in the child process.

inherit The name of a data area that contains the inheritance structure.

 The ’struct __inheritance’ is defined as follows:

 struct __inheritance {

 short flags; -- Flags

 pid_t pgroup; -- Process group

 sigset_t sigmask; -- Signal mask

 sigset_t sigdefault; -- Signals set to SIG_DFL

 int ctlttyfd; -- Cntl tty FD for tcsetpgrp()

 char *cwdptr; -- Pointer to the users CWD

 int cwdlen; -- Length of the users CWD

 int acctdatalen; -- Length of account data area

 char *acctdataptr; -- Ptr to account data area

 int umask; -- Users UMASK

 char userid[9]; -- New A.S. user identity

 char jobname[9]; -- New A.S. jobname

 int regionsize; -- New A.S. region size

 int timelimit; -- New A.S. time limit

 }

The inherit.flags effect spawn() and spawnp() as follows:

SPAWN_SETGROUP

If the SPAWN_SETGROUP flag is set in

inherit.flags, then the child’s process group shall be

as specified in inherit.pgroup.

 If the SPAWN_SETGROUP flag is set in

inherit.flags and inherit.pgroup is set to

__spawn2, __spawnp2

1990 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

SPAWN_NEWPGROUP, then the child shall be in a

new process group with a process group ID equal

to its process ID.

 If the SPAWN_SETGROUP flag is not set in

inherit.flags, the new child shall inherit the parent’s

process group ID.

SPAWN_SETSIGMASK

If the SPAWN_SETSIGMASK flag is set in

inherit.flags, the child process shall initially have the

signal mask specified in inherit.sigmask.

SPAWN_SETSIGDEF

If the SPAWN_SETSIGDEF flag is set in

inherit.flags, the signals specified in

inherit.sigdefault shall be set to their default actions

in the child process. Signals set the default action

in the parent process shall be set to the default

action in the new process.

 Signals set to be caught by the calling process shall

be set to the default action in the child process.

 Signals set to be ignored by the calling process

shall be set to be ignored by the new process,

unless otherwise specified by the

SPAWN_SETSIGDEF flag being set in inherit_flags

and the signal being indicated inherit.sigdefault.

SPAWN_SETTCPGRP

If the SPAWN_SETTCPGRP flag is set in

inherit.flag, the file descriptor specified in

inherit.ctlttyfd is used to set the controlling terminal

file descriptor (tcsetpgrp()) for the child’s foreground

process group. The child’s foreground process

group is inherited from the parent, unless the

SPAWN_SETGROUP flag in inherit.flags is set,

indicating that the value specified in inherit.pgroup

is to be used to determine the child’s process

group.

SPAWN_PROCESS_INITTAB

If this flag is set, spawn attempts to read the

/etc/inittab file and process the entries found there.

This processing involves the spawning of child shell

processes to run each of the commands identified

in the file. Only the SPAWN_SETSIGMASK flag can be

set in combination with this flag. All other flags will

be ignored. Use of this flag implies that only file

descriptors 0, 1, and 2 will be initially opened in the

child process. File descriptor 0 will be initially

opened as /dev/null, while file descriptors 1 and 2

will initially opened as /etc/log. The fd_count and

fd_map parameters will be ignored. This flag is

currently restricted to the /usr/sbin/init process. See

z/OS UNIX System Services Planningfor more

information on the /etc/inittab support.

__spawn2, __spawnp2

Chapter 3. Part 3. Library Functions 1991

argv The value in the first element of argv should point to a filename that

is associated with the process being started by the spawn2() or

spawnp2() operation.

 The number of bytes available for the new process’s combined

argument and environment lists is ARG_MAX.

envp The value envp contains the list of environmental variables that is

to be passed to the specified program.

 If the set-user-ID mode bit of the new process image file is set, the effective user ID

of the new process image shall be set to the owner ID of the new process image

file. Similarly, if the set-group-ID mode bit of the new process image file is set, the

effective group ID of the new process image shall be set to the group ID of the new

process image file. The real user ID, real group ID, and supplementary group IDs of

the new process image shall remain the same as those of the calling process

image. The effective user ID and effective group ID of the new process image shall

be saved (as the saved set-user-ID and set-group-ID) for use by the setuid()

function.

The new process image shall inherit the following attributes of the calling process

image:

v Process group ID (unless the SPAWN_SETGROUP flag is set in inherit.flags).

v Session membership.

v Real user ID.

v Real group ID.

v Supplementary group IDs.

v Priority.

v Current working directory.

v File creation mask.

v Signal mask (unless the SPAWN_SETSIGMASK flag is set in inherit.flags).

v Signal actions specified as default (SIG_DFL).

v Signal actions specified as ignore (SIG_IGN) (except as modified by

inherit.sigdefault and the SPAWN_SETSIGDEF flag set in inherit.flags).

The following are differences between the parent process and child:

v Signals set to be caught by the calling process shall be set to the default action

(SIG_DFL).

v The process and system utilization times for the child are set to zero.

v Any file locks previously set by the parent are not inherited by the child.

v The child process has no alarms set and has no interval timers set.

v The child has no pending signals.

v Memory mappings established by the parent are not inherited by the child.

If the process image was read from a writable file system, then upon successful

completion, the __spawn2() and __spawnp2() functions will mark for update the

st_time field of the new process image file.

If the __spawn2() or __spawnp2() function is successful, the new child process

image file shall be opened with all the effects of the open() function.

All the following inherit flags are used by __spawn2() and __spawnp2():

SPAWN_SETCWD

Specifies the Current Working Directory that the child process will

run when first created. This will override the CWD that would

normally be set up or propagated by the child process.

__spawn2, __spawnp2

1992 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

SPAWN_SETUMASK

Specifies the UMASK that the child process will run when first

created. This will override the UMASK that would normally be set

up in the child process. The invoker must have superuser privileges

to specify UMASK.

SPAWN_SETUSERID

When this flag is set, this attribute will be the equivalent of the

_BPX_USERID environment variable. If specified, the invoking

userid will be checked for daemon authority. If the invoker is

authorized and the userid is valid, the child process will be created

with RACF identity and POSIX permissions associated with the

input USERID. If not authorized or the userid is invalid, the

__spawn2() or __spawnp2() function will fail. If the USERID value is

specified, any value in _BPX_USERID will be ignored.

SPAWN_SETREGIONSZ

Specifies the number of megabytes the child process will have

available for private storage. The authority/ranges required will be

as per RLIMIT_AS rules. Unless the invoker has superuser

privileges, the region size range will be checked and if it exceeds

the hard limit, the __spawn2() or __spawnp2() function will fail. This

value will override RLIMIT_AS or the normal spawn propagation

rules.

SPAWN_SETTIMELIMIT

Specifies the number of seconds of CPU time that is allowed by the

child process before receiving a SIGXCPU signal. Unless the

invoker has superuser privileges, the time limit range will be

checked and if it exceeds the hard limit, the __spawn2() or

__spawnp2() function will fail. This value will override the

RLIMIT_CPU or the normal spawn propagation rules.

SPAWN_SETACCTDATA

Specifies account data of the child process. The format and length

will be as per the _BPX_ACCT_DATA environmental variable. No

special authority is needed to change account data. This will

override the target userid’s default account data and any value

specified on the _BPX_ACCT_DATA will be ignored.

SPAWN_SETJOBNAME

When this flag is set, it is the equivalent of the _BPX_JOBNAME

environment variable. If specified, the invoking userid will be

checked for superuser authority. If the invoker is authorized and the

jobname is valid, the child process will be created with the specified

jobname. If not authorized or the jobname is invalid, __spawn2() or

__spawnp2() will ignore the JOBNAME attribute and continue. If the

JOBNAME value is specified, any value in _BPX_JOBNAME will be

ignored.

For more information on the use of inheritance structure flags, see z/OS UNIX

System Services Programming: Assembler Callable Services Reference,

SA22-7803.

Returned Value

If successful, __spawn2() or __spawnp2() returns the process ID of the child

process to the parent.

__spawn2, __spawnp2

Chapter 3. Part 3. Library Functions 1993

If unsuccessful, __spawn2() or __spawnp2() returns -1 to the parent process, no

child is created, and they set errno to one of the following values:

Error Code Description

E2BIG The number of bytes used by the argument and environment list of

the new process image is greater than the system-imposed limit of

ARG_MAX bytes.

EACCES Search permission is denied for a directory in the path of the new

process image file or the new process image file denies execution

permission, or the the new process image file is not a regular file

and the implementation does not support execution of files of its

type.

EAGAIN The system lacked the necessary resources to create another

process, or the system-imposed limit on the total number of

processes under execution by a single user would be exceeded.

The resources required to let another process be created are not

available, or you have already reached the maximum number of

processes or UIDs you are allowed to create. This error will also be

generated if _BPX_USERID or INHEUSERID was specified and the

username was not defined to SAF with a segment.

EBADF An entry in the fd_map array refers to an invalid file descriptor or

the controlling terminal file descriptor specified in the __inheritance

structure.

EFAULT The system detected an invalid address while attempting to use a

parameter of the call.

EINVAL One or more of the following conditions were detected:

v The username that was specified on the _BPX_USERID

environment variable has an incorrect length.

v An attribute that was specified in the inheritance structure

(BPXYINHE) is not valid or contains an unsupported value.

v The version number that was specified for the inheritance

structure (BPXYINHE) is not valid.

v The inheritance structure length that was specified by the

Inherit_area_len parameter or within the inheritance structure

does not contain a length that is appropriate for the BPXYINHE

version.

v The process group ID that was specified in the inheritance

structure is less than zero or has some other unsupported value.

The following reason codes can accompany the return code: JROK,

JRUserNameLenError, JRJsRacXtr, JRInheUserid, JRInheRegion,

JRInheCPUTime, JRInheDynamber, JRInheAccountData,

JRInheCWD, JRInheSetPgrp, JRInheVersion, and JRInheLength.

ELOOP A loop exists in symbolic links encountered during resolution of the

filename argument. This error is issued if more than 8 symbolic

links are detected.

EMVSSAF2ERR

The executable file is a set-user-ID or set-group-ID file and the

owner’s UID or GID is not defined to the Security Authorization

Facility (SAF).

__spawn2, __spawnp2

1994 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ENAMETOOLONG

The length of the path or file parameter, or an element of the

environmental variable PATH prefixed to a file, exceeds

PATH_MAX, or a pathname component is longer than NAME_MAX

and {_POSIX_N_TRUNC_} is in effect for that file.

ENOENT One or more components of the pathname of the new process

image file do not exist or the path or file parameter is empty.

ENOEXEC The new process image file has the appropriate access permission,

but is not in the proper format.

Note:

Reason codes further qualify the errno. For most of the

reason codes, see z/OS UNIX System Services Messages

and Codes.

For ENOEXEC, the reason codes are:

 Reason Code Explanation

X'xxxx0C27' The target HFS file is not in the correct format to

be an executable file.

X'xxxx0C31' The target HFS file is built at a level that is higher

than that supported by the running system.

ENOMEM The new process requires more memory than is permitted by the

hardware or operating system.

ENOTDIR A component of the path prefix of the new process image file is not

a directory.

ENOTTY tcsetpgrp() failed for the specified controlling terminal file descriptor

in __inheritance structure. The failure occurred because the calling

process does not have a controlling terminal, or the specified file

descriptor is not associated with the controlling terminal, or the

controlling terminal is no longer associated with the session of the

calling process.

EPERM The spawn failed for one of the following reasons:

v The spawned process is not a process group leader.

v The _BPX_USERID environment variable was specified, and the

invoker does not have appropriate privileges to change the MVS

identity.

v The invoker does not have the appropriate privileges to change

one or more of the attributes specified in the inheritance structure

(BPXYINHE).

The following reason codes can accompany the return code: JROK,

JRNoChangeIdentity, JRInheUserid, JRInheRegion,

JRInheCPUTime, JRInheUmask, and JRInheCWD.

ESRCH The process group ID specified in the __inheritance structure is not

that of s process group in the calling process’s session.

Related Information

v “spawn.h” on page 78

v “sys/wait.h” on page 91

__spawn2, __spawnp2

Chapter 3. Part 3. Library Functions 1995

v “alarm() — Set an Alarm” on page 180

v “chmod() — Change the Mode of a File or Directory” on page 280

v “exit() — End Program” on page 494

v “_exit() — End a Process and Bypass the Cleanup” on page 496

v “fcntl() — Control Open File Descriptors” on page 527

v “fork() — Create a New Process” on page 632

v “kill() — Send a Signal to a Process” on page 1055

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

v “setuid() — Set the Effective User ID” on page 1857

v “spawn(), spawnp() — Spawn a New Process” on page 1976

v “stat() — Get File Information” on page 2008

v “times() — Get Process and Child Process Times” on page 2206

v “wait() — Wait for a Child Process to End” on page 2349

v “waitpid() — Wait for a Specific Child Process to End” on page 2354

__spawn2, __spawnp2

1996 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sprintf() — Format and Write Data to Buffer

The information for this function is included in “fprintf(), printf(), sprintf() — Format

and Write Data” on page 648.

sprintf

Chapter 3. Part 3. Library Functions 1997

sqrt(), sqrtf(), sqrtl() — Calculate Square Root

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double sqrt(double x);

float sqrt(float x); /* C++ only */

long double sqrt(long double x); /* C++ only */

float sqrtf(float x);

long double sqrtl(long double x);

General Description

Calculates the square root of x.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

If successful, returns the square root of x.

If x is negative, the function sets errno to EDOM, and returns 0. If the correct value

would cause underflow, zero is returned and the value ERANGE is stored in errno.

Special Behavior for IEEE

If x< -0, the function returns NaNQ and sets errno to EDOM.

If x is a NaN, a NaN will be returned.

If x is ±0 or +INF, x will be returned.

If x is -INF, a EDOM will be set, and NaNQ will be returned.

Example

CELEBS30

/* CELEBS30

 This example computes the square root of the quantity passed

 as the first argument to main.

 It prints an error message if you pass a negative value.

 */

sqrt, sqrtf, sqrtl

1998 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|
|

||

|

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int main(int argc, char ** argv)

{

 char * rest;

 double value;

 if (argc != 2)

 printf("Usage: %s value\n", argv[0]);

 else

 {

 value = strtod(argv[1], &rest);

 if (value < 0.0)

 printf("sqrt of a negative number\n");

 else

 printf("sqrt(%f) = %f\n", value, sqrt(value));

 }

}

Output

If the input is 45, then the output should be:

sqrt(45.000000) = 6.708204

Related Information

v “math.h” on page 60

v “exp(), expf(), expl() — Calculate Exponential Function” on page 498

v “hypot(), hypotf(), hypotl() — Calculate the square root of the squares of two

arguments” on page 916

v “log(), logf(), logl() — Calculate Natural Logarithm” on page 1126

v “log10(), log10f(), log10l() — Calculate Base 10 Logarithm” on page 1138

v “pow(), powf(), powl() — Raise to Power” on page 1362

sqrt, sqrtf, sqrtl

Chapter 3. Part 3. Library Functions 1999

sqrtd32(), sqrtd64(), sqrtd128() — Calculate Square Root

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 sqrtd32(_Decimal32 x);

_Decimal64 sqrtd64(_Decimal64 x);

_Decimal128 sqrtd128(_Decimal128 x);

_Decimal32 sqrt(_Decimal32 x); /* C++ only */

_Decimal64 sqrt(_Decimal64 x); /* C++ only */

_Decimal128 sqrt(_Decimal128 x); /* C++ only */

General Description

Calculates the square root of x.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

If successful, returns the square root of x.

If the correct value would cause underflow, zero is returned and the value ERANGE

is stored in errno.

If x < -0, the function returns NaNQ and sets errno to EDOM.

If x is a NaN, a NaN will be returned.

If x is ±0 or +INF, x will be returned.

If x is -INF, the function returns NaNQ and sets errno to EDOM.

Example

/* CELEBS71

 This example illustrates the sqrtd32() function, along with

 the strtod32() function.

 This example computes the square root of the quantity passed

 as the first argument to main.

 It prints an error message if you pass a negative value.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

sqrtd32, sqrtd64, sqrtd128

2000 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|

|

|

|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char ** argv)

{

 char *rest;

 _Decimal32 value;

 if (argc != 2)

 {

 printf("Usage: %s value\n", argv[0]);

 }

 else

 {

 value = strtod32(argv[1], &rest);

 if (value < 0.0DF)

 printf("sqrt of a negative number\n");

 else

 printf("sqrt(%Hf) = %Hf\n", value, sqrtd32(value));

 }

}

Related Information

v “math.h” on page 60

v “expd32(), expd64(), expd128() — Calculate Exponential Function” on page 500

v “logd32(), logd64(), logd128() — Calculate Natural Logarithm” on page 1132

v “log10d32(), log10d64(), log10d128() — Calculate Base 10 Logarithm” on page

1140

v “powd32(), powd64(), powd128() — Raise to Power” on page 1364

v “sqrt(), sqrtf(), sqrtl() — Calculate Square Root” on page 1998

sqrtd32, sqrtd64, sqrtd128

Chapter 3. Part 3. Library Functions 2001

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

srand() — Set Seed for rand() Function

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

void srand(unsigned int seed);

General Description

srand() uses its argument seed as a seed for a new sequence of pseudo-random

numbers to be returned by subsequent calls to rand(). If srand() is not called, the

rand() seed is set as if srand(1) was called at program start. Any other value for

seed sets the generator to a different starting point. The rand() function generates

pseudo-random numbers.

Some people find it convenient to use the return value of the time() function as the

argument to srand(), as a way to ensure random sequences of random numbers.

Returned Value

srand() returns no values.

Example

CELEBS31

/* CELEBS31

 This example first calls &srand. with a value other than 1 to

 initiate the random value sequence.

 Then the program computes 5 random values for the array of

 integers called ranvals.

 If you repeat this code exactly, then the same sequence of

 random values will be generated.

 */

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 int i, ranvals[5];

 srand(17);

 for (i = 0; i < 5; i++)

 {

 ranvals[i] = rand();

 printf("Iteration %d ranvals [%d] = %d\n", i+1, i, ranvals[i]);

 }

}

Output

srand

2002 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

Iteration 1 ranvals [0] = 24107

Iteration 2 ranvals [1] = 16552

Iteration 3 ranvals [2] = 12125

Iteration 4 ranvals [3] = 9427

Iteration 5 ranvals [4] = 13152

Related Information

v “stdlib.h” on page 85

v “rand() — Generate Random Number” on page 1598

v “rand_r() — Pseudo-Random Number Generator” on page 1600

srand

Chapter 3. Part 3. Library Functions 2003

srandom() — Use Seed to Initialize Generator for random()

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

void srandom(unsigned seed);

General Description

The srandom() function initializes the calling thread’s current state array for the

random() function using the value of seed.

Returned Value

srandom() returns no values.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “initstate() — Initialize Generator for random()” on page 975

v “rand() — Generate Random Number” on page 1598

v “rand_r() — Pseudo-Random Number Generator” on page 1600

v “random() — A Better Random-Number Generator” on page 1601

v “setstate() — Change Generator for random()” on page 1854

srandom

2004 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

srand48() — Pseudo-Random Number Initializer

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <stdlib.h>

void srand48(long int seedval);

General Description

The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions

generate uniformly distributed pseudo-random numbers using a linear congruential

algorithm and 48-bit integer arithmetic.

The lcong48(), seed48(), and srand48() functions are initialization functions, one of

which should be invoked before either the drand48(), lrand48() or mrand48()

function is called.

The drand48(), lrand48() and mrand48() functions generate a sequence of 48-bit

integer values, X(i), according to the linear congruential formula:

 X(n+1) = (aX(n) + c)mod(2**48) n>=0

The initial values of X, a, and c are:

 X(0)= 1

 a = 5deece66d (base 16)

 c = b (base 16)

C/370 provides storage to save the most recent 48-bit integer value of the

sequence, X(i). This storage is shared by the drand48(), lrand48() and mrand48()

functions. The srand48() function is used to reinitialize the most recent 48-bit value

in this storage. The srand48() function replaces the high-order (leftmost) 32 bits of

this storage with seedval argument value. The srand48() function replaces the

low-order 16 bits of this storage with the value 330E (base 16).

The values a and c, may be changed by calling the lcong48() function. The

srand48()function restores the initial values of a and c.

Special Behavior for z/OS UNIX Services

You can make the srand48() function and other functions in the drand48 family

thread-specific by setting the environment variable _RAND48 to the value THREAD

before calling any function in the drand48 family.

If you do not request thread-specific behavior for the drand48 family, C/370

serializes access to the storage for X(n), a and c by functions in the drand48 family

when they are called by a multithreaded application.

srand48

Chapter 3. Part 3. Library Functions 2005

||||

|
|
|

||

|

If thread-specific behavior is requested, calls to the drand48(), lrand48() and

mrand48() functions from thread t generate a sequence of 48-bit integer values,

X(t,i), according to the linear congruential formula:

 X(t,n+1) = (a(t)X(t,n) + c(t))mod(2**48) n>=0

C/370 provides thread-specific storage to save the most recent 48-bit integer value

of the sequence, X(t,i). When the srand48()function is called from thread t, it

reinitializes the most recent 48-bit value in this storage. The srand48() function

replaces the high-order (leftmost) 32 bits of this storage with seedval argument

value. The srand48() function replaces the low-order 16 bits of this storage with the

value 330E (base 16).

The values of a(t) and c(t) may be changed by calling the lcong48() function from

thread t. When the srand48()function is called from this thread it restores the initial

values of a(t) and c(t) for the thread which are:

 a(t) = 5deece66d (base 16)

 c(t) = b (base 16)

Returned Value

srand48() returns no values.

srand48() returns after it has used the value of the argument seedval to reinitialize

storage for the most recent 48-bit integer value in the sequence, X(i), and has

restored the initial values of a and c.

Special Behavior for z/OS UNIX Services

If thread-specific behavior is requested for the drand48 family and the srand48()

function is called on thread t, it uses the value of the argument seedval to

reinitialize storage for the most recent 48-bit integer value in the sequence, X(t,i),

for the thread. It also restores the initial values of a(t) and c(t) for the thread. Then it

returns.

Related Information

v “stdlib.h” on page 85

v “drand48() — Pseudo-Random Number Generator” on page 447

v “erand48() — Pseudo-Random Number Generator” on page 476

v “jrand48() — Pseudo-Random Number Generator” on page 1051

v “lcong48() — Pseudo-Random Number Initializer” on page 1065

v “lrand48() — Pseudo-Random Number Generator” on page 1150

v “mrand48() — Pseudo-Random Number Generator” on page 1251

v “nrand48() — Pseudo-Random Number Generator” on page 1307

v “seed48() — Pseudo-Random Number Initializer” on page 1712

srand48

2006 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sscanf() — Read and Format Data from Buffer

The information for this function is included in “fscanf(), scanf(), sscanf() — Read

and Format Data” on page 682.

sscanf

Chapter 3. Part 3. Library Functions 2007

stat() — Get File Information

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/stat.h>

int stat(const char *__restrict__ pathname, struct stat *__restrict__ info);

General Description

Gets status information about a specified file and places it in the area of memory

pointed to by the info argument. The process does not need permissions on the file

itself, but must have search permission on all directory components of the

pathname. If the named file is a symbolic link, stat() resolves the symbolic link. It

also returns information about the resulting file.

The information is returned as shown in the following stat structure table, as

defined in the sys/stat.h header file.

 Table 49. Values Returned in stat Structure

Value Description

mode_t st_mode A bit string indicating the permissions and privileges of the Symbols are

defined in the sys/stat.h header file to refer to bits in a mode_t value;

these symbols are listed in “chmod() — Change the Mode of a File or

Directory” on page 280.

ino_t st_ino The serial number of the file.

dev_t st_dev The numeric ID of the device containing the file.

nlink_t st_nlink The number of links to the file.

uid_t st_uid The numeric user ID (UID) of the file’s owner.

gid_t st_gid The numeric group ID (GID) of the file’s group.

off_t st_size For regular files, the file’s size in bytes. For other kinds of files, the

value of this field is unspecified.

time_t st_atime The most recent time the file was accessed.

time_t st_ctime The most recent time the status of the file was changed.

time_t st_mtime The most recent time the contents of the file were changed.

Values for time_t_ are given in terms of seconds since epoch.

stat() updates the time-related fields before putting information in the stat structure.

You can examine properties of a mode_t value from the st_mode field using a

collection of macros defined in the sys/modes.h header file. If mode is a mode_t

value, and genvalue is an unsigned int value from the stat structure, then:

stat

2008 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

|
|
|
|

S_ISBLK(mode)

Is nonzero for block special files.

S_ISCHR(mode)

Is nonzero for character special files.

S_ISDIR(mode)

Is nonzero for directories.

S_ISEXTL(mode,genvalue)

Is nonzero for external links.

S_ISFIFO(mode)

Is nonzero for pipes and FIFO special files.

S_ISLNK(mode)

Is nonzero for symbolic links.

S_ISREG(mode)

Is nonzero for regular files.

S_ISSOCK(mode)

Is nonzero for sockets.

If stat() successfully determines this information, it stores it in the area indicated by

the info argument. The size of the buffer determines how much information is

stored; data that exceeds the size of the buffer is truncated.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, stat() returns 0.

If unsuccessful, stat() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The process does not have search permission on some component

of the pathname prefix.

EINVAL info is a NULL pointer.

EIO Added for XPG4.2: An error occurred while reading from the file

system.

ELOOP A loop exists in symbolic links encountered during resolution of the

pathname argument. This error is returned if more than

POSIX_SYMLOOP (defined in the limits.h header file) symbolic

links are encountered during resolution of the pathname argument.

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

stat

Chapter 3. Part 3. Library Functions 2009

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined with pathconf().

ENOENT There is no file named pathname, or pathname is an empty string.

ENOTDIR A component of the pathname prefix is not a directory.

EOVERFLOW The file size in bytes or the number of blocks allocated to the file or

the file serial number cannot be represented correctly in the

structure pointed to by info.

Note: Starting with z/OS V1.9, environment variable _EDC_EOVERFLOW can be

used to control behavior of stat() with respect to detecting an EOVERFLOW

condition for UNIX files. By default, stat() will not set EOVERFLOW when the

file size can not be represented correctly in structure pointed to by buf.

When _EDC_EOVERFLOW is set to YES, stat() will check for an overflow

condition.

Example

CELEBS33

/* CELEBS33

 This example gets status information about a file.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <sys/stat.h>

#undef _POSIX_SOURCE

#include <stdio.h>

#include <time.h>

main() {

 struct stat info;

 if (stat("/", &info) != 0)

 perror("stat() error");

 else {

 puts("stat() returned the following information about root f/s:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 printf("created: %s", ctime(&info.st_createtime));

 }

}

Output

stat() returned the following information about root f/s:

 inode: 0

 dev id: 1

 mode: 010001ed

 links: 11

 uid: 0

 gid: 500

created: Fri Jun 16 10:07:55 2001

stat

2010 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||
|
|

|
|
|
|
|
|

Related Information

v “sys/stat.h” on page 89

v “sys/types.h” on page 90

v “chmod() — Change the Mode of a File or Directory” on page 280

v “chown() — Change the Owner or Group of a File or Directory” on page 283

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup() — Duplicate an Open File Descriptor” on page 449

v “fcntl() — Control Open File Descriptors” on page 527

v “fstat() — Get Status Information about a File” on page 704

v “link() — Create a Link to a File” on page 1101

v “lstat() — Get Status of File or Symbolic Link” on page 1163

v “mkdir() — Make a Directory” on page 1217

v “mkfifo() — Make a FIFO Special File” on page 1220

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

v “read() — Read From a File or Socket” on page 1602

v “readlink() — Read the Value of a Symbolic Link” on page 1615

v “remove() — Delete File” on page 1661

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

v “symlink() — Create a Symbolic Link to a Pathname” on page 2107

v “unlink() — Remove a Directory Entry” on page 2312

v “utime() — Set File Access and Modification Times” on page 2317

v “write() — Write Data on a File or Socket” on page 2464

stat

Chapter 3. Part 3. Library Functions 2011

statvfs() — Get File System Information

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/statvfs.h>

int statvfs(const char *_restrict_ pathname, struct statvfs *_restrict_ fsinfo);

General Description

The statvfs() function obtains information about the file system containing the file

named by pathname and stores it in the area of memory pointed to by the fsinfo

argument. The process does not need permissions on the file itself, but must have

search permission on all directory components of the pathname.

The information is returned in the following statvfs structure, as defined in the

sys/statvfs.h header file.

 Table 50. Values Returned in statvfs Structure

Value Description

char f_OEcbid[4] The structure acronym (eye catcher).

int f_OEcblen The length of the structure.

unsigned long f_bsize The file system block size.

unsigned long f_blocks The total number of blocks on the file system in units of f_frsize.

unsigned long

f_OEusedspace

The allocated space in block size units.

unsigned long f_bavail The number of free blocks available to non-privileged process.

unsigned long f_fsid The file system ID.

unsigned long f_flag A bit string indicating file system status.

int f_OEmaxfilesizehw The high word of maximum file size.

unsigned long

f_OEmaxfilesizelw

The low word of maximum file size.

unsigned long f_frsize The fundamental file system block size.

unsigned long f_bfree The total number of free blocks.

unsigned long f_files The total number of file serial numbers.

unsigned long f_ffree The total number of free file serial numbers.

unsigned long f_favail The number of file serial numbers available to non-privileged

process.

unsigned long

f_namemax

The maximum filename length.

unsigned long

f_OEinvarsec

The number of seconds the file system will remain unchanged.

statvfs

2012 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

The following flags can be returned in the f_flag member:

ST_RDONLY read-only file system

ST_NOSUID setuid/setgid bits ignored by exec

ST_OEEXPORTED

file system is exported

If statvfs() successfully determines this information, it stores in the area indicated by

the fsinfo argument. The size of the buffer determines how much information is

stored; data that exceeds the size of the buffer is truncated.

Returned Value

If successful, statvfs() returns 0.

If unsuccessful, statvfs() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The process does not have search permission on some component

of the pathname prefix.

EINTR A signal was caught during the execution of the function.

EIO An I/O error has occurred while reading the file system.

ELOOP A loop exists in symbolic links encountered during resolution of the

pathname argument. This error is issued if more than the

system-defined limit of symbolic links, 8, are detected in the

resolution of pathname.

ENAMETOOLONG

The length of the pathname exceeds PATH_MAX or a component

of pathname is longer than NAME_MAX.

ENOENT There is no file named pathname, or pathname is an empty string.

ENOTDIR A component of the pathname prefix is not a directory.

Example

#include <sys/statvfs.h>

#include <stdio.h>

main() {

 int fd;

 struct statvfs buf;

 if (statvfs(".", &buf) == -1)

 perror("statvfs() error");

 else {

 printf("each block is %d bytes big\n", fs,

 buf.f_bsize);

 printf("there are %d blocks available out of a total of %d\n",

 buf.f_bavail, buf.f_blocks);

 printf("in bytes, that’s %.0f bytes free out of a total of %.0f\n

 ((double)buf.f_bavail * buf.f_bsize),

 ((double)buf.f_blocks * buf.f_bsize));

 }

}

Output

statvfs

Chapter 3. Part 3. Library Functions 2013

each block is 4096 bytes big

there are 2089 blocks available out of a total of 2400

in bytes, that’s 8556544 bytes free out of a total of 9830400

Related Information

v “sys/statvfs.h” on page 89

v “chmod() — Change the Mode of a File or Directory” on page 280

v “chown() — Change the Owner or Group of a File or Directory” on page 283

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup() — Duplicate an Open File Descriptor” on page 449

v “exec Functions” on page 486

v “fcntl() — Control Open File Descriptors” on page 527

v “link() — Create a Link to a File” on page 1101

v “mknod() — Make a Directory or File” on page 1223

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

v “read() — Read From a File or Socket” on page 1602

v “time() — Determine current UTC time” on page 2204

v “unlink() — Remove a Directory Entry” on page 2312

v “utime() — Set File Access and Modification Times” on page 2317

v “write() — Write Data on a File or Socket” on page 2464

statvfs

2014 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

step() — Pattern Match with Regular Expression

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

both

Format

#define _XOPEN_SOURCE

#include <regexp.h>

int step(const char *string, const char *expbuf);

extern char *loc1, *loc2;

General Description

Restriction: This function is not supported in AMODE 64.

The step() function attempts to match an input string of characters with the

compiled regular expression which was obtained by an earlier call to compile().

The first parameter string is a pointer to a string of characters to be checked for a

match.

expbuf is the pointer to the regular expression which was previously obtained by a

call to compile().

Notes:

1. The external variables cirf, sed, and nbra are reserved.

2. The application must provide the proper serialization for the compile(), step(),

and advance() functions if they are run under a multithreaded environment.

3. The compile(), step() and advance() functions are provided for historical

reasons. These functions were part of the Legacy Feature in Single UNIX

Specification, Version 2. They have been withdrawn and are not supported as

part of Single UNIX Specification, Version 3. New applications should use the

newer functions fnmatch(), glob(), regcomp(), and regexec(), which provide full

internationalized regular expression functionality compatible with ISO POSIX.2

standard.

Returned Value

If some substring of string matches the regular expression in expbuf, step() returns

nonzero.

If there is no match, step() returns 0.

If there is a match, step() sets two external pointers, as follows:

v The variable loc1 points to the first character that matched the regular

expression.

v The variable loc2 points to the character after the last character that matched the

regular expression.

step

Chapter 3. Part 3. Library Functions 2015

|
|
|
|
|
|
|

For example, if the regular expression matches the entire input loc1 will point to the

first character of string and loc2 will point to the NULL at the end of string.

Related Information

v “regexp.h” on page 76

v “advance() — Pattern Match Given a Compiled Regular Expression” on page 163

v “compile() — Compile Regular Expression” on page 316

v “fnmatch() — Match Filename or Pathname” on page 624

v “glob() — Generate Pathnames Matching a Pattern” on page 898

v “regcomp() — Compile Regular Expression” on page 1646

v “regexec() — Execute Compiled Regular Expression” on page 1653

step

2016 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

strcasecmp() — Case-insensitive String Comparison

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <strings.h>

int strcasecmp(const char *string1, const char *string2);

General Description

The strcasecmp() function compares, while ignoring differences in case, the string

pointed to by string1 to the string pointed to by string2.

The string arguments to the function must contain a NULL character (\0) marking

the end of the string.

The strcasecmp() function is locale-sensitive.

Returned Value

strcasecmp() returns a value indicating the relationship between the strings, while

ignoring case, as follows:

Value Meaning

< 0 String pointed to by string1 is less than string pointed to by string2.

= 0 String pointed to by string1 is equal to string pointed to by string2.

> 0 String pointed to by string1 is greater than string pointed to by

string2.

There are no errno values defined.

Related Information

v “strings.h” on page 86

v “setlocale() — Set Locale” on page 1811

v “strcspn() — Compare Strings” on page 2028

v “strncasecmp() — Case-insensitive String Comparison” on page 2045

strcasecmp

Chapter 3. Part 3. Library Functions 2017

||||

|
|
||

|

strcat() — Concatenate Strings

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

char *strcat(char * __restrict__string1, const char * __restrict__string2);

General Description

The strcat() built-in function concatenates string2 with string1 and ends the resulting

string with the NULL character. In other words, strcat() appends a copy of the string

pointed to by string2—including the terminating NULL byte— to the end of a string

pointed to by string1, with its last byte (that is, the terminating NULL byte of string1)

overwritten by the first byte of the appended string.

Do not use a literal string for a string1 value, although string2 may be a literal

string.

If the storage of string1 overlaps the storage of string2, the behavior is undefined.

Returned Value

Returns the value of string1, the concatenated string.

Example

CELEBS34

/* CELEBS34

 This example creates the string "computer program" using strcat().

 */

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char buffer1[SIZE] = "computer";

 char * ptr;

 ptr = strcat(buffer1, " program");

 printf("buffer1 = %s\n", buffer1);

}

Output

strcat

2018 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

buffer1 = computer program

Related Information

v “string.h” on page 86

v “strchr() — Search for Character” on page 2020

v “strcmp() — Compare Strings” on page 2022

v “strcpy() — Copy String” on page 2026

v “strcspn() — Compare Strings” on page 2028

v “strncat() — Concatenate Strings” on page 2046

strcat

Chapter 3. Part 3. Library Functions 2019

strchr() — Search for Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

char *strchr(const char *string, int c);

General Description

The strchr() built-in function finds the first occurrence of c converted to char, in the

string *string. The character c can be the NULL character (\0); the ending NULL

character of string is included in the search.

The strchr() function operates on NULL-terminated strings. The string argument to

the function must contain a NULL character (\0) marking the end of the string.

Returned Value

If successful, strchr() returns a pointer to the first occurrence of c (converted to a

character) in string.

If the character is not found, strchr() returns a NULL pointer.

Example

CELEBS35

/* CELEBS35

 This example finds the first occurrence of the character p in

 "computer program".

 */

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char buffer1[SIZE] = "computer program";

 char * ptr;

 int ch = 'p';

 ptr = strchr(buffer1, ch);

 printf("The first occurrence of %c in '%s' is '%s'\n",

 ch, buffer1, ptr);

}

Output

strchr

2020 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

The first occurrence of p in ’computer program’ is ’puter program’

Related Information

v “string.h” on page 86

v “memchr() — Search Buffer” on page 1205

v “strcat() — Concatenate Strings” on page 2018

v “strcmp() — Compare Strings” on page 2022

v “strcpy() — Copy String” on page 2026

v “strcspn() — Compare Strings” on page 2028

v “strncmp() — Compare Strings” on page 2048

v “strpbrk() — Find Characters in String” on page 2052

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

strchr

Chapter 3. Part 3. Library Functions 2021

strcmp() — Compare Strings

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

int strcmp(const char *string1, const char *string2);

General Description

The strcmp() built-in function compares the string pointed to by string1 to the string

pointed to by string2 The string arguments to the function must contain a NULL

character (\0) marking the end of the string.

The relation between the strings is determined by subtracting: string1[i] − string2[i],

as i increases from 0 to strlen of the smaller string. The sign of a nonzero return

value is determined by the sign of the difference between the values of the first pair

of bytes (both interpreted as type unsigned char) that differ in the strings being

compared. This function is not locale-sensitive.

Returned Value

strcmp() returns a value indicating the relationship between the strings, as listed

below.

Value Meaning

< 0 String pointed to by string1 less than string pointed to by string2

= 0 String pointed to by string1 equivalent to string pointed to by string2

> 0 String pointed to by string1 greater than string pointed to by string2

Example

CELEBS36

/* CELEBS36

 This example compares the two strings passed to main using

 &strcmp..

 */

#include <stdio.h>

#include <string.h>

int main(int argc, char ** argv)

{

 int result;

 if (argc != 3)

 {

strcmp

2022 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

printf("Usage: %s string1 string2\n", argv[0]);

 }

 else

 {

 result = strcmp(argv[1], argv[2]);

 if (result == 0)

 printf("\"%s\" is identical to \"%s\"\n", argv[1], argv[2]);

 else if (result < 0)

 printf("\"%s\" is less than \"%s\"\n", argv[1], argv[2]);

 else

 printf("\"%s\" is greater than \"%s\"\n", argv[1], argv[2]);

 }

}

Output

If the input is the strings "is this first?" and "is this before that one?" then

the expected output is:

"is this first?" is greater than "is this before that one?"

Related Information

v “string.h” on page 86

v “memcmp() — Compare Bytes” on page 1207

v “strcspn() — Compare Strings” on page 2028

v “strncmp() — Compare Strings” on page 2048

v “strpbrk() — Find Characters in String” on page 2052

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

strcmp

Chapter 3. Part 3. Library Functions 2023

strcoll() — Compare Strings

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

int strcoll(const char *string1, const char *string2);

General Description

Compares the string pointed to by string1 against the string pointed to by string2,

both interpreted according to the information in the LC_COLLATE category of the

current locale.

Returned Value

strcoll() returns a value indicating the relationship between the strings, as listed

below.

Value Meaning

< 0 string pointed to by string1 less than string pointed to by string2

= 0 string pointed to by string1 equivalent to string pointed to by string2

> 0 string pointed to by string1 greater than string pointed to by string2

Notes:

v The strcoll() function may need to allocate additional memory to perform the

comparison algorithm specified in the LC_COLLATE. If the memory request

cannot be satisfied (by malloc()), strcoll() fails.

v If the locale supports double-byte characters (MB_CUR_MAX specified as 4), the

strcoll() function validates the multibyte characters, whereas previously the

strcoll() function did not validate the string. The strcoll() function will fail if the

string contains invalid multibyte characters.

v If MB_CUR_MAX is specified as 4, but the charmap file does not specify the DBCS

characters, the DBCS characters will collate after the single-byte characters.

Example

CELEBS37

/* CELEBS37

 This example compares the two strings passed to main.

 */

#include <stdio.h>

#include <string.h>

strcoll

2024 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

int main(int argc, char ** argv)

{

 int result;

 if (argc != 3) {

 printf("Usage: %s string1 string2\n", argv[0]);

 }

 else {

 result = strcoll(argv[1], argv[2]);

 if (result == 0)

 printf("\"%s\" is identical to \"%s\"\n", argv[1], argv[2]);

 else if (result < 0)

 printf("\"%s\" is less than \"%s\"\n", argv[1], argv[2]);

 else

 printf("\"%s\" is greater than \"%s\"\n", argv[1], argv[2]);

 }

}

Output

If the input is the strings “firststring” and “secondstring”, then the expected output is:

"firststring" is less than "secondstring"

Related Information

v “string.h” on page 86

v “setlocale() — Set Locale” on page 1811

v “strcmp() — Compare Strings” on page 2022

v “strncmp() — Compare Strings” on page 2048

strcoll

Chapter 3. Part 3. Library Functions 2025

strcpy() — Copy String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

char *strcpy(char * __restrict__string1, const char * __restrict__string2);

General Description

The strcpy() built-in function copies string2, including the ending NULL character, to

the location specified by string1. The string2 argument to strcpy() must contain a

NULL character (\0) marking the end of the string. You cannot use a literal string for

a string1 value, although string2 may be a literal string. If the two objects overlap,

the behavior is undefined.

Returned Value

strcpy() returns the value of string1.

Example

CELEBS38

/* CELEBS38

 This example copies the contents of source to destination.

 */

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char source[SIZE] = "This is the source string";

 char destination[SIZE] = "And this is the destination string";

 char * return_string;

 printf("destination is originally = \"%s\"\n", destination);

 return_string = strcpy(destination, source);

 printf("After strcpy, destination becomes \"%s\"\n", destination);

}

Output

destination is originally = "And this is the destination string"

After strcpy, destination becomes "This is the source string"

strcpy

2026 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

Related Information

v “string.h” on page 86

v “memcpy() — Copy Buffer” on page 1209

v “strcat() — Concatenate Strings” on page 2018

v “strchr() — Search for Character” on page 2020

v “strcmp() — Compare Strings” on page 2022

v “strcspn() — Compare Strings” on page 2028

v “strncpy() — Copy String” on page 2050

v “strpbrk() — Find Characters in String” on page 2052

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

strcpy

Chapter 3. Part 3. Library Functions 2027

strcspn() — Compare Strings

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

size_t strcspn(const char *string1, const char *string2);

General Description

Computes the length of the initial portion of the string pointed to by string1 that

contains no characters from the string pointed to by string2.

Returned Value

strcspn() returns the calculated length of the initial portion found.

Example

CELEBS39

/* CELEBS39

 This example uses &strcspn. to find the first occurrence of

 any of the characters a, x, l or e in string.

 */

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char string[SIZE] = "This is the source string";

 char * substring = "axle";

 printf("The first %i characters in the string \"%s\"\

 are not in the " "string \"%s\" \n",

 strcspn(string, substring), string, substring);

}

Output

The first 10 characters in the string "This is the source string"

are not in the string "axle"

Related Information

v “string.h” on page 86

v “strcat() — Concatenate Strings” on page 2018

v “strchr() — Search for Character” on page 2020

v “strcmp() — Compare Strings” on page 2022

strcspn

2028 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

v “strcpy() — Copy String” on page 2026

v “strncmp() — Compare Strings” on page 2048

v “strpbrk() — Find Characters in String” on page 2052

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

strcspn

Chapter 3. Part 3. Library Functions 2029

strdup() — Duplicate a String

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <string.h>

char *strdup(const char *string);

General Description

The strdup() function creates a duplicate of the string pointed to by string.

Returned Value

If successful, strdup() returns a pointer to a new string which is a duplicate of string.

Otherwise, strdup() returns a NULL pointer.

Note: The caller of strdup() should free the storage obtained for the string.

Error Code Description

ENOMEM Insufficient storage space is available.

Related Information

v “string.h” on page 86

v “free() — Free a Block of Storage” on page 672

v “malloc() — Reserve Storage Block” on page 1172

strdup

2030 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

strerror() — Get Pointer to Run-time Error Message

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

char *strerror(int errnum);

General Description

Maps the error number in errnum to an error message string. The errnum must be

a valid errno value.

Returned Value

strerror() returns a pointer to the string, which may be overwritten by a subsequent

call to strerror().

Note: Do not allow the content of this string to be modified by the program.

Example

/* This example opens a file and prints a run-time error message if an

 error occurs.

 */

#include <stdio.h>

#include <string.h>

#include <errno.h>

int main(void)

{

 FILE *stream; ...
 if ((stream = fopen("myfile.dat", "r")) == NULL)

 printf(" %s \n", strerror(errno));

}

Related Information

v “string.h” on page 86

v “clearerr() — Reset Error and End of File (EOF)” on page 294

v “ferror() — Test for Read/Write Errors” on page 559

v “perror() — Print Error Message” on page 1344

strerror

Chapter 3. Part 3. Library Functions 2031

||||

|
|
|
|
|
|

||

|

strerror_r() — Get Copy of Run-time Error Message

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 3 both z/OS V1R7

Format

#define _UNIX03_SOURCE

#include <string.h>

int strerror_r(int errnum, char *strerrbuf, size_t buflen);

General Description

strerror_r() maps the error number in errnum to a locale-dependent error message

string and copies the message string into the buffer pointed to by strerrbuf with

length buflen. If the length of the message string is greater than or equal to buflen,

strerror_r() copies the first buflen-1 characters of the message string into strerrbuf,

terminates strerrbuf with a null character (\0) and returns ERANGE. The error

number must be a valid errno value.

Returned Value

If successful, strerror_r() returns 0.

If unsuccessful, strerror_r() returns an error number to indicate the error.

v EINVAL – The value of errnum is not a valid error number.

v ERANGE – Insufficient storage was supplied via strerrbuf and buflen to contain

the generated message string.

Related Information

v errno.h

v string.h

v clearerr()

v ferror()

v perror()

v strerror()

v unsetenv()

strerror_r

2032 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|||
|

strfmon() — Convert Monetary Value to String

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <monetary.h>

ssize_t strfmon(char * __restrict__ s, size_t maxsize,

 const char * __restrict__ format, ...);

General Description

strfmon() produces a formatted monetary output string from a double argument. It

has been extended to determine floating-point argument format (hexadecimal

floating-point or IEEE Binary Floating-Point) using the __isBFP() function.

Note: In IEEE Binary Floating-Point mode, denormal, infinity and NaN argument

values are out of range.

Places characters into the array pointed to by *s as controlled by the string pointed

to by format. No more than maxsize characters are placed into the array.

The character string format contains two types of objects: plain characters, which

are copied to the output array, and directives, each of which results in the fetching

of zero or more arguments that are converted and formatted. The results are

undefined if there are insufficient arguments for the format. If the format is

exhausted while arguments remain, the excess arguments are simply ignored. If

objects pointed to by s and format overlap, the behavior is undefined.

The directive (conversion specification) consists of the following sequence:

1. A % character

2. Optional flags: =f, ^, !, then +, C, or (

3. Optional field width (may be preceded by w

4. Optional left precision: #n

5. Optional right precision: .p

6. Required conversion character to indicate what conversion should be

performed: i or n

Each directive is replaced by the appropriate characters, as described in the

following list:

%i The double argument is formatted according to the locale’s international

currency format (for example, in USA: USD 1,234.56). An @euro codeset

modifier can be used to request ″EUR″ instead of a national 4-character

monetary string.

%n The double argument is formatted according to the locale’s national

strfmon

Chapter 3. Part 3. Library Functions 2033

||||

|
|
|

||

|

currency format (for example, in USA: $1,234.56). An @euro codeset

modifier can be used to get <euro-sign> instead of <currency>.

%% is replaced by %. No argument is converted.

The following optional conversion specifications may immediately follow the initial %

of a directive:

=f A flag, used in conjunction with the maximum digits specification #n (see

below), specifies that the character f should be used as the numeric fill

character. The default numeric fill character is the space character. This

option does not affect the other fill operations that always use space as the

fill character.

 ̂ A flag. Do not format the currency amount with thousands grouping

characters. The default is to insert the grouping characters if defined for the

current locale.

Note: The code point for the ̂ character will be determined according to

the current LC_SYNTAX category.

+ | C | (

A flag, specifies the style of representing positive and negative currency

amounts. Only one of +, C, or (may be specified. If + is specified, the

locale’s equivalent of + and − are used (for example, in USA: the empty

(NULL) string if positive and - if negative). If C is specified, the locale’s

equivalent of DB for negative and CR for positive are used. If (is specified,

the locale’s equivalent of enclosing negative amounts within parentheses is

used. If this option is not included, a default specified by the current locale

is used.

[−]w The field width. The decimal digit string w specifies a minimum field width in

which the result of the conversion is right-justified (or left-justified if the

optional flag “−” is specified).

#n The left precision. The decimal digit string n specifies the maximum number

of digits expected to be formatted to the left of the radix character. This

option can be used to keep the formatted output from multiple calls to the

strfmon() aligned in the same columns. It can also be used to fill unused

positions with a special character as in $***123.45. This option causes an

amount to be formatted as if it has the number of digits specified by n. If

more digit positions are required than the number specified, conversion

specification is ignored. Digit positions in excess of those actually required

are filled with the numeric fill character. (See the =f specification above.)

 If the thousands grouping is enabled, the behavior is:

1. Format the number as if it is an n digit number.

2. Insert fill characters to the left of the leftmost digit (for example,

$0001234.56 or $***1234.56)

3. Insert the separator character (for example, $0,001,234.56 or

$*,**1,234.56)

4. If the fill character is not the digit zero, the separators are replaced by

the fill character (for example, $****1,234.56).

To ensure alignment, any characters appearing before or after the number

in the formatted output such as currency or sign symbols are padded as

necessary with space characters to make their positive and negative

formats an equal length.

strfmon

2034 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Note: The code point for the # character (in #n) will be determined

according to the current LC_SYNTAX category.

.p The right precision. The decimal digit string p specifies the number of digits

after the radix character. If the value of the precision p is zero, no radix

character appears. If this option is not included, a default specified by the

current locale is used. The amount being formatted is rounded to the

specified number of digits before formatting.

! A flag used to suppress the currency symbol from the output conversion.

Note: The code point for the ! character is determined according to the

current LC_SYNTAX category.

The LC_MONETARY category of the program’s locale affects the behavior of this

function including the monetary radix character (which is different from the numeric

radix character affected by the LC_NUMERIC category), the thousands (or

alternative grouping) separator, the currency symbols and formats. The international

currency symbol must be in accordance with those specified in ISO4217 Codes for

the representation of currencies and funds.

Formatting choices are indicated in the LC_MONETARY category for the output of

both national and international monetary quantities. The national format is

determined by the settings of p_cs_precedes, n_cs_precedes, p_sign_posn,

n_sign_posn, p_sep_by_space, and n_sep_by_space. An equivalent set of

members for international formats are added to conform with the ISO/IEC standard.

See “locale.h” on page 57 for more information on international formats.

The following tables show expected results for the various combinations of

sep_by_space and sign_posn. All examples are based on a positive monetary

quantity of 123.00, positive sign of ’+’, and currency symbol of ’$’. Note that

formatting rules are equivalent for negative and non-negative values as well as for

national and international formats.

 Table 51. Monetary formats when cs_precedes = 1

sep_by_space sign_posn

0 1 2 3 4

0 ($123.00) +$123.00 $123.00+ +$123.00 $+123.00

1 ($ 123.00) +$ 123.00 $ 123.00+ +$ 123.00 $+ 123.00

2 ($123.00) + $123.00 $123.00 + + $123.00 $ +123.00

 Table 52. Monetary formats when cs_precedes = 0

sep_by_space sign_posn

0 1 2 3 4

0 (123.00$) +123.00$ 123.00$+ 123.00+$ 123.00$+

1 (123.00 $) +123.00 $ 123.00 $+ 123.00 +$ 123.00 $+

2 (123.00$) + 123.00$ 123.00$ + 123.00+ $ 123.00$ +

cs_precedes

0 The currency symbol follows the value.

1 The currency symbol precedes the value.

sep_by_space

strfmon

Chapter 3. Part 3. Library Functions 2035

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space

separates them from the value; otherwise, a space separates the

currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space

separates them; otherwise, a space separates the sign string from

the value.

sign_posn

0 Parentheses surround the quantity and currency_symbol or

int_curr_symbol.

1 The sign string precedes the quantity and currency_symbol or

int_curr_symbol.

2 The sign string succeeds the quantity and currency_symbol or

int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or

int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or

int_curr_symbol.

Returned Value

If the total number of resulting bytes including the terminating NULL character is not

more than maxsize, strfmon() returns the number of bytes placed into the array

pointed to by s, not including the terminating NULL character.

If unsuccessful, the contents of the array are indeterminate, strfmon() returns -1,

and sets errno to one of the following values:

Error Code Description

E2BIG Conversion stopped due to lack of space in the buffer

Example

CELEBS41

/* CELEBS41 */

#include <localdef.h>

#include <monetary.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char string[100]; /* hold the string returned from strfmon() */

 double money = 1234.56;

 if (setlocale(LC_ALL, "En_US") == NULL) {

 printf("Unable to setlocale().\n");

 exit(1);

 }

 strfmon(string, 100, "%i", money);

 printf("%s\n", string);

 strfmon(string, 100, "%n", money);

 printf("%s\n", string);

}

strfmon

2036 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Example

The following example shows euro currency support:

/* EUROSAMP

 This example sets the locale to Fr_BE.IBM-1148

 and Fr_BE.IBM-1148@euro and prints a value with

 the locales national and international currency

 format.

*/

#include <localdef.h>

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char string[100];

 double money = 1234.56;

if (setlocale(LC_ALL,"Fr_BE.IBM-1148") == NULL) {

 printf("Unable to setlocale().\n");

 exit(1);

}

strfmon(string,100,"%i",money);

printf("%s\n",string);

strfmon(string,100,"%n",money);

printf("%s\n",string);

if (setlocale(LC_ALL,"Fr_BE.IBM-1148@euro") == NULL) {

 printf("Unable to setlocale().\n");

 exit(1);

}

strfmon(string,100,"%i",money);

printf("%s\n",string);

strfmon(string,100,"%n",money);

printf("%s\n",string);

}

Output

1.234,56 BEF

1.234,56 BF

1.234,56 EUR

1.234,56 <euro-sign>

Related Information

v “monetary.h” on page 64

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

strfmon

Chapter 3. Part 3. Library Functions 2037

strftime() — Convert to Formatted Time

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <time.h>

size_t strftime(char * __restrict__ dest, size_t maxsize,

 const char * __restrict__ format, const struct tm * __restrict__ timeptr);

General Description

Places characters into the array pointed to by dest according to the string pointed to

by format. The format string is a multibyte character string which contains:

v Conversion specification characters

v Ordinary multibyte characters, which are copied into an array unchanged.

The characters that are converted are determined by the LC_CTYPE category of the

current locale and by the values in the time structure pointed to by timeptr. The time

structure pointed to by timeptr is usually obtained by calling the gmtime() or

localtime() function.

 Table 53. Conversion Specifiers Used by strftime()

Specifier Meaning

%a Replace with abbreviated weekday name of locale.

%A Replace with full weekday name of locale.

%b Replace with abbreviated month name of locale.

%B Replace with full month name of locale.

%c Replace with date and time of locale.

%C Replace with locale’s century number (year divided by 100 and

truncated).

%d Replace with day of the month (01-31).

%D Insert date in mm/dd/yy form, regardless of locale.

%e Insert day of the month as a decimal number (01–31). Under C

POSIX only, it’s a 2-character, right-justified, blank-filled field.

%E[cCxyY] If the alternative date/time format is not available, the %E

descriptors are mapped to their unextended counterparts. For

example, %EC is mapped to %C.

%Ec Replace with the locale’s alternative date and time

representation.

%EC Replace with the name of the base year (period) in the locale’s

alternative representation.

%Ex Replace with the locale’s alternative date representation.

strftime

2038 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Table 53. Conversion Specifiers Used by strftime() (continued)

Specifier Meaning

%EX Replace with the locale’s alternative time representation.

%Ey Replace with the offset from %EC (year only) in the locale’s

alternative representation.

%EY Replace with the full alternative year representation.

%F Replace with the ISO 8601:2000 standard date format,

equivalent to %Y-%m-%d. Values are taken from struct tm

members, tm_year, tm_mon, and tm_mday.

%g Replace with the last two digits of the week-based year as a

decimal number (00-99).

%G Replace with the week-based year as a four digit decimal.

%h Replace with locale’s abbreviated month name. This is the same

as %b. %b.

%H Replace with hour (24-hour clock) as a decimal number (00-23).

%I Replace with hour (12-hour clock) as a decimal number (01-12).

%j Replace with day of the year (001-366).

%m Replace with month (01-12).

%M Replace with minute (00-59).

%n Replace with a newline.

%O[deHImMSUwWy] If the alternative date/time format is not available, the %E

descriptors are mapped to their unextended counterparts. For

example, %Od is mapped to %d.

%Od Replace with the day of month, using the locale’s alternative

numeric symbols, filled as needed with leading zeros if there is

any alternative symbol for zero, otherwise with leading spaces.

%Oe Replace with the day of the month, using the locale’s alternative

symbols, filled as needed with leading spaces.

%OH Replace with the hour (24-hour clock) using the locale’s

alternative symbols.

%OI Replace with the hour (12-hour clock) using the locale’s

alternative symbols.

%Om Replace with the month using the locale’s alternative numeric

symbols.

%OM Replace with the minutes using the locale’s alternative numeric

symbols.

%OS Replace with the seconds using the locale’s alternative numeric

symbols.

%Ou Replace with the weekday as a number in the locale’s alternative

representation (Monday=1).

%OU Replace with the week number of the year (Sunday as the first

day of the week, rules corresponding to %U) using the locale’s

alternative numeric symbols.

%OV Replace with the week number of the year (Monday as the first

day of the week, rules corresponding to %V) using the locale’s

alternative numeric symbols.

%Ow Replace with the weekday (Sunday=0) using the locale’s

alternative numeric symbols.

strftime

Chapter 3. Part 3. Library Functions 2039

Table 53. Conversion Specifiers Used by strftime() (continued)

Specifier Meaning

%OW Replace with the week number of the year (Monday as the first

day of the week) using the locale’s alternative numeric symbols.

%Oy Replace with the year (offset from %C) in the locale’s alternative

representation and using the locale’s alternative numeric

symbols.

%p Replace with the locale’s equivalent of AM or PM.

%r Replace with a string equivalent to %I:%M:%S %p; or use

t_fmt_ampm from LC_TIME, if present.

%R Replace with time in 24 hour notation (%H:%M).

%S Replace with seconds as a decimal number (00-60).

%t Replace with a tab.

%T Replace with a string equivalent to %H:%M:%S.

%u Replace with the weekday as a decimal number (1 to 7), with 1

representing Monday.

%U Replace with week number of the year (00-53) where Sunday is

the first day of the week. The first Sunday of January is the first

day of week 1; days in the new year before this are in week 0.

%V Replace with week number of the year (01-53) where Monday is

the first day of the week. If the week containing 1 January has

four or more days in the new year, then it is considered week 1.

Otherwise, it is the last week of the previous year, and the next

week is week 1. Both January 4th and the first Thursday of

January are always in week 1.

%w Replace with weekday (0-6) where Sunday is 0.

%W Replace with week number of the year (00-53) where Monday is

the first day of the week.

%x Replace with date representation of locale.

%X Replace with time representation of locale.

%y Replace with year without the century (00-99).

%Y Replace with year with century.

%z Replace with the offset from UTC in ISO8601:2000 standard

format (+hhmm or -hhmm). For example, ″-0430″ means 4

hours 30 minutes behind UTC (west of Greenwich). If tm_isdst is

zero, the standard time offset is used. If tm_isdst is greater than

zero, the daylight savings time offset is used. If tm_isdst is

negative, or if no timezone can be determined, then no

characters are returned.

%Z Replace with name of time zone, or no characters if time zone is

not available.

%% Replace with %.

If data has the form of a directive, but is not one of the above, the characters

following the % are copied to the output.

The behavior is undefined when objects being copied overlap. maxsize specifies the

maximum number of characters that can be copied into the array.

strftime

2040 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

|
|
|
|
|
|

If strftime() is called by a non-POSIX application, it obtains appropriate time zone

name information from LC_TOD locale category. Time zone name defaults to STD

for Standard time name, DST for Daylight Savings time name, or UTC for

Coordinated Universal Time (UTC), name, as appropriate, if time zone name

information is unspecified in the current LC_TOD locale category.

Note: The strftime() function requires time zone name information to convert the

%Z conversion specifier. It is obtained as follows.

If strftime() is called by a z/OS C application running POSIX(ON), it calls the

tzset() function to obtain the time zone name from the current LC_TOD

locale category, by parsing the TZ environment variable. If the tm structure

input to strftime() was produced by calling localtime(), strftime() converts %Z

to the Standard or Daylight Savings name characters specified by the TZ

environment variable or LC_TOD category (if TZ cannot be found or parsed).

The tm_isdst flag in the time structure input to strftime() determines whether %Z is

replaced by the Standard or Daylight Savings name characters. If Standard or

Daylight Savings name characters are not available in the current LC_TOD locale

category or from parsing TZ, strftime() uses the characters STD for Standard or

DST for Daylight Savings time name.

If the tm structure input to strftime() was produced by the gmtime() function,

strftime() replaces %Z by UCTNAME characters specified in the current LC_TOD

locale category or by UTC if UCTNAME is not specified.

Returned Value

If successful, strftime() returns the number of characters (bytes) placed into the

array, not including the terminating NULL character.

If unsuccessful, strftime() returns 0 and the content of the string is indeterminate.

Example

CELEBS42

/* CELEBS42

 This example places characters into the array dest and prints

 the resulting string.

 */

#include <stdio.h>

#include <time.h>

int main(void)

{

 char dest[70];

 int ch;

 time_t temp;

 struct tm *timeptr;

 temp = time(NULL);

 timeptr = localtime(&temp);

 ch = strftime(dest,sizeof(dest)−1,"Today is %A,"

 " %b %d. \n Time: %I:%M %p", timeptr);

 printf("%d characters placed in string to make: \n \n %s", ch, dest);

}

Output

strftime

Chapter 3. Part 3. Library Functions 2041

44 characters placed in string to make:

 Today is Friday, Jun 16.

 Time: 03:07 PM

Related Information

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “time() — Determine current UTC time” on page 2204

v “tzset() — Set the Time Zone” on page 2279

strftime

2042 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

strlen() — Determine String Length

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

size_t strlen(const char *string);

General Description

The strlen() built-in function determines the length of string pointed to by string,

excluding the terminating NULL character.

Returned Value

strlen() returns the length of string.

Example

CELEBS43

/* CELEBS43

 This example determines the length of the string that is

 passed to main.

 */

#include <stdio.h>

#include <string.h>

int main(int argc, char **argv)

{

 if (argc != 2)

 printf("Usage: %s string\n", argv[0]);

 else

 printf("Input string has a length of %i\n", strlen(argv[1]));

}

Output

If the input is the string: "How long is this string?", then the expected output is:

Input string has a length of 24

Related Information

v “string.h” on page 86

v “mblen() — Calculate Length of Multibyte Character” on page 1184

v “strncat() — Concatenate Strings” on page 2046

v “strncmp() — Compare Strings” on page 2048

v “strncpy() — Copy String” on page 2050

strlen

Chapter 3. Part 3. Library Functions 2043

||||

|
|
|
|
|
|

||

|

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

strlen

2044 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

strncasecmp() — Case-insensitive String Comparison

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <strings.h>

int strncasecmp(const char *string1, const char *string2, size_t n);

General Description

The strncasecmp() function compares, while ignoring differences in case, the string

pointed to by string1 to the string pointed to by string2. At most n characters will be

compared.

The string arguments to the function should contain a NULL character (\0) marking

the end of the string.

The strncasecmp() function is locale-sensitive.

Returned Value

strncasecmp() returns a value indicating the relationship between the strings, while

ignoring case, as follows:

Value Meaning

< 0 String pointed to by string1 is less than string pointed to by string2.

= 0 String pointed to by string1 is equal to string pointed to by string2.

> 0 String pointed to by string1 is greater than string pointed to by string2.

There are no errno values defined.

Related Information

v “strings.h” on page 86

v “strcasecmp() — Case-insensitive String Comparison” on page 2017

v “strcspn() — Compare Strings” on page 2028

v “strncmp() — Compare Strings” on page 2048

strncasecmp

Chapter 3. Part 3. Library Functions 2045

||||

|
|
||

|

strncat() — Concatenate Strings

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

char *strncat(char * __restrict__string1, const char * __restrict__string2, size_t count);

General Description

The strncat() built-in function appends the first count characters of string2 to string1

and ends the resulting string with a NULL character (\0). If count is greater than the

length of string2, strncat() appends only the maximum length of string2 to string1.

The first character of the appended string overwrites the terminating NULL

character of the string pointed to by string1.

If copying takes place between overlapping objects, the behavior is undefined.

Returned Value

strncat() returns the value string1, the concatenated string.

Example

CELEBS44

/* CELEBS44

 This example demonstrates the difference between &strcat. and

 &strncat..

 &strcat. appends the entire second string to the first,

 whereas &strncat. appends only the specified number of

 characters in the second string to the first.

 */

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char buffer1[SIZE] = "computer";

 char * ptr;

 /* Call strcat with buffer1 and " program" */

 ptr = strcat(buffer1, " program");

 printf("strcat : buffer1 = \"%s\"\n", buffer1);

 /* Reset buffer1 to contain just the string "computer" again */

strncat

2046 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

memset(buffer1, '\0', sizeof(buffer1));

 ptr = strcpy(buffer1, "computer");

 /* Call strncat with buffer1 and " program" */

 ptr = strncat(buffer1, " program", 3);

 printf("strncat: buffer1 = \"%s\"\n", buffer1);

}

Output

strcat : buffer1 = "computer program"

strncat: buffer1 = "computer pr"

Related Information

v “string.h” on page 86

v “strcat() — Concatenate Strings” on page 2018

v “strncmp() — Compare Strings” on page 2048

v “strncpy() — Copy String” on page 2050

v “strpbrk() — Find Characters in String” on page 2052

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

strncat

Chapter 3. Part 3. Library Functions 2047

strncmp() — Compare Strings

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

int strncmp(const char *string1, const char *string2, size_t count);

General Description

The strncmp() built-in function compares at most the first count characters of the

string pointed to by string1 to the string pointed to by string2.

The string arguments to the function should contain a NULL character (\0) marking

the end of the string.

The relation between the strings is determined by the sign of the difference

between the values of the leftmost first pair of characters that differ. The values

depend on character encoding. This function is not locale sensitive.

Returned Value

strncmp() returns a value indicating the relationship between the substrings, as

follows:

Value Meaning

< 0 String pointed to by substring1 less than string pointed to by substring2

= 0 String pointed to by substring1 equivalent to string pointed to by substring2

> 0 String pointed to by substring1 greater than string pointed to by substring2

Example

CELEBS45

/* CELEBS45

 This example demonstrates the difference between &strcmp.

 and &strncmp..

 */

#include <stdio.h>

#include <string.h>

#define SIZE 10

int index = 3;

int main(void)

{

strncmp

2048 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

int result;

 char buffer1[SIZE] = "abcdefg";

 char buffer2[SIZE] = "abcfg";

 void print_result(int, char *, char *);

 result = strcmp(buffer1, buffer2);

 printf(" strcmp: compares each character\n");

 print_result(result, buffer1, buffer2);

 result = strncmp(buffer1, buffer2, index);

 printf("\nstrncmp: compares only the first %i characters\n", index);

 print_result(result, buffer1, buffer2);

}

void print_result(int res, char * p_buffer1, char * p_buffer2)

{

 if (res == 0)

 printf("first %i characters of \"%s\" is identical to \"%s\"\n",

 index, p_buffer1, p_buffer2);

 else if (res < 0)

 printf("\"%s\" is less than \"%s\"\n", p_buffer1, p_buffer2);

 else

 printf("\"%s\" is greater than \"%s\"\n", p_buffer1, p_buffer2);

}

Output

 strcmp: compares each character

 "abcdefg" is less than "abcfg"

 strncmp: compares only the first 3 characters

 first 3 characters of "abcdefg" is identical to "abcfg"

Related Information

v “string.h” on page 86

v “memcmp() — Compare Bytes” on page 1207

v “strcmp() — Compare Strings” on page 2022

v “strcspn() — Compare Strings” on page 2028

v “strncat() — Concatenate Strings” on page 2046

v “strncpy() — Copy String” on page 2050

v “strpbrk() — Find Characters in String” on page 2052

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

strncmp

Chapter 3. Part 3. Library Functions 2049

strncpy() — Copy String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

char *strncpy(char * __restrict__string1, const char * __restrict__string2, size_t count);

General Description

The strncpy() built-in function copies at most count characters of string2 to string1.

If count is less than or equal to the length of string2, a NULL character (\0) is not

appended to the copied string. If count is greater than the length of string2, the

string1 result is padded with NULL characters (\0) up to length count.

If copying takes place between objects that overlap, the behavior is undefined.

Returned Value

strncpy() returns string1.

Example

CELEBS46

/* CELEBS46

 This example demonstrates the difference between &strcpy.

 and &strncpy..

 */

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char source[SIZE] = "123456789";

 char source1[SIZE] = "123456789";

 char destination[SIZE] = "abcdefg";

 char destination1[SIZE] = "abcdefg";

 char * return_string;

 int index = 5;

 /* This is how strcpy works */

 printf("destination is originally = '%s'\n", destination);

 return_string = strcpy(destination, source);

 printf("After strcpy, destination becomes '%s'\n\n", destination);

 /* This is how strncpy works */

strncpy

2050 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

printf("destination1 is originally = '%s'\n", destination1);

 return_string = strncpy(destination1, source1, index);

 printf("After strncpy, destination1 becomes '%s'\n", destination1);

}

Output

destination is originally = ’abcdefg’

After strcpy, destination becomes ’123456789’

destination1 is originally = ’abcdefg’

After strncpy, destination1 becomes ’12345fg’

Related Information

v “string.h” on page 86

v “memcpy() — Copy Buffer” on page 1209

v “strcpy() — Copy String” on page 2026

v “strncat() — Concatenate Strings” on page 2046

v “strncmp() — Compare Strings” on page 2048

v “strpbrk() — Find Characters in String” on page 2052

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

strncpy

Chapter 3. Part 3. Library Functions 2051

strpbrk() — Find Characters in String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

char *strpbrk(const char *string1, const char *string2);

General Description

Locates the first occurrence in the string pointed to by string1 of any character from

the string pointed to by string2.

Returned Value

If successful, strpbrk() returns a pointer to the character.

If string1 and string2 have no characters in common, strpbrk() returns a NULL

pointer.

Example

CELEBS47

/* CELEBS47

 This example returns a pointer to the first occurrence in the

 array string of either a or b.

 */

#include <stdio.h>

#include <string.h>

int main(void)

{

 char *result, *string = "A Blue Danube";

 char *chars = "ab";

 result = strpbrk(string, chars);

 printf("The first occurrence of any of the characters \"%s\" in "

 "\"%s\" is \"%s\"\n", chars, string, result);

}

Output

The first occurrence of any of the characters "ab" in "A Blue Danube"

is "anube"

strpbrk

2052 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Related Information

v “string.h” on page 86

v “strchr() — Search for Character” on page 2020

v “strcspn() — Compare Strings” on page 2028

v “strncmp() — Compare Strings” on page 2048

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

strpbrk

Chapter 3. Part 3. Library Functions 2053

strptime() — Date and Time Conversion

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <time.h>

char *strptime(const char * __restrict__ buf, const char * __restrict__ fmt, struct tm * __restrict__ tm);

General Description

Converts the character string pointed to by buf to values that are stored in the tm

structure pointed to by tm, using the format specified by fmt.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

The *fmt is composed of zero or more directives. Each directive is composed of one

of the following: one or more white space characters (as specified by the isalnum()

to isxdigit() function); an ordinary character (neither % nor a white space character);

or a conversion specification. Each conversion specification is composed of a %

character followed by a conversion character that specifies the replacement

required. There must be white space or other non-alphanumeric characters between

any two conversion specifications.

 Table 54. Conversion Specifiers Used by strptime()

Specifier Meaning

%a Day of week, using locale’s abbreviated or full weekday name.

%A Day of week, using locale’s abbreviated or full weekday name.

%b Month, using locale’s abbreviated or full month name.

%B Month, using locale’s abbreviated or full month name.

%c Date and time, using locale’s date and time.

%C Century number (year divided by 100 and truncated to an integer).

%d Day of the month (1-31; leading zeros permitted but not required; day will

not be checked for correctness for the month specified).

%D Date as %m/%d/%y.

strptime

2054 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Table 54. Conversion Specifiers Used by strptime() (continued)

Specifier Meaning

%e Day of the month (1-31; leading zeros permitted but not required; day will

not be checked for correctness for the month specified).

%h Month, using locale’s abbreviated or full month name.

%H Hour (0-23; leading zeros permitted but not required).

%I Hour (0-12; leading zeros permitted but not required).

%j Day number of the year (001-366).

%m Month number (1-12; leading zeros are permitted but not required).

%M Minute (0-59; leading zeros are permitted but not required).

%n Newline character.

%p Locale’s equivalent of AM or PM.

%r 12-hour clock time using the AM/PM notation if t_fmt_ampm is not an

empty string in the LC_TIME portion of the current locale; in the POSIX

locale, this is equivalent to %I : %M : %S %p.

%R Time in 24 hour notation (11/19/01M).

%S Seconds (0-60; leading zeros are permitted but not required).

%t Tab character.

%T Time as %H:%M:%S.

%U Week number of the year (0-53; where Sunday is the first day of the week;

leading zeros are permitted but not required).

%w Weekday (0-6; where Sunday is 0; leading zeros are permitted but not

required).

%W Week number of the year (0-53; where Monday is the first day of the week;

leading zeros are permitted but not required).

%x Date, using locale’s date format.

%X Time, using locale’s time format.

%y Year within century. When a century is not otherwise specified, values in

the range 69-99 refer to years in the twentieth century (1969 to 1999

inclusive); values in the range 00-68 refer to years in the twenty-first

century (2000 to 2068 inclusive). Leading zeros are permitted but not

required.

%Y Year, including century.

%Z Time zone name.

%% Replace with %.

Modified Directives

Some directives can be modified by the E or O modifier characters to indicate that

an alternative format or specification should be used rather than the one normally

used by the unmodified directive. If the alternative format or specification does not

exist in the current locale, the behavior will be as if the unmodified directive were

used.

 Table 55. Modified Directives Used by strptime()

Specifier Meaning

%Ec Replace with the locale’s alternative date and time representation.

strptime

Chapter 3. Part 3. Library Functions 2055

|
|
|

Table 55. Modified Directives Used by strptime() (continued)

Specifier Meaning

%EC Replace with the name of the base year (period) in the locale’s

representation.

%Ex Replace with the locale’s alternative date representation.

%EX Replace with the locale’s alternative time representation.

%Ey Replace with the offset from %EC (year only) in the locale’s representation.

%EY Replace with the full alternative year representation.

%Od Replace with the day of month, using the locale’s alternative numeric

symbols, filled as needed with leading zeros if there is any alternative

symbol for zero, otherwise with leading spaces.

%Oe Replace with the day of the month, using the locale’s alternative numeric

symbols, filled as needed with leading spaces.

%OH Replace with the hour (24-hour clock) using the locale’s alternative

numeric symbols.

%OI Replace with the hour (12-hour clock) using the locale’s alternative

numeric symbols.

%Om Replace with the month using the locale’s alternative numeric symbols.

%OM Replace with the minutes using the locale’s alternative numeric symbols.

%OS Replace with the seconds using the locale’s alternative numeric symbols.

%OU Replace with the week number of the year (Sunday as the first rules

corresponding to %U) using the locale’s alternative numeric symbols.

%Ow Replace with the weekday (Sunday=0) using the locale’s alternative

numeric symbols.

%OW Replace with the week number of the year (Monday as the first day of the

week) using the locale’s alternative numeric symbols.

%Oy Replace with the year (offset from %C) in the locale’s alternative

representation and using the locale’s alternative numeric symbols.

A directive composed of white space characters is executed by scanning input up to

the first character that is not white space (which remains unscanned) or until no

more characters can be scanned.

A directive that is an ordinary character is executed by scanning the next character

from the buffer. If the character scanned from the buffer differs from the one

comprising the directive, the directive fails, and the differing and subsequent

characters remain unscanned.

A series of directives composed or %n, %t, white space characters or any

combination is executed by scanning up to the first character that is not white space

(which remains unscanned), or until no more characters can be scanned.

Any other conversion specification is executed by scanning characters until a

character matching the next directive is scanned, or until no more characters can

be scanned. These characters, excepting the one matching the next directive, are

then compared to the locale values associated with the conversion specifier. If a

match is found, values for the appropriate tm structure members are set to values

corresponding to the locale information. Case is ignored when matching items in buf

such as month or weekday names. If no match is found, strptime() fails and no

more characters are scanned.

strptime

2056 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Returned Value

If successful, strptime() returns a pointer to the character following the last

character parsed.

If unsuccessful, strptime() returns a NULL pointer.

Example

CELEBS48

/* CELEBS48 */

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <localdef.h>

int main(void)

{

 struct tm xmas;

 if (strptime("12/25/93 13:30:00", "%D %T", &xmas) == NULL) {

 printf("strptime() failed.\n");

 exit(1);

 }

 printf("tm_sec =%3d\n", xmas.tm_sec);

 printf("tm_min =%3d\n", xmas.tm_min);

 printf("tm_hour =%3d\n", xmas.tm_hour);

 printf("tm_mday =%3d\n", xmas.tm_mday);

 printf("tm_mon =%3d\n", xmas.tm_mon);

 printf("tm_year =%3d\n", xmas.tm_year);

 printf("tm_wday =%3d\n", xmas.tm_wday);

 printf("tm_yday =%3d\n", xmas.tm_yday);

}

Output

tm_sec = 0

tm_min = 30

tm_hour = 13

tm_mday = 25

tm_mon = 11

tm_year = 93

tm_wday = 0

tm_yday =358

Related Information

v “time.h” on page 93

strptime

Chapter 3. Part 3. Library Functions 2057

strrchr() — Find Last Occurrence of Character in String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

char *strrchr(const char *string, int c);

General Description

The strrchr() function finds the last occurrence of c (converted to a char) in string.

The ending NULL character is considered part of the string.

Returned Value

If successful, strrchr() returns a pointer to the last occurrence of c in string.

If the given character is not found, strrchr() returns a NULL pointer.

Example

CELEBS49

/* CELEBS49

 This example compares the use of &strchr. and &strrchr..

 It searches the string for the first and last occurrence of

 p in the string.

 */

#include <stdio.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 char buf[SIZE] = "computer program";

 char * ptr;

 int ch = 'p';

 /* This illustrates strchr */

 ptr = strchr(buf, ch);

 printf("The first occurrence of %c in '%s' is '%s'\n", ch, buf, ptr);

 /* This illustrates strrchr */

 ptr = strrchr(buf, ch);

 printf("The last occurrence of %c in '%s' is '%s'\n", ch, buf, ptr);

}

Output

strrchr

2058 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

The first occurrence of p in ’computer program’ is ’puter program’

The last occurrence of p in ’computer program’ is ’program’

Related Information

v “string.h” on page 86

v “memchr() — Search Buffer” on page 1205

v “strchr() — Search for Character” on page 2020

v “strcspn() — Compare Strings” on page 2028

v “strncmp() — Compare Strings” on page 2048

v “strpbrk() — Find Characters in String” on page 2052

v “strspn() — Search String” on page 2060

strrchr

Chapter 3. Part 3. Library Functions 2059

strspn() — Search String

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

size_t strspn(const char *string1, const char *string2);

General Description

Calculates the length of the maximum initial portion of the string pointed to by

string1 that consists entirely of the characters contained in the string pointed to by

string2.

Returned Value

strspn() returns the length of the substring found.

Example

CELEBS50

/* CELEBS50

 This example finds the first occurrence in the array string

 of a character that is neither an a, b, nor c. Because the

 string in this example is cabbage, &strspn. returns 5, the

 length of the segment of cabbage before a character that is

 not an a, b or c.

 */

#include <stdio.h>

#include <string.h>

int main(void)

{

 char * string = "cabbage";

 char * source = "abc";

 int index;

 index = strspn(string, "abc");

 printf("The first %d characters of \"%s\" are found in \"%s\"\n",

 index, string, source);

}

Output

The first 5 characters of "cabbage" are found in "abc"

strspn

2060 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Related Information

v “string.h” on page 86

v “strcat() — Concatenate Strings” on page 2018

v “strchr() — Search for Character” on page 2020

v “strcmp() — Compare Strings” on page 2022

v “strcpy() — Copy String” on page 2026

v “strcspn() — Compare Strings” on page 2028

v “strpbrk() — Find Characters in String” on page 2052

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

strspn

Chapter 3. Part 3. Library Functions 2061

strstr() — Locate Substring

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

char *strstr(const char *string1, const char *string2);

General Description

Finds the first occurrence of the string pointed to by string2 (excluding the NULL

character) in the string pointed to by string1.

Returned Value

If successful, strstr() returns a pointer to the beginning of the first occurrence of

string2 in string1.

If string2 does not appear in string1, strstr() returns NULL.

If string2 points to a string with zero length, strstr() returns string1.

Example

CELEBS51

/* CELEBS51

 This example locates the string haystack in the string "needle in a

 haystack".

 */

#include <stdio.h>

#include <string.h>

int main(void)

{

 char *string1 = "needle in a haystack";

 char *string2 = "haystack";

 char *result;

 result = strstr(string1,string2);

 /* Result = a pointer to "haystack" */

 printf("%s\n", result);

}

Output

haystack

strstr

2062 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

Related Information

v “string.h” on page 86

v “strchr() — Search for Character” on page 2020

v “strcmp() — Compare Strings” on page 2022

v “strcspn() — Compare Strings” on page 2028

v “strncmp() — Compare Strings” on page 2048

v “strpbrk() — Find Characters in String” on page 2052

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “strspn() — Search String” on page 2060

strstr

Chapter 3. Part 3. Library Functions 2063

strtocoll() — Return Collating Element for String

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <collate.h>

collel_t strtocoll(char *s);

General Description

Determines whether the string pointed to by s represents the valid element as

defined in the LC_COLLATE category of the current locale.

If a string pointed to by s contains only one character, the collating element

representing this character always exists. Otherwise, a valid collating element exists

if the LC_COLLATE category contains the definition of a sequence of characters

that collate as one for the purpose of culture-sensitive string comparison. This

many-characters-to-one-collating element relation is also called many-to-one

mapping.

Returned Value

The type collel_t represents the collating elements.

If many-to-one mapping is not defined in the LC_COLLATE of the current locale,

strtocoll() returns (collel_t)-1.

Also, if the string is not a valid collating element or is of zero length, strtocoll()

returns (collel_t)-1.

Example

CELEBS52

/* CELEBS52

 This example uses the strtocoll() function to get the

 collel_t value for the start and end collating−elements for

 the collrange() function.

 */

#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

#include <collate.h>

#include <wchar.h>

#include <wctype.h>

main(int argc, char *argv[]) {

 collel_t s, e, *rp;

 int i;

 setlocale(LC_ALL, "");

 if ((s = strtocoll(argv[1])) == (collel_t)−1) {

 printf("%s collating element not defined\n", argv[1]);

 exit(1);

strtocoll

2064 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

}

 if ((e = strtocoll(argv[2])) == (collel_t)−1) {

 printf("%s collating element not defined\n", argv[2]);

 exit(1);

 }

 if ((i = collrange(s, e, &rp)) == −1) {

 printf("Invalid range for %s to %s\n", argv[1], argv[2]);

 exit(1);

 }

 for (; i−− > 0; rp++) {

 if (ismccollel(*rp))

 printf("'%s' ", colltostr(*rp));

 else if (iswprint(*rp))

 printf("'%lc' ", *rp);

 else

 printf("'%x' ", *rp);

 }

}

Related Information

v “collate.h” on page 36

v “cclass() — Return Characters in a Character Class” on page 243

v “collequiv() — Return a List of Equivalent Collating Elements” on page 308

v “collorder() — Return List of Collating Elements” on page 310

v “collrange() — Calculate the Range List of Collating Elements” on page 312

v “colltostr() — Return a String for a Collating Element” on page 314

v “getmccoll() — Get Next Collating Element from String” on page 804

v “getwmccoll() — Get Next Collating Element from Wide String” on page 893

v “ismccollel() — Identify a Multicharacter Collating Element” on page 1030

v “maxcoll() — Return Maximum Collating Element” on page 1181

strtocoll

Chapter 3. Part 3. Library Functions 2065

strtod() — Convert Character String to Double

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

double strtod(const char * __restrict__nptr, char ** __restrict__endptr);

General Description

Converts a part of a character string, pointed to by nptr, to a double. The parameter

nptr points to a sequence of characters that can be interpreted as a numerical value

of the type double.

See the “fscanf Family of Formatted Input Functions” on page 686 for a description

of special infinity and NaN sequences recognized by z/OS formatted input functions,

including atof() and strtod() in IEEE Binary Floating-Point mode.

The strtod() function breaks the string into three parts:

1. A sequence of white space characters (as specified for the current locale, see

isspace())

2. A subject sequence interpreted as a floating-point constant or representing

infinity or a NAN.

3. A sequence of unrecognized characters (including a NULL character).

The subject string is the longest string that matches the expected form.

The expected form of the subject sequence is an optional plus or minus sign, then

one of the following:

v A non-empty sequence of decimal digits optionally containing a radix character,

then an optional exponent part. Where radix character is the character that

separates the integer part of a number from the fractional part.

v A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally

containing a radix character, then an optional binary exponent part. Where radix

character is the character that separates the integer part of a number from the

fractional part.

v One of INF, ignoring case.

v One of NANQ or NANQ(n-char-sequence), ignoring case.

v One of NANS or NANS(n-char-sequence), ignoring case.

v One of NAN or NAN(n-char-sequence), ignoring case.

The pointer to the last string successfully converted is stored in the object pointed

to by endptr, provided that endptr is not a NULL pointer. If the subject string is

strtod

2066 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

empty or it does not have the expected form, then no conversion is performed. The

value of nptr is stored in the object pointed to by endptr.

Returned Value

If successful, strtod() returns the value of the floating-point number.

The double value is hexadecimal floating-point or IEEE Binary Floating-Point format

depending on the floating-point mode of the thread invoking the strtod() function.

This function uses __isBFP() to determine the floating-point mode of the invoking

thread.

In an overflow, strtod() returns ±HUGE_VAL. In an underflow, it returns 0. If no

conversion is performed, strtod() returns 0. In both cases, errno is set to ERANGE,

depending on the base of the value.

Example

CELEBS53

/* CELEBS3

 This example converts a string to a double value.

 It prints out the converted value and the substring that

 stopped the conversion.

 */

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 char *string, *stopstring;

 double x;

 string = "3.1415926This stopped it";

 x = strtod(string, &stopstring);

 printf("string = %s\n", string);

 printf(" strtod = %f\n", x);

 printf(" Stopped scan at %s\n\n", stopstring);

 string = "100ergs";

 x = strtod(string, &stopstring);

 printf("string = \"%s\"\n", string);

 printf(" strtod = %f\n", x);

 printf(" Stopped scan at \"%s\"\n\n", stopstring);

}

Output

string = 3.1415926This stopped it

 strtod = 3.141593

 Stopped scan at This stopped it

string = 100ergs

 strtod = 100.000000

 Stopped scan at ergs

Related Information

v “stdlib.h” on page 85

v “atof() — Convert Character String to Double” on page 201

v “atoi() — Convert Character String to Integer” on page 202

v “atol() — Convert Character String to Long” on page 203

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

strtod

Chapter 3. Part 3. Library Functions 2067

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “strtof() — Convert Character String to Float” on page 2072

v “strtol() — Convert Character String to Long” on page 2079

v “strtold() — Convert Character String to Long Double” on page 2082

v “strtoul() — Convert String to Unsigned Integer” on page 2086

strtod

2068 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

strtod32(), strtod64(), strtod128() — Convert Character String to

Decimal Floating Point

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <stdlib.h>

_Decimal32 strtod32(const char * __restrict__ nptr, char ** __restrict__ endptr);

_Decimal64 strtod64(const char * __restrict__ nptr, char ** __restrict__ endptr);

_Decimal128 strtod128(const char * __restrict__ nptr, char ** __restrict__ endptr);

General Description

The strtod32() strtod64(), and strtod128() functions convert the initial portion of the

string pointed to by nptr to _Decimal32, _Decimal64, and _Decimal128

representation, respectively.

First, they decompose the input string into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by

the isspace() function) .

2. A subject sequence resembling a floating-point constant or representing an

infinity or NaN.

3. A final string of one or more unrecognized characters, including the terminating

null character of the input string.

Then, they attempt to convert the subject sequence to a floating-point number, and

return the result.

The expected form of the subject sequence is an optional plus or minus sign, then

one of the following:

v a nonempty sequence of decimal digits optionally containing a decimal-point

character, then an optional exponent part

v INF or INFINITY, ignoring case

v NAN, NAN(n-char-sequence), NANQ, NANQ(n-char-sequence), NANS, or

NANS(n-char-sequence), ignoring case in the NAN, NANQ, or NANS part, where

n-char-sequence is one or more decimal numeric digits.

Note: If the input string is not one of these forms (for example ″INFINITE″), the

output results are undefined.

The subject sequence is defined as the longest initial subsequence of the input

string, starting with the first non-white-space character, that is of the expected form.

The subject sequence contains no characters if the input string is not of the

expected form.

A character sequence NAN, NANQ, NAN(n-char-sequence), or

NANQ(n-char-sequence) is interpreted as a quiet NAN. A character sequence of

NANS, or NANS(n-char-sequence), is interpreted as a signalling NaN. A character

strtod32, strtod64, strtod128

Chapter 3. Part 3. Library Functions 2069

|

|

|

||||

|||
|

|

|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

|
|

|
|
|
|

|
|
|

sequence INF or INFINITY is interpreted as an infinity. A character sequence NAN,

NAN(),or NAN(n-char-sequence) is interpreted as a quiet NAN. A character

sequence of NANS, NANS(),or NANS(n-char-sequence), is interpreted as a

signalling NaN.

A pointer to the final string is stored in the object pointed to by endptr, provided that

endptr is not a null pointer.

The converted value keeps the same precision as the input if possible, and the

value may be denormalized. Otherwise, rounding may occur. Rounding happens

after any negation.

In other than the ″C″ locale, additional locale-specific subject sequence forms are

accepted.

If the subject sequence is empty or does not have the expected form, no

conversion is performed; the value of nptr is stored in the object pointed to by

endptr, provided that endptr is not a null pointer.

 Argument Description

nptr Input pointer to start of the string to be

converted

endptr NULL, or a pointer to a output pointer field

that is filled in with the address of the first

character in the input string that is not used

in the conversion.

Note: To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

Returned Value

These functions return the converted value, if any. If no conversion could be

performed, the value +0.E0DF, +0.E0DD,or +0.E0DL is returned. If the correct value

is outside the range of representable values, plus or minus HUGE_VAL_D32,

HUGE_VAL_D64, or HUGE_VAL_D128 is returned (according to the return type

and sign of the value), and errno is set to ERANGE. If the result underflows, these

functions return a value whose magnitude is no greater than the smallest

normalized positive number in the return type. No signal is raised at the point of

returning a signaling NaN.

 errno Description

ERANGE The input string represents a value too large

to fit in the output Decimal Floating Point

type.

Example

See “strtod() — Convert Character String to Double” on page 2066 for an example.

Related Information

v “math.h” on page 60

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “strtod() — Convert Character String to Double” on page 2066

strtod32, strtod64, strtod128

2070 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|

|
|
|

|
|

|
|
|

|||

||
|

||
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|||

||
|
|
|

|

|

|
|
|
|

v “wcstod32(), wcstod64(), wcstod128() — Convert Wide-Character String to

Decimal Floating Point” on page 2400

strtod32, strtod64, strtod128

Chapter 3. Part 3. Library Functions 2071

|
|

strtof() — Convert Character String to Float

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <stdlib.h>

float strtof(const char *__restrict__ nptr, char **__restrict__ endptr);

General Description

strtof() converts a part of a character string, pointed to by nptr, to float. The

parameter nptr points to a sequence of characters that can be interpreted as a

numerical value of the type float.

The strtof() function breaks the string into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by

isspace()).

2. A subject sequence interpreted as a floating-point constant or representing

infinity or a NAN.

3. A final string of one or more unrecognized characters, including the terminating

null byte of the input string.

The function then attempts to convert the subject string into the floating-point

number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then

one of the following:

v A non-empty sequence of decimal digits optionally containing a radix character,

then an optional exponent part. A radix character is the character that separates

the integer part of a number from the fractional part.

v A 0x or 0X, a non-empty sequence of hexadecimal digits optionally containing a

radix character, then a base 2 decimal exponent part with a p or P as prefix, a

plus or minus sign, then a sequence of at least one decimal digit. (Example

[-]0xh.hhhhp+/-d). A radix character is the character that separates the integer

part of a number from the fractional part.

v One of INF, ignoring case.

v One of NANQ or NANQ(n-char-sequence), ignoring case.

v One of NANS or NANS(n-char-sequence), ignoring case.

v One of NAN or NAN(n-char-sequence), ignoring case.

See the ″scanf Family of Formatted Input Functions″ for a description of special

infinity and NaN sequences recognized by z/OS formatted input functions in IEEE

Binary Floating-Point mode.

The pointer to the last string successfully converted is stored in the object pointed

to by endptr, provided that endptr is not a NULL pointer. If the subject string is

strtof

2072 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

empty or it does not have the expected form, then no conversion is performed. The

value of nptr is stored in the object pointed to by endptr.

Returned Value

If successful, strtof() returns the value of the floating-point number.

The float value is hexadecimal floating-point or IEEE Binary Floating-Point format

depending on the floating-point mode of the thread invoking the strtof() function.

This function uses __isBFP() to determine the floating-point mode of the invoking

thread.

In an overflow, strtof() returns +/-HUGE_VALF. In an underflow, it returns 0. If no

conversion is performed, strtof() returns 0. In both cases, errno is set to ERANGE,

depending on the base of the value.

Related Information

v “stdlib.h” on page 85

v “atof() — Convert Character String to Double” on page 201

v “atoi() — Convert Character String to Integer” on page 202

v “atol() — Convert Character String to Long” on page 203

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “strtod() — Convert Character String to Double” on page 2066

v “strtold() — Convert Character String to Long Double” on page 2082

v “strtol() — Convert Character String to Long” on page 2079

v “strtoul() — Convert String to Unsigned Integer” on page 2086

strtof

Chapter 3. Part 3. Library Functions 2073

strtoimax() — Convert character string to intmax_t integer type

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <inttypes.h>

intmax_t strtoimax(const char * __restrict__nptr, char ** __restrict__ endptr, int base);

Compile requirement

Function strtoimax() requires long long to be available.

General Description

The strtoimax() function converts the string nptr to an intmax_t integer type. Valid

input values for base are 0 and in the range 2-36. The strtoimax() function is

equivalent to strtol() and strtoll() with the only difference being that the return value

is of type intmax_t. See strtoll() for more information.

Returned Value

If successful, strtoimax() returns the converted intmax_t value represented in the

string.

If unsuccessful, strtoimax() returns 0 if no conversion could be performed. If the

correct value is outside the range of representable values, strtoimax() returns

INTMAX_MAX or INTMAX_MIN, according to the sign of the value. If the value of

base is not supported, strtoimax() returns 0.

If unsuccessful strtoimax() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Example

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdlib.h>

#include <stdio.h>

int main(void)

 {

 intmax_t j;

 int base = 10;

 char *nptr, *endptr;

 nptr = "10345134932abc";

 printf("nptr = %s\n", nptr);

 j = strtoimax(nptr, &endptr, base);

 printf("strtoimax = %jd (base %d)\n", j, base);

 printf("Stopped scan at %s\n\n", endptr);

strtoimax

2074 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

}

Output

nptr = 10345134932abc

strtoimax = 10345134932(base 10)

Stopped scan at abc

Related Information

v inttypes.h

v “strtol() — Convert Character String to Long” on page 2079

v “strtoul() — Convert String to Unsigned Integer” on page 2086

v “strtoll() — Convert String to Signed Long Long” on page 2084

v “strtoull() — Convert String to Unsigned Long Long” on page 2089

v “strtoumax() — Convert character string to uintmax_t integer type” on page 2091

v wcstoimax()

v wcstoumax()

strtoimax

Chapter 3. Part 3. Library Functions 2075

strtok() — Tokenize String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

char *strtok(char * __restrict__string1, const char * __restrict__string2);

General Description

Breaks a character string, pointed to by string, into a sequence of tokens. The

tokens are separated from one another by the characters in the string pointed to by

string2.

The token starts with the first character not in the string pointed to by string2. If

such a character is not found, there are no tokens in the string. strtok() returns a

NULL pointer. The token ends with the first character contained in the string pointed

to by string2. If such a character is not found, the token ends at the terminating

NULL character. Subsequent calls to strtok() will return the NULL pointer. If such a

character is found, then it is overwritten by a NULL character, which terminates the

token.

If the next call to strtok() specifies a NULL pointer for string1, the tokenization

resumes at the first character following the found and overwritten character from the

previous call. For example:

/* Here are two calls */

strtok(string," ")

strtok(NULL," ")

/* Here is the string they are processing */

 abc defg hij

 first call finds ↑

 ↑ second call starts

Returned Value

The first time strtok() is called, it returns a pointer to the first token in string1. In

later calls with the same token string, strtok() returns a pointer to the next token in

the string. A NULL pointer is returned when there are no more tokens. All tokens

are NULL-terminated.

Example

CELEBS54

/* CELEBS54

 *

 * strtok() example:

 *

strtok

2076 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

* This example parses tokens separated by commas, blanks and semicolons,

 * from a string until no tokens are left. As the string is parsed,

 * pointers to the the following tokens are returned by strtok(),

 * and these tokens are written to stdout:

 *

 * a

 * string

 * of

 * tokens

 *

 * The final call to strtok() returns NULL indicating that

 * there are no more tokens.

 *

 * Note that as the string is tokenized, it will be overwritten.

 *

 */

#include <stdio.h>

#include <string.h>

int main(void)

{

 char *token, string[] = "a string, of,; ;;;,tokens\0,after null terminator";

 token = strtok(string, ", ;");

 do

 {

 printf("token: \"%s\"\n", token);

 }

 while (token = strtok(NULL, ", ;"));

}

Output

token: "a string"

token: " of"

token: " "

token: "tokens"

Related Information

v “string.h” on page 86

v “strcat() — Concatenate Strings” on page 2018

v “strchr() — Search for Character” on page 2020

v “strcmp() — Compare Strings” on page 2022

v “strcpy() — Copy String” on page 2026

v “strcspn() — Compare Strings” on page 2028

v “strspn() — Search String” on page 2060

v “strtok_r() — Split String into Tokens” on page 2078

strtok

Chapter 3. Part 3. Library Functions 2077

strtok_r() — Split String into Tokens

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <string.h>

char *strtok_r(char *s, const char *sep, char **lasts);

General Description

The function strtok_r() considers the NULL-terminated string s as a sequence of

zero or more text tokens separated by spans of one or more characters from the

separator string sep. The argument lasts points to a user-provided pointer which

points to stored information necessary for strtok_r() to continue scanning the same

string.

In the first call to strtok_r(), s points to a NULL-terminated string, sep to a

NULL-terminated string of separator characters and the value pointed to by lasts is

ignored. The function strtok_r() returns a pointer to the first character of the first

token, writes a NULL character into s immediately following the returned token, and

updates the pointer to which lasts points.

In subsequent calls, s is a NULL pointer and lasts will be unchanged from the

previous call so that subsequent calls will move through the string s, returning

successive tokens until no tokens remain. The separator string sep may be different

from call to call. When no token remains in s, a NULL pointer is returned.

Returned Value

If successful, strtok_r() returns a pointer to the token found.

When no token is found, strtok_r() returns a NULL pointer.

Related Information

v “string.h” on page 86

v “strcat() — Concatenate Strings” on page 2018

v “strchr() — Search for Character” on page 2020

v “strcmp() — Compare Strings” on page 2022

v “strcpy() — Copy String” on page 2026

v “strcspn() — Compare Strings” on page 2028

v “strspn() — Search String” on page 2060

v “strtok() — Tokenize String” on page 2076

strtok_r

2078 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

strtol() — Convert Character String to Long

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

long int strtol(const char * __restrict__nptr, char ** __restrict__endptr, int base);

General Description

Converts nptr, a character string, to a long int value.

The function decomposes the entire string into three parts:

1. A sequence of characters, which in the current locale are defined as white

space characters. This part may be empty.

2. A sequence of characters interpreted as integer in some base notation. This is

the subject sequence.

3. A sequence of unrecognized characters.

The base notation is determined by base, if base is greater than zero. If base is

zero, the base notation is determined by the format of the sequence of characters

that follow an optional plus—or optional minus—sign.

10 Sequence starts with nonzero decimal digit.

8 Sequence starts with 0, followed by a sequence of digits with values from 0

to 7.

16 Sequence starts with either 0x or 0X, followed by digits, and letters A

through F or a through f.

If the base is greater than zero, the subject sequence contains decimal digits and

letters, possibly preceded by either a plus or a minus sign. The letters a (or A)

through z (or Z) represent values from 10 through 36, but only those letters whose

value is less than the value of the base are allowed.

When you use the strtol() function, nptr should point to a string with the following

form:

��

white space

+

−

0

0x

0X

digits
 ��

strtol

Chapter 3. Part 3. Library Functions 2079

||||

|
|
|
|
|

||

|

The pointer to the converted characters, even if conversion was unsuccessful, is

stored in the object pointed to by endptr, as long as endptr is not a NULL pointer.

Returned Value

If successful, strtol() returns the converted long int value.

If unsuccessful, strtol() returns 0 if no conversion could be performed. If the correct

value is outside the range of representable values, strtol() returns LONG_MAX or

LONG_MIN, according to the sign of the value. If the value of base is not supported,

strtol() returns 0.

If unsuccessful strtol() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Example

CELEBS55

/* CELEBS55

 This example converts the strings to a long.

 It prints out the converted value and the substring that

 stopped the conversion.

 */

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 char *string, *stopstring;

 long l;

 int bs;

 string = "10110134932";

 printf("string = %s\n", string);

 for (bs = 2; bs <= 8; bs *= 2)

 {

 l = strtol(string, &stopstring, bs);

 printf(" strtol = %ld (base %d)\n", l, bs);

 printf(" Stopped scan at %s\n\n", stopstring);

 }

}

Output

string = 10110134932

 strtol = 45 (base 2)

 Stopped scan at 34932

 strtol = 4423 (base 4)

 Stopped scan at 4932

 strtol = 2134108 (base 8)

 Stopped scan at 932

strtol

2080 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “stdlib.h” on page 85

v “atof() — Convert Character String to Double” on page 201

v “atoi() — Convert Character String to Integer” on page 202

v “atol() — Convert Character String to Long” on page 203

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “strtod() — Convert Character String to Double” on page 2066

v “strtoul() — Convert String to Unsigned Integer” on page 2086

strtol

Chapter 3. Part 3. Library Functions 2081

strtold() — Convert Character String to Long Double

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <stdlib.h>

long double strtold(const char *__restrict__ nptr, char **__restrict__ endptr);

General Description

strtold() converts a part of a character string, pointed to by nptr, to long double. The

parameter nptr points to a sequence of characters that can be interpreted as a

numerical value of the type long double.

The strtold() function breaks the string into three parts:

1. An initial, possibly empty, sequence of white-space characters (as specified by

isspace()).

2. A subject sequence interpreted as a floating-point constant or representing

infinity or NaN.

3. A final string of one or more unrecognized characters, including the terminating

null byte of the input string.

The function then attempts to convert the subject string into the floating-point

number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then

one of the following:

v A non-empty sequence of decimal digits optionally containing a radix character,

then an optional exponent part. A radix character is the character that separates

the integer part of a number from the fractional part.

v A 0x or 0X, a non-empty sequence of hexadecimal digits optionally containing a

radix character, then a base 2 decimal exponent part with a p or P as prefix, a

plus or minus sign, then a sequence of at least one decimal digit. (Example

[-]0xh.hhhhp+/-d). A radix character is the character that separates the integer

part of a number from the fractional part.

v One of INF, ignoring case.

v One of NANQ or NANQ(n-char-sequence), ignoring case.

v One of NANS or NANS(n-char-sequence), ignoring case.

v One of NAN or NAN(n-char-sequence), ignoring case.

See the ″scanf Family of Formatted Input Functions″ for a description of special

infinity and NaN sequences recognized by z/OS formatted input functions in IEEE

Binary Floating-Point mode.

The pointer to the last string successfully converted is stored in the object pointed

to by endptr, provided that endptr is not a NULL pointer. If the subject string is

sstrtold

2082 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

empty or it does not have the expected form, then no conversion is performed. The

value of nptr is stored in the object pointed to by endptr.

Returned Value

If successful, strtold() returns the value of the floating-point number.

The long double value is hexadecimal floating-point or IEEE Binary Floating-Point

format depending on the floating-point mode of the thread invoking the strtold()

function. This function uses __isBFP() to determine the floating-point mode of the

invoking thread.

In an overflow, strtold() returns +/-HUGE_VALL. In an underflow, it returns 0. If no

conversion is performed, strtold() returns 0. In both cases, errno is set to ERANGE,

depending on the base of the value.

Related Information

v “stdlib.h” on page 85

v “atof() — Convert Character String to Double” on page 201

v “atoi() — Convert Character String to Integer” on page 202

v “atol() — Convert Character String to Long” on page 203

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “strtod() — Convert Character String to Double” on page 2066

v “strtold() — Convert Character String to Long Double” on page 2082

v “strtol() — Convert Character String to Long” on page 2079

v “strtoul() — Convert String to Unsigned Integer” on page 2086

sstrtold

Chapter 3. Part 3. Library Functions 2083

strtoll() — Convert String to Signed Long Long

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment

C99

Single UNIX Specification, Version 3

both OS/390 V2R9

Format

#include <stdlib.h>

long long strtoll(const char * __restrict__ nptr, char ** __restrict__ endptr, int base);

Compile Requirement

Use of this function requires the long long data type. See z/OS XL C/C++ Language

Reference for information on how to make long long available.

General Description

Converts nptr, a character string, to a signed long long value.

The function decomposes the entire string into three parts:

1. A sequence of characters, which in the current locale are defined as white

space characters. This part may be empty.

2. A sequence of characters interpreted as an unsigned integer in some base

notation. This is the subject sequence.

3. A sequence of unrecognized characters.

The base notation is determined by base, if base is greater than zero. If base is

zero, the base notation is determined by the format of the sequence of characters

that follow an optional plus or optional minus sign.

10 Sequence starts with nonzero decimal digit.

8 Sequence starts with 0, followed by a sequence of digits with values from 0

to 7.

16 Sequence starts with either 0x or 0X, followed by digits, and letters A

through F or a through f.

If the base is greater than zero, the subject sequence contains decimal digits and

letters, possibly preceded by either a plus or a minus sign. The letters a (or A)

through z (or Z) represent values from 10 through 36, but only those letters whose

value is less than the value of the base are allowed.

When you are using strtoll(), nptr should point to a string with the following form:

strtoll

2084 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

The pointer to the converted characters, even if conversion was unsuccessful, is

stored in the object pointed to by endptr, as long as endptr is not a NULL pointer.

Returned Value

If successful, strtoll() returns the converted signed long long value, represented in

the string.

If unsuccessful, strtoll() returns 0 if no conversion could be performed. If the correct

value is outside the range of representable values, strtoll() returns LLONG_MAX

(LONGLONG_MAX) or LLONG_MIN (LONGLONG_MIN), according to the sign of the value. If

the value of base is not supported, strtoll() returns 0.

If unsuccessful strtoll() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Related Information

v “stdlib.h” on page 85

v “atof() — Convert Character String to Double” on page 201

v “atoi() — Convert Character String to Integer” on page 202

v “atol() — Convert Character String to Long” on page 203

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “strtod() — Convert Character String to Double” on page 2066

v “strtoul() — Convert String to Unsigned Integer” on page 2086

��

white space

+

−

0

0x

0X

digits
 ��

strtoll

Chapter 3. Part 3. Library Functions 2085

strtoul() — Convert String to Unsigned Integer

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

unsigned long int strtoul(const char * __restrict__ string1, char ** __restrict__ string2, int base);

General Description

Converts string1, a character string, to an unsigned long int value.

The function decomposes the entire string into three parts:

1. A sequence of characters, which in the current locale are defined as white

space characters. This part may be empty.

2. A sequence of characters interpreted as an unsigned integer in some base

notation. This is the subject sequence.

3. A sequence of unrecognized characters.

The base notation is determined by base, if base is greater than zero. If base is

zero, the base notation is determined by the format of the sequence of characters

that follow an optional plus or optional minus sign.

10 Sequence starts with nonzero decimal digit.

8 Sequence starts with 0, followed by a sequence of digits with values from 0

to 7.

16 Sequence starts with either 0x or 0X, followed by digits, and letters A

through F or a through f.

If the base is greater than zero, the subject sequence contains decimal digits and

letters, possibly preceded by either a plus or a minus sign. The letters a (or A)

through z (or Z) represent values from 10 through 36, but only those letters whose

value is less than the value of the base are allowed. The function stops reading the

string at the first character that it cannot recognize as part of a number. This

character can be the first numeric character greater than or equal to the base. The

strtoul() function sets string2 to point to the end of the resulting output string if a

conversion is performed and provided that string2 is not a NULL pointer.

When you are using the strtoul() function, string1 should point to a string with the

following form:

strtoul

2086 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

If base is in the range of 2-36, it becomes the base of the number. If base is 0, the

prefix determines the base (8, 16, or 10): the prefix 0 means base 8; the prefix 0x

or 0X means base 16; using any other digit without a prefix means decimal.

The pointer to the converted characters, even if conversion was unsuccessful, is

stored in the object pointed to by string2, as long as string2 is not a NULL pointer.

Returned Value

If successful, strtoul() returns the converted unsigned long int value, represented in

the string.

If unsuccessful, strtoul() returns 0 if no conversion could be performed. If the correct

value is outside the range of representable values, strtoul() returns ULONG_MAX. If the

value of base is not supported, strtoul() returns 0.

If unsuccessful strtoul() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Example

CELEBS56

/* CELEBS56

 This example converts the string to an unsigned long value.

 It prints out the converted value and the substring that

 stopped the conversion.

 */

#include <stdio.h>

#include <stdlib.h>

#define BASE 2

int main(void)

{

 char *string, *stopstring;

 unsigned long ul;

 string = "1000e13 e";

 printf("string = %s\n", string);

 ul = strtoul(string, &stopstring, BASE);

 printf(" strtoul = %ld (base %d)\n", ul, BASE);

 printf(" Stopped scan at %s\n\n", stopstring);

}

Output

string = 1000e13 e

 strtoul = 8 (base 2)

 Stopped scan at e13 e

��

white space

+

−

0

0x

0X

digits
 ��

strtoul

Chapter 3. Part 3. Library Functions 2087

Related Information

v “stdlib.h” on page 85

v “atof() — Convert Character String to Double” on page 201

v “atoi() — Convert Character String to Integer” on page 202

v “atol() — Convert Character String to Long” on page 203

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “strtod() — Convert Character String to Double” on page 2066

v “strtol() — Convert Character String to Long” on page 2079

strtoul

2088 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

strtoull() — Convert String to Unsigned Long Long

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment

C99

Single UNIX Specification, Version 3

both OS/390 V2R9

Format

#include <stdlib.h>

unsigned long long strtoull(register const char * __restrict__ nptr, char ** __restrict__ endptr, int base);

Compile Requirement

Use of this function requires the long long data type. See z/OS XL C/C++ Language

Reference for information on how to make long long available.

General Description

Converts nptr, a character string, to an unsigned long long value.

The function decomposes the entire string into three parts:

1. A sequence of characters, which in the current locale are defined as white

space characters. This part may be empty.

2. A sequence of characters interpreted as an unsigned integer in some base

notation. This is the subject sequence.

3. A sequence of unrecognized characters.

The base notation is determined by base, if base is greater than zero. If base is

zero, the base notation is determined by the format of the sequence of characters

that follow an optional plus or optional minus sign.

10 Sequence starts with nonzero decimal digit.

8 Sequence starts with 0, followed by a sequence of digits with values from 0

to 7.

16 Sequence starts with either 0x or 0X, followed by digits, and letters A

through F or a through f.

If the base is greater than zero, the subject sequence contains decimal digits and

letters, possibly preceded by either a plus or a minus sign. The letters a (or A)

through z (or Z) represent values from 10 through 36, but only those letters whose

value is less than the value of the base are allowed. The function stops reading the

string at the first character that it cannot recognize as part of a number. This

character can be the first numeric character greater than or equal to the base. The

strtoull() function sets endptr to point to the end of the resulting output string if a

conversion is performed and provided that endptr is not a NULL pointer.

When you are using the strtoull() function, nptr should point to a string with the

following form:

strtoull

Chapter 3. Part 3. Library Functions 2089

||||

|
|
|

||

|

If base is in the range of 2-36, it becomes the base of the number. If base is 0, the

prefix determines the base (8, 16 or 10): the prefix 0 means base 8; the prefix 0x or

0X means base 16; using any other digit without a prefix means decimal.

The pointer to the converted characters, even if conversion was unsuccessful, is

stored in the object pointed to by endptr, as long as endptr is not a NULL pointer.

Returned Value

If successful, strtoull() returns the converted unsigned long long value, represented

in the string.

If unsuccessful, strtoull() returns 0 if no conversion could be performed. If the

correct value is outside the range of representable values, strtoull() returns

ULLONG_MAX (ULONGLONG_MAX). If the value of base is not supported, strtoull() returns

0.

If unsuccessful strtoull() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Related Information

v “stdlib.h” on page 85

v “atof() — Convert Character String to Double” on page 201

v “atoi() — Convert Character String to Integer” on page 202

v “atol() — Convert Character String to Long” on page 203

v “fscanf(), scanf(), sscanf() — Read and Format Data” on page 682

v “strtod() — Convert Character String to Double” on page 2066

v “strtoul() — Convert String to Unsigned Integer” on page 2086

��

white space

+

−

0

0x

0X

digits
 ��

strtoull

2090 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

strtoumax() — Convert character string to uintmax_t integer type

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <inttypes.h>

uintmax_t strtoumax(const char * __restrict__ nptr, char ** __restrict__ endptr, int base);

Compile requirement

Function strtoumax() requires long long to be available.

General Description

The strtoumax() function converts the string nptr to an uintmax_t integer type. Valid

input values for base are 0 and in the range 2-36. The strtoumax() function is

equivalent to strtoul() and strtoull(). The only difference being that the return value is

of type uintmax_t. See strtoull for more information.

Returned Value

If successful, strtoumax() returns the converted uintmax_t value, represented in the

string.

If unsuccessful, strtoumax() returns 0 if no conversion could be performed. If the

correct value is outside the range of representable values, strtoumax() returns

UINTMAX_MAX. If the value of base is not supported, strtoumax() returns 0.

If unsuccessful strtoumax() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Example

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdlib.h>

#include <stdio.h>

 int main(void)

 {

 uintmax_t j;

 int base = 10;

 char *nptr, *endptr;

 nptr = "20690239864abc";

 printf("string = %s\n", nptr);

 j = strtoumax(nptr, &endptr, base);

 printf("strtoumax = %ju (base %d)\n", j, base);

 printf("Stopped scan at %s\n\n", endptr);

 }

strtoumax

Chapter 3. Part 3. Library Functions 2091

||||

|
|
||

|

Output

string = 20690239864abc

strtoumax = 20690239864 (base 10)

Stopped scan at abc

Related Information

v inttypes.h

v strtoimax()

v strtol()

v strtoul()

v strtoll()

v strtoull()

v wcstoimax()

v wcstoumax()

strtoumax

2092 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

strxfrm() — Transform String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <string.h>

size_t strxfrm(char * __restrict__ s1, const char * __restrict__ s2, size_t n);

General Description

Transforms the string pointed to by s2 and places the resulting string into the array

pointed to by s1. The transformation is determined by the program’s locale. The

transformed string is not necessarily readable, but can be used with the strcmp() or

strncmp() functions.

The transformation is such that, if strcmp() or strncmp() were applied to the two

transformed strings, the results would be the same as applying the strcoll() function

to the two corresponding untransformed strings.

No more than n bytes are placed into the area pointed to by s1, including the

terminating NULL byte. If n is zero, s1 is allowed to be a NULL pointer.

Returned Value

If successful, strxfrm() returns the length of the transformed string (excluding the

NULL byte). When n is zero and s1 is a NULL pointer, the length returned is the

number of bytes minus one required to contain the transformed string.

If unsuccessful, strxfrm() returns (size_t)−1 and sets errno to indicate the error.

Notes:

v The string returned by strxfrm() contains the weights for each order of the

characters within the string. As a result, the string returned may be longer than

the input string, and does not contain printable characters.

v strxfrm() issues a malloc() when the LC_COLLATE category specifies backward

on the order_start keyword, the substitute keyword is specified, or the locale has

one-to-many mapping. The strxfrm() function will fail if the malloc() fails.

v If the locale supports double-byte characters (MB_CUR_MAX specified as 4), the

strxfrm() function validates the multibyte characters, whereas previously the

strxfrm() function did not validate the string. The strxfrm() function will fail if the

string contains invalid multibyte characters.

v If MB_CUR_MAX is defined as 4, and no collation is defined for DBCS chars in

the current locale, the DBCS characters will collate after the single-byte

characters.

strxfrm

Chapter 3. Part 3. Library Functions 2093

||||

|
|
|
|
|

||

|

Example

CELEBS57

/* CELEBS57

 This example prompts the user to input a string of characters, then

 uses strxfrm() to transform the string and return its length.

 */

#include <collate.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 char *string1="string1", *string2="string2";

 char *newstring1, *newstring2;

 int length1, length2;

 length1=strxfrm(NULL, string1, 0);

 length2=strxfrm(NULL, string2, 0);

 if (((newstring1=(char *)calloc(length1+1, 1))==NULL) ||

 ((newstring2=(char *)calloc(length2+1, 1))==NULL))

 {

 printf("insufficient memory\n");

 exit(99);

 }

 if ((strxfrm(newstring1, string1, length1+1) != length1) ||

 (strxfrm(newstring2, string2, length2+1) != length2))

 {

 printf("error in string processing\n");

 exit(99);

 }

 if (strcoll(string1, string2) != strcmp(newstring1, newstring2))

 {

 printf("wrong results\n");

 exit(99);

 }

 printf("correct results\n");

 exit(0);

}

Related Information

v “string.h” on page 86

v “localeconv() — Query Numeric Conventions” on page 1117

v “setlocale() — Set Locale” on page 1811

v “strcmp() — Compare Strings” on page 2022

v “strcoll() — Compare Strings” on page 2024

v “strncmp() — Compare Strings” on page 2048

strxfrm

2094 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__superkill() — Sends ″super″ SIGKILL to terminate target process

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R6

POSIX(ON)

Format

#define _POSIX_SOURCE

#include <signal.h>

int __superkill(pid_t pid);

General Description

The __superkill() function generates a more robust version of the SIGKILL signal to

the process with pid as the process ID. The SIGKILL will be able to break through

almost all of the current signal deterrents that can be an obstacle to the normal

delivery of a SIGKILL and the resulting termination of the target process.

Function restrictions include:

v Cannot do a __superkill() to a group or specifying PID -1. An attempt to do so

will result in a EINVAL/JrNoGroups.

v The superkill will be ignored if the target process has blocked all signals, in which

case the __superkill() will not fail but simply be ignored (refer to BPX1SDD

syscall in Chapter 2 . Callable services descriptions, SA22-7803). Under a

multithread environment, as long as BPX1SDD is called on the initial thread,

__superkill() will be ignored. The sigprocmask() function cannot be used to block

__superkill().

v A regular SIGKILL must be sent, at least 3 seconds, to a process before a

superkill. Otherwise the attempt will result in EINVAL/JRSigkillNotSent.

v Runtime option POSIX(ON) is required to be set for this function to work

properly.

If the environment is valid, then the target process will be abended with a ’422’x

abend reason code x’0109’ reason code. The abend code will be sent to the first

dubbed thread in the process. Under Language Environment, this is almost always

the initial processing thread (IPT).

Returned Value

When successful, the target process is terminated. Upon failure, __superkill()

returns -1 and sets errno to one of the following values:

Value Description

ENIVAL PID is -1 or a group process ID or the superkill was not sent 3

seconds after the regular SIGKILL.

EPERM The caller does not have the permission to send the signal to any

process that was specified by the process ID parameter.

ESRCH No process or process groups that correspond to the process ID

are found.

_superkill

Chapter 3. Part 3. Library Functions 2095

svc99() — Access Supervisor Call

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <stdio.h>

int svc99(__S99parms *string);

General Description

Provides access to SVC99 on z/OS, which provides ability to:

v Dynamically allocate or deallocate a resource

v Dynamically concatenate or deconcatenate data sets

v Dynamically retrieve information on data sets

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (for example, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

The __S99parms structure must be in 31-bit addressable storage. A call to svc99()

with 64-bit addressable storage will result in -1 return code.

The __S99TXTPP element needs to be a 32-bits wide pointer to 31-bit addressable

storage containing an array of text unit pointers. Each of the text unit pointers must

be a 32-bits wide pointer, each pointing to 31-bit addressable storage containing a

text unit, or can be a NULL pointer. The last text unit pointer must have its high bit

(traditional 31-bit amode high bit) turned on to denote the end of text units has been

reached.

The __S99S99X element needs to be a 32-bits wide pointer to 31-bit addressable

storage containing the __S99rbx structure, when needed. This is consistent with the

__dyn_t structure element __rbx requirement outlined above.

The __S99parms structure is defined in stdio.h. It has been changed to include the

address of the Request Block Extension. The Request Block Extension and the

Error Message Parameter list can be used to process the messages returned by

SVC99 when an error occurs. To use this feature, you must allocate and initialize

these structures.

 Table 56. Elements Contained by __S99parms Structure

Field Type Value Stored

__S99RBLN unsigned char SVC99 length of request

block

svc99

2096 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 56. Elements Contained by __S99parms Structure (continued)

Field Type Value Stored

__S99VERB unsigned char SVC99 verb code

__S99FLAG1 unsigned short SVC99 Flags 1 field

__S99ERROR unsigned short SVC99 error code field

__S99INFO unsigned short SVC99 information code

__S99TXTPP void * __ptr32 SVC99 pointer to a list of text

unit pointers

__S99S99X void * __ptr32 SVC99 pointer to the Request

Extension Block

__S99FLAG2 unsigned int SVC99 Flags 2 field for APF

authorized programs

Returned Value

If the input pointer is NULL, svc99() returns 0 if running under CICS and nonzero

otherwise. The nonzero value indicates that svc99() is supported under the current

operating system (that is, z/OS non-CICS). If the input is not NULL, svc99() returns

−1 if running under CICS (to indicate an error), otherwise it returns a code that

results from svc99().

If the input is not NULL, and svc99() is not supported on the system, it returns −1.

Example

CELEBS58

/* CELEBS58

 This example uses the svc99() function to dynamically allocate a data

 set called USERID.EXAMPLE.

 */

#define MASK 0x80000000

#define _EXT

#include <stdio.h>

#include <string.h>

int main(void)

{

 int rc;

 struct __S99struc parmlist;

 char *s[10] = { /* array of text pointers */

 /* text units follow */

 "\0\x02\0\x01\0\x0E""USERID.EXAMPLE", /* DSN=EXAMPLE */

 "\0\x05\0\x01\0\x01\x02", /* DISP=(,CATLG) */

 "\0\x07\0\0", /* SPACE=(TRK,.. */

 "\0\x0A\0\x01\0\x03\0\0\x14", /* primary=20 */

 "\0\x0B\0\x01\0\x03\0\0\x01", /* secondary=1 */

 "\0\x15\0\x01\0\x05SYSDA", /* UNIT=SYSDA */

 "\0\x30\0\x01\0\x02\0\x50", /* BLKSIZE=80 */

 "\0\x3C\0\x01\0\x02\x40\0", /* DSORG=PS */

 "\0\x42\0\x01\0\x02\0\x50", /* LRECL=80 */

 "\0\x49\0\x01\0\x01\x80"}; /* RECFM=F */

 memset(&parmlist, 0, sizeof(parmlist));

 parmlist.__S99RBLN = 20;

 parmlist.__S99VERB = 1; /* verb for dsname allocation */

 parmlist.__S99FLAG1 = 0x4000; /* do not use existing allocation */

svc99

Chapter 3. Part 3. Library Functions 2097

parmlist.__S99TXTPP = s; /* pointer to pointer to text units */

 s[9] = (char *)((long unsigned) (s[9]) | MASK);

 rc = svc99(&parmlist);

 if (rc != 0)

 printf(" Error code = %d Information code = %d\n",

 parmlist.__S99ERROR, parmlist.__S99INFO);

}

If your user ID starts with one of the letters A-F, you must add two double quotation

marks (″) before the user ID so that the first letter of the user ID is interpreted as a

character rather than as a hexadecimal digit.

The preceding example can be made more readable by using symbolic names and

data structures as demonstrated in the example below. The members IEFZB4DB,

IEFZB4D0 and IEFZB4D2 of SYS1.MACLIB contain symbolic names that will be familiar

to most assembler language programmers.

This next example uses symbolic names taken from these members to define, in

z/OS XL C/C++ the text unit representing primary=20 or s[3]. Similar definitions can

be made for the remaining text units but will not be given here.

#include <stdio.h>

#include <string.h>

#define MASK 0x80000000

#define CHAR_BIT 4

/* Defines one text unit with an integer of size ’bytes’ */

#define __S99TUNIT_INT(bytes) struct {

 short unsigned __S99TUKEY; /* KEY */

 short unsigned __S99TUNUM; /* NO. OF LENGTH+PARM ENTRIES */

 struct { /* TEXT ENTRY OF LENGTH+PARM */

 short unsigned __S99TULNG; /* LENGTH OF 1ST (ONLY) PARM */

 unsigned int __S99TUPAR : /* PARAMETER */

 (bytes) * CHAR_BIT;

 } __S99TUENT;

 }

/* initialize by: __S99TUNUM = 1; */

/* __S99TUENT.__S99TULNG = <bytes>; */

/* __S99TUENT.__S99TUPAR = <value>; */

#define __DALPRIME 0x000A /*PRIMARY SPACE QUANTITY */

static const __S99TUNIT_INT(3) primary = {__DALPRIME, 1, 3, 20};

int main(void)

{

 int rc;

 struct __S99struc parmlist;

 memset(&parmlist, 0, sizeof(parmlist));

 void *s[10] = { /* array of text pointers */

 /* text units follow */

 . , /* DSN=EXAMPLE */

 . , /* DISP=(,CATLG)*/

 . , /* SPACE=(TRK,..*/

 &primary, /* primary=20 */

 . , /* secondary=1 */

 . , /* UNIT=SYSDA */

 . , /* BLKSIZE=80 */

 . , /* DSORG=PS */

 . , /* LRECL=80 */

 . }; /* RECFM=F */

 parmlist.__S99RBLN = 20;

svc99

2098 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

parmlist.__S99VERB = 01; /* verb for dsname allocation */

 parmlist.__S99FLAG1 = 0x4000; /* do not use existing allocation */

 parmlist.__S99TXTPP = s; /* pointer to pointer to text units */

 s[9] = (char *)((long unsigned) (s[9]) │ MASK);

 rc = svc99(&parmlist);

 if (rc != 0)

 printf(" Error code = %d Information code = %d\n",

 parmlist.__S99ERROR, parmlist.__S99INFO);

}

Related Information

v “stdio.h” on page 82

v “dynalloc() — Allocate a Data Set” on page 453

v “dynfree() — Deallocate a Data Set” on page 460

v “dyninit() — Initialize __dyn_t Structure” on page 462

v Requesting Dynamic Allocation Functions in z/OS MVS Programming: Authorized

Assembler Services Guide

svc99

Chapter 3. Part 3. Library Functions 2099

swab() — Copy and Swap Bytes

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <unistd.h>

void swab(const void *__restrict__src, void *__restrict__dest, ssize_t nbytes);

General Description

The swab() function copies nbytes bytes, which are pointed to by src to the object

pointed to by dest, exchanging adjacent bytes. The nbytes argument should be

even. If nbytes is odd, swab() copies and exchanges nbytes-1 bytes and the

disposition of the last byte is left unchanged in the target area. If nbytes is zero or

negative, no copying is performed.

Returned Value

swab() returns no values.

Related Information

v “unistd.h” on page 96

swab

2100 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|
|
|

swapcontext() — Save and Restore User Context

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <ucontext.h>

int swapcontext(ucontext_t *__restrict__ oucp, const ucontext_t *__restrict__ ucp);

General Description

The swapcontext() function saves the current user context in the context structure

pointed to by oucp and restores the user context structure pointed to by ucp.

swapcontext() is equivalent to getcontext() with the oucp argument followed by

setcontext() with the ucp argument.

Control does not return from the initial invocation of swapcontext(). However, if the

saved context is not modified using makecontext(), and a subsequent setcontext()

or swapcontext() is issued using the saved context, swapcontext() returns with a 0

return value.

Notes:

1. If the ucontext pointed to by ucp that is input to swapcontext(), has not been

modified by makecontext(), you must ensure that the function that calls

getcontext() does not return before you call the corresponding swapcontext()

function. Calling swapcontext() after the function calling getcontext() returns

causes unpredictable program behavior.

2. If swapcontext() is used to jump back into an XPLINK routine, any alloca()

requests issued by the XPLINK routine after the earlier getcontext() was called

and before swapcontext() is called are backed out. All storage obtained by these

alloca() requests is freed before the XPLINK routine is resumed.

3. If swapcontext() is used to jump back into a non-XPLINK routine, alloca()

requests made after getcontext() and before swapcontext() are not backed out.

This function is supported only in a POSIX program.

The <ucontext.h> header file defines the ucontext_t type as a structure that

includes the following members:

mcontext_t uc_mcontext A machine-specific representation

 of the saved context.

ucontext_t *uc_link Pointer to the context that will

 be resumed when this context returns.

sigset_t uc_sigmask The set of signals that are blocked

 when this context is active.

stack_t uc_stack The stack used by this context.

Special Behavior for C++

If getcontext() and swapcontext() are used to transfer control in a z/OS XL C++

program, the behavior in terms of the destruction of automatic objects is undefined.

swapcontext

Chapter 3. Part 3. Library Functions 2101

||||

|
|
||

|

|
|
|
|

This applies to both z/OS XL C++ and z/OS XL C++ ILC modules. The use of

getcontext() and swapcontext() in conjunction with try(), catch(), and throw() is also

undefined.

Do not issue getcontext() in a C++ constructor or destructor, since the saved

context would not be usable in a subsequent setcontext() or swapcontext() after the

constructor or destructor returns.

Special Behavior for XPLINK-compiled C++

Restrictions concerning setjmp.h and ucontext.h:

Notes:

1. All XPLINK programs compiled with the V2R10 or later C compilers that are to

run with Language Environment V2R10 or later libraries and use the jmp_buf,

sigjmp_buf or ucontext_t types must not be compiled with C headers from

Language Environment V2R9 or earlier.

2. Non-XPLINK functions compiled with any level of Language Environment

headers must not define jmp_buf, sigjmp_buf or ucontext_t data items and

pass them to XPLINK functions that call getcontext(), longjmp(), _longjmp(),

setjmp(), _setjmp(), setcontext(), sigsetjmp(), or swapcontext() with these

passed-in data items.

3. When __XPLINK__ is defined, the Language Environment V2R10 and later

headers define a larger jmp_buf, sigjmp_buf or ucontext_t area that is

required by setjmp(), getcontext(), and related functions when they are called

from an XPLINK routine. If __XPLINK__ is not defined, the Language

Environment V2R10 and later headers define a shorter jmp_buf, sigjmp_buf or

ucontext_t area. The Language Environment headers before V2R10 also

define the shorter version of these data areas. If an XPLINK function calls

setjmp(), getcontext() or similar functions with a short jmp_buf, sigjmp_buf or

ucontext_t area, a storage overlay or program check may occur when the C

library tries to store past the end of the passed-in (too short) data area.

Special Behavior for AMODE 64

The stack frame of the caller of makecontext() must exist when any future call to

setcontext() or swapcontext() is made that references the context.

Returned Value

If successful, swapcontext() does not return from the initial invocation. If the

unmodified saved context is later restored, swapcontext() returns 0.

If unsuccessful, swapcontext() returns −1.

There are no errno values defined.

Example

This example uses two contexts. It creates the first, fcontext, in main with the

getcontext() statement, and invokes the function func. It invokes the function with

the swapcontext() statement, saving the context at that point in the second context,

mcontext. The function returns to the point of the swapcontext() using the

setcontext() statement and specifying mcontext as the context.

/* This example shows the usage of swapcontext(). */

#define _XOPEN_SOURCE_EXTENDED 1

swapcontext

2102 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|

#include <stdlib.h>

#include <stdio.h>

#include <ucontext.h>

#include <errno.h>

 #ifdef _LP64

 #define STACK_SIZE 2097152+16384 /* large enough value for AMODE 64 */

 #else

 #define STACK_SIZE 16384 /* AMODE 31 addressing*/

 #endif

void func(int);

ucontext_t fcontext,mcontext;

int x = 0;

int main(void) {

 int value = 1;

 getcontext(&fcontext);

 if ((fcontext.uc_stack.ss_sp = (char *) malloc(STACK_SIZE)) != NULL) {

 fcontext.uc_stack.ss_size = STACK_SIZE;

 fcontext.uc_stack.ss_flags = 0;

 errno = 0;

 makecontext(&fcontext,func,1,value);

 if (errno != 0)

 perror("Error reported by makecontext()");

 return -1 /* Error occurred exit */

 }

 else {

 perror("not enough storage for stack");

 abort();

 }

 printf("context has been built\n");

 swapcontext(&mcontext,&fcontext);

 if (!x) {

 perror("incorrect return from swapcontext");

 abort();

 }

 else {

 printf("returned from function\n");

 }

}

void func(int arg) {

 printf("function called with value %d\n",arg);

 x++

 printf("function returning to main\n");

 setcontext(&mcontext);

}

Output

context has been built

function called with value 1

function returning to main

returned from function

Related Information

v “ucontext.h” on page 96

v “getcontext() — Get User Context” on page 750

v “longjmp() — Restore Stack Environment” on page 1143

swapcontext

Chapter 3. Part 3. Library Functions 2103

v “_longjmp() — Nonlocal Goto” on page 1147

v “makecontext() — Modify User Context” on page 1169

v “setcontext() — Restore User Context” on page 1778

v “setjmp() — Preserve Stack Environment” on page 1802

v “_setjmp() — Set Jump Point for a Nonlocal Goto” on page 1806

v “siglongjmp() — Restore the Stack Environment and Signal Mask” on page 1914

v “sigsetjmp() — Save Stack Environment and Signal Mask” on page 1936

swapcontext

2104 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

swprintf() — Format and Write Wide Characters

The information for this function is included in “fwprintf(), swprintf(), wprintf() —

Format and Write Wide Characters” on page 729.

swprintf

Chapter 3. Part 3. Library Functions 2105

swscanf() — Read a Wide-Character String

The information for this function is included in “fwscanf(),swscanf(),wscanf() —

Convert Formatted Wide-character Input” on page 733 section .

swscanf

2106 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

symlink() — Create a Symbolic Link to a Pathname

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1a

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX1_SOURCE 2

#include <unistd.h>

int symlink(const char *pathname, const char *slink);

General Description

Creates the symbolic link named by slink with the file specified by pathname. File

access checking is not performed on the file pathname, and the file need not exist.

In addition, a symbolic link can cross file system boundaries.

A symbolic link pathname is resolved in this fashion:

v When a component of a pathname refers to a symbolic link rather than to a

directory, the pathname contained in the symbolic link is resolved.

v If the pathname in the symbolic link begins with / (slash), the symbolic link

pathname is resolved relative to the process root directory.

If the pathname in the symbolic link does not start with / (slash), the symbolic link

pathname is resolved relative to the directory that contains the symbolic link.

v If the symbolic link is the last component of a pathname, it may or may not be

resolved. Resolution depends on the function using the pathname. For example,

rename() does not resolve a symbolic link when it appears as the final

component of either the new or old pathname. However, open does resolve a

symbolic link when it appears as the last component.

v If the symbolic link is not the last component of the original pathname, remaining

components of the original pathname are resolved relative to the symbolic link.

v When a / (slash) is the last component of a pathname and it is preceded by a

symbolic link, the symbolic link is always resolved.

Because the mode of a symbolic link cannot be changed, its mode is ignored during

the lookup process. Any files and directories to which a symbolic link refers are

checked for access permission.

Returned Value

If successful, symlink() returns 0.

If unsuccessful, symlink() returns −1, does not affect any file it names, and sets

errno to one of the following values:

Error Code Description

EACCES A component of the slink path prefix denies search permission, or

write permission is denied in the parent directory of the symbolic

link to be created.

EEXIST The file named by slink already exists.

symlink

Chapter 3. Part 3. Library Functions 2107

||||

|
|
|

||

|

EINVAL This may be returned for either of these reasons:

v There is a NULL character in pathname.

v slink has a slash as its last component, which indicates that the

preceding component will be a directory. A symbolic link cannot

be a directory.

EIO Added for XPG4.2: An I/O error occurred while reading from the

file system.

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOP symbolic links are encountered during resolution

of the slink argument.

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined with pathconf().

ENOENT Added for XPG4.2: A component of slink does not name an

existing file or slink is an empty string.

ENOSPC The new symbolic link cannot be created because there is no

space left on the file system that will contain the symbolic link.

ENOTDIR A component of the path prefix of slink is not a directory.

EROFS The file slink cannot reside on a read-only system.

Example

/* This example works only under z/OS XL C, not z/OS XL C++ */

#define _POSIX1_SOURCE 2

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

main() {

 char fn[]="test.file";

 char sln[]="test.symlink";

 int fd;

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(fd);

 puts("before symlink()");

 system("ls -il test.*");

 if (symlink(fn, sln) != 0) {

 perror("symlink() error");

 unlink(fn);

 }

 else {

 puts("after symlink()");

 system("ls -il test.*");

 unlink(fn);

 puts("after first unlink()");

 system("ls -il test.*");

symlink

2108 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

unlink(sln);

 }

 }

}

Output

before symlink()

 4030 --w------- 1 MVSUSR1 SYS1 0 Apr 20 13:57 test.file

after symlink()

 4030 --w------- 1 MVSUSR1 SYS1 0 Apr 20 13:57 test.file

 4031 l--------- 1 MVSUSR1 SYS1 9 Apr 20 13:57 test.symlink -> test.file

after first unlink()

 4031 l--------- 1 MVSUSR1 SYS1 9 Apr 20 13:57 test.symlink -> test.file

Related Information

v “unistd.h” on page 96

v “link() — Create a Link to a File” on page 1101

v “readlink() — Read the Value of a Symbolic Link” on page 1615

v “unlink() — Remove a Directory Entry” on page 2312

symlink

Chapter 3. Part 3. Library Functions 2109

sync() — Schedule File System Updates

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

void sync(void);

General Description

The sync() function causes all information in memory that updates file systems to

be scheduled for writing out to all file systems.

The writing, although scheduled, is not necessarily complete upon return from

sync().

Returned Value

sync() returns no values.

No errors are defined.

Related Information

v “unistd.h” on page 96

v “fsync() — Write Changes to Direct-Access Storage” on page 709

sync

2110 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

sysconf() — Determine System Configuration Options

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

long sysconf(int name);

General Description

Determines the value of a configurable system option.

int name

 Specifies the system configuration option to be obtained. The value of

name can be any one of the following set of symbols defined in the unistd.h

header file, each corresponding to a system configuration option:

 The following are available when _POSIX_SOURCE is defined.

_SC_ARG_MAX

Represents ARG_MAX, as defined by the values returned

by sysconf(), the maximum number of bytes of arguments

and environment data that can be passed in an exec

function.

_SC_CHILD_MAX

Represents CHILD_MAX, as defined by the values returned

by sysconf(), the maximum number of processes that a real

user ID (UID) may have running simultaneously.

_SC_CLK_TCK

Represents the CLK_TCK macro defined in the time.h

header file: the number of clock ticks in a second.

_SC_JOB_CONTROL

Represents the _POSIX_JOB_CONTROL macro that can

be defined in the unistd.h header file. This indicates that

certain job control operations are implemented by this

version of the operating system. If

_POSIX_JOB_CONTROL is defined, various functions (for

example, setpgid()) have more functionality than when the

macro is not defined.

_SC_NGROUPS_MAX

Represents NGROUPS_MAX, as defined by the values

returned by sysconf(), the maximum number of

supplementary group IDs (GIDs) that can be associated

with a process.

sysconf

Chapter 3. Part 3. Library Functions 2111

||||

|
|
|
|

||

|

|

_SC_OPEN_MAX

Represents OPEN_MAX, as defined by the values returned

by sysconf(), the maximum number of files that a single

process can have open at one time.

_SC_SAVED_IDS

Represents the _POSIX_SAVED_IDS macro, which may be

defined in unistd.h header file, indicating that this POSIX

implementation has a saved set UID and a saved set GID.

This symbol affects the behavior of such functions as

setuid() and setgid().

_SC_STREAM_MAX

Represents the _STREAM_MAX macro, which may be

defined in the unistd.h header file, indicating the maximum

number of streams that a process can have open at one

time.

_SC_THREADS_MAX_NP

Represents the THREAD_MAX macro, as defined by the

values returned by sysconf(), the maximum number of

concurrent threads processed by pthread_create(), including

running, queued, and exited undetached threads in the

caller’s process.

_SC_THREAD_TASKS_MAX_NP

Represents the THREAD_TASKS_MAX macro, as defined

by the values returned by sysconf(), the maximum number

of MVS tasks simultaneously in use for threads processed

by pthread_create() in the caller’s process.

_SC_TTY_GROUP

Retrieves the group number associated with the

TTYGROUP() initialization parameter.

_SC_TZNAME_MAX

Represents the _TZNAME_MAX macro, which may be

defined in the unistd.h header file, indicating the maximum

length of the name of a time zone.

_SC_VERSION

Represents the _POSIX_VERSION macro, which will be

defined in the unistd.h header file, indicating the version of

the POSIX.1 standard that the system conforms to.

In addition to the symbols exposed by _POSIX_SOURCE, the following are

visible when _XOPEN_SOURCE is defined:

_SC_XOPEN_CRYPT

Represents _XOPEN_CRYPT, the implementation supports

the X/Open Encryption Option Group.

_SC_XOPEN_VERSION

Represents _XOPEN_VERSION, integer value indicating

version of the X/Open Portability Guide to which the

implementation conforms.

In addition to the symbols exposed by _XOPEN_SOURCE, the following

are visible when _XOPEN_SOURCE_EXTENDED is defined to be 1:

_SC_PAGE_SIZE

Returns the current page size in bytes.

sysconf

2112 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|
|
|

|
|
|
|

|
|

_SC_PAGESIZE

Returns the current page size in bytes.

In addition to the symbols exposed by _POSIX_SOURCE, the following are

visible when _POSIX_C_SOURCE is defined to be 2:

_SC_2_C_BIND

Represents _POSIX2_C_BIND, the implementation

supports the C-Language Binding option.

_SC_2_C_DEV

Represents _POSIX2_C_DEV, the implementation supports

the C-Language Development Utilities option.

_SC_2_LOCALEDEF

Represents _POSIX2_LOCALEDEF, the implementation

supports the creation of locales by the localedef utility.

_SC_2_UPE Represents _POSIX2_UPE, the implementation supports

the User Portability Utilities option. .

_SC_2_VERSION

Represents _POSIX2_VERSION, integer value indicating

version of the Shell and Utilities to which the

implementation conforms.

In addition to the symbols exposed by _POSIX_C_SOURCE defined to be

2, the following are visible when _POSIX_C_SOURCE is defined to be

200112L:

_SC_HOST_NAME_MAX

Represents HOST_NAME_MAX, Maximum length of a host

name (not including the terminating null) as returned from

the gethostname() function.

_SC_IPV6 Represents _POSIX_IPV6, the implementation supports the

IPv6 option.

_SC_LOGIN_NAME_MAX

Represents LOGIN_NAME_MAX, Maximum length of a

login name.

_SC_READER_WRITER_LOCKS

Represents _POSIX_READER_WRITER_LOCKS, the

implementation supports the Read-Write Locks option. This

is always set to a value greater than zero if the Threads

option is supported.

_SC_REGEXP

Represents _POSIX_REGEXP, the implementation supports

the Regular Expression Handling option.

_SC_SHELL Represents _POSIX_SHELL, the implementation supports

the POSIX shell.

_SC_SYMLOOP_MAX

Represents SYMLOOP_MAX, maximum number of

symbolic links that can be reliably traversed in the

resolution of a pathname in the absence of a loop.

sysconf

Chapter 3. Part 3. Library Functions 2113

|
|

|
|
|

|
|
|

|
|
|

||
|

|
|
|
|

|
|
|

|
|
|
|

||
|

|
|
|

|
|
|
|
|

|
|
|

||
|

|
|
|
|

_SC_THREAD_ATTR_STACKSIZE

Represents _POSIX_THREAD_ATTR_STACKSIZE, the

implementation supports the Thread Stack Size Attribute

option.

_SC_THREAD_KEYS_MAX

Represents PTHREAD_KEYS_MAX, maximum number of

data keys that can be created by a process.

_SC_THREAD_PROCESS_SHARED

Represents _POSIX_THREAD_PROCESS_SHARED, the

implementation supports the Thread Process-Shared

Synchronization option.

_SC_THREAD_SAFE_FUNCTIONS

Represents _POSIX_THREAD_SAFE_FUNCTIONS, the

implementation supports the Thread-Safe Functions option.

_SC_THREAD_STACK_MIN

Represents PTHREAD_STACK_MIN, minimum size in

bytes of thread stack storage.

_SC_THREAD_THREADS_MAX

Represents PTHREAD_THREADS_MAX, maximum number

of threads that can be created per process.

_SC_THREADS

Represents _POSIX_THREADS, the implementation

supports the Threads option.

_SC_TTY_NAME_MAX

Represents TTY_NAME_MAX, maximum length of terminal

device name.

_SC_V6_ILP32_OFF32

Represents _POSIX_V6_ILP32_OFF32, the implementation

provides a C-language compilation environment with 32-bit

int, long, pointer, and off_t types.

_SC_V6_ILP32_OFFBIG

Represents _POSIX_V6_ILP32_OFFBIG, the

implementation provides a C-language compilation

environment with 32-bit int, long, and pointer types and an

off_t type using at least 64 bits.

_SC_V6_LP64_OFF64

Represents _POSIX_V6_LP64_OFF64, the implementation

provides a C-language compilation environment with 32-bit

int and 64-bit long, pointer, and off_t types.

_SC_V6_LPBIG_OFFBIG

Represents _POSIX_V6_LPBIG_OFFBIG, the

implementation provides a C-language compilation

environment with an int type using at least 32 bits and long,

pointer, and off_t types using at least 64 bits.

_SC_XOPEN_LEGACY

Represents _XOPEN_LEGACY, the implementation

supports the Legacy Option Group.

sysconf

2114 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

Returned Value

If successful, sysconf() returns the value associated with the specified option.

If the variable corresponding to name exists but is not supported by the system,

sysconf() returns −1 but does not change the value of errno. If sysconf() fails in

some other way, it returns −1.

If unsuccessful, sysconf() sets errno to one of the following values:

Error Code Description

EINVAL The value specified for the name argument is incorrect.

Example

CELEBS61

/* CELEBS61

 This example determines the value of ARG_MAX.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <unistd.h>

#include <errno.h>

main() {

 long result;

 errno = 0;

 puts("examining ARG_MAX limit");

 if ((result = sysconf(_SC_ARG_MAX)) == −1)

 if (errno == 0)

 puts("ARG_MAX is not supported.");

 else perror("sysconf() error");

 else

 printf("ARG_MAX is %ld\n", result);

}

Output

examining ARG_MAX limit

ARG_MAX is 1048576

Related Information

v “unistd.h” on page 96

v “clock() — Determine Processor Time” on page 296

v “exec Functions” on page 486

sysconf

Chapter 3. Part 3. Library Functions 2115

syslog() — Send a Message to the Control Log

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <syslog.h>

void syslog(int priority, const char *message, ... /* argument */);

General Description

The syslog() function sends a message to an implementation-specific logging

facility, which loads it in an appropriate system log, writes it to the system console,

forwards it to a list of users, or forwards it to the logging facility on another host

over the network. The logged message includes a message header and a message

body. The message header consists of a facility indicator, a severity indicator, a

timestamp, a tag string, and optionally the process ID. The process ID is

surrounded by square brackets. The code point values for the square brackets are

taken from code page IBM-1047. The value for the left square bracket is 0xAD. The

value for the right square bracket is 0xBD.

The message body is generated from the message and following arguments in the

same manner as if these were arguments to the printf() function, except that

occurrences of %m in the format string pointed to by the message argument are

replaced by the error message string associated with the current value of errno. A

trailing newline character is added if needed.

Note: If the total length of the format string and the parameters is greater than

4096 bytes, then the results are undefined.

Values of the priority argument are formed by ORing together a severity level

values and an option facility value. If no facility value is specified, the current default

facility value is used. Possible values of severity level include:

LOG_ALERT A condition that should be corrected immediately, such as a

corrupted system database.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_DEBUG Messages that contain information normally of use only when

debugging a program.

LOG_EMERG A Panic condition. This is normally broadcast to all processes.

LOG_ERR Errors.

LOG_INFO Informational messages.

LOG_NOTICE Conditions that are not error conditions, but that may require

special handling.

LOG_WARNING

Warning messages.

syslog

2116 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|
|
|
|
|
|

The facility indicates the application or system component generating the message.

Possible facility values include:

LOG_USER Message generated by random processes. This is the default facility

identifier if none is specified.

LOG_LOCAL0 Reserved for local use.

LOG_LOCAL1 Reserved for local use.

LOG_LOCAL2 Reserved for local use.

LOG_LOCAL3 Reserved for local use.

LOG_LOCAL4 Reserved for local use.

LOG_LOCAL5 Reserved for local use.

LOG_LOCAL6 Reserved for local use.

LOG_LOCAL7 Reserved for local use.

Returned Value

syslog() returns no values.

Related Information

v “syslog.h” on page 87

v “closelog() — Close the Control Log” on page 304

v “fprintf(), printf(), sprintf() — Format and Write Data” on page 648

v “openlog() — Open the System Control Log” on page 1324

v “setlogmask() — Set the Mask for the Control Log” on page 1821

syslog

Chapter 3. Part 3. Library Functions 2117

system() — Execute a Command

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

int system(const char *string);

General Description

The system() function has two different behaviors. These behaviors are designated

as ANSI system() and POSIX system(). The ANSI system() behavior is based on

the ISO C standard definition of the function, whereas the POSIX system() behavior

is based on the POSIX standard definition. The ANSI system() behavior is used

when a) running POSIX(OFF) or b) when running POSIX(ON) and environment

variable __POSIX_SYSTEM is set to NO. Otherwise the POSIX system() behavior

is used.

Restriction:

1. The ANSI system() behavior is not supported for AMODE 64

applications. If the ANSI system() behavior is requested using

either mechanism described above, system() returns -1 and errno

is set to ENOSYS.

2. The system() function is not supported under CICS. If the string

argument is NULL, system() returns 0 since there is no command

processor under CICS, otherwise it returns -1.

ANSI system()

Note: In this section , MVS specifically refers to MVS batch (excluding batch

TSO/E), whereas TSO/E includes both batch TSO/E (IKJEFT01 as the

program specified on the JCL EXEC statement) and interactive TSO/E

(which is TSO/E at a terminal).

Using the ANSI system() function, you can call commands, EXECs, CLISTs, or

executable modules under MVS and TSO/E. You cannot use the ANSI system()

function to invoke z/OS UNIX services shell programs.

The string argument can take one of the two formats:

command-line

A string with TSO/E command line syntax:

command_name parm1 parm2 ...

Example:

system

2118 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

system("user_pgm1 1234 abcd xyz");

named-program

A string, of the following form, with no embedded blanks except in

the PARM area.

"PGM=program_name[,PARM=’....’]"

Example:

system("PGM=user_pgm1, PARM=’1234 abcd xyz’");

 If the string argument is in the command-line format, the system() function passes

the given string to the command processor, if available, for execution.

If the string argument is a named-program format, the system() function calls

program_name with the parameters following “PARM=”, if any.

The two formats are supported under both MVS and TSO/E, but not all targets can

be called from all environments. For example, TSO/E commands cannot be called

in an MVS environment. As a result, the two formats are equivalent under MVS, but

are different under TSO/E. The details of each are provided below. For maximum

portability when invoking executable modules under the different environments, use

the named-program format.

If the specified executable module is a z/OS XL C or z/OS XL C++ module, full

initialization and termination will be performed: including, but not limited to,

automatic closing of files and releasing of fetched modules. In addition, if the ANSI

system() call uses the named-program format under either MVS or TSO/E, or the

command-line format under MVS, information can be passed across the program

boundary using memory files. Memory files are not removed until either the highest

level (root) program in the call chain terminates or the clrmemf() function is used.

Standard streams are also shared in this environment.

MVS Considerations

Under MVS, the ANSI system() function accepts either command-line or

named-program format strings. However, the command-line string is restricted to

specifying only executable modules (that is, TSO/E commands, EXECs, and CLISTs

cannot be specified). Because of this restriction, both formats provide the same

functionality.

In the case of either a command-line or named-program string, the ANSI system()

function will search the usual MVS sources (STEPLIB/JOBLIB concatenation, Link

Pack Area (LPA), Extended Link Pack Area (ELPA), and the link libraries) for the

specified program name. The LINK SVC is used to give control to the program.

Under MVS, using ATTACH instead of ANSI system() will prevent you from sharing

memory files or standard streams between the programs.

TSO/E Considerations

Under TSO/E, the ANSI system() function accepts either command-line or

named-program format strings.

system

Chapter 3. Part 3. Library Functions 2119

Command-line format strings are presented to the TSO/E command processor and

can be used to execute user modules, TSO/E commands, EXECs or CLISTs. If

there is any ambiguity as to what is to be run when a command-line format string

is supplied, the hierarchy is:

1. TSO/E command or user module

2. CLIST or EXEC

Therefore, if a command-line format string is used and a CLIST or EXEC exists

with the same name as a TSO/E command or user module, the TSO/E EXEC

command must be used to specifically invoke the CLIST or EXEC.

If the command-line format string is used to call a user module, it effectively uses

ATTACH to execute the program. As with MVS, when using ATTACH, memory files

and standard streams are not shared between the programs. This is the reason that

named-program format strings should be used for maximum portability. The

named-program format provides the same memory file and standard stream

sharing in both the MVS and TSO/E environments.

Note:

1. If an executable module is placed in the STEPLIB or ISPLLIB (under

ISPF), TSO/E will allow the module to be activated as a command.

Recall from the discussion above, that, if a CLIST or EXEC has the

same name, the module would be activated first, due to the hierarchy

rules. Activating a module as a command involves a different input

interface. If required, you can use the CALL command to activate a

module that is not prepared to take the TSO/E command input format.

z/OS XL C and z/OS XL C++ modules can be called as TSO/E

commands.

2. A module that exists in the Link Pack Area (LPA) or Extended Link Pack

Area (ELPA) and not in the STEPLIB concatenation (ISPLLIB on ISPF)

will not be activated as a TSO/E command, and is treated as an

executable module.

Named-program format strings are not presented to the TSO/E command

processor and can only be used to execute user modules.

POSIX system()

Using the POSIX system() function, you can call z/OS UNIX services shell

programs. You cannot use the POSIX system() function to call commands, EXECs,

CLISTs, or executable modules under MVS and TSO/E.

The POSIX system() function passes string to the sh shell command for execution.

The environment is established by the run-time library through a spawn() of the

shell.

The POSIX system() function ignores the SIGINT and SIGQUIT signals, and blocks

the SIGCHILD signal while it waits for the command specified by string argument to

end.

Special Considerations for POSIX C

system() has these additional considerations:

v A program running with POSIX(ON) can call another program that will also use

POSIX(ON) only if the calling program uses the POSIX system() function to

system

2120 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

invoke the called program out of the shell. Using the ANSI system() function to

call a program that will also use POSIX(ON) will result in message CEE3648S

being issued, followed by ABENDU4093-AC.

v A program running with POSIX(ON) can receive signals other than SIGINT,

SIGQUIT, or SIGCHLD while the POSIX system() function is waiting for the shell

command to complete. If there is a signal catcher registered for the signal, it will

be invoked immediately. If the signal catcher calls siglongjmp() or setcontext() to

pass control back to the application, the SIGINT and SIGQUIT signals will remain

ignored, and the SIGCHLD signal will remain blocked.

v If the calling program is the child of a forked process, it cannot use the ANSI

system() function to run TSO/E commands since the TSO/E address space is not

available.

v If the calling program was invoked using one of the exec or spawn functions, it

cannot use the ANSI system() function to run TSO/E commands since the TSO/E

address space is not available.

v The system() function is not thread-safe. It cannot be called simultaneously from

more than one thread. A multithreaded application must ensure that no more than

one system() call is ever outstanding from the various threads. Results are

undefined if this restriction is violated..

v When using a signal handler and setting the default handler for SIGCHLD to be

SIG_IGN, an errno value of ECHILD will be returned. This is due to the speed at

which the process executes and finishes before system() can call waitpid() to

wait for the child process to end. In this case, the ECHILD can be ignored

because the process has already completed successfully and returned.

Note: If an application invokes a z/OS UNIX service shell command or utility that

performs terminal I/O, the command may fail due to the z/OS UNIX services

shell file descriptors not being initialized. UNIX files for terminal I/O must be

defined. An example of how these can be defined in a C application are as

follows:

stdin = fopen("/tmp/sys.stdin","r");

stdout = fopen("/tmp/sys.stdout","w");

stderr = fopen("/tmp/sys.stderr","w");

See z/OS XL C/C++ applications with z/OS UNIX System Services C functions in

topic 1.9 for more information about using POSIX support.

Mixed environments across an ANSI system() call

The mixing of z/OS Language Environment, C/370 Library Version 1 or Version 2,

and System Programming C (SPC) environments across a system() call is not

supported. Whichever of these environments is active when the first system() call is

made is the only one that is tolerated in the system() call chain. Results are

undefined if this restriction is violated.

Returned Value

If the string argument is a NULL pointer, the system() function returns nonzero if a

command processor exists, or 0 if one does not exist.

MVS considerations

The returned value from ANSI system() will be that from the user module, if

successfully called. If system() cannot call the specified module, the returned value

is -1 and errno is set appropriately.

system

Chapter 3. Part 3. Library Functions 2121

TSO/E Considerations

The returned value from ANSI system() will be nonzero if the command processor

cannot execute the command or user module. The macros __abendcode() and

__rsncode() will contain the abend code and reason code from a failing TSO/E

command, EXEC, or CLIST.

POSIX Considerations

If the string argument is a NULL pointer, the POSIX system() function returns

nonzero. If the string argument is not NULL, the POSIX system() function returns

the termination status of the command language interpreter in the format specified

by waitpid(). If a child process cannot be created, or if the termination status for the

command language interpreter cannot be obtained, system() returns -1.

Note: When using a signal handler and setting the default handler for SIGCHLD to

be SIG_IGN, an errno value of ECHILD will be returned. This is due to the

speed at which the process executes and finishes before system() can call

waitpid() to wait for the child process to end. In this case, the ECHILD can

be ignored because the process has already completed successfully and

returned.

If system() returns -1, errno may be set to one of the following:

Error Code Description

EAGAIN There are insufficient resources to create another process, or the

maximum number of processes you can run has been reached.

ECHILD The new process finished before system() could call waitpid() to

wait for the child process to end. This error can be ignored because

the child process has already completed successfully and returned.

ENOMEM The process requires more space than is available.

ENOSYS The ANSI system() function was requested from an AMODE 64

application.

Example

/* This example illustrates how to use system() to execute a command which

 returns the time. The example works only under TSO.

 */

#include <stdlib.h>

int main(void)

{

 int rc;

 rc = system("time");

 exit(0);

}

/* This example may only be used in a POSIX program. */

#include <stdlib.h>

int main(void)

{

 int result;

 result = system("date | tee result.log");

}

system

2122 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “stdlib.h” on page 85

v “clrmemf() — Clear Memory Files” on page 305

v “signal() — Handle Interrupts” on page 1917

system

Chapter 3. Part 3. Library Functions 2123

t_accept() — Accept a Connect Request

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_accept(int fd, int resfd, struct t_call *call);

General Description

t_accept() is issued by a transport user to accept a connect request. The parameter

fd identifies the local transport endpoint where the connect indication arrived. resfd

specifies the local transport endpoint where the connection is to be established, and

call contains information required by the transport provider to complete the

connection. The parameter call points to a t_call structure which contains the

following members:

 struct netbuf addr;

 struct netbuf opt;

 struct netbuf udata;

 int sequence;

In call, addr is the protocol address of the calling transport user. opt indicates any

options associated with the connection. udata points to any user data to be returned

to the caller, and sequence is the value returned by t_listen() that uniquely

associates the response with a previously received connect indication. The address

of the caller, addr may be NULL (length zero). Where addr is not NULL, then it may

optionally be checked by XTI.

A transport user may accept a connection on either the same, or on a different,

local transport endpoint than the one on which the connect indication arrived.

Before the connection can be accepted on the same endpoint (resfd==fd), the user

must have responded to any previous connect indications received on that transport

endpoint (using t_accept() or t_snddis()). Otherwise, t_accept() fails and sets

t_errno to TINDOUT.

If a different transport endpoint is specified (resfd!=fd), then the user may or may

not choose to bind the endpoint before the t_accept() is issued. If the endpoint is

not bound before the t_accept(), then the transport provider will automatically bind it

to the same protocol address fd is bound to. If the transport user chooses to bind

the endpoint it must be bound to a protocol address with a qlen of zero and must

be in the T_IDLE state before the t_accept() is issued.

The call to t_accept() will fail with t_errno set to TLOOK if there are indications (for

example, connect or disconnect) waiting to be received on the endpoint fd.

Return of user data over a connection accept is not supported under TCP, so the

udata field is always meaningless.

t_accept

2124 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

When the user does not indicate any option (call->opt.len == 0) it is assumed that

the connection is to be accepted unconditionally. The transport provider may choose

options other than the defaults to ensure that the connection is accepted

successfully.

Due to implementation restrictions, behavior is undefined if a different process

accepts a connection pending on an endpoint than obtained it (with t_listen).

Valid States

fd: T_INCON resfd (fd!=resfd): T_IDLE

Returned Value

If successful, t_accept() returns 0.

If unsuccessful, t_accept() returns -1 and sets t_errno to one of the following

values:

Error Code Description

TACCES The user does not have permission to accept a connection on the

responding transport endpoint or to use the specified options.

TBADADDR The specified protocol address was in an incorrect format or

contained illegal information.

TBADDATA The amount of user data specified was not within the bounds

allowed by the transport provider.

TBADF The file descriptor fd or resfd does not refer to a transport endpoint.

TBADOPT The specified options were in an incorrect format or contained

illegal information.

TBADSEQ An invalid sequence number was specified.

TINDOUT The function was called with fd==resfd but there are outstanding

connection indications on the endpoint. Those other connection

indications must be handled either by rejecting them using t_snddis

(3) or accepting them on a different endpoint using t_accept (3).

TLOOK An asynchronous event has occurred on the transport endpoint

referenced by fd and requires immediate attention.

TNOTSUPPORT

This function is not supported by the underlying transport provider.

TOUTSTATE The function was called in the wrong sequence on the transport

endpoint referenced by fd, or the transport endpoint referred to by

resfd is not in the appropriate state.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TPROVMISMATCH

The file descriptors fd and resfd do not refer to the same transport

provider.

TRESADDR This transport provider requires both fd and resfd to be bound to

the same address. This error results if they are not.

t_accept

Chapter 3. Part 3. Library Functions 2125

TRESQLEN The endpoint referenced by resfd (where resfd != fd) was bound to

a protocol address with a qlen that is greater than 0.

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_connect() — Establish a Connection with Another Transport User” on page

2156

v “t_getstate() — Get the Current State” on page 2203

v “t_listen() — Listen for a Connect Indication” on page 2211

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_optmgmt() — Manage Options for a Transport Endpoint” on page 2232

v “t_rcvconnect() — Receive the Confirmation from a Connect Request” on page

2244

t_accept

2126 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

takesocket() — Acquire a Socket from Another Program

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/types.h>

#include <socket.h>

int takesocket(struct clientid *clientid, int sdesc);

General Description

The takesocket() function acquires a socket from another program. Typically, the

other program passes its client ID and socket descriptor, and/or process id (PID), to

your program through your program’s startup parameter list.

Parameter Description

clientid A pointer to the clientid of the application from which you are taking

a socket.

sdesc The descriptor of the socket to be taken.

If your program is using the PID to ensure integrity between givesocket() and

takesocket(), before issuing the takesocket() call, your program should set the

c_pid.pid field of the clientid structure to the PID of the giving program (that is,

program that issued the givesocket() call). This identifies the process from which

the socket is to be taken. If the c_reserved.type field of the clientid structure was

set to SO_CLOSE on the givesocket() call, c_close.SockToken of clientid structure

should be used as input to takesocket() instead of the normal socket descriptor.

See “givesocket() — Make the Specified Socket Available” on page 894 for a

description of the clientid structure.

Returned Value

If successful, takesocket() returns the new socket descriptor.

If unsuccessful, takesocket() returns -1 and sets errno to one of the following

values:

Error Code Description

EACCES The other application did not give the socket to your application.

EBADF The sdesc parameter does not specify a valid socket descriptor

owned by the other application, or the socket has already been

taken.

EFAULT Using the clientid parameter as specified would result in an attempt

to access storage outside the caller’s address space.

EINVAL The clientid parameter does not specify a valid client identifier.

Either the client process cannot be found, or the client exists, but

has no outstanding givesockets.

EMFILE The socket descriptor table is already full.

takesocket

Chapter 3. Part 3. Library Functions 2127

Related Information

v “sys/socket.h” on page 89

v “sys/types.h” on page 90

v “getclientid() — Get the Identifier for the Calling Application” on page 746

v “__getclientid() — Get the PID Identifier for the Calling Application” on page 748

v “givesocket() — Make the Specified Socket Available” on page 894

takesocket

2128 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_alloc() — Allocate a Library Structure

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

char *t_alloc(int fd, int struct_type, int fields);

General Description

Dynamically allocates memory for the various transport function argument structures

as specified below. t_alloc() allocates memory for the specified structure, and

memory for buffers referenced by the structure.

The structure to allocate is specified by struct_type and must be one of the

following:

 T_BIND struct t_bind

 T_CALL struct t_call

 T_OPTMGMT struct t_optmgmt

 T_DIS struct t_discon

 T_UNITDATA struct t_unitdata

 T_UDERROR struct t_uderr

 T_INFO struct t_info

where each of these structures may subsequently be used as an argument to one

or more transport functions.

Each of the above structures, except T_INFO, contains at least one field of type

struct netbuf. For each field of this type, the user may specify that the buffer for that

field should be allocated as well. The length of the buffer allocated will be equal to

or greater than the appropriate size as returned in the info argument of t_open() or

t_getinfo() . The relevant fields of the info argument are described in the following

list. The fields argument specifies which buffers to allocate, where the argument is

the bitwise OR of any of the following:

T_ADDR The addr field of the t_bind, t_call, t_unitdata or t_uderr structures.

T_OPT The opt field of the t_optmgmt, t_call, t_unitdata or t_uderr

structures.

T_UDATA The udata field of the t_call, t_discon or t_unitdata structures.

T_ALL All relevant fields of the given structure. Fields which are not

supported by the transport provider specified by fd will not be

allocated.

For each relevant field specified in fields, t_alloc() allocates memory for the buffer

associated with the field, and initializes the len field to zero and the buf pointer and

maxlen field accordingly. Irrelevant or unknown values passed in fields are ignored.

Since the length of the buffer allocated will be based on the same size information

that is returned to the user on a call to t_open() and t_getinfo(), fd must refer to the

transport endpoint through which the newly allocated structure will be passed. In

t_alloc

Chapter 3. Part 3. Library Functions 2129

this way the appropriate size information can be accessed. If the size value

associated with any specified field is -1 or -2 (see t_open() or t_getinfo()), t_alloc()

will be unable to determine the size of the buffer to allocate and will fail, setting

t_errno to TSYSERR and errno to EINVAL. For any field not specified in fields, buf will

be set to the NULL pointer and len and maxlen will be set to zero.

Use of t_alloc() to allocate structures helps ensure the compatibility of user

programs with future releases of the transport interface functions.

Valid States

All - except for T_UNINIT

Returned Value

If successful, t_alloc() returns a pointer to the newly allocated structure.

If unsuccessful, t_alloc() returns a NULL pointer and sets errno to one of the

following values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TNOSTRUCTYPE

Unsupported struct_type requested. This can include a request for a

structure type which is inconsistent with the transport provider type

specified, that is, connection-oriented or connectionless.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_free() — Free a Library Structure” on page 2197

v “t_getinfo() — Get Protocol-specific Service Information” on page 2200

v “t_open() — Establish a Transport Endpoint” on page 2230

t_alloc

2130 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tan(), tanf(), tanl() — Calculate Tangent

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double tan(double x);

float tan(float x); /* C++ only */

long double tan(long double x); /* C++ only */

float tanf(float x);

long double tanl(long double x);

General Description

Calculates the tangent of x, where x is expressed in radians. If x is large, a partial

loss of significance in the result can occur.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Returns the calculated tangent of x.

If the correct value would cause underflow, zero is returned. If the result overflows,

±HUGE_VAL is returned. For both underflow and overflow, the value ERANGE is

stored in errno.

Example

CELEBT01

/* CELEBT01

 This example computes x as the tangent of PI/4.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double pi, x;

 pi = 3.1415926;

 x = tan(pi/4.0);

 printf("tan(%lf) is %lf\n", pi/4, x);

}

tan, tanf, tanl

Chapter 3. Part 3. Library Functions 2131

||||

|
|
|
|
|
|
|

||

|

Output

tan(0.785398) is 1.000000

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent” on page 2133

tan, tanf, tanl

2132 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

ISO/ANSI C++

C99

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double tanh(double x);

float tanh(float x); /* C++ only */

long double tanh(long double x); /* C++ only */

float tanhf(float x);

long double tanhl(long double x);

General Description

Calculates the hyperbolic tangent of x, where x is expressed in radians. The result

of the function cannot have a range error.

Note: These functions work in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

Returns the calculated value of the hyperbolic tangent of x.

If the result underflows, the function returns 0 and sets the errno to ERANGE.

Example

CELEBT02

/* CELEBT02

 This example computes x as the hyperbolic tangent of PI/4.

 */

#define _POSIX_SOURCE

#include <math.h>

#include <stdio.h>

int main(void)

{

 double pi, x;

 pi = 3.1415926;

 x = tanh(pi/4);

 printf("tanh(%lf) = %lf\n", pi/4, x);

}

tanh, tanhf, tanhl

Chapter 3. Part 3. Library Functions 2133

||||

|
|
|
|
|
|
|

||

|

Output

tanh(0.785398) = 0.655794

Related Information

v “math.h” on page 60

v “acos(), acosf(), acosl() — Calculate Arccosine” on page 159

v “acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine” on page 161

v “asin(), asinf(), asinl() — Calculate Arcsine” on page 187

v “asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine” on page 189

v “atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent” on

page 192

v “atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent” on page 194

v “cos(), cosf(), cosl() — Calculate Cosine” on page 350

v “cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine” on page 354

v “sin(), sinf(), sinl() — Calculate Sine” on page 1951

v “sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine” on page 1955

v “tan(), tanf(), tanl() — Calculate Tangent” on page 2131

tanh, tanhf, tanhl

2134 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_bind() — Bind an Address to a Transport Endpoint

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_bind(int fd, struct t_bind *req, struct t_bind *ret);

General Description

Associates a protocol address with the transport endpoint specified by fd and

activates that transport endpoint. In connection mode, the transport provider may

begin enqueuing incoming connect indications, or servicing a connection request on

the transport endpoint. In connectionless mode, the transport user may send or

receive data units through the transport endpoint.

The req and ret arguments point to a t_bind structure containing the following

members:

 struct netbuf addr;

 unsigned qlen;

The addr field of the t_bind structure specifies a protocol address, and the qlen field

is used to indicate the maximum number of outstanding connect indications.

The parameter req is used to request that an address, represented by the netbuf

structure, be bound to the given transport endpoint. The parameter len specifies the

number of bytes in the address, and buf points to the address buffer. The parameter

maxlen has no meaning for the req argument. On return, ret contains the address

that the transport provider actually bound to the transport endpoint. This is the

same as the address specified by the user in req. In ret, the user specifies maxlen,

which is the maximum size of the address buffer, and buf which points to the buffer

where the address is to be placed. On return, len specifies the number of bytes in

the bound address, and buf points to the bound address. If maxlen is not large

enough to hold the returned address, an error results.

If the requested address is not available, t_bind() returns -1 with t_errno set as

appropriate. If no address is specified in req (the len field of addr in req is zero or

req is NULL), the transport provider will assign an appropriate address to be bound,

and will return that address in the addr field of ret. If the transport provider could not

allocate an address, t_bind() fails with t_errno set to TNOADDR.

The parameter req may be a NULL pointer if the user does not wish to specify an

address to be bound. Here, the value of qlen is assumed to be zero, and the

transport provider assigns an address to the transport endpoint. Similarly, ret may

be a NULL pointer if the user does not care what address was bound by the

provider and is not interested in the negotiated value of qlen. It is valid to set req

and ret to the NULL pointer for the same call, in which case the provider chooses

the address to bind to the transport endpoint and does not return that information to

the user.

t_bind

Chapter 3. Part 3. Library Functions 2135

The qlen field specifies the number of outstanding connect indications that the

transport provider should support for the given transport endpoint. An outstanding

connect indication is one that has been passed to the transport user by the

transport provider, but which has not been accepted or rejected. A value of qlen

greater than 0 is only meaningful when issued by a passive transport user that

expects other users to call it. The value of qlen will be negotiated by the transport

provider and will always be negotiated to 1 (one) from any nonzero value. On

return, the qlen field in ret will contain the negotiated value.

If fd refers to a connection-oriented service, then multiple endpoints my be bound to

the same protocol address by way of connections accepted on an endpoint using

t_accept. The TCP transport provider will not permit the user to explicitly bind

multiple endpoints to the same address. It is also not possible to bind an endpoint

to more than one protocol address. If a user attempts to explicitly bind multiple

endpoints to a protocol address, the second and subsequent binds will fail with

t_errno set to TADDRBUSY. When a user accepts a connection on the transport

endpoint that is being used as the listening endpoint, the bound protocol address

will be found to be busy for the duration of the connection, until a t_unbind() or

t_close() call has been issued. No other transport endpoints may be bound for

listening on that same protocol address while that initial listening endpoint is active

(in the data transfer phase or in the T_IDLE state). This prevents more than one

transport endpoint bound to the same protocol address from accepting connect

indications.

Valid States

T_UNBND

Returned Value

If successful, t_bind() returns 0.

If unsuccessful, t_bind() returns -1 and sets errno to one of the following values:

Error Code Description

TACCES The user does not have permission to use the specified address.

TADDRBUSY The requested address is in use.

TBADADDR The specified protocol address was in an incorrect format or

contained illegal information.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allowed for an incoming argument (maxlen) is

greater than 0 but not sufficient to store the value of that argument.

The provider’s state will change to T_IDLE and the information to

be returned in ret will be discarded.

TNOADDR The transport provider could not allocate an address.

TOUTSTATE The function was issued in the wrong sequence.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

t_bind

2136 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “xti.h” on page 100

v “t_alloc() — Allocate a Library Structure” on page 2129

v “t_close() — Close a Transport Endpoint” on page 2155

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_optmgmt() — Manage Options for a Transport Endpoint” on page 2232

v “t_unbind() — Disable a Transport Endpoint” on page 2276

t_bind

Chapter 3. Part 3. Library Functions 2137

tcdrain() — Wait Until Output Has Been Transmitted

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <termios.h>

int tcdrain(int fildes);

General Description

The tcdrain() function waits until all output sent to fildes has actually been sent to

the terminal device.

If tcdrain() is called from a background process group against the caller’s controlling

terminal, a SIGTTOU signal may be generated depending how the process is

handling SIGTTOUs:

 Processing for

SIGTTOU System Behavior

Default or signal

handler

The SIGTTOU signal is generated, and the function is not

performed. tcdrain() returns −1 and sets errno to EINTR.

Ignored or blocked The SIGTTOU signal is not sent, and the function continues

normally.

Returned Value

If successful, tcdrain() returns 0.

If unsuccessful, tcdrain() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINTR A signal interrupted tcdrain().

EIO The process group of the process issuing the function is an

orphaned, background process group, and the process issuing the

function is not ignoring or blocking SIGTTOU.

ENOTTY fildes is not associated with a terminal.

Example

CELEBT03

/* CELEBT03 */

#define _POSIX_SOURCE

#include <termios.h>

#include <stdio.h>

tcdrain

2138 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

#include <time.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

main() {

 char Master[]="master.tty";

 char Slave[]="slave.tty";

 char text[]="text to be written to tty";

 char data[80];

 int master, slave;

 time_t T;

 if (mknod(Master, S_IFCHR|S_IRUSR|S_IWUSR, 0x00010000 + 10) !=0)

 perror("mknod() error for master tty");

 else {

 if (mknod(Slave, S_IFCHR|S_IRUSR|S_IWUSR, 0x00020000 + 10) !=0)

 perror("mknod() error for slave tty");

 else {

 if ((master = open(Master, O_RDWR|O_NONBLOCK)) < 0)

 perror("open() error for master tty");

 else {

 if ((slave = open(Slave, O_RDWR|O_NONBLOCK)) < 0)

 perror("open() error for slave tty");

 else {

 if (fork() == 0) {

 if (write(slave, text, strlen(text)+1) == −1)

 perror("write() error");

 time(&T);

 printf("child has written to tty, tcdrain() started at %s",

 ctime(&T));

 if (tcdrain(slave) != 0)

 perror("tcdrain() error");

 time(&T);

 printf("tcdrain() returned at %s", ctime(&T));

 exit(0);

 }

 time(&T);

 printf("parent is starting nap at %s", ctime(&T));

 sleep(5);

 time(&T);

 printf("parent is done with nap at %s", ctime(&T));

 if (read(master, data, sizeof(data)) == −1)

 perror("read() error");

 else printf("read '%s' from the tty\n", data);

 sleep(5);

 close(slave);

 }

 close(master);

 }

 unlink(Slave);

 }

 unlink(Master);

 }

}

Output

parent is starting nap at Fri Jun 16 12:46:28 2001

child has written to tty, tcdrain() started at Fri Jun 16 12:46:28 2001

parent is done with nap at Fri Jun 16 12:46:34 2001

read ’text to be written to tty’ from the tty

tcdrain() returned at Fri Jun 16 12:46:34 2001

tcdrain

Chapter 3. Part 3. Library Functions 2139

Related Information

v “termios.h” on page 92

v “tcflow() — Suspend or Resume Data Flow on a Terminal” on page 2141

v “tcflush() — Flush Input or Output on a Terminal” on page 2144

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcgetpgrp() — Get the Foreground Process Group ID” on page 2152

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

v “tcsendbreak() — Send a Break Condition to a Terminal” on page 2161

v “tcsetpgrp() — Set the Foreground Process Group ID” on page 2179

tcdrain

2140 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tcflow() — Suspend or Resume Data Flow on a Terminal

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <termios.h>

int tcflow(int fildes, int action);

General Description

Suspends or resumes transmission or reception of data on a terminal device.

int fildes

A file descriptor associated with a terminal device.

int action

Indicates the action you want to perform, represented by one of the

following symbols defined in the termios.h include file:

Symbol Meaning

TCOOFF Suspends output.

TCOON Resumes suspended output.

TCIOFF Sends a STOP character to the terminal, to stop the

terminal from sending any further input.

TCION Sends a START character to the terminal, to tell the

terminal that it can resume sending input.

If tcflow() is called from a background process group against the caller’s controlling

terminal, a SIGTTOU signal may be generated depending how the process is

handling SIGTTOUs:

 Processing for

SIGTTOU System Behavior

Default or signal

handler

The SIGTTOU signal is generated, and the function is not

performed. tcflow() returns −1 and sets errno to EINTR.

Ignored or blocked The SIGTTOU signal is not sent, and the function continues

normally.

Returned Value

If successful, tcflow() returns 0.

If unsuccessful, tcflow() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

tcflow

Chapter 3. Part 3. Library Functions 2141

||||

|
|
|
|

||

|

EINTR A signal interrupted tcflow().

EINVAL action had an incorrect value.

EIO For either of the following reasons:

v TCIOFF or TCION was requested, but the other side of the

pseudoterminal connection is closed.

v The process group of the process issuing the function is an

orphaned, background process group, and the process issuing

the function is not ignoring or blocking SIGTTOU.

ENOTTY fildes is not associated with a terminal.

Example

CELEBT04

/* CELEBT04

 This example suspends and then resumes transmission.

 */

 #define _POSIX_SOURCE

 #include <termios.h>

 #include <stdio.h>

 #include <fcntl.h>

 #include <unistd.h>

 #include <sys/stat.h>

 main() {

 char Master[]="/dev/ptyp0010";

 char Slave[]="/dev/ttyp0010";

 char text[]="tesxt to be written to tty";

 char data[80];

 int master, slave;

 if ((master = open(Master, O_RDWR|O_NONBLOCK)) < 0) {

 perror("open() error for master tty");

 exit(1);

 }

 if ((slave = open(Slave, O_RDWR|O_NONBLOCK)) < 0) {

 perror("open() error for slave tty");

 exit(1);

 if (write(slave, text, strlen(text)+1) == −1) {

 perror("write() error");

 exit(1);

 }

 puts("output is suspended to tty");

 if (read(master, data, sizeof(data)) == −1)

 perror("read() error");

 else printf("read '%s' from the tty\n", data);

 if (tcflow(slave, TCOON) != 0)

 perror("tcflow() error");

 exit(1);

 }

 puts("output is resumed to tty");

 if (read(master, data, sizeof(data)) == −1) {

 perror("read() error");

 exit(1);

 }

 printf("read '%s' from the tty\n", data);

 close(slave);

 close(master);

 }

Output

tcflow

2142 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

output is suspended to tty

read() error: Resource temporarily unavailable

output is resumed to tty

read ’text to be written to tty’ from the tty

Related Information

v “termios.h” on page 92

v “tcdrain() — Wait Until Output Has Been Transmitted” on page 2138

v “tcflush() — Flush Input or Output on a Terminal” on page 2144

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcgetpgrp() — Get the Foreground Process Group ID” on page 2152

v “tcsendbreak() — Send a Break Condition to a Terminal” on page 2161

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

v “tcsetpgrp() — Set the Foreground Process Group ID” on page 2179

tcflow

Chapter 3. Part 3. Library Functions 2143

tcflush() — Flush Input or Output on a Terminal

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <termios.h>

int tcflush(int fildes, int where);

General Description

Flushes input or output on a terminal.

int fildes; Indicates a file descriptor associated with a terminal device.

int where; Indicates whether the system is to flush input or output, represented

by one of the following symbols defined in the termios.h header file.

Symbol Meaning

TCIFLUSH Flushes input data that has been received by the

system but not read by an application.

TCOFLUSH Flushes output data that has been written by an

application but not sent to the terminal.

TCIOFLUSH Flushes both input and output data.

If tcflush() is called from a background process group against the caller’s controlling

terminal, a SIGTTOU signal may be generated depending how the process is

handling SIGTTOUs:

 Processing for

SIGTTOU System Behavior

Default or signal

handler

The SIGTTOU signal is generated, and the function is not

performed. tcflush() returns −1 and sets errno to EINTR.

Ignored or blocked The SIGTTOU signal is not sent, and the function continues

normally.

Returned Value

If successful, tcflush() returns 0.

If unsuccessful, tcflush() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINTR A signal interrupted tcflush().

EINVAL where has an incorrect value.

tcflush

2144 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

EIO The process group of the process issuing the function is an

orphaned, background process group, and the process issuing the

function is not ignoring or blocking SIGTTOU.

ENOTTY fildes is not associated with a terminal.

Example

CELEBT05

/* CELEBT05

 This example flushes a string.

 */

#define _POSIX_SOURCE

#include <termios.h>

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

main() {

 char Master[]="master.tty";

 char Slave[]="slave.tty";

 char text1[]="string that will be flushed from buffer";

 char text2[]="string that will not be flushed from buffer";

 char data[80];

 int master, slave;

 if (mknod(Master, S_IFCHR|S_IRUSR|S_IWUSR, 0x00010000 + 10) != 0)

 perror("mknod() error for master tty");

 else {

 if (mknod(Slave, S_IFCHR|S_IRUSR|S_IWUSR, 0x00020000 + 10) != 0)

 perror("mknod() error for slave tty");

 else {

 if ((master = open(Master, O_RDWR|O_NONBLOCK)) < 0)

 perror("open() error for master tty");

 else {

 if ((slave = open(Slave, O_RDWR|O_NONBLOCK)) < 0)

 perror("open() error for slave tty");

 else {

 if (write(slave, text1, strlen(text1)+1) == −1)

 perror("write() error");

 else if (tcflush(slave, TCOFLUSH) != 0)

 perror("tcflush() error");

 else {

 puts("first string is written and tty flushed");

 puts("now writing string that will not be flushed");

 if (write(slave, text2, strlen(text2)+1) == −1)

 perror("write() error");

 else if (read(master, data, sizeof(data)) == −1)

 perror("read() error");

 else printf("read '%s' from the tty\n", data);

 }

 close(slave);

 }

 close(master);

 }

 unlink(Slave);

 }

 unlink(Master);

 }

}

Output

tcflush

Chapter 3. Part 3. Library Functions 2145

first string is written and tty flushed

now writing string that will not be flushed

read ’string that will not be flushed from buffer’ from the tty

Related Information

v “termios.h” on page 92

v “tcdrain() — Wait Until Output Has Been Transmitted” on page 2138

v “tcflow() — Suspend or Resume Data Flow on a Terminal” on page 2141

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcgetpgrp() — Get the Foreground Process Group ID” on page 2152

v “tcsendbreak() — Send a Break Condition to a Terminal” on page 2161

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

v “tcsetpgrp() — Set the Foreground Process Group ID” on page 2179

tcflush

2146 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tcgetattr() — Get the Attributes for a Terminal

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <termios.h>

int tcgetattr(int fildes, struct termios *termptr);

General Description

Gets a termios structure, which contains control information for a terminal

associated with fildes. It stores that information in a memory location that termptr

points to. The contents of a termios structure are described in “tcsetattr() — Set the

Attributes for a Terminal” on page 2163.

tcgetattr() can run in either a foreground or background process; however, if the

process is in the background, a foreground process may subsequently change the

attributes.

tcgetattr() only works in an environment where either a controlling terminal exists, or

stdin and stderr refer to tty devices. Specifically, it does not work in a TSO

environment.

Note: The tcgetattr() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, tcgetattr() returns 0.

If unsuccessful, tcgetattr() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

ENOTTY The file associated with fildes is not a terminal.

Example

CELEBT06

/* CELEBT06

 This example provides information about the attributes.

 */

#define _POSIX_SOURCE

#include <termios.h>

#include <stdio.h>

#include <unistd.h>

tcgetattr

Chapter 3. Part 3. Library Functions 2147

||||

|
|
|
|

||

|

main() {

 struct termios term;

 if (tcgetattr(STDIN_FILENO, &term) != 0)

 perror("tcgetatt() error");

 else {

 if (term.c_iflag & BRKINT)

 puts("BRKINT is set");

 else

 puts("BRKINT is not set");

 if (term.c_cflag & PARODD)

 puts("Odd parity is used");

 else

 puts("Even parity is used");

 if (term.c_lflag & ECHO)

 puts("ECHO is set");

 else

 puts("ECHO is not set");

 printf("The end−of−file character is x'%02x'\n",

term.c_cc[VEOF]);

 }

}

Output

ECHO is set

The End Of File character is x’37’

Related Information

v “termios.h” on page 92

v “cfgetispeed() — Determine the Input Baud Rate” on page 258

v “cfgetospeed() — Determine the Output Baud Rate” on page 261

v “cfsetispeed() — Set the Input Baud Rate in the Termios” on page 263

v “cfsetospeed() — Set the Output Baud Rate in the Termios” on page 265

v “tcdrain() — Wait Until Output Has Been Transmitted” on page 2138

v “tcflow() — Suspend or Resume Data Flow on a Terminal” on page 2141

v “tcflush() — Flush Input or Output on a Terminal” on page 2144

v “tcgetpgrp() — Get the Foreground Process Group ID” on page 2152

v “tcsendbreak() — Send a Break Condition to a Terminal” on page 2161

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

v “tcsetpgrp() — Set the Foreground Process Group ID” on page 2179

tcgetattr

2148 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__tcgetcp() — Get Terminal Code Page Names

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#define _OPEN_SYS_PTY_EXTENSIONS

#include <termios.h>

int __tcgetcp(int fildes, size_t termcplen, struct __termcp *termcpptr);

General Description

The __tcgetcp() function gets the terminal session code page information contained

in the termcp structure and the Code Page Change Notification (CPCN) capability

for the terminal file.

The following arguments are used:

fildes The file descriptor of the terminal for which you want to get the

code page names and CPCN capability.

termcplen The length of the passed termcp structure.

termcpptr A pointer to a __termcp structure.

__tcgetcp() stores the termcp information in a memory location pointed to by

termcpptr. The return value contains the CPCN capability. The following CPCN

capabilities are defined:

Symbol Meaning

_CPCN_NAMES

Forward code page names only

 Use the __tcsetcp() function to change the terminal session data

conversion. The z/OS UNIX System Services pseudotty device

driver supports this CPCN capability.

_CPCN_TABLES

Forward code page names and tables

 Use __tcsettables() to change the terminal session data conversion.

The OCS remote-tty device driver supports this CPCN capability.

In the returned termcp structure, if the _TCCP_FASTP bit is set then the data

conversion that is specified by the source and target code page names can be

performed locally by the data conversion application. This is valid any time that a

table-driven conversion can be performed. For example, the data conversion point

(application) could use the z/OS UNIX System Services iconv() service to build local

data conversion tables and perform all data conversion using the local tables

instead of using iconv() all in subsequent conversions. This provides for

better-performing data conversion.

__tcgetcp

Chapter 3. Part 3. Library Functions 2149

In the returned termcp structure, if the _TCCP_BINARY bit is set then no data

conversion is being performed and the code page names contained in the termcp

structure should be ignored.

__tcgetcp() can run in either a foreground or background process; however, if the

process is in the background, a foreground process may subsequently change the

terminal code pages.

Note: The __tcgetcp() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, __tcgetcp() returns the termcp structure in a memory location pointed

to by termcpptr. The return value contains the CPCN capability.

If unsuccessful, __tcgetcp() returns −1 and sets errno to one of the following

values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINVAL The value of termcplen was invalid.

ENODEV One of the following error conditions exist:

v The terminal device driver does not support CPCN functions.

v CPCN functions have not been enabled.

For an z/OS UNIX System Services pseudotty terminal device

file, issue the __tcsetcp() function against the master pty first to

enable CPCN support.

ENOTTY The file associated with fildes is not a terminal device.

Example

The following example retrieves the current code pages used in the data conversion

and CPCN capability. Here, the __tcgetcp() function is issued against a session

using a pty terminal device; ISO8859-1 and IBM-1047 code pages are being used.

#define _OPEN_SYS_PTY_EXTENSIONS

#include <unistd.h>

#include <stdio.h>

#include <fcntl.h>

#include <termios.h>

void main(void)

{

 struct __termcp mytermcp;

 int rv;

 int cterm_fd;

 if ((cterm_fd = open("/dev/tty",O_RDWR)) == -1)

 printf("No controlling terminal established.\n");

 else {

 if ((rv = __tcgetcp(cterm_fd,sizeof(mytermcp),&mytermcp))== -1)

 perror("__tcgetcp() error");

 else {

 if (_CPCN_NAMES == rv)

 printf("Forward Code Page Names Only.\n");

 else

 printf("Forward Code Page Names and Tables.\n");

 if (_TCCP_BINARY == (mytermcp.__tccp_flags & _TCCP_BINARY))

 printf("Binary mode is in effect.\n");

__tcgetcp

2150 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

else {

 printf("ASCII code page name is %s.\n",

 mytermcp.__tccp_fromname);

 printf("EBCIDC code page name is %s.\n",

 mytermcp.__tccp_toname);

 }

 }

 close(cterm_fd);

 }

} /* main */

Output

Forward code page names only.

ASCII code page name is ISO8859-1.

EBCDIC code page name is IBM-1047.

Related Information

v “termios.h” on page 92

v “__tcsetcp() — Set Terminal Code Page Names” on page 2175

v “__tcsettables() — Set Terminal Code Page Names and Conversion Tables” on

page 2182

__tcgetcp

Chapter 3. Part 3. Library Functions 2151

tcgetpgrp() — Get the Foreground Process Group ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

pid_t tcgetpgrp(int fildes);

General Description

Gets the process group ID (PGID) of the foreground process group associated with

the terminal referred to by fildes. tcgetpgrp() can run from a background process,

but the information may subsequently be changed by a process in the foreground

process group.

Returned Value

If successful, tcgetpgrp() returns of the foreground process group’s PGID.

If unsuccessful, tcgetpgrp() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

ENOTTY The calling process does not have a controlling terminal, or the file

is not the controlling terminal.

Example

CELEBT07

/* CELEBT07

 This example gets the foreground PGID.

 */

#define _POSIX_SOURCE

#include <termios.h>

#include <unistd.h>

#include <sys/wait.h> /*FIX: was #include <sys/wait.h> */

#include <stdio.h>

main() {

 pid_t pid;

 if ((pid = tcgetpgrp(STDOUT_FILENO)) < 0)

 perror("tcgetpgrp() error");

 else

 printf("the foreground process group id of stdout is %d\n",

 (int) pid);

}

tcgetpgrp

2152 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

Output

the foreground process group id of stdout is 4063240

Related Information

v “unistd.h” on page 96

v “setpgid() — Set Process Group ID for Job Control” on page 1826

v “setsid() — Create Session, Set Process Group ID” on page 1841

v “tcdrain() — Wait Until Output Has Been Transmitted” on page 2138

v “tcflow() — Suspend or Resume Data Flow on a Terminal” on page 2141

v “tcflush() — Flush Input or Output on a Terminal” on page 2144

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcsendbreak() — Send a Break Condition to a Terminal” on page 2161

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

v “tcsetpgrp() — Set the Foreground Process Group ID” on page 2179

tcgetpgrp

Chapter 3. Part 3. Library Functions 2153

tcgetsid() — Get Process Group ID for Session Leader for Controlling

Terminal

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <termios.h>

pid_t tcgetsid(int fildes);

General Description

The tcgetsid() obtains the process group ID of the session for which the terminal

specified by fildes is the controlling terminal.

Returned Value

If successful, tcgetsid() returns the process group ID associated with the terminal.

If unsuccessful, tcgetsid() returns (pid_t)-1 and sets errno to one of the following

values:

Error Code Description

EACCES The fildes argument is not associated with a controlling terminal. If

the environment variable _EDC_SUSV3 is set to 1, ENOTTY will be

returned instead of EACCES.

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The calling process does not have a controlling terminal, or the file

is not the controlling terminal.

Note: Starting with z/OS V1.9, environment variable _EDC_SUSV3

can be used to control the behavior of tcgetsid() with respect

to setting errno to ENOTTY instead of EACCES. By default,

tcgetsid() will set EACESS when fildes is not associated with

a controlling terminal. When _EDC_SUSV3 is set to 1,

setenv() will set errno to ENOTTY in place of EACCES.

Related Information

v “termios.h” on page 92

tcgetsid

2154 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

||
|
|

|
|

|
|
|
|
|
|

t_close() — Close a Transport Endpoint

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_close(int fd);

General Description

Informs the transport provider that the user is finished with the transport endpoint

specified by fd, and frees any local library resources associated with the endpoint.

t_close() also closes the file associated with the transport endpoint.

t_close() should be called from the T_UNBND state. However, t_close() does not

check state information, so it may be called from any state to close a transport

endpoint. If this occurs, the local library resources associated with the endpoint are

freed automatically. In addition, close() is issued for that file descriptor. The close()

will be abortive if there are no other descriptors in this, or in another process which

references the transport endpoint, and in this case will break any transport

connection that may be associated with that endpoint.

A t_close() issued on a connection endpoint may cause data previously sent, or

data not yet received, to be lost. It is the responsibility of the transport user to

ensure that data is received by the remote peer.

Valid States

All - except for T_UNINIT

Returned Value

If successful, t_close() returns 0.

If unsuccessful, t_close() returns -1 and sets errno to one of the following values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

Related Information

v “xti.h” on page 100

v “t_getstate() — Get the Current State” on page 2203

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_unbind() — Disable a Transport Endpoint” on page 2276

t_close

Chapter 3. Part 3. Library Functions 2155

t_connect() — Establish a Connection with Another Transport User

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_connect(int fd, struct t_call *call, struct t_call *rcvcall);

General Description

Enables a transport user to request a connection to the specified destination

transport user. This function can only be issued in the T_IDLE state. The parameter

fd identifies the local transport endpoint where communication will be established,

while sndcall and rcvcall point to a t_call structure which contains the following

members:

 struct netbuf addr;

 struct netbuf opt;

 struct netbuf udata;

 int sequence;

The parameter sndcall specifies information needed by the transport provider to

establish a connection, and rcvcall specifies information that is associated with the

newly established connection.

In sndcall, addr specifies the protocol address of the destination transport user. opt

presents any protocol-specific information that might be needed by the transport

provider. udata points to optional user data that may be passed to the destination

transport user during connection establishment. sequence has no meaning for this

function.

On return, in rcvcall, addr contains the protocol address associated with the

responding transport endpoint. opt represents any protocol-specific information

associated with the connection. udata points to optional user data that may be

returned by the destination transport user during connection establishment.

sequence has no meaning for this function.

The opt argument permits users to define the options that may be passed to the

transport provider. See the discussion of supported options in t_optmgmt(). The

user may choose not to negotiate protocol options by setting the len field of opt to

zero. In this case, the provider may use default options.

If used, sndcall->opt.buf must point to a buffer with the corresponding options. The

maxlen and buf fields of the netbuf structure pointed by rcvcall->addr and

rcvcall->opt must be set before the call.

Since passing of userdata over a connection request is not supported under TCP,

the udata argument is always meaningless.

On return, the addr, opt and udata fields of rcvcall will be updated to reflect values

associated with the connection. Thus, the maxlen field of each argument must be

t_connect

2156 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

set before issuing this function to indicate the maximum size of the buffer for each.

However, rcvcall may be a NULL pointer, in which case no information is given to

the user on return from t_connect().

By default, t_connect() executes in synchronous mode, and will wait for the

destination user’s response before returning control to the local user. A successful

return (that is, return value of zero) indicates that the requested connection has

been established. However, if O_NONBLOCK is set (using t_open() or fcntl()),

t_connect() executes in asynchronous mode. In this case, the call will not wait for

the remote user’s response, but will return control immediately to the local user and

return -1 with t_errno set to TNODATA to indicate that the connection has not yet

been established. In this way, the function simply initiates the connection

establishment procedure by sending a connect request to the destination transport

user. The t_rcvconnect() function is used in conjunction with t_connect() to

determine the status of the requested connection.

When a synchronous t_connect() call is interrupted by the arrival of a signal, the

state of the corresponding transport endpoint is T_OUTCON, allowing a further call

to either t_rcvconnect(), t_rcvdis() or t_snddis().

Valid States

T_IDLE

Returned Value

If successful, t_connect() returns 0.

If unsuccessful, t_connect() returns -1 and sets errno to one of the following values:

Error Code Description

TACCES The user does not have permission to use the specified address or

options.

TADDRBUSY This transport provider does not support multiple connections with

the same local and remote addresses. This error indicates that a

connection already exists.

TBADADDR The specified protocol address was in an incorrect format or

contained illegal information.

TBADDATA The amount of user data specified was not within the bounds

allowed by the transport provider.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADOPT The specified protocol options were in an incorrect format or

contained illegal information.

TBUFOVFLW The number of bytes allocated for an incoming argument (maxlen)

is greater than 0 but not sufficient to store the value of that

argument. If executed in synchronous mode, the provider’s state, as

seen by the user, changes to T_DATAXFER, and the information to

be returned in rcvcall is discarded.

TLOOK An asynchronous event has occurred on this transport endpoint and

requires immediate attention.

t_connect

Chapter 3. Part 3. Library Functions 2157

TNODATA O_NONBLOCK was set, so the function successfully initiated the

connection establishment procedure, but did not wait for a response

from the remote user.

TNOTSUPPORT

This function is not supported by the underlying transport provider.

TOUTSTATE The function was issued in the wrong sequence.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_accept() — Accept a Connect Request” on page 2124

v “t_alloc() — Allocate a Library Structure” on page 2129

v “t_getinfo() — Get Protocol-specific Service Information” on page 2200

v “t_listen() — Listen for a Connect Indication” on page 2211

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_optmgmt() — Manage Options for a Transport Endpoint” on page 2232

v “t_rcvconnect() — Receive the Confirmation from a Connect Request” on page

2244

t_connect

2158 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tcperror() — Print the Error Messages of a Socket Function

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#define _OPEN_SYS_SOCK_EXT

#include <sys/socket.h>

#include <stdio.h>

#include <errno.h>

void tcperror(const char *s);

General Description

When a socket call produces an error, the call returns a negative value and the

variable errno is set to an error value found in ERRNO.H. The tcperror() call prints

a short error message describing the last error that occurred. If s is non-NULL,

tcperror() prints the string s followed by a colon, followed by a space, followed by

the error message, and terminated with a newline character. If s is NULL or points

to a NULL string, only the error message and the newline character are output.

The tcperror() function is equivalent to the perror() function in UNIX.

Parameter Description

s A NULL or NULL-terminated character string.

Returned Value

tcperror() returns no values.

Example

The following are examples of the tcperror() call.

Example 1:

 if ((s=socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

 tcperror("socket()");

 exit(2);

 }

If the socket() call produces the error ENOMEM, socket() returns a negative value

and sets errno to ENOMEM. When tcperror() is called, it prints the string:

 socket(): not enough storage (ENOMEM)

Example 2:

 if ((s=socket(AF_INET, SOCK_DGRAM, 0)) < 0)

 tcperror(NULL);

If the socket() call produces the error ENOMEM, socket() returns a negative value

and sets errno to ENOMEM. When tcperror() is called, it prints the string:

 Not enough storage (ENOMEM)

tcperror

Chapter 3. Part 3. Library Functions 2159

Related Information

v “errno.h” on page 41

v “stdio.h” on page 82

v “sys/socket.h” on page 89

v “perror() — Print Error Message” on page 1344

tcperror

2160 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tcsendbreak() — Send a Break Condition to a Terminal

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <termios.h>

int tcsendbreak(int fildes, int duration);

General Description

Sends a break condition to a terminal (indicated by fildes) that is using

asynchronous serial data transmission. tcsendbreak() sends a continuous stream of

zero bits for the specified duration. tcsendbreak() is the usual method of sending a

BREAK on a line.

If tcsendbreak() is issued against a pseudoterminal, this function has no effect.

If tcsendbreak() is called from a background process group against the caller’s

controlling terminal, a SIGTTOU signal may be generated depending how the

process is handling SIGTTOUs:

 Processing for

SIGTTOU System Behavior

Default or signal

handler

The SIGTTOU signal is generated, and the function is not

performed. tcsendbreak() returns −1 and sets errno to EINTR.

Ignored or blocked The SIGTTOU signal is not sent, and the function continues

normally.

Returned Value

If successful, tcsendbreak() returns 0.

If unsuccessful, tcsendbreak() returns −1 and sets errno to one of the following

values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINTR A signal interrupted tcsendbreak().

EIO The process group of the process issuing the function is an

orphaned, background process group, and the process issuing the

function is not ignoring or blocking SIGTTOU.

ENOTTY fildes is not associated with a terminal.

tcsendbreak

Chapter 3. Part 3. Library Functions 2161

||||

|
|
|
|

||

|

Example

CELEBT08

/* CELEBT08

 This example breaks terminal transmission.

 */

#define _POSIX_SOURCE

#include <stdio.h>

#include <termios.h>

#include <unistd.h>

main() {

 if (tcsendbreak(STDIN_FILENO, 100) != 0)

 perror("tcsendbreak() error");

 else

 puts("break sent");

}

Related Information

v “termios.h” on page 92

v “tcdrain() — Wait Until Output Has Been Transmitted” on page 2138

v “tcflow() — Suspend or Resume Data Flow on a Terminal” on page 2141

v “tcflush() — Flush Input or Output on a Terminal” on page 2144

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcgetpgrp() — Get the Foreground Process Group ID” on page 2152

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

v “tcsetpgrp() — Set the Foreground Process Group ID” on page 2179

tcsendbreak

2162 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tcsetattr() — Set the Attributes for a Terminal

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <termios.h>

int tcsetattr(int fd, int when, const struct termios *termptr);

General Description

tcsetattr() only works in an environment where either a controlling terminal exists, or

stdin and stderr refer to tty devices. Specifically, it does not work in a TSO

environment.

Changes the attributes associated with a terminal. New attributes are specified with

a termios control structure. Programs should always issue a tcgetattr() first, modify

the desired fields, and then issue a tcsetattr(). tcsetattr() should never be issued

using a termios structure that was not obtained using tcgetattr(). tcsetattr() should

use only a termios structure that was obtained by tcgetattr().

fd Indicates an open file descriptor associated with a terminal.

when Indicates a symbol, defined in the termios.h header file, specifying

when to change the terminal attributes:

Symbol Meaning

TCSANOW The change should take place immediately.

TCSADRAIN The change should take place after all output

written to fd has been read by the master

pseudoterminal. Use this value when changing

terminal attributes that affect output.

TCSAFLUSH The change should take place after all output

written to fd has been sent; in addition, all input that

has been received but not read should be

discarded (flushed) before the change is made.

*termptr A pointer to a termios control structure containing the desired

terminal attributes.

A termios structure contains the following members:

tcflag_t c_iflag

Input modes. tcflag_t is defined in the termios.h header file. Each

bit in c_iflag indicates an input attribute and is associated with a

symbol defined in the termios.h include file. All symbols are bitwise

distinct. Thus c_iflag is the bitwise inclusive-OR of several of these

symbols. Possible symbols are:

tcsetattr

Chapter 3. Part 3. Library Functions 2163

||||

|
|
|
|

||

|

Symbol Meaning

BRKINT Indicates that an interrupt should be generated if

the user types a BREAK.

ICRNL Automatically converts input carriage returns to

newline (line-feed) characters before they are

passed to the application that reads the input.

IGNBRK Ignores BREAK conditions. If this bit is set to 1,

applications are not informed of any BREAK

condition on the terminal; the setting of BRKINT

has no effect.

 If IGNBRK is 0 but BRKINT is 1, BREAK flushes all

input and output queues. In addition, if the terminal

is the controlling terminal of a foreground process

group, the BREAK condition generates a single

SIGINT signal for that foreground process group.

 If both IGNBRK and BRKINT are 0, a BREAK

condition is taken as the single input character

NULL, if PARMRK is 0, and as the three input

characters \377-NULL-NULL, if PARMRK is 1.

IGNCR Ignores input carriage returns. If this bit is set to 1,

the setting of ICRNL has no effect.

 If IGNCR is 0 and ICRNL is 1, input carriage

returns are converted to newline characters. For

z/OS UNIX System Services services ″NL″ or ’\n’ is

the EBCDIC character NL.

IGNPAR Ignores input characters (other than BREAK) that

have parity errors.

INLCR Automatically converts input newline (line-feed)

characters to carriage returns before they are

passed to the application that reads the input.

INPCK Enables input parity checking. If this bit is set to 0,

it allows output parity generation without input parity

errors. The enabling of input parity checking is

independent of the enabling of parity checking in

the control modes field. (See the description of

“tcflag_t c_cflag,” which follows.) While the control

modes may dictate that the hardware recognizes

the parity bit, but the terminal special file does not

check whether this bit is set correctly.

ISTRIP Strips valid input bytes to 7 bits. If this bit is set to

0, the complete byte is processed.

Note: Do not set this bit for pseudoterminals, since

it will make the terminal unusable. If you

strip the first bit off of EBCDIC characters,

you destroy all printable EBCDIC characters.

IUCLC Map uppercase to lowercase on the received

character. In locales other than the POSIX locale,

the mapping is unspecified. Thus, this function only

applies to the characters in the POSIX-portable

tcsetattr

2164 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

character set that have lowercase equivalents,

namely the characters A-Z.

Note:

This symbol is kept for historical reasons. It

was part of the Legacy Feature in Single

UNIX Specification, Version 2, but has been

withdrawn and is not supported as part of

Single UNIX Specification, Version 3.

If it is necessary to continue using this

symbol in an application written for Single

UNIX Specification, Version 3, define the

feature test macro _UNIX03_WITHDRAWN

before including any standard system

headers. The macro exposes all interfaces

and symbols removed in Single UNIX

Specification, Version 3.

IXANY Enable any character to restart output. If IXOFF

and IXANY are set and a previous STOP character

has been received, then receipt of any input

character will cause the STOP condition to be

removed. For pseudoterminals, data in the output

queue is passed to the application during master

read() processing, and slave pseudoterminal writes

are allowed to proceed. The character which

caused the output to restart is also processed

normally as well (unless it is a STOP character).

IXOFF Enables start/stop input control. If this bit is set to 1,

the system attempts to prevent the number of bytes

in the input queue from exceeding the MAX_INPUT

value. It sends one or more STOP characters to the

terminal device when the input queue is in danger

of filling up. The character used as the STOP

character is dictated by the c_cc member of the

termios structure. It is intended to tell the terminal

to stop sending input for a while. The system

transmits one or more START characters when it

appears that there is space in the input queues for

more input. Again, the character used as the

START character is dictated by the c_cc member. It

is intended to tell the terminal that it can resume

transmission of input.

Note: Do not use IXOFF while in DBCS mode. If

you intersperse STOP and START

characters inside DBCS data while using

IXOFF, you could corrupt output data,

IXON Enables start/stop output control. If the system

receives a STOP character as input, it will suspend

output on the associated terminal until a START

character is received. An application reading input

from the terminal does not see STOP or START

tcsetattr

Chapter 3. Part 3. Library Functions 2165

|
|
|
|
|

|
|
|
|
|
|
|
|

characters; they are intercepted by the system,

which does all the necessary processing.

 If IXON is 0, any STOP or START characters read

are passed on as input to an application reading

from the terminal.

PARMRK Marks characters with parity errors. If this bit is set

to 1 and IGNPAR is 0, a byte with a framing or

parity error is sent to the application as the

characters \377 and NULL, followed by the data

part of the byte that had the parity error. If ISTRIP

is 0, a valid input character of \377 is sent as a pair

of characters \377, \377 to avoid ambiguity.

 If both PARMRK and IGNPAR are 0, a character

with a framing or parity error is sent to the

application as NULL.

tcflag_t c_oflag

Output modes. Each bit in c_oflag indicates an output attribute,

and is associated with a symbol defined in the termios.h header file.

Thus c_oflag is the bitwise inclusive-OR of a number of these

symbols. Possible symbols are:

Symbol Meaning

OPOST Modifies lines of text in an implementation-defined

way to appear appropriately on the terminal device.

If this bit is set to 0, characters that an application

puts out are sent without change.

OLCUC If OPOST and OLCUC are set, then map lowercase

to uppercase on the output. In locales other that the

POSIX locale, the mapping is unspecified. Thus,

this function only applies to the characters in the

POSIX-portable character set that have uppercase

equivalents, namely the characters a-z.

Note:

This symbol is kept for historical reasons. It

was part of the Legacy Feature in Single

UNIX Specification, Version 2, but has been

withdrawn and is not supported as part of

Single UNIX Specification, Version 3.

If it is necessary to continue using this

symbol in an application written for Single

UNIX Specification, Version 3, define the

feature test macro _UNIX03_WITHDRAWN

before including any standard system

headers. The macro exposes all interfaces

and symbols removed in Single UNIX

Specification, Version 3.

ONLCR If OPOST and ONLCR are set, the NL character is

transmitted as the CR-NL character pair.

tcsetattr

2166 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

|
|
|
|
|
|
|
|

OCRNL If OPOST and OCRNL are set, the CR character is

transmitted as the NL character.

ONOCR If OPOST and ONOCR are set, no CR character is

transmitted if the current column is zero.

ONLRET If OPOST and ONLRET are set, the NL character

does the carriage return function; the column

pointer is set to 0. If OPOST is set and ONLRET is

not set, then the NL does the line-feed function; the

column pointer is unchanged.

OFILL Fill characters are used for delay instead of using a

timed delay.

OFDEL The fill character is DEL. If OFILL is not set, then

the fill character is NUL.

NLDLY Delay associated with newline character.

NL0 No delay.

NL1 0.10 seconds delay. If ONLRET is set, then

carriage-return delays are used instead of

newline delays. If OFILL is set, then two fill

characters are transmitted.

CRDLY Delay associated with carriage-return character.

CR0 No delay.

CR1 Delay dependent on column position, or if

OFILL is set then two fill characters are

transmitted.

CR2 0.10 seconds delay, or if OFILL is set then

four fill characters are transmitted.

CR3 0.15 seconds delay.

TABDLY Delay associated with tab character.

TAB0 No horizontal tab processing.

TAB1 Delay dependent on column position, or if

OFILL is set then two fill characters are

transmitted.

TAB2 0.10 seconds delay, or if OFILL is set then

two fill characters are transmitted.

TAB3 Tabs are expanded into spaces.

BSDLY Delay associated with backspace character.

BS0 No delay.

BS1 0.05 seconds delay, or if OFILL is set then

one fill character is transmitted.

VTDLY Delay associated with vertical-tab processing.

VT0 No delay.

VT1 2 seconds delay.

FFDLY Delay associated with form-feed processing.

tcsetattr

Chapter 3. Part 3. Library Functions 2167

FF0 No delay.

FF1 2 seconds delay.

tcflag_t c_cflag

Control modes. Each bit in c_cflag indicates a control attribute and

is associated with a symbol defined in the termios.h header file.

Thus c_cflag is the bitwise inclusive-OR of several of these

symbols. Possible symbols are:

Symbol Meaning

CLOCAL Ignores modem status lines. A call to open() returns

immediately without waiting for a modem

connection to complete. If this bit is set to 0,

modem status lines are monitored and open() waits

for the modem connection.

CREAD Enables reception. If this bit is set to 0, no input

characters are received from the terminal.

 Using z/OS UNIX System Services pseudoterminal

support, this bit is always enabled and set to 1.

CSIZE Is a collection of bits indicating the number of bits

per byte (not counting the parity bit, if any). These

bits specify byte size for both transmission and

reception. Possible settings of CSIZE are given with

the following symbols:

 CS5 - 5 bits per byte

 CS6 - 6 bits per byte

 CS7 - 7 bits per byte

 CS8 - 8 bits per byte

Using z/OS UNIX System Services services

pseudoterminal support, all values are accepted,

but CSIZE is changed to CS8. Using z/OS UNIX

System Services services Outboard

Communications Server (OCS) support, the

specified value is used.

CSTOPB Sends two stop bits when necessary. If CSTOPB is

0, only one stop bit is used.

 Using z/OS UNIX System Services services

pseudoterminal support, this bit is always 0. Using

z/OS UNIX System Services services OCS support,

the specified value is used.

HUPCL Lowers the modem control lines for a port when the

last process that has the port open closes the port

(or the process ends). In other words, this tells the

system to hang up when all relevant processes

have finished using the port.

 For pseudoterminals HUPCL controls what happens

when the slave pseudoterminals is closed. If

HUPCL is set when the last file descriptor for the

slave pseudoterminal is closed, then the slave

pseudoterminal cannot be re-opened. The master

terminal has to be closed and re-opened before the

pair can be used again.

tcsetattr

2168 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

PARENB Enables parity generation and detection. A parity bit

is added to each character on output, and expected

from each character on input.

 Under z/OS UNIX System Services services, if this

bit is set to 1 in a request, it is ignored. It is always

set to 0. Using z/OS UNIX System Services

services OCS support, the specified value is used.

PARODD Indicates odd parity (when parity is enabled). If

PARODD is 0, even parity is used (when parity is

enabled).

 Under z/OS UNIX System Services services, if this

bit is set to 1 in a request, it is ignored. It is always

set to 0. Using z/OS UNIX System Services

services OCS support, the specified value is used.

If the object for which the control modes are set is not an

asynchronous serial connection, some bits may be ignored. For

example, on a network connection, it may not be possible to set the

baud rate.

tcflag_t c_lflag

Local modes. Each bit in c_lflag indicates a local attribute, and is

associated with a symbol defined in the termios.h include file. Thus

c_lflag is the bitwise inclusive-OR of a number of these symbols.

Possible symbols are:

Symbol Meaning

ECHO Echoes input characters back to the terminal. If this

is bit is 0, input characters are not echoed.

ECHOE Echoes the ERASE character as an error-correcting

backspace. When the user inputs an ERASE

character, the terminal erases the last character in

the current line from the display (if possible). The

character used as the ERASE character is dictated

by the c_cc member of the termios structure.

ECHOE has an effect only if the ICANON bit is 1.

ECHOK Either causes the terminal to erase the line from the

display, or echoes the KILL character followed by

an \n character. ECHOK has an effect only if the

ICANON bit is set to 1.

ECHONL Echoes the newline (line-feed) character ‘\n’ even if

the ECHO bit is off. ECHONL has an effect only if

the ICANON bit is set to 1.

ICANON Enables canonical input processing, also called line

mode. Input is not delivered to the application until

an entire line has been input. The end of a line is

indicated by a newline, End Of File (EOF), or EOL

character (where the character used as the EOL

character is directed by the c_cc member of the

termios structure [described shortly]). Canonical

input processing uses the ERASE character to

erase a single input character, and the KILL

character to erase an entire line. The MAX_CANON

tcsetattr

Chapter 3. Part 3. Library Functions 2169

value specifies the maximum number of bytes in an

input line in canonical mode.

 If ICANON is 0, read requests take input directly

from the input queue; the system does not wait for

the user to enter a complete line. This is called

noncanonical mode. ERASE and KILL characters

are not handled by the system but passed directly

to the application. See also the descriptions of MIN

and TIME in the c_cc member.

IEXTEN Enables extended implementation-defined functions.

These are not defined, and IEXTEN is always set to

0.

 If the ERASE, KILL or EOF character is preceded

by a backslash character, the special character is

placed in the input queue without doing the ″special

character″ processing and the backslash is

discarded.

ISIG If ISIG is set to 1, signals are generated if special

control characters are entered. SIGINT is generated

if INTR is entered; SIGQUIT is generated if QUIT is

entered; and SIGTSTP is generated if SUSP is

entered and job control is supported. The special

control characters are controlled by the c_cc

member.

 If ISIG is 0, the system does not generate signals

when these special control characters are entered.

NOFLSH If this bit is set to 1, the system does not flush the

input and output queues if a signal is generated by

one of the special characters described in ISIG

above. If NOFLSH is set to 0, the queues are

flushed if one of the special characters is found.

TOSTOP If this bit is set to 1, a SIGTTOU signal is sent to

the process group of a process that tries to write to

a terminal when it is not in the terminal’s foreground

process group. However, if the process that tries to

write to the terminal is blocking or ignoring

SIGTTOU signals, the system does not raise the

SIGTTOU signal.

 If TOSTOP is 0, output from background processes

is output to the current output stream, and no signal

is raised.

XCASE Do canonical lower and canonical upper

presentation. In locales other than the POSIX

locale, the effect is unspecified. XCASE set by itself

makes all uppercase letters on input and output be

preceded by a ″\″ character.

 Some terminals can generate lowercase characters,

but can display only uppercase characters. For

these terminals, XCASE would be used by itself.

Other terminals cannot generate lowercase

characters either. For these terminals, XCASE

tcsetattr

2170 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

would be used with IUCLC to generate lowercase

characters when characters are typed without the

backslash, and uppercase characters when the

typed character is preceded by a backslash.

 If a terminal can generate only uppercase

characters, but can display either upper or

lowercase, then XCASE would be used with

OLCUC.

Note:

This symbol is kept for historical reasons. It

was part of the Legacy Feature in Single

UNIX Specification, Version 2, but has been

withdrawn and is not supported as part of

Single UNIX Specification, Version 3.

If it is necessary to continue using this

symbol in an application written for Single

UNIX Specification, Version 3, define the

feature test macro _UNIX03_WITHDRAWN

before including any standard system

headers. The macro exposes all interfaces

and symbols removed in Single UNIX

Specification, Version 3.

cc_t c_cc[NCCS]

Control characters. This is an array of characters that may have

special meaning for terminal handling. You can access characters in

this array using subscripts that are symbols defined in the termios.h

header file. For example, the STOP character is given by

c_cc[VSTOP]. Possible subscript symbols are:

Symbol Meaning

VEOF Gives the End Of File character EOF. It is

recognized only in canonical (line) mode. When this

is found in input, all bytes waiting to be read are

immediately passed to the application without

waiting for the end of the line. The EOF character

itself is discarded. If EOF occurs at the beginning of

a line, the read function that tries to read that line

receives an End Of File (EOF) indication. Note that

EOF results in End Of File only if it is at the

beginning of a line; if it is preceded by one or more

characters, it indicates only End Of Line (EOL).

VEOL Gives the End Of Line character EOL. It is

recognized only in canonical (line) mode. This is an

alternate character for marking the end of a line (in

addition to the newline \n).

VERASE Gives the ERASE character. It is recognized only in

canonical (line) mode. It deletes the last character

in the current line. It cannot delete beyond the

beginning of the line.

VINTR Gives the interrupt character INTR. It is recognized

tcsetattr

Chapter 3. Part 3. Library Functions 2171

|
|
|
|
|

|
|
|
|
|
|
|
|

only if ISIG is set to 1 in c_lflag. If the character is

received, the system sends a SIGINT signal to all

the processes in the foreground process group that

has this device as its controlling terminal.

VKILL Gives the KILL character. It is recognized only in

canonical (line) mode. It deletes the entire contents

of the current line.

VMIN Gives the MIN value for noncanonical mode

processing.

 This is the minimum number of bytes that a call to

read should return in noncanonical mode; it is not

used in canonical mode.

 If both MIN and TIME are greater than 0, read

returns when MIN characters are available or when

the timer associated with TIME runs out (whichever

comes first). The timer starts running as soon as a

single character has been entered; if there is

already a character in the queue when read is

called, the timer starts running immediately.

 If MIN is greater than zero and TIME is zero, read

waits for MIN characters to be entered, no matter

how long that takes.

 If MIN is zero and TIME is greater than zero, read

returns when the timer runs out or when a single

character is received (whichever comes first). read

returns either one character (if one is received) or

zero (if the timer runs out). The timer starts running

as soon as read is called. (Contrast this with the

case where MIN and TIME are both greater than

zero, and the timer starts only when a character is

received.)

 If both MIN and TIME are zero, read returns

immediately from every call. It returns the number

of bytes that are immediately available, up to the

maximum specified in the call to read.

VQUIT Gives the quit character QUIT. It is recognized only

if ISIG is set to 1 in c_lflag. If the character is

received, the system sends a SIGQUIT signal to all

the processes in the foreground process group that

has this device as its controlling terminal.

VSUSP Gives the suspend character SUSP. It is recognized

only if ISIG is set to 1 in c_lflag. If the character is

received, the system sends a SIGTSTP signal to all

the processes in the foreground process group that

has this device as its controlling terminal.

VTIME Gives the TIME value, used in noncanonical mode

in connection with MIN. It expresses a time in terms

of tenths of a second.

VSTOP Gives the STOP character. You can use this to

suspend output temporarily when IXON is set to 1

tcsetattr

2172 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

in c_iflag. Users can enter the STOP character to

prevent output from running off the top of a display

screen.

VSTART Gives the START character. You can use this to

resume suspended output when IXON is set to 1 in

c_iflag.

When tcsetattr() is called from a background session against a controlling terminal,

SIGTTOU processing is as follows:

 Processing for

SIGTTOU Expected Behavior

Default or signal

handler

The SIGTTOU signal is generated, and the function is not

performed. tcsetattr() returns −1 and sets errno to EINTR.

Ignored or blocked The SIGTTOU signal is not sent, and the function continues

normally.

Note: The tcsetattr() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, tcsetattr() returns 0.

If unsuccessful, tcsetattr() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINTR A signal interrupted tcsetattr().

EINVAL when is not a recognized value, or some entry in the supplied

termios structure had an incorrect value.

EIO The process group of the process issuing the function is an

orphaned, background process group, and the process issuing the

function is not ignoring or blocking SIGTTOU.

ENOTTY fildes is not associated with a terminal.

Example

CELEBT09

/* CELEBT09

 The following attributes changes the terminal attributes.

 */

#define _POSIX_SOURCE

#include <termios.h>

#include <unistd.h>

#include <stdio.h>

main() {

 struct termios term1, term2;

 if (tcgetattr(STDIN_FILENO, &term1) != 0)

 perror("tcgetattr() error");

 else {

 printf("the original end−of−file character is x'%02x'\n",

tcsetattr

Chapter 3. Part 3. Library Functions 2173

term1.c_cc[VEOF]);

 term1.c_cc[VEOF] = 'z';

 if (tcsetattr(STDIN_FILENO, TCSANOW, &term1) != 0)

 perror("tcsetattr() error");

 if (tcgetattr(STDIN_FILENO, &term1) != 0)

 perror("tcgetattr() error");

 else

 printf("the new end−of−file character is x'%02x'\n",

 term1.c_cc[VEOF]);

 }

}

Output

the original End Of File character is x’37’

the new End Of File character is x’a9’

Related Information

v “termios.h” on page 92

v “cfgetispeed() — Determine the Input Baud Rate” on page 258

v “cfgetospeed() — Determine the Output Baud Rate” on page 261

v “cfsetispeed() — Set the Input Baud Rate in the Termios” on page 263

v “cfsetospeed() — Set the Output Baud Rate in the Termios” on page 265

v “open() — Open a File” on page 1313

v “read() — Read From a File or Socket” on page 1602

v “tcdrain() — Wait Until Output Has Been Transmitted” on page 2138

v “tcflow() — Suspend or Resume Data Flow on a Terminal” on page 2141

v “tcflush() — Flush Input or Output on a Terminal” on page 2144

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcgetpgrp() — Get the Foreground Process Group ID” on page 2152

v “tcsendbreak() — Send a Break Condition to a Terminal” on page 2161

v “tcsetpgrp() — Set the Foreground Process Group ID” on page 2179

tcsetattr

2174 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__tcsetcp() — Set Terminal Code Page Names

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#define _OPEN_SYS_PTY_EXTENSIONS

#include <termios.h>

int __tcsetcp(int fildes, size_t termcplen, const struct __termcp *termcpptr);

General Description

The __tcsetcp() function sets (or changes) the terminal session code page

information contained in the termcp structure.

The following arguments are used:

fildes The file descriptor of the terminal for which you want to get the

code page names and CPCN capability.

termcplen The length of the passed termcp structure.

termcpptr A pointer to a __termcp structure.

Use the __tcsetcp() function to send new code page information to the data

conversion point in order to change the data conversion environment for the

terminal session. This function is used with terminal devices that support the

“forward code page names only” Code Page Change Notification (CPCN) capability.

The z/OS UNIX System Services pseudotty (pty) device driver supports this

capability.

For terminal sessions that use the z/OS UNIX System Services pty device driver,

the data conversion point is the application that uses the master pty device. An

example data conversion point is the z/OS UNIX System Services rlogin server.

Here, rlogin uses CPCN functions to determine the ASCII source and/or EBCDIC

target code pages to use for the conversion of the terminal data. During its

processing of the __tcsetcp() function, the pty device driver applies the __termcp

structure once the pty outbound data queue is drained. When this occurs, the pty

input data queue is also flushed and a TIOCXPKT_CHCP packet exception event is

generated if extended packet mode is enabled (PKTXTND is set in the termios

structure) to notify the application using the master pty that the code page

information has been changed. The master pty application can then use the

__tcgetcp() function to retrieve the new code page information and establish a new

data conversion environment.

The __tcsetcp() function is supported by both the master and slave pty device

drivers, however, CPCN functions first must be enabled by the application that uses

the master pty; enabling CPCN functions is performed by the system during the

initial __tcsetcp() invocation against the master pty device. Once the __tcsetcp()

function is performed against the master pty then it may be subsequently issued

against the slave pty.

__tcsetcp

Chapter 3. Part 3. Library Functions 2175

Note: The data conversion for an z/OS UNIX System Services terminal session is

performed on a session (terminal file) basis. If you change the data

conversion characteristics for one file descriptor, the new data conversion will

apply to all open file descriptors associated with this terminal file.

 Attention: Use this service carefully. By changing the code pages for the data

conversion you may cause unpredictable behavior in the terminal session if the

actual data used for the session is not encoded to the specified source (ASCII) and

target (EBCDIC) code pages.

A __termcp structure contains the following members:

__tccp_flags Flags. The following symbols are defined as bitwise distinct values.

Thus, __tccp_flags is the bitwise inclusive-OR of these symbols:

Symbol Meaning

_TCCP_BINARY

Use _TCCP_BINARY to notify the data conversion

point to stop data conversion. If this flag is set, the

source and target code page names

(__tccp_fromname and __tccp_toname

respectively) are not changed from their current

values.

Attention: Use this option carefully. Once the

data conversion is disabled the z/OS UNIX System

Services Shell cannot be used until the data

conversion is re-enabled, using valid code pages

for the terminal session.

_TCCP_FASTP

Use _TCCP_FASTP to indicate to the data

conversion point (for example, rlogin) that the data

conversion specified by the source and target code

page names can be performed locally to the

application. This is valid any time that a table-driven

conversion can be performed. For example, the

data conversion point (application) could use the

z/OS UNIX System Services iconv() service to build

the local data conversion tables and perform all

data conversion using the local tables instead of

using iconv() in subsequent conversions. This

provides for better-performing data conversion.

__tccp_fromname

The source code page name; typically this is the ASCII code page

name. __tccp_fromname is a NULL-terminated string with a

maximum length of _TCCP_CPNAMEMAX, including the NULL

(\00) character.

 __tccp_fromname is case-sensitive.

__tccp_toname

The target code page name; typically this is the EBCDIC code page

name. __tccp_toname is a NULL-terminated string with a maximum

length of _TCCP_CPNAMEMAX, including the NULL (\00)

character.

 __tccp_toname is case-sensitive.

__tcsetcp

2176 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

When __tcsetcp() is issued against the slave pty from a process in a background

process group, SIGTTOU processing is as follows:

 Processing for

SIGTTOU Expected Behavior

Default or signal

handler

The SIGTTOU signal is generated. The function is not performed.

__tcsetcp() returns -1 and sets errno to EINTR.

Ignored or blocked The SIGTTOU signal is not sent. The function continues normally.

Note: The __tcsetcp() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

Returned Value

If successful, __tcsetcp() returns 0.

If unsuccessful, __tcsetcp() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINTR A signal interrupted the call.

EINVAL The value of termcplen was invalid.

EIO The process group of the process issuing the function is an

orphaned, background process group, and the process issuing the

function is not ignoring or blocking SIGTTOU.

ENODEV One of the following error conditions exist:

v CPCN functions have not been enabled.

The __tcsetcp() function must be issued against the master pty

before any CPCN function can be issued against the slave pty.

v The terminal device driver does not support the “forward code

page names only” CPCN capability.

ENOTTY The file associated with fildes is not a terminal device.

Example

The following example retrieves the CPCN capability and code pages and then

changes the ASCII code page to IBM-850.

#define _OPEN_SYS_PTY_EXTENSIONS

#include <unistd.h>

#include <stdio.h>

#include <fcntl.h>

#include <termios.h>

void main(void)

{

 struct __termcp mytermcp;

 int rv;

 int cterm_fd;

 if ((cterm_fd = open("/dev/tty",O_RDWR)) == -1)

 printf("No controlling terminal established.\n");

 else {

 if ((rv = __tcgetcp(STDIN_FILENO,sizeof(mytermcp),&mytermcp))== -1)

 perror("__tcgetcp() error");

__tcsetcp

Chapter 3. Part 3. Library Functions 2177

else {

 if (rv== _CPCN_NAMES) {

 if (_TCCP_BINARY == (mytermcp.__tccp_flags & _TCCP_BINARY))

 printf("Binary mode is in effect. No change made.\n");

 else {

 strcpy(mytermcp.__tccp_fromname,"IBM-850");

 if (__tcsetcp(STDOUT_FILENO,sizeof(mytermcp),&mytermcp)!=0)

 perror("__tcsetcp() error");

 else

 printf("ASCII code page changed to IBM-850.\n");

 } /*not binary mode */

 } /* _CPCN_NAMES */

 } /* __tcgetcp success */

 close(cterm_fd);

 } /* controlling terminal established */

} /* main */

Output

ASCII code page changed to IBM-850.

Related Information

v “termios.h” on page 92

v “__tcgetcp() — Get Terminal Code Page Names” on page 2149

v “__tcsettables() — Set Terminal Code Page Names and Conversion Tables” on

page 2182

__tcsetcp

2178 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tcsetpgrp() — Set the Foreground Process Group ID

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int tcsetpgrp(int fildes, pid_t newid);

General Description

Sets the process group ID (PGID) of the foreground process group associated with

the terminal referred to by fildes. This terminal must be the controlling terminal of

the process calling tcsetpgrp() and must be currently associated with the session of

the calling process. newid must match a PGID of a process in the same session as

the calling process.

After the PGID associated with the terminal is set, reads by the process group

formerly associated with the terminal fail or cause the process group to stop from a

SIGTTIN signal. Writes may also cause the process to stop (from a SIGTTOU

signal), or they may succeed, depending on how tcsetattr() sets TOSTOP and the

signal options for SIGTTOU.

fildes can be any of the descriptors representing the controlling terminal (such as

standard input, standard output, and standard error), and the function affects future

access from any file descriptor in use for the terminal. Consider using redirection

when specifying the file descriptor.

If tcsetpgrp() is called from a background process group against the caller’s

controlling terminal, a SIGTTOU signal may be generated depending how the

process is handling SIGTTOUs:

 Processing for

SIGTTOU System Behavior

Default or signal

handler

The SIGTTOU signal is generated, and the function is not

performed. tcsetpgrp() returns −1 and sets errno to EINTR.

Ignored or blocked The SIGTTOU signal is not sent, and the function continues

normally.

Returned Value

If successful, tcsetpgrp() returns 0.

If unsuccessful, tcsetpgrp() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

tcsetpgrp

Chapter 3. Part 3. Library Functions 2179

||||

|
|
|
|

||

|

EINTR A signal interrupted the tcsetpgrp() function.

EINVAL The newid value is not supported by this implementation.

ENOTTY The process calling tcsetpgrp() does not have a controlling terminal,

or fildes is not associated with the controlling terminal, or the

controlling terminal is no longer associated with the session of the

calling process.

EPERM The newid value is supported by the implementation but does not

match the process group ID of any process in the same session as

the process calling tcsetpgrp().

Example

CELEBT10

/* CELEBT10

 This example changes the PGID.

 */

#define _POSIX_SOURCE

#include <termios.h>

#include <unistd.h>

#include <sys/wait.h>

#include <stdio.h>

#include <signal.h>

main() {

 pid_t pid;

 int status;

 if (fork() == 0)

 if ((pid = tcgetpgrp(STDOUT_FILENO)) < 0)

 perror("tcgetpgrp() error");

 else {

 printf("original foreground process group id of stdout was %d\n",

 (int) pid);

 if (setpgid(getpid(), 0) != 0)

 perror("setpgid() error");

 else {

 printf("now setting to %d\n", (int) getpid());

 if (tcsetpgrp(STDOUT_FILENO, getpid()) != 0)

 perror("tcsetpgrp() error");

 else if ((pid = tcgetpgrp(STDOUT_FILENO)) < 0)

 perror("tcgetpgrp() error");

 else

 printf("new foreground process group id of stdout was %d\n",

 (int) pid);

 }

 }

 else wait(&status);

}

Output

original foreground process group id of stdout was 2228230

now setting to 2949128

new foreground process group id of stdout was 2949128

Related Information

v “unistd.h” on page 96

v “tcdrain() — Wait Until Output Has Been Transmitted” on page 2138

v “tcflow() — Suspend or Resume Data Flow on a Terminal” on page 2141

tcsetpgrp

2180 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “tcflush() — Flush Input or Output on a Terminal” on page 2144

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcgetpgrp() — Get the Foreground Process Group ID” on page 2152

v “tcsendbreak() — Send a Break Condition to a Terminal” on page 2161

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

tcsetpgrp

Chapter 3. Part 3. Library Functions 2181

__tcsettables() — Set Terminal Code Page Names and Conversion

Tables

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#define _OPEN_SYS_PTY_EXTENSIONS

#include <termios.h>

int __tcsettables(int fildes, size_t termcplen,

 const struct __termcp *termcpptr,

 const char atoe[256],

 const char etoa[256]);

General Description

The __tcsettables() function changes the data conversion environment for terminal

sessions that support the “forward code page names and tables” Code Page

Change Notification (CPCN) capability. The OCS remote-tty (rty) device driver

supports this capability.

The following arguments are used:

fildes The file descriptor of the terminal for which you want to set the

code page names and data conversion tables.

termcplen The length of the passed termcp structure.

termcpptr A pointer to a __termcp structure. A __termcp structure contains the

following members:

__tccp_flags Flags. The following symbols are defined as bitwise

distinct values. Thus, __tccp_flags is the bitwise

inclusive-OR of these symbols:

Symbol Meaning

_TCCP_BINARY

Use _TCCP_BINARY to notify the

data conversion point to stop data

conversion. If this flag is set the

source and target code page

names (__tccp_fromname and

__tccp_toname respectively) are

not changed, and the data

conversion tables atoe and etoa are

not used.

Attention: Use this option

carefully. Once the data conversion

is disabled the z/OS shell cannot

be used until the data conversion is

re-enabled, using valid code pages

for the terminal session.

__tcsettables

2182 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

_TCCP_FASTP

Use _TCCP_FASTP to indicate to

the data conversion point that the

data conversion specified by the

source and target code page

names can be performed locally by

the application that performs the

data conversion. This is valid any

time that a table-driven conversion

can be performed.

 This value is not used by the OCS

rty device driver and thus has no

effect.

__tccp_fromname

The source code page name; typically this is the

ASCII code page name. __tccp_fromname is a

NULL-terminated string with a maximum length of

_TCCP_CPNAMEMAX, including the NULL (\00)

character.

 __tccp_fromname is case-sensitive.

__tccp_toname

The target code page name; typically this is the

EBCDIC code page name. __tccp_toname is a

NULL-terminated string with a maximum length of

_TCCP_CPNAMEMAX, including the NULL (\00)

character.

 __tccp_toname is case-sensitive.

const char atoe[256]

A 256-byte data conversion table for the source-to-target

(ASCII-to-EBCDIC) data conversion. The byte offset into this table

corresponds to the character code from the source (ASCII) code

page. The data value at each offset is the “converted” target

(EBCDIC) character code.

const char etoa[256]

A 256-byte data conversion table for the target-to-source

(EBCDIC-to-ASCII) data conversion. The byte offset into this table

corresponds to the character code from the target (EBCDIC) code

page. The data value at each offset is the “converted” source

(ASCII) character code.

Note: The data conversion for an z/OS UNIX System Services terminal session is

performed on a session (terminal file) basis. If you change the data

conversion characteristics for one file descriptor, the new data conversion will

apply to all open file descriptors associated with this terminal file.

For terminal sessions that use the OCS rty device driver, the ASCII/EBCDIC data

conversion is performed outboard by OCS on the AIX server system. Use the

__tcsettables() function to specify new code pages and conversion tables to be

used in the data conversion.

__tcsettables

Chapter 3. Part 3. Library Functions 2183

During its processing of the __tcsettables() function, the OCS rty device driver

applies the new code page names once the outbound data queue is drained. When

this occurs, the rty input data queue is also flushed and the new conversion

environment takes effect.

OCS processing of the atoe and etoa arguments is as follows:

v If the code page names specified in the __termcp structure are for supported

double-byte data conversion then the atoe and etoa arguments are not used. The

following double-byte translation is supported for OCS sessions:

v If __fromname specifies ISO8859-1 and __toname specifies IBM-1047 then OCS

uses its own data conversion tables and atoe and etoa arguments are not used.

v Otherwise the conversion tables in atoe and etoa are used.

Attention: Use this service carefully. By changing the code pages for the data

conversion you may cause unpredictable behavior in the terminal session if the

actual data used for the session is not encoded to the specified source (ASCII) and

target (EBCDIC) code pages.

When __tcsettables() is issued from a process in a background process group,

SIGTTOU is processing in this way:

 Processing for

SIGTTOU Expected Behavior

Default or signal

handler

The SIGTTOU signal is generated. The function is not performed.

__tcsettables() returns -1 and sets errno to EINTR.

Ignored or blocked The SIGTTOU signal is not sent. The function continues normally.

Returned Value

If successful, __tcsettables() returns 0.

If unsuccessful, __tcsettables() returns −1 and sets errno to one of the following

values:

Error Code Description

EBADF fildes is not a valid open file descriptor.

EINTR A signal interrupted the call.

EINVAL One of the following error conditions exists:

v The value of termcplen was invalid.

v An invalid combination of multibyte code page names was

specified in the __termcp structure.

One of the following applies:

– The source code page specified in __tccp_fromname

specified a supported ASCII multibyte code page and the

__tccp_toname did not specify a supported EBCDIC multibyte

code page.

– The target code page specified in __tccp_toname specified a

supported EBCDIC multibyte code page and the

__tccp_fromname did not specify a supported ASCII multibyte

code page.

EIO The process group of the process issuing the function is an

orphaned, background process group, and the process issuing the

function is not ignoring or blocking SIGTTOU.

__tcsettables

2184 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ENODEV The terminal device driver does not support the “forward code page

names and tables” CPCN capability.

ENOTTY The file associated with fildes is not a terminal device.

Example

The following example retrieves the current code pages used in the data conversion

and CPCN capability. The conversion tables using ASCII code page IBM-850 and

the current EBCDIC code page are generated and exported to the data conversion

point using __tcsettables().

#define _OPEN_SYS_PTY_EXTENSIONS

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <termios.h>

#include <iconv.h>

main()

{

 struct __termcp mytermcp; /* local __termcp */

 unsigned char *intabptr; /* pointer to input table */

 unsigned char *outtabptr; /* pointer to output table */

 unsigned char intab[256],

 atoe[256],

 etoa[256]; /* conversion tables */

 iconv_t cd; /* conversion descriptor */

 size_t inleft; /* number of bytes left in input */

 size_t outleft; /* number of bytes left in output */

 int i; /* loop variable */

 int rv; /* return value */

 int cterm_fd; /* file descriptor for controlling

 terminal */

 if ((cterm_fd = open("/dev/tty",O_RDWR)) == -1)

 {

 printf("No controlling terminal established. ");

 printf("Code pages were not changed.\n");

 exit(0);

 }

 if ((rv = __tcgetcp(cterm_fd,sizeof(mytermcp),&mytermcp))== -1)

 {

 perror("__tcgetcp() error");

 exit(1);

 }

 if (_TCCP_BINARY == (mytermcp.__tccp_flags & _TCCP_BINARY))

 {

 printf("Binary mode is in effect. No change made.\n");

 exit(0);

 }

 if (rv == _CPCN_TABLES) {

 /* build ASCII -> EBCDIC conversion table */

 strcpy(mytermcp.__tccp_fromname,"IBM-850");

 if ((cd = iconv_open(mytermcp.__tccp_toname,

 mytermcp.__tccp_fromname)) ==

 (iconv_t) (-1)) {

 fprintf(stderr,"Cannot open converter from %s to %s\n",

 mytermcp.__tccp_fromname,mytermcp.__tccp_toname);

 exit(1);

 }

__tcsettables

Chapter 3. Part 3. Library Functions 2185

/* build input table with character values of 00 - FF */

 for (i=0; i<256; i++) {

 intab[i] = (unsigned char) i;

 } /* endfor */

 inleft = 256;

 outleft = 256;

 intabptr = intab;

 outtabptr = atoe;

 /* build ASCII -> EBCDIC conversion table. */

 rv = iconv(cd,&intabptr, &inleft, &outtabptr, &outleft);

 if (rv == -1) {

 fprintf(stderr,"Error in building ASCII to EBCDIC table\n");

 exit(1);

 }

 iconv_close(cd);

 /* build EBCDIC -> ASCII conversion table */

 if ((cd = iconv_open(mytermcp.__tccp_fromname,

 mytermcp.__tccp_toname)) ==

 (iconv_t) (-1)) {

 fprintf(stderr,"Cannot open converter from %s to %s\n",

 mytermcp.__tccp_toname,mytermcp.__tccp_fromname);

 exit(1);

 }

 inleft = 256;

 outleft = 256;

 intabptr = intab;

 outtabptr = etoa;

 rv = iconv(cd,&intabptr, &inleft, &outtabptr, &outleft);

 if (rv == -1) {

 fprintf(stderr,"Error in building EBCDIC to ASCII table\n");

 exit(1);

 }

 iconv_close(cd);

 /*

 * Change the data conversion to use IBM-850 as the ASCII source

 */

 if (__tcsettables(cterm_fd, sizeof(mytermcp), &mytermcp,

 atoe,etoa) == -1) {

 perror("__tcsettables() error");

 exit(1);

 } else {

 printf("Data conversion now using ASCII IBM-850\n");

 } /* endif */

 } /* endif */

 close(cterm_fd);

} /* main */

Output

Data conversion now using ASCII IBM-850.

Related Information

v “termios.h” on page 92

v “__tcgetcp() — Get Terminal Code Page Names” on page 2149

v “__tcsetcp() — Set Terminal Code Page Names” on page 2175

__tcsettables

2186 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tdelete() — Binary Tree Delete

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <search.h>

void *tdelete(const void *__restrict__ key, void **__restrict__ rootp,

 int (*compar)(const void *, const void *));

General Description

The tdelete() function deletes a node from a binary search tree. The arguments are

the same as for the tsearch() function. The variable pointed to by rootp will be

changed if the deleted node was the root of the tree. tdelete() returns a pointer to

the parent of the deleted node, or a NULL pointer if the node is not found. If the

deleted node was the root of the tree, the function returns a pointer to the deleted

node, since it had no parent. It frees the storage for this node before returning, so

the contents of storage at the returned address are unreliable in this case.

Comparisons are made with a user-supplied routine, the address of which is passed

as the compar argument. This routine is called with two arguments, the pointers to

the elements being compared. The user-supplied routine must return an integer less

than, equal to or greater than 0, according to whether the first argument is to be

considered less than, equal to or greater than the second argument. The

comparison functions need not compare every byte, so arbitrary data may be

contained in the elements in addition to the values being compared.

Threading Behavior: see “tsearch() — Binary Tree Search” on page 2257.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, tdelete() cannot receive

a C++ function pointer as the comparator argument. If you attempt to pass a C++

function pointer to tdelete(), the compiler will flag it as an error. You can pass a C or

C++ function to tdelete() by declaring it as extern ″C″.

Returned Value

If successful, tdelete() returns a pointer to the parent of the deleted node.

If the node is not found, tdelete() returns a NULL pointer.

If rootp is a NULL pointer on entry, tdelete() returns a NULL pointer.

No errors are defined.

tdelete

Chapter 3. Part 3. Library Functions 2187

||||

|
|
|

||

|

|
|
|
|
|

Related Information

v “search.h” on page 77

v “bsearch() — Search Arrays” on page 220

v “hsearch() — Search Hash Tables” on page 911

v “lsearch() — Linear Search and Update” on page 1160

v “tfind() — Binary Tree Find Node” on page 2195

v “tsearch() — Binary Tree Search” on page 2257

v “twalk() — Binary Tree Walk” on page 2277

tdelete

2188 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

telldir() — Current Location of Directory Stream

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <dirent.h>

long telldir(DIR *dirp);

General Description

The telldir() function obtains the current location associated with the directory

stream specified by dirp.

If the most recent operation on the directory stream was a seekdir(), then the

directory position returned from telldir() is the same as that supplied as a loc

argument to seekdir().

Returned Value

If successful, telldir() returns the current location of the specified directory stream.

If the dirp argument supplied is NULL or invalid, telldir() returns −1 and sets errno to

one of the following values:

Error Code Description

EBADF The dirp argument was invalid.

Related Information

v “dirent.h” on page 40

v “stdio.h” on page 82

v “sys/types.h” on page 90

v “closedir() — Close a Directory” on page 302

v “opendir() — Open a Directory” on page 1319

v “readdir() — Read an Entry from a Directory” on page 1608

v “rewinddir() — Reposition a Directory Stream to the Beginning” on page 1683

v “seekdir() — Set Position of Directory Stream” on page 1714

telldir

Chapter 3. Part 3. Library Functions 2189

||||

|
|
|

||

|

tempnam() — Generate a Temporary File Name

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE

#include <stdio.h>

char *tempnam(const char *dir, const char *pfx);

General Description

The tempnam() function generates a pathname that may be used for a temporary

file. If the environment variable TMPDIR is set, then the directory it specifies will be

used as the directory part of the generated pathname if it is accessible. Otherwise,

if the dir argument is non-NULL and accessible, it will be used in the generated

pathname. Otherwise, the value of {P_tmpdir} defined in the <stdio.h> header is

used as the directory component of the name. If that is inaccessible, then /tmp is

used.

The pfx argument can be used to specify an initial component of the filename part

of the pathname. It may be a NULL pointer or point to a string of up to five bytes to

be used as the beginning of a filename.

The names generated are unique across processes and threads, and over time, so

multiple threads should be able to each repeatedly call tempnam() and consistently

obtain unique names.

This function is supported only in a POSIX program. See “z/OS XL C/C++

applications with z/OS UNIX System Services C functions” on page 13 for more

information.

Returned Value

If successful, tempnam() allocates space for the generated name, copies the name

into it, and returns a pointer to the name.

If unsuccessful, tempnam() returns a NULL pointer and sets errno to one of the

following values:

Error Code Description

ENAMETOOLONG The generated name exceeded the maximum

allowable pathname length.

ENOMEM Insufficient storage is available.

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

v “free() — Free a Block of Storage” on page 672

tempnam

2190 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

v “open() — Open a File” on page 1313

v “tmpfile() — Create Temporary File” on page 2216

v “tmpnam() — Produce Temporary File Name” on page 2218

v “unlink() — Remove a Directory Entry” on page 2312

tempnam

Chapter 3. Part 3. Library Functions 2191

terminate() — Terminate After Failures in C++ Error Handling

Standards

 Standards / Extensions C or C++ Dependencies

ANSI/ISO C++ C++ only

Format

#include <exception>

void terminate(void);

General Description

The terminate() function is called when the C++ error handling mechanism fails. If

terminate() is called directly by the program, the terminate_handler is the one most

recently set by a call to set_terminate(). If terminate() is called for any of several

other reasons during evaluation of a throw expression, the terminate_handler is the

one in effect immediately after evaluating the throw expression. If set_terminate()

has not yet been called, then terminate() calls abort().

In a multithreaded environment, if a thread issues a throw, the stack is unwound

until a matching catcher is found, up to and including the thread start routine. (The

thread start routine is the function passed to pthread_create().) If the exception is

not caught, then the terminate() function is called, which in turn defaults to calling

abort(), which in turn causes a SIGABRT signal to be generated to the thread

issuing the throw. If the SIGABRT signal is not caught, the process is terminated.

You can replace the default terminate() behavior for all threads in the process by

using the set_terminate() function. One possible use of set_terminate() is to call a

function which issues a pthread_exit(). If this is done, a throw of a condition by a

thread that is uncaught results in thread termination but not process termination.

Returned Value

terminate() returns no values.

Refer to z/OS XL C/C++ Language Reference for more information about C++

exception handling including the terminate() function.

Related Information

v “exception” on page 44

v “abort() — Stop a Program” on page 116

v “set_terminate() — Register a Function for terminate()” on page 1855

v “unexpected() — Handle Exception Not Listed in Exception Specification” on

page 2305

terminate

2192 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_error() — Produce Error Message

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_error(char *errmsg);

General Description

Produces a language-dependent message on the standard error output which

describes the last error encountered during a call to a transport function. The

argument string errmsg is a user-supplied error message that gives context to the

error.

The error message is written as follows: first (if errmsg is not a NULL pointer and

the character pointed to by errmsg is not the NULL character) the string pointed to

by errmsg followed by a colon and a space; then a standard error message string

for the current error defined in t_errno. If t_errno has a value different from TSYSERR,

the standard error message string is followed by a newline character. If, however,

t_errno is equal to TSYSERR, the t_errno string is followed by the standard error

message string for the current error defined in errno followed by a newline.

If the calling program is running in any one of the SAA, S370, C or POSIX locales,

the error message string describing the value in t_errno is identical to the

comments following the t_errno codes defined in xti.h. It is noteworthy that message

numbers are not produced in this situation. The contents of the error message

strings describing the value in errno are the same as those returned by the

strerror(3C) function with an argument of errno.

The error number, t_errno, is only set when an error occurs and it is not cleared on

successful calls.

Valid States

All - except for T_UNINIT

Returned Value

No errors are defined for t_error().

Example

If a t_connect() function fails on transport endpoint fd2 because a bad address was

given, the following call might follow the failure:

 t_error("t_connect failed on fd2");

The diagnostic message to be printed would look like:

 t_connect failed on fd2: incorrect addr format

t_error

Chapter 3. Part 3. Library Functions 2193

where incorrect addr format identifies the specific error that occurred, and t_connect

failed on fd2 tells the user which function failed on which transport endpoint.

Related Information

v “xti.h” on page 100

t_error

2194 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tfind() — Binary Tree Find Node

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <search.h>

void *tfind(const void *key, void *const *rootp,

 int (*compar)(const void *, const void *));

General Description

The tfind() function, like tsearch(), will search for a node in the tree, returning a

pointer to it if found. However, if it is not found, the tfind() function will return a

NULL pointer. The arguments for the tfind() function are the same as for the

tsearch() function.

Comparisons are made with a user-supplied routine, the address of which is passed

as the compar argument. This routine is called with two arguments, the pointers to

the elements being compared. The user-supplied routine must return an integer less

than, equal to or greater than 0, according to whether the first argument is to be

considered less than, equal to or greater than the second argument. The

comparison functions need not compare every byte, so arbitrary data may be

contained in the elements in addition to the values being compared.

Threading Behavior: see “tsearch() — Binary Tree Search” on page 2257.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, tfind() cannot receive a

C++ function pointer as the comparator argument. If you attempt to pass a C++

function pointer to tfind(), the compiler will flag it as an error. You can pass a C or

C++ function to tfind() by declaring it as extern ″C″.

Returned Value

If the node is found, tfind() returns a pointer to it.

If unsuccessful, tfind() returns a NULL pointer.

If rootp is a NULL pointer on entry, tfind() returns a NULL pointer.

No errors are defined.

Related Information

v “search.h” on page 77

v “bsearch() — Search Arrays” on page 220

v “hsearch() — Search Hash Tables” on page 911

v “lsearch() — Linear Search and Update” on page 1160

tfind

Chapter 3. Part 3. Library Functions 2195

||||

|
|
|

||

|

v “tdelete() — Binary Tree Delete” on page 2187

v “tsearch() — Binary Tree Search” on page 2257

v “twalk() — Binary Tree Walk” on page 2277

tfind

2196 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_free() — Free a Library Structure

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_free(char *ptr, int struct_type);

General Description

Frees memory previously allocated by t_alloc(). This function frees memory for the

specified structure, and also frees memory for buffers referenced by the structure.

The argument ptr points to one of the seven structure types described for t_alloc() ,

and struct_type identifies the type of that structure which must be one of the

following:

 T_BIND struct t_bind

 T_CALL struct t_call

 T_OPTMGMT struct t_optmgmt

 T_DIS struct t_discon

 T_UNITDATA struct t_unitdata

 T_UDERROR struct t_uderr

 T_INFO struct t_info

where each of these structures is used as an argument to one or more transport

functions.

t_free() checks the addr, opt and udata fields of the given structure (as appropriate)

and frees the buffers pointed to by the buf field of the netbuf structure. If buf is a

NULL pointer, t_free() does not attempt to free memory. After all buffers are freed,

t_free() frees the memory associated with the structure pointed to by ptr.

Undefined results occur if ptr or any of the buf pointers points to a block of memory

that was not previously allocated by t_alloc() .

Valid States

All - except for T_UNINIT

Returned Value

If successful, t_free() returns 0.

If unsuccessful, t_free() returns -1 and sets errno to one of the following values:

Error Code Description

TNOSTRUCTYPE

Unsupported struct_type requested.

t_free

Chapter 3. Part 3. Library Functions 2197

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_alloc() — Allocate a Library Structure” on page 2129

t_free

2198 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tgamma(), tgammaf(), tgammal() — Calculate Gamma Function

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R5

Format

#define _ISOC99_SOURCE

#include <math.h>

double tgamma(double x);

float tgammaf(float x);

long double tgammal(long double x);

General Description

The tgamma functions compute the gamma function of x. A domain error occurs if x

is a negative integer or when x is zero and the result cannot be represented. A

range error occurs if the magnitude of x is too large or too small.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

tgamma X X

tgammaf X X

tgammal X X

Returned Value

The tgamma functions return G(x).

Related Information

tgamma

Chapter 3. Part 3. Library Functions 2199

||||

|
|
||

|

t_getinfo() — Get Protocol-specific Service Information

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_getinfo(int fd, struct t_info *info);

General Description

Returns the current characteristics of the underlying transport protocol and/or

transport connection associated with file descriptor fd. The info pointer is used to

return the same information returned by t_open(), although not necessarily precisely

the same values. This function enables a transport user to access this information

during any phase of communication. This argument points to a t_info structure

which contains the following members:

long addr; /* max size of the transport protocol address */

long options; /* max number of bytes of protocol-specific options */

long tsdu; /* max size of a transport service data unit (TSDU) */

long etsdu; /* max size of an expedited transport service */

 /* data unit (ETSDU) */

long connect; /* max amount of data allowed on connection */

 /* establishment functions */

long discon; /* max amount of data allowed on t_snddis() */

 /* and t_rcvdis() functions */

long servtype; /* sdis() functions */

long servtype; /* service type supported by the transport provider */

long flags; /* other info about the transport provider */

The fields take on the following values:

addr The size of a struct sockaddr_in is returned.

options The value 304, which is the maximum number of bytes of options

which can possibly be specified or requested, is returned.

tsdu Zero is returned, indicating that the TCP transport provider does not

support the concept of TSDUs.

etsdu A value of -1 is returned, indicating that there is no limit on the size

of an ETSDU.

connect A value of -2 is returned, indicating that the TCP transport provider

does not allow data to be sent with connection establishment

functions.

discon A value of -2 is returned, indicating that the transport provider does

not allow data to be sent with the abortive release functions.

servtype T_COTS is always returned, since this is the only service type

supported.

flags The T_SENDZERO bit is always set in this field, indicating that the

TCP transport provider supports the sending of zero-length TSDUs.

t_getinfo

2200 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If a transport user is concerned with protocol independence, the above sizes may

be accessed to determine how large the buffers must be to hold each piece of

information. Alternatively, the t_alloc() function may be used to allocate these

buffers. An error results if a transport user exceeds the allowed data size on any

function. The value of each field may change as a result of protocol option

negotiation during connection establishment (the t_optmgmt() call has no affect on

the values returned by t_getinfo()). These values will only change from the values

presented to t_open() after the endpoint enters the T_DATAXFER state.

Valid States

All - except for T_UNINIT

Returned Value

If successful, t_getinfo() returns 0.

If unsuccessful, t_getinfo() returns -1 and sets errno to one of the following values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_alloc() — Allocate a Library Structure” on page 2129

v “t_open() — Establish a Transport Endpoint” on page 2230

t_getinfo

Chapter 3. Part 3. Library Functions 2201

t_getprotaddr() — Get the Protocol Addresses

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_getprotaddr(int fd, struct t_bind *boundaddr,

 struct t_bind *peeraddr);

General Description

Returns local and remote protocol addresses currently associated with the transport

endpoint specified by fd. In boundaddr and peeraddr the user specifies maxlen,

which is the maximum size of the address buffer, and buf which points to the buffer

where the address is to be placed. On return, the buf field of boundaddr points to

the address, if any, currently bound to fd, and the len field specifies the length of

the address. If the transport endpoint is in the T_UNBND state, zero is returned in

the len field of boundaddr. The buf field of peeraddr points to the address, if any,

currently connected to fd, and the len field specifies the length of the address. If the

transport endpoint is not in the T_DATAXFER state, zero is returned in the len field

of peeraddr.

Valid States

All - except for T_UNINIT

Returned Value

If successful, t_getprotaddr() returns 0.

If unsuccessful, t_getprotaddr() returns -1 and sets errno to one of the following

values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for an incoming argument (maxlen)

is greater than 0 but not sufficient to store the value of that

argument.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_bind() — Bind an Address to a Transport Endpoint” on page 2135

t_getprotaddr

2202 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_getstate() — Get the Current State

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_getstate(int fd);

General Description

Returns the current state of the provider associated with the transport endpoint

specified by fd.

Valid States

All - except for T_UNINIT

Returned Value

If successful, t_getstate() returns the state. The current state is one of the following:

T_DATAXFER Data transfer.

T_IDLE Idle.

T_INCON Incoming connection pending.

T_OUTCON Outgoing connection pending.

T_UNBND Unbound.

If the provider is undergoing a state transition when t_getstate() is called, the

function will fail.

If unsuccessful, t_getstate() returns -1 and sets errno to one of the following values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSTATECHNG

The transport provider is undergoing a transient state change.

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_open() — Establish a Transport Endpoint” on page 2230

t_getstate

Chapter 3. Part 3. Library Functions 2203

time() — Determine current UTC time

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <time.h>

time_t time(time_t *timeptr);

General Description

Determines the current UTC time.

Note: This function is sensitive to time zone information which is provided by:

v The TZ environmental variable when POSIX(ON) and TZ is correctly

defined, or by the _TZ environmental variable when POSIX(OFF) and _TZ

is correctly defined.

v The LC_TOD category of the current locale if POSIX(OFF) or TZ is not

defined.

The time zone external variables tzname, timezone, and daylight declarations

remain feature test protected in time.h.

Returned Value

The time() function returns the value of time in seconds since the Epoch.

Returns the current UTC time. The returned value is also stored in the location

given by timeptr. If timeptr is NULL, the returned value is not stored. If the calendar

time is not available, the value (time_t)-1 is returned.

time() returns the current value of the time-of-day (TOD) clock value obtained with

the STCK instruction, rounded off to the nearest second, and normalized to the

POSIX Epoch, January 1, 1970. The TOD clock value does not account for leap

seconds. If you need more accuracy, use the STCK instruction or the TIME macro

which does account for leap seconds using whatever value the system operator has

entered for number of leap seconds in the CVT field. For more information about

the STCK instruction, refer to z/Architecture Principles of Operation.

A returned value of 0 indicates the epoch, which was at the Coordinated Universal

Time (UTC) of 00:00:00 on January 1, 1970.

Example

CELEBT11

time

2204 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

|

|
|
|
|
|
|
|

/* CELEBT11

 This example gets the time and assigns it to ltime, then uses

 the &ctime. function to convert the number of seconds to the

 current date and time.

 Finally, it prints a message giving the current time.

 */

#include <time.h>

#include <stdio.h>

int main(void)

{

 time_t ltime;

 time(<ime);

 printf("The time is %s\n", ctime(<ime));

}

Output

The time is Fri Jun 16 11:01:41 2001

Related Information

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “clock() — Determine Processor Time” on page 296

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

v “tzset() — Set the Time Zone” on page 2279

time

Chapter 3. Part 3. Library Functions 2205

times() — Get Process and Child Process Times

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/times.h>

clock_t times(struct tms *buffer);

General Description

Gets processor times of interest to a process.

struct tms *buffer

Points to a memory location where times() can store a structure of

information describing processor time used by the current process

and other related processes.

times() returns information in a tms structure, which has the following elements:

clock_t tms_utime

Amount of processor time used by instructions in the calling

process.

 Under z/OS UNIX System Services services, this does not include

processor time spent running in the kernel. It does include any

processor time accumulated for the address space before it

became an z/OS UNIX System Services services process.

clock_t tms_stime

Amount of processor time used by the system.

 Under z/OS UNIX System Services services, this value represents

kernel busy time running on behalf of the calling process. It does

not include processor time performing other MVS system functions

on behalf of the process.

clock_t tms_cutime

The sum of tms_utime and tms_cutime values for all waited-for

child processes which have terminated.

clock_t tms_cstime

The sum of tms_stime and tms_cstime values for all terminated

child processes of the calling process.

clock_t is an integral type determined in the time.h header file. It measures times

in terms of clock ticks. The number of clock ticks in a second (for your installation)

can be found in sysconf(_SC_CLK_TCK).

Times for a terminated child can be determined once wait() or waitpid() have

reported the child’s termination.

times

2206 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

Pthreads can not be separately clocked by the times() function because they do not

run in a separate process like forked children do.

Returned Value

If successful, times() returns a value giving the elapsed time since the process was

last invoked (for example, at system startup). If this time value cannot be

determined, times() returns (clock_t)−1.

If unsuccessful, times() sets errno to one of the following values:

Error Code Description

ERANGE An overflow having occurred computing time values.

Example

CELEBT12

/* CELEBT12

 This example provides the amount of processor time

 used by instructions and the system for the parent and child

 processes.

 */

#define _POSIX_SOURCE

#include <sys/times.h>

#include <time.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <stdio.h>

#include <unistd.h>

main() {

 int status;

 long i, j;

 struct tms t;

 clock_t dub;

 int tics_per_second;

 tics_per_second = sysconf(_SC_CLK_TCK);

 if (fork() == 0) {

 for (i=0, j=0; i<1000000; i++)

 j += i;

 exit(0);

 }

 if (wait(&status) == −1)

 perror("wait() error");

 else if (!WIFEXITED(status))

 puts("Child did not exit successfully");

 else if ((dub = times(&t)) == −1)

 perror("times() error");

 else {

 printf("process was dubbed %f seconds ago.\n\n",

 ((double) dub)/tics_per_second);

 printf(" utime stime\n");

 printf("parent: %f %f\n",

 ((double) t.tms_utime)/tics_per_second,

 ((double) t.tms_stime)/tics_per_second);

 printf("child: %f %f\n",

times

Chapter 3. Part 3. Library Functions 2207

((double) t.tms_cutime)/tics_per_second,

 ((double) t.tms_cstime)/tics_per_second);

 }

}

Output

process was dubbed 1.600000 seconds ago.

 utime stime

parent: 0.000000 0.020000

child: 0.320000 0.000000

Related Information

v “sys/times.h” on page 89

v “time.h” on page 93

v “exec Functions” on page 486

v “fork() — Create a New Process” on page 632

v “time() — Determine current UTC time” on page 2204

v “wait() — Wait for a Child Process to End” on page 2349

v “waitpid() — Wait for a Specific Child Process to End” on page 2354

times

2208 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tinit() — Attach and Initialize MTF Subtasks

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment C only

Format

#include <mtf.h>

int tinit(const char *parallel_loadmod_name, int num_subtasks);

General Description

Restriction: This function is not supported in AMODE 64.

Initializes the multitasking facility (MTF) environment under MVS.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

tinit() is invoked from a main task to dynamically attach and initialize the number of

subtasks specified by num_subtasks, where num_subtasks ranges from 1 to

MAXTASK (which is defined in the header file mtf.h). After the subtasks have been

attached and initialized by tinit(), each of the subtasks will be given a task_id and

can then compute independent pieces of the program, in parallel with the main task,

under the control of the tsched() and tsyncro() library functions.

The parallel load module (parallel_loadmod_name) must contain all parallel

functions and reside in a partitioned data set named in the STEPLIB DD statement of

the JCL that runs the program.

The tinit() function may be called by a main task only once before invoking tterm().

Invocations of tinit() after the first are one are terminated with a returned value

indicating that MTF is already active.

After tterm() has been called to terminate and remove the MTF environment, or

after an abend, tinit() can be called again to create a new MTF environment. The

new initialization is independent of the old one and may provide a different number

of tasks and/or a different parallel load module.

If tinit() is called from a parallel function, tinit() will be terminated with a returned

value indicating that MTF calls cannot be issued from a parallel function.

tinit

Chapter 3. Part 3. Library Functions 2209

If tinit() is called by a program running under IMS, CICS, or DB2, the request will

not be processed and the returned value will indicate that MTF calls are not

supported under these systems.

Returned Value

If the subtasks have been attached successfully and the MTF environment created,

tinit() returns MTF_OK.

If unsuccessful, tinit() sets errno to one of the following values:

Error Code Description

EACTIVE MTF has already been initialized and is active.

EAUTOALC Automatic allocation of standard stream DD has failed.

EMODFIND Parallel load module was not found.

EMODFMT Parallel load module has an invalid format.

EMODREAD Parallel load module was not successfully read.

ENAME2LNG Parallel load module name is longer than 8 characters.

ENOMEM There was insufficient storage for MTF-internal areas.

ESUBCALL The MTF call was issued from a subtask.

ETASKABND One or more subtasks have terminated abnormally.

ETASKFAIL The attempt to attach task(s) failed.

ETASKNUM Number of tasks specified is invalid (<1 or >MAXTASK).

EWRONGOS MTF is not supported under IMS, CICS or DB2*.

Note: These values are macros and can be found in the mtf.h header file.

Related Information

v “mtf.h” on page 64

v “tsched() — Schedule MTF Subtask” on page 2255

v “tsyncro() — Wait for MTF Subtask Termination” on page 2268

v “tterm() — Terminate MTF Subtasks” on page 2270

tinit

2210 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_listen() — Listen for a Connect Indication

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_listen(int fd, struct t_call *call);

General Description

Listens for a connect request from a calling transport user. The argument fd

identifies the local transport endpoint where connect indications arrive, and on

return, call contains information describing the connect indication. The parameter

call points to a t_call structure which contains the following members:

 struct netbuf addr;

 struct netbuf opt;

 struct netbuf udata;

 int sequence;

In call, addr returns the protocol address of the calling transport user. This address

is in a format usable in future calls to t_connect(). However, t_connect() may fail for

other reasons; For example TADDRBUSY. opt returns options associated with the

connect request. udata is meaningless because transmission of user data is not

supported across a connect request. sequence is a number that uniquely identifies

the returned connect indication. The value of sequence enables the user to listen

for multiple connect indications before responding to any of them.

Since this function returns values for the addr, opt and udata fields of call, the

maxlen field of each must be set before issuing the t_listen() to indicate the

maximum size of the buffer for each.

By default, t_listen() executes in synchronous mode and waits for a connect

indication to arrive before returning to the user. However, if O_NONBLOCK is set

using t_open() or fcntl(), t_listen() executes asynchronously, reducing to a poll for

existing connect indications. If none are available, it returns -1 and sets t_errno to

TNODATA.

Valid States

T_IDLE, T_INCON

Returned Value

If successful, t_listen() returns 0. The TCP transport provider does not differentiate

between a connect indication and the connection itself. A successful return of

t_listen() indicates an existing connection.

If unsuccessful, t_listen() returns -1 and sets errno to one of the following values:

Error Code Description

t_listen

Chapter 3. Part 3. Library Functions 2211

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADQLEN The argument qlen of the endpoint referenced by fd is zero.

TBUFOVFLW The number of bytes allocated for an incoming argument (maxlen)

is greater than 0 but not sufficient to store the value of that

argument. The provider’s state, as seen by the user, changes to

T_INCON, and the connect indication information to be returned in

call is discarded. The value of sequence returned can be used to

do a t_snddis() .

TLOOK An asynchronous event has occurred on this transport endpoint and

requires immediate attention.

TNODATA O_NONBLOCK was set, but no connect indications had been

queued.

TNOTSUPPORT

This function is not supported by the underlying transport provider.

TOUTSTATE The function was issued in the wrong sequence on the transport

endpoint referenced by fd.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TQFULL The maximum number of outstanding indications has been reached

for the endpoint referenced by fd.

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “fcntl() — Control Open File Descriptors” on page 527

v “t_accept() — Accept a Connect Request” on page 2124

v “t_alloc() — Allocate a Library Structure” on page 2129

v “t_bind() — Bind an Address to a Transport Endpoint” on page 2135

v “t_connect() — Establish a Connection with Another Transport User” on page

2156

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_optmgmt() — Manage Options for a Transport Endpoint” on page 2232

v “t_rcvconnect() — Receive the Confirmation from a Connect Request” on page

2244

t_listen

2212 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_look() — Look at the Current Event on a Transport Endpoint

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_look(int fd);

General Description

Returns the current event on the transport endpoint specified by fd. This function

enables a transport provider to notify a transport user of an asynchronous event

when the user is calling functions in synchronous mode. Certain events require

immediate notification of the user and are indicated by a specific error, TLOOK, on

the current or next function to be executed. This function also enables a transport

user to poll a transport endpoint periodically for asynchronous events.

Additional functionality for handling events is provided through select and poll.

Valid States

All - except for T_UNINIT

The following list describes the asynchronous events which cause an XTI call to

return with a TLOOK error:

t_accept() T_DISCONNECT, T_LISTEN

t_connect() T_DISCONNECT, T_LISTEN

 This occurs only when a t_connect is done on an endpoint which

has been bound with a qlen > 0 and for which a connect indication

is pending.

t_listen() T_DISCONNECT

 This event indicates a disconnect on an outstanding connect

indication.

t_rcv() T_DISCONNECT

 This occurs only when all pending data has been read.

t_rcvconnect() T_DISCONNECT

t_rcvudata() T_UDERR

t_snd() T_DISCONNECT

t_sndudata() T_UDERR

t_unbind() T_LISTEN, T_DATA

 T_DATA may only occur for the connectionless mode.

t_snddis() T_DISCONNECT

t_look

Chapter 3. Part 3. Library Functions 2213

Once a TLOOK error has been received on a transport endpoint using an XTI

function, subsequent calls to that and other XTI functions, to which the same TLOOK

error applies, will continue to return TLOOK until the event is consumed. An event

causing the TLOOK error can be determined by calling t_look() and then can be

consumed by calling the corresponding consuming XTI function as defined in

Table 57.

 Table 57. Events and t_look()

Event

Cleared on

t_look()? Consuming XTI functions

T_LISTEN No t_listen()

T_CONNECT No t_{rcv}connect()

In the case of the t_connect() function the

T_CONNECT event is both generated and

consumed by the execution of the function and is

therefore not visible to the application.

T_DATA No t_rcv()

T_EXDATA No t_rcv()

T_DISCONNECT No t_rcvdis()

T_GODATA Yes t_snd()

T_GOEXDATA Yes t_snd()

Returned Value

If successful, t_look() returns a value that indicates which of the allowable events

has occurred, or returns 0 if no event exists. One of the following events is

returned:

T_CONNECT Connect confirmation received.

T_DATA Normal data received.

T_DISCONNECT Disconnect received.

T_EXDATA Expedited data received.

T_GODATA Flow control restrictions on normal data flow that

led to a TFLOW error have been lifted. Normal data

may be sent again.

T_GOEXDATA Flow control restrictions on expedited data flow that

led to a TFLOW error have been lifted. Expedited

data may be sent again.

T_LISTEN Connection indication received.

If unsuccessful, t_look() returns -1 and sets errno to one of the following values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

t_look

2214 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “xti.h” on page 100

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_snd() — Send Data or Expedited Data Over a Connection” on page 2259

v “t_sndudata() — Send a Data Unit” on page 2264

t_look

Chapter 3. Part 3. Library Functions 2215

tmpfile() — Create Temporary File

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

FILE *tmpfile(void);

General Description

Creates a temporary binary file. It opens the temporary file in wb+ mode. The file is

automatically removed when it is closed or when the program is terminated.

Note: When the tmpfile() function is issued from multiple tasks within one address

space, the temporary file names may not be unique. The execution of the

tmpfile() function concurrently within one address space will result in errors.

For example, an open will fail because the file is already open.

Returned Value

If successful, tmpfile() returns a pointer to the stream associated with the file

created.

If tmpfile() cannot open the file, it returns a NULL pointer. On normal termination

(exit()), these temporary files are removed. On abnormal termination, an effort is

made to remove these files.

Returned Value for z/OS UNIX System Services Services

When the calling application is an z/OS UNIX System Services services program,

the temporary file is created in the hierarchical file system. The file is created in the

directory referred to by the TMPDIR environment variable, or ’/tmp’ if TMPDIR is not

defined.

Special Behavior for XPG4

The following are the possible values of errno:

Error Code Description

EINTR A signal was caught during tmpfile().

EMFILE OPEN_MAX file descriptors are currently open in the calling

process.

 {FOPEN_MAX} streams are currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the

system.

tmpfile

2216 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

|
|
|
|

ENOMEM Insufficient storage space is available.

ENOSPC The directory or file system which would contain the new file cannot

be expanded.

Example

CELEBT13

/* CELEBT13

 This example creates a temporary file and if successful,

 writes tmpstring to it.

 At program termination, the file is removed.

 */

#include <stdio.h>

int main(void) {

 FILE *stream;

 char tmpstring[] = "This string will be written";

{

 if((stream = tmpfile()) == NULL)

 printf("Cannot make a temporary file\n");

 else

 fprintf(stream, "%s", tmpstring);

}

}

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

tmpfile

Chapter 3. Part 3. Library Functions 2217

tmpnam() — Produce Temporary File Name

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

char *tmpnam(char *string);

General Description

Produces a valid file name that is not the same as the name of any existing file. It

stores this name in string. If string is a NULL pointer, tmpnam() leaves the result in

an internal static buffer. Any subsequent calls may modify this object. If string is not

a NULL pointer, it must point to an array of at least L_tmpnam bytes. The value of

L_tmpnam is defined in the stdio.h header file.

Returned Value

If string is a NULL pointer, tmpnam() returns the pointer to the internal static object

in which the generated unique name is placed. Otherwise, if string is not a NULL

pointer, it returns the value of string. The tmpnam() function produces a different

name each time it is called within a module up to at least TMP_MAX names. Files

created using names returned by tmpnam() are not automatically discarded at the

end of the program.

Returned Value for z/OS UNIX System Services Services

When the calling application is an z/OS UNIX System Services services program,

the file name returned is a unique file name in the hierarchical file system (HFS).

The directory component of the file name will be the value of the TMPDIR

environment variable, or ’/tmp’ if TMPDIR is not defined.

Example

CELEBT14

/* CELEBT14

 This example calls &tmpnam. to produce a valid file name.

 */

#include <stdio.h>

int main(void)

{

 char *name1;

 if ((name1 = tmpnam(NULL)) !=NULL)

 printf("%s can be used as a file name.\n", name1);

 else printf("Cannot create a unique file name\n");

}

tmpnam

2218 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Related Information

v “stdio.h” on page 82

v “fopen() — Open a File” on page 626

tmpnam

Chapter 3. Part 3. Library Functions 2219

toascii() — Translate Integer to a 7-bit ASCII Character

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

_XOPEN_SOURCE

#define _XOPEN_SOURCE

#include <ctype.h>

int toascii(int c);

_ALL_SOURCE

#define _ALL_SOURCE

#include <ctype.h>

int toascii(int c);

General Description

Special Behavior for _XOPEN_SOURCE

The toascii() function converts its argument to a 7-bit US-ASCII character code.

The toascii() function is not intended to be used to convert EBCDIC characters to

ASCII, attempts to use it in this manner will not function as expected.

Special Behavior for _ALL_SOURCE

toascii() assumes c modulo 256 is a single-byte EBCDIC encoding for a Latin 1

character, <input-character>, in the current locale. Then, toascii() determines to

what character, <output-character>, toascii() would map <input-character> in an

ASCII locale (for example, on an *IX system) and returns the EBCDIC encoding for

<output-character> in the current locale.

For example, if the program invoking toascii() was compiled with _ALL_SOURCE

defined and if the value c input to toascii() modulo 256 is the EBCDIC encoding for

<international-currency-symbol> in the current locale, toascii() returns the EBCDIC

encoding for <dollar> in the current locale because toascii() maps

<international-currency-symbol> to <dollar> on ASCII platforms.

Returned Value

Special Behavior for _XOPEN_SOURCE

toascii() returns the value (c & 0x7f).

Special Behavior for _ALL_SOURCE

If the current locale is not a single-byte locale (that is, mb_cur_max > 1), toascii()

sets errno to ENOSYS and returns -1. Otherwise, toascii() assumes c modulo 256

toascii

2220 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

is the encoding of a Latin 1 character, <input_character>, in the current locale and

returns the EBCDIC encoding of the same or another Latin 1 character,

<output-character>, in the current locale; where <output-character> corresponds to

the character to which toascii() would map <input-character> on an ASCII platform.

EBCDIC and ASCII encodings and <input-character> to <output-character>

mapping performed by toascii() in an IBM-1047 locale are as follows:

/***/

/* */

/* IBM-1047 toascii table (sorted by ebcdic) */

/* */

/* For ISO-8859 character encoding toascii(ch) returns ch for */

/* values of ch less than 128 and ch-128 for values between */

/* 128 and 255, inclusive. Table below shows corresponding */

/* toascii(ch) equivalence for IBM-1047 character encoding */

/* of the Latin character set. */

/* */

/* IBM 1047 ISO 8859-1 */

/* Character Encoding Encoding */

/* (Symbolic Name) (Hexadecimal) (Hexadecimal) */

/* */

/* ch toascii(ch) ch toascii(ch) ch toascii(ch) */

/* */

/* <NUL> <NUL> 00 00 00 00 */

/* <SOH> <SOH> 01 01 01 01 */

/* <STX> <STX> 02 02 02 02 */

/* <ETX> <ETX> 03 03 03 03 */

/* <SEL> <IFS/IS4> 04 1C 9C 1C */

/* <HT> <HT> 05 05 09 09 */

/* <RNL> <ACK> 06 2E 86 06 */

/* 07 07 7F 7F */

/* <GE> <ETB> 08 26 97 17 */

/* <SPS> <CR> 09 0D 8D 0D */

/* <RPT> <SO> 0A 0E 8E 0E */

/* <VT> <VT> 0B OB 0B 0B */

/* <FF> <FF> 0C 0C 0C 0C */

/* <CR> <CR> 0D 0D 0D OD */

/* <SO> <SO> 0E 0E 0E OE */

/* <SI> <SI> 0F 0F 0F 0F */

/* <DLE> <DLE> 10 10 10 10 */

/* <DC1> <DC1> 11 11 11 11 */

/* <DC2> <DC2> 12 12 12 12 */

/* <DC3> <DC3> 13 13 13 13 */

/* <RES/ENP> <IGS/IS3> 14 1D 9D 1D */

/* <NL> <NL> 15 15 0A 0A */

/* <BS> <BS> 16 16 08 08 */

/* <POC> <BEL> 17 2F 87 07 */

/* <CAN> <CAN> 18 18 18 18 */

/* 19 19 19 19 */

/* <UBS> <DC2> 1A 12 92 12 */

/* <CU1> <SI> 1B 0F 8F 0F */

/* <IFS/IS4> <IFS/IS4> 1C 1C 1C 1C */

/* <IGS/IS3> <IGS/IS3> 1D 1D 1D 1D */

/* <IRS/IS2> <IRS/IS2> 1E 1E 1E 1E */

/* <IUS/IS1> <IUS/IS1> 1F 1F 1F 1F */

/* <DS> <NUL> 20 00 80 00 */

/* <SOS> <SOH> 21 01 81 01 */

/* <FS> <STX> 22 02 82 02 */

/* <WUS> <ETX> 23 03 83 03 */

/* <BYP/INP> <EOT> 24 37 84 04 */

/* <LF> <ENQ> 25 2D 85 05 */

/* <ETB> <ETB> 26 26 17 17 */

/* <ESC> <ESC> 27 27 1B 1B */

/* <SA> <BS> 28 16 88 08 */

/* <SFE> <HT> 29 05 89 09 */

toascii

Chapter 3. Part 3. Library Functions 2221

/* <SM/SW> <NL> 2A 15 8A 0A */

/* <CSP> <VT> 2B 0B 8B 0B */

/* <MFA> <FF> 2C 0C 8C 0C */

/* <ENQ> <ENQ> 2D 2D 05 05 */

/* <ACK> <ACK> 2E 2E 06 06 */

/* <BEL> <BEL> 2F 2F 07 07 */

/* (reserved) <DLE> 30 10 90 10 */

/* (reserved) <DC1> 31 11 91 11 */

/* <SYN> <SYN> 32 32 16 16 */

/* <IR> <DC3> 33 13 93 13 */

/* <PP> <DC4> 34 3C 94 14 */

/* <TRN> <NAK> 35 3D 95 15 */

/* <NBS> <SYN> 36 32 96 16 */

/* <EOT> <EOT> 37 37 04 04 */

/* <SBS> <CAN> 38 18 98 18 */

/* <IT> 39 19 99 19 */

/* <RFF> <SUB> 3A 3F 9A 1A */

/* <CU3> <ESC> 3B 27 9B 1B */

/* <DC4> <DC4> 3C 3C 14 14 */

/* <NAK> <NAK> 3D 3D 15 15 */

/* (reserved) <IRS/IS2> 3E 1E 9E 1E */

/* <SUB> <SUB> 3F 3F 1A 1A */

/* */

/* <space> <space> 40 40 20 20 */

/* <nobrk-sp> <space> 41 40 A0 20 */

/* <a-circum> 42 82 E2 62 */

/* <a-diaere> <d> 43 84 E4 64 */

/* <a-grave> <grave> 44 79 E0 60 */

/* <a-acute> <a> 45 81 E1 61 */

/* <a-tilde> <c> 46 83 E3 63 */

/* <a-ring> <e> 47 85 E5 65 */

/* <c-cedilla><g> 48 87 E7 67 */

/* <n-tilde> <q> 49 98 F1 71 */

/* <cent-sign><quote> 4A 7F A2 22 */

/* <period> <period> 4B 4B 2E 2E */

/* <lt> <lt> 4C 4C 3C 3C */

/* <l-paren> <l-paren> 4D 4D 28 28 */

/* <plus> <plus> 4E 4E 2B 2B */

/* <ver-line> <ver-line> 4F 4F 7C 7C */

/* <ampersand><ampersand> 50 50 26 26 */

/* <e-acute> <i> 51 89 E9 69 */

/* <e-circum> <j> 52 91 EA 6A */

/* <e-diaere> <k> 53 92 EB 6B */

/* <e-grave> <h> 54 88 E8 68 */

/* <i-acute> <m> 55 94 ED 6D */

/* <i-circum> <n> 56 95 EE 6E */

/* <i-diaere> <o> 57 96 EF 6F */

/* <i-grave> <l> 58 93 EC 6C */

/* <s-sharp> <underscr> 59 6D DF 5F */

/* <exclama> <exclama> 5A 5A 21 21 */

/* <dollar> <dollar> 5B 5B 24 24 */

/* <asterisk> <asterisk> 5C 5C 2A 2A */

/* <r-paren> <r-paren> 5D 5D 29 29 */

/* <semicolon><semicolon> 5E 5E 3B 3B */

/* <circum> <circum> 5F 5F 5E 5E */

/* <hyphen> <hyphen> 60 60 2D 2D */

/* <slash> <slash> 61 61 2F 2F */

/* <A-circum> 62 C2 C2 42 */

/* <A-diaere> <D> 63 C4 C4 44 */

/* <A-grave> <at> 64 7C C0 40 */

/* <A-acute> <A> 65 C1 C1 41 */

/* <A-tilde> <C> 66 C3 C3 43 */

/* <A-ring> <E> 67 C5 C5 45 */

/* <C-cedilla><G> 68 C7 C7 47 */

/* <N-tilde> <Q> 69 D8 D1 51 */

/* <brok-bar> <ampersand> 6A 50 A6 26 */

/* <comma> <comma> 6B 6B 2C 2C */

toascii

2222 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

/* <percent> <percent> 6C 6C 25 25 */

/* <underscr> <underscr> 6D 6D 5F 5F */

/* <gt> <gt> 6E 6E 3E 3E */

/* <question> <question> 6F 6F 3F 3F */

/* <o-stroke> <x> 70 A7 F8 78 */

/* <E-acute> <I> 71 C9 C9 49 */

/* <E-circum> <J> 72 D1 CA 4A */

/* <E-diaere> <K> 73 D2 CB 4B */

/* <E-grave> <H> 74 C8 C8 48 */

/* <I-acute> <M> 75 D4 CD 4D */

/* <I-circum> <N> 76 D5 CE 4E */

/* <I-diaere> <O> 77 D6 CF 4F */

/* <I-grave> <L> 78 D3 CC 4C */

/* <grave> <grave> 79 79 60 60 */

/* <colon> <colon> 7A 7A 3A 3A */

/* <num-sign> <num-sign> 7B 7B 23 23 */

/* <at> <at> 7C 7C 40 40 */

/* <apostro> <apostro> 7D 7D 27 27 */

/* <eq> <eq> 7E 7E 3D 3D */

/* <quote> <quote> 7F 7F 22 22 */

/* <O-stroke> <X> 80 E7 D8 58 */

/* <a> <a> 81 81 61 61 */

/* 82 82 62 62 */

/* <c> <c> 83 83 63 63 */

/* <d> <d> 84 84 64 64 */

/* <e> <e> 85 85 65 65 */

/* <f> <f> 86 86 66 66 */

/* <g> <g> 87 87 67 67 */

/* <h> <h> 88 88 68 68 */

/* <i> <i> 89 89 69 69 */

/* <l-guille> <plus> 8A 4E AB 2B */

/* <r-guille> <semicolon> 8B 5E BB 3B */

/* <eth> <p> 8C 97 F0 70 */

/* <y-acute> <r-brace> 8D D0 FD 7D */

/* <thorn> <tilde> 8E A1 FE 7E */

/* <plusminus><one> 8F F1 B1 31 */

/* <degree> <zero> 90 F0 B0 30 */

/* <j> <j> 91 91 6A 6A */

/* <k> <k> 92 92 6B 6B */

/* <l> <l> 93 93 6C 6C */

/* <m> <m> 94 94 6D 6D */

/* <n> <n> 95 95 6E 6E */

/* <o> <o> 96 96 6F 6F */

/* <p> <p> 97 97 70 70 */

/* <q> <q> 98 98 71 71 */

/* <r> <r> 99 99 72 72 */

/* <fem-ind> <asterisk> 9A 5C AA 2A */

/* <mas-ind> <colon> 9B 7A BA 3A */

/* <ae> <f> 9C 86 E6 66 */

/* <cedilla> <eight> 9D F8 B8 38 */

/* <AE> <F> 9E C6 C6 46 */

/* <cur-sign> <dollar> 9F 5B A4 24 */

/* <mu> <five> A0 F5 B5 35 */

/* <tilde> <tilde> A1 A1 7E 7E */

/* <s> <s> A2 A2 73 73 */

/* <t> <t> A3 A3 74 74 */

/* <u> <u> A4 A4 75 75 */

/* <v> <v> A5 A5 76 76 */

/* <w> <w> A6 A6 77 77 */

/* <x> <x> A7 A7 78 78 */

/* <y> <y> A8 A8 79 79 */

/* <z> <z> A9 A9 7A 7A */

/* <inv-excl> <exclama> AA 5A A1 21 */

/* <inv-ques> <question> AB 6F BF 3F */

/* <Eth> <P> AC D7 D0 50 */

/* <l-brk> <l-brk> AD AD 5B 5B */

/* <Thorn> <circum> AE 5F DE 5E */

toascii

Chapter 3. Part 3. Library Functions 2223

/* <register> <period> AF 4B AE 2E */

/* <not-sign> <comma> B0 6B AC 2C */

/* <pound> <num-sign> B1 7B A3 23 */

/* <yen> <percent> B2 6C A5 25 */

/* <mid-dot> <seven> B3 F7 B7 37 */

/* <copyright><r-paren> B4 5D A9 29 */

/* <section> <apostro> B5 7D A7 27 */

/* <paragraph><six> B6 F6 B6 36 */

/* <1/4> <lt> B7 4C BC 3C */

/* <1/2> <eq> B8 7E BD 3D */

/* <3/4> <gt> B9 6E BE 3E */

/* <Y acute> <r-brk> BA BD DD 5D */

/* <diaeresis><l-paren> BB 4D A8 28 */

/* <macron> <slash> BC 61 AF 2F */

/* <r-brk> <r-brk> BD BD 5D 5D */

/* <acute> <four> BE F4 B4 34 */

/* <multiply> <W> BF E6 D7 57 */

/* <l-brace> <l-brace> C0 C0 7B 7B */

/* <A> <A> C1 C1 41 41 */

/* C2 C2 42 42 */

/* <C> <C> C3 C3 43 43 */

/* <D> <D> C4 C4 44 44 */

/* <E> <E> C5 C5 45 45 */

/* <F> <F> C6 C6 46 46 */

/* <G> <G> C7 C7 47 47 */

/* <H> <H> C8 C8 48 48 */

/* <I> <I> C9 C9 49 49 */

/* <soft-hyp> <hyphen> CA 60 AD 2D */

/* <o-circum> <t> CB A3 F4 74 */

/* <o-diaere> <v> CC A5 F6 76 */

/* <o-grave> <r> CD 99 F2 72 */

/* <o-acute> <s> CE A2 F3 73 */

/* <o-tilde> <u> CF A4 F5 75 */

/* <r-brace> <r-brace> D0 D0 7D 7D */

/* <J> <J> D1 D1 4A 4A */

/* <K> <K> D2 D2 4B 4B */

/* <L> <L> D3 D3 4C 4C */

/* <M> <M> D4 D4 4D 4D */

/* <N> <N> D5 D5 4E 4E */

/* <O> <O> D6 D6 4F 4F */

/* <P> <P> D7 D7 50 50 */

/* <Q> <Q> D8 D8 51 51 */

/* <R> <R> D9 D9 52 52 */

/* <super-1> <nine> DA F9 B9 39 */

/* <u-circum> <l-brace> DB C0 FB 7B */

/* <u-diaere> <ver_line> DC 4F FC 7C */

/* <u-grave> <y> DD A8 F9 79 */

/* <u-acute> <z> DE A9 FA 7A */

/* <y-diaere> DF 07 FF 7F */

/* <backslash><backslash> E0 E0 5C 5C */

/* <division> <w> E1 A6 F7 77 */

/* <S> <S> E2 E2 53 53 */

/* <T> <T> E3 E3 54 54 */

/* <U> <U> E4 E4 55 55 */

/* <V> <V> E5 E5 56 56 */

/* <W> <W> E6 E6 57 57 */

/* <X> <X> E7 E7 58 58 */

/* <Y> <Y> E8 E8 59 59 */

/* <Z> <Z> E9 E9 5A 5A */

/* <super-2> <two> EA F2 B2 32 */

/* <O-circum> <T> EB E3 D4 54 */

/* <O-diaere> <V> EC E5 D6 56 */

/* <O-grave> <R> ED D9 D2 52 */

/* <O-acute> <S> EE E2 D3 53 */

/* <O-tilde> <U> EF E4 D5 55 */

/* <zero> <zero> F0 F0 30 30 */

/* <one> <one> F1 F1 31 31 */

toascii

2224 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

/* <two> <two> F2 F2 32 32 */

/* <three> <three> F3 F3 33 33 */

/* <four> <four> F4 F4 34 34 */

/* <five> <five> F5 F5 35 35 */

/* <six> <six> F6 F6 36 36 */

/* <seven> <seven> F7 F7 37 37 */

/* <eight> <eight> F8 F8 38 38 */

/* <nine> <nine> F9 F9 39 39 */

/* <super-3> <three> FA F3 B3 33 */

/* <U-circum> <l-brk> FB AD DB 5B */

/* <U-diaere> <backslash> FC E0 DC 5C */

/* <U-grave> <Y> FD E8 D9 59 */

/* <U-acute> <Z> FE E9 DA 5A */

/* <EO> <IUS/IS1> FF 1F 9F 1F */

/* */

/***/

Related Information

v “ctype.h” on page 39

v “isascii() — Test for 7-bit US-ASCII Character” on page 1007

toascii

Chapter 3. Part 3. Library Functions 2225

__toCcsid() — Convert Codeset Name to Coded Character Set ID

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R2

Format

#include <_Ccsid.h>

__ccsid_t __toCcsid(char *codesetName);

General Description

The __toCcsid() function returns the coded character set ID corresponding to the

provided codesetName argument.

Returned Value

If successful, __toCcsid() returns the corresponding CCSID for codesetName, if one

exists. The returned __ccsid_t type is defined in <_Ccsid.h> as an unsigned short.

If unsuccessful, __toCcsid() returns 0 and sets errno to one of the following values:

Error Code Description

EINVAL The length of the codesetName argument is greater than

_CSNAME_LEN_MAX as defined in header <_Ccsid.h>.

Related Information

v “_Ccsid.h” on page 35

v “__CcsidType() — Return Coded Character Set ID Type (ASCII/EBCDIC)” on

page 247

v “__CSNameType() — Return Codeset Name Type (ASCII/EBCDIC)” on page 377

v “__toCSName() — Convert Coded Character Set ID to Codeset Name” on page

2227

__toCcsid

2226 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__toCSName() — Convert Coded Character Set ID to Codeset Name

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R2

Format

#include <_Ccsid.h>

int __toCSName(__ccsid_t Ccsid, char *codesetName);

General Description

The __toCSName() function returns the codeset name, corresponding to coded

character codeset ID, Ccsid, in codesetName.

Returned Value

If successful, __toCSName() returns 0 and stores the codeset name in

codesetName, when a corresponding codeset name exists for Ccsid.

If unsuccessful, __toCSName() returns -1.

If __toCSName() returns -1 for a reason other than no corresponding codeset name

exists, it sets errno to one of the following values:

Error Code Description

EINVAL The corresponding codesetName length is greater than

_CSNAME_LEN_MAX as defined in header <_Ccsid.h>.

Related Information

v “_Ccsid.h” on page 35

v “__CcsidType() — Return Coded Character Set ID Type (ASCII/EBCDIC)” on

page 247

v “__CSNameType() — Return Codeset Name Type (ASCII/EBCDIC)” on page 377

v “__toCcsid() — Convert Codeset Name to Coded Character Set ID” on page

2226

__toCSName

Chapter 3. Part 3. Library Functions 2227

tolower(), toupper() — Convert Character Case

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <ctype.h>

int tolower(int c); /* Convert c to lowercase if appropriate */

int toupper(int c); /* Convert c to uppercase if appropriate */

General Description

Converts c to a lowercase letter, if possible. Conversely, the toupper() function

converts c to an uppercase letter, if possible.

The DBCS is not supported. The use of characters from the DBCS results in

unspecified behavior.

Returned Value

If successful, tolower() and toupper() return the corresponding character, as defined

in the LC_CTYPE category of the current locale, if such a character exists.

If unsuccessful, tolower() and toupper() return the unchanged value c.

Example

CELEBT15

/* CELEBT15

 This example demonstrates the result of using

 &toupper. and &tolower. on a lower−case a.

 */

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 int ch;

 ch = 0x81;

 printf("toupper=%#04x\n", toupper(ch));

 printf("tolower=%#04x\n", tolower(ch));

}

Related Information

v “ctype.h” on page 39

v “isalnum() to isxdigit() — Test Integer Value” on page 1004

v “towlower(), towupper() — Convert Wide Character Case” on page 2240

tolower, toupper

2228 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

_tolower() — Translate Uppercase Characters to Lowercase

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <ctype.h>

int _tolower(int c);

General Description

The _tolower() macro is equivalent to tolower(c) except that the argument c must be

an uppercase letter.

Returned Value

_tolower() returns the lowercase letter corresponding to the argument passed.

Related Information

v “ctype.h” on page 39

v “tolower(), toupper() — Convert Character Case” on page 2228

_tolower

Chapter 3. Part 3. Library Functions 2229

||||

|
|
|

||

|

t_open() — Establish a Transport Endpoint

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_open(char *name, int oflag, struct t_info *info);

General Description

t_open() must be called as the first step in the initialization of a transport endpoint.

This function establishes a transport endpoint by supplying a transport provider

identifier that indicates a particular transport provider (that is, transport protocol) and

returning a file descriptor that identifies that endpoint.

Note: There must be at least one available file descriptor less than 65536.

The argument name points to a transport provider identifier. The only supported

transport provider is ″/dev/tcp″, indicating a TCP transport provider. No device by

that name actually exists in the file system. It is purely used to follow historical

convention. The argument oflag identifies any open flags (as in open()). It is

constructed from O_RDWR optionally bitwise inclusive-OR’ed with O_NONBLOCK.

These flags are defined by the header <fcntl.h>. The file descriptor returned by

t_open() will be used by all subsequent functions to identify the particular local

transport endpoint.

This function also returns various default characteristics of the underlying transport

protocol by setting fields in the info structure. This argument points to a t_info

structure which contains the following members:

long addr; /* max size of the transport protocol address */

long options; /* max number of bytes of */

 /* protocol-specific options */

long tsdu; /* max size of a transport service data */

 /* unit (TSDU) */

long etsdu; /* max size of an expedited transport */

 /* service data unit (ETSDU) */

long connect; /* max amount of data allowed on */

 /* connection establishment functions */

long discon; /* max amount of data allowed on */

 /* t_snddis() and t_rcvdis() functions */

long servtype; /* service type supported by the */

 /* transport provider */

long flags; /* other info about the transport provider */

The fields take on the following values:

addr The size of a struct sockaddr_in is returned.

options The value 304, which is the maximum number of bytes of options

which can possibly be specified or requested, is returned.

tsdu Zero is returned, indicating that the TCP transport provider does not

support the concept of TSDUs.

t_open

2230 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

etsdu A value of -1 is returned, indicating that there is no limit on the size

of an ETSDU.

connect A value of -2 is returned, indicating that the TCP transport provider

does not allow data to be sent with connection establishment

functions.

discon A value of -2 is returned, indicating that the transport provider does

not allow data to be sent with the abortive release functions.

servtype T_COTS is always returned, since this is the only service type

supported.

flags The T_SENDZERO bit is always set in this field, indicating that the

TCP transport provider supports the sending of zero-length TSDUs.

If info is set to a NULL pointer by the transport user, no protocol information is

returned by t_open().

Valid States

T_UNINIT

Returned Value

If successful, t_open() returns a valid file descriptor.

If unsuccessful, t_open() returns -1 and sets errno to one of the following values:

Error Code Description

TBADFLAG An invalid flag is specified.

TBADNAME Invalid transport provider name.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “open() — Open a File” on page 1313

t_open

Chapter 3. Part 3. Library Functions 2231

t_optmgmt() — Manage Options for a Transport Endpoint

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_optmgmt(int fd, struct t_optmgmt *req, struct t_optmgmt *ret);

General Description

Enables a transport user to retrieve, verify or negotiate protocol options with the

transport provider. The argument fd identifies a transport endpoint. The req and ret

arguments point to a t_optmgmt structure containing the following members:

struct netbuf opt;

long flags;

The opt field identifies protocol options and the flags field is used to specify the

action to take with those options.

The options are represented by a netbuf structure in a manner similar to the

address in t_bind(). The netbuf structure contains the following members:

unsigned int maxlen maximum buffer value length

unsigned int len actual buffer value length

char * buf pointer to buffer

The argument req is used to request a specific action of the provider and to send

options to the provider. The argument len specifies the number of bytes in the

options, buf points to the options buffer, and maxlen has no meaning for the req

argument. The transport provider may return options and flag values to the user

through ret. For ret, maxlen specifies the maximum size of the options buffer, and

buf points to the buffer where the options are to be placed. On return, len specifies

the number of bytes of options returned. The value in maxlen has no meaning for

the req argument, but must be set in the ret argument to specify the maximum

number of bytes the options buffer can hold.

Each option in the options buffer is of the form struct t_opthdr possibly followed by

an option value. The t_opthdr structure contains the following members:

unsigned long len sizeof(t_opthdr)+optval len

unsigned long level protocol affected

unsigned long name option value

unsigned long status status value

The level field of struct t_opthdr identifies the XTI level or a protocol of the transport

provider. The name field identifies the option within the level, and len contains its

total length. The total length is the length of the option header t_opthdr plus the

length of the option value. If t_optmgmt() is called with the action T_NEGOTIATE

set, the status field of the returned options contains information about the success

or failure of a negotiation.

t_optmgmt

2232 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Each option in the input or output option buffer must start at a long-word boundary.

The macro OPT_NEXTHDR(pbuf, buflen, poption) can be used for that purpose.

The parameter pbuf denotes a pointer to an option buffer opt.buf, and buflen is its

length. The parameter poption points to the current option in the option buffer.

OPT_NEXTHDR returns a pointer to the position of the next option, or returns a

NULL pointer if the option buffer is exhausted. The macro is helpful for writing and

reading. See “xti.h” on page 100 for the exact definition.

If the transport user specifies several options on input, all options must address the

same level.

If any option in the options buffer does not indicate the same level as the first

option, or the level specified is unsupported, then the t_optmgmt() request will fail

with TBADOPT. If the error is detected, some options have possibly been successfully

negotiated. The transport user can check the current status by calling t_optmgmt()

with the T_CURRENT flag set.

Before using this function, you should read Chapter 6 , “Use of Options in XTI”, in

X/Open CAE Specification, Networking Services, Issue 4

The flags field of req must specify one of the following actions:

T_NEGOTIATE

This action enables the transport user to negotiate option values.

 The user specifies the options of interest and their values in the

buffer specified by req->opt.buf and req->opt.len. The negotiated

option values are returned in the buffer pointed to by ret->opt.buf.

The status field of each returned option is set to indicate the result

of the negotiation. The value is T_SUCCESS if the proposed value

was negotiated, T_PARTSUCCESS if a degraded value was

negotiated, T_FAILURE if the negotiation failed (according to the

negotiation rules), T_NOTSUPPORT if the transport provider does

not support this option or illegally requests negotiation of a

privileged option, and T_READONLY if modification of a read-only

option was requested. If the status is T_SUCCESS, T_FAILURE,

T_NOTSUPPORT or T_READONLY, the returned option value is

the same as the one requested on input.

 The overall result of the negotiation is returned in ret->flags.

 This field contains the worst single result, whereby the rating is

done according to the order T_NOTSUPPORT, T_READONLY,

T_FAILURE, T_PARTSUCCESS, T_SUCCESS. The value

T_NOTSUPPORT is the worst result and T_SUCCESS is the best.

 For each level, the option T_ALLOPT (see below) can be requested

on input. No value is given with this option; only the t_opthdr part is

specified. This input requests to negotiate all supported options of

this level to their default values. The result is returned option by

option in ret->opt.buf. (Note that depending on the state of the

transport endpoint, not all requests to negotiate the default value

may be successful.)

T_CHECK This action enables the user to verify whether the options specified

in req are supported by the transport provider.

 If an option is specified with no option value (it consists only of a

t_opthdr structure), the option is returned with its status field set to

t_optmgmt

Chapter 3. Part 3. Library Functions 2233

T_SUCCESS if it is supported, T_NOTSUPPORT if it is not or

needs additional user privileges, and T_READONLY if it is read-only

(in the current XTI state). No option value is returned.

 If an option is specified with an option value, the status field of the

returned option has the same value, as if the user had tried to

negotiate this value with T_NEGOTIATE. If the status is

T_SUCCESS, T_FAILURE, T_NOTSUPPORT or T_READONLY, the

returned option value is the same as the one requested on input.

 The overall result of the option checks is returned in ret->flags. This

field contains the worst single result of the option checks, whereby

the rating is the same as for T_NEGOTIATE.

 Note that no negotiation takes place. All currently effective option

values remain unchanged.

T_DEFAULT This action enables the transport user to retrieve the default option

values. The user specifies the options of interest in req->opt.buf.

The option values are irrelevant and will be ignored. It is sufficient

to specify the t_opthdr part of an option only. The default values are

then returned in ret->opt.buf.

 The status field returned is T_NOTSUPPORT if the protocol level

does not support this option or the transport user illegally requested

a privileged option, T_READONLY if the option is read-only, and set

to T_SUCCESS in all other cases. The overall result of the request

is returned in ret->flags. This field contains the worst single result,

whereby the rating is the same as for T_NEGOTIATE.

 For each level, the option T_ALLOPT (see below) can be requested

on input. All supported options of this level with their default values

are then returned. In this case, ret->opt.maxlen must be given at

least the value info->options (see t_getinfo(), t_open()) before the

call.

T_CURRENT This action enables the transport user to retrieve the currently

effective option values. The user specifies the options of interest in

req->opt.buf. The option values are irrelevant and will be ignored. It

is sufficient to specify the t_opthdr part of an option only. The

currently effective values are then returned in ret->opt.buf.

 The status field returned is T_NOTSUPPORT if the protocol level

does not support this option, or the transport user illegally

requested a privileged option, T_READONLY if the option is

read-only, and set to T_SUCCESS in all other cases. The overall

result of the request is returned in ret->flags. This field contains the

worst single result, whereby the rating is the same as for

T_NEGOTIATE.

 For each level, the option T_ALLOPT (see below) can be requested

on input. All supported options of this level with their currently

effective values are then returned.

The option T_ALLOPT can only be used with t_optmgmt() and the actions

T_NEGOTIATE, T_DEFAULT and T_CURRENT. It can be used with any supported

level and addresses all supported options of this level. The option has no value; it

consists of a t_opthdr only. Since in a t_optmgmt() call only options of one level

may be addressed, this option should not be requested together with other options.

The function returns as soon as this option has been processed.

t_optmgmt

2234 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Options are independently processed in the order they appear in the input option

buffer. If an option is multiply input, it depends on the implementation whether it is

multiply output or whether it is returned only once.

The function t_optmgmt() may block under various circumstances and depending on

the implementation. The function will block, for instance, if the protocol addressed

by the call resides on a separate controller. It may also block due to flow control

constraints. For example, if data sent previously across this transport endpoint has

not yet been fully processed. If the function is interrupted by a signal, the option

negotiations that have been done so far may remain valid. The behavior of the

function is not changed if O_NONBLOCK is set.

Valid States

All - except for T_UNINIT

XTI-level options

XTI-level options are not specific for a particular transport provider. An XTI

implementation supports none, all or any subset of the options defined below. An

implementation may restrict the use of any of these options by offering them only in

the privileged or read-only mode, or if fd relates to specific transport providers.

The subsequent options are not association-related They may be negotiated in all

XTI states except T_UNINIT. See Chapter 6 , “Use of Options in XTI”, in X/Open

CAE Specification, Networking Services, Issue 4 for more information.

The protocol level is XTI_GENERIC. For this level, the following options are

defined:

XTI_DEBUG This option enables debugging. The valid values of this option are:

v None (option header only) - indicating that debug is to be turned

off.

v -1 - indicating that debug output is to go to stderr.

v A file descriptor - indicating the destination file for debug output.

The debug output contains varying information depending on the

XTI services invoked. It is meant to be used by customer support

personnel.

XTI_LINGER This option is used to linger the execution of a t_close() or close() if

send data is still queued in the send buffer. The option value

specifies the linger period. If a close() or t_close() is issued and the

send buffer is not empty, the system attempts to send the pending

data within the linger period before closing the endpoint. Data still

pending after the linger period has elapsed is discarded.

 Depending on the implementation, t_close() or close() either block

for at maximum the linger period, or immediately return, whereupon

the system holds the connection in existence for at most the linger

period.

 The option value consists of a structure t_linger declared as:

struct t_linger {

 long l_onoff; /* switch option on/off */

 long l_linger; /* linger period in seconds */

}

t_optmgmt

Chapter 3. Part 3. Library Functions 2235

Legal values for the field l_onoff are:

T_NO switch option off

T_YES activate option

The value l_onoff is an absolute requirement.

 The field l_linger determines the linger period in seconds. The

transport user can request the default value by setting the field to

T_UNSPEC. The default timeout value depends on the underlying

transport provider (it is often T_INFINITE). Legal values for this field

are T_UNSPEC, T_INFINITE and all nonnegative numbers.

 The l_linger value is not an absolute requirement. The

implementation may place upper and lower limits to this value.

Requests that fall short of the lower limit are negotiated to the lower

limit.

 Note that this option does not linger the execution of t_snddis().

XTI_RCVBUF This option is used to adjust the internal buffer size allocated for the

receive buffer. The buffer size may be increased for high-volume

connections, or decreased to limit the possible backlog of incoming

data.

 This request is not an absolute requirement. The implementation

may place upper and lower limits on the option value. Requests

that fall short of the lower limit are negotiated to the lower limit.

 Legal values are all positive numbers.

XTI_SNDBUF This option is used to adjust the internal buffer size allocated for the

send buffer.

 This request is not an absolute requirement. The implementation

may place upper and lower limits on the option value. Requests

that fall short of the lower limit are negotiated to the lower limit.

 Legal values are all positive numbers.

TCP-level options

The protocol level is INET_TCP. The following TCP-level options are supported.

They are not association-related.

TCP_KEEPALIVE

If this option is set, a keep-alive timer is activated to monitor idle

connections that might no longer exist. If a connection has been

idle since the last keep-alive timeout, a keep-alive packet is sent to

check if the connection is still alive or broken.

 The option value consists of a structure t_kpalive declared as:

struct t_kpalive {

 long kp_onoff; /* switch option on/off */

 long kp_timeout; /* keep-alive timeout in minutes */

 }

Legal values fot the field kp_onoff are:

T_NO switch keep-alive timer off

t_optmgmt

2236 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

T_YES activate keep-alive timer

The field kp_timeout determines the frequency of keep-alive

packets being sent, in minutes. The transport user can request the

default value by setting the field to T_UNSPEC. The default is 120

minutes. Legal values for this field are T_UNSPEC and all positive

numbers.

 The timeout value is not an absolute requirement. However, no

limits are currently specified by the TCP transport provider.

IP-level options

The protocol level is INET_IP. The following IP-level options are supported. The are

not association-related.

IP_REUSEADDR

Generally, users are not allowed to bind more than one transport

endpoint to addresses with identical port numbers, If

IP_REUSEADDR is set to T_YES this restriction is relaxed in the

sense that it is now permissible to bind a transport endpoint to an

address with a port number and an under-specified internet address

and further endpoints to addresses with the same port number and

(mutually exclusive) fully specified internet addresses.

Returned Value

If successful, t_optmgmt() returns 0.

If unsuccessful, t_optmgmt() returns -1 and sets errno to one of the following

values:

Error Code Description

TACCES The user does not have permission to negotiate the specified

options.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADFLAG An invalid flag was specified.

TBADOPT The specified options were in an incorrect format or contained

illegal information.

TBUFOVFLW The number of bytes allowed for an incoming argument (maxlen) is

greater than 0 but not sufficient to store the value of that argument.

The information to be returned in ret will be discarded.

TNOTSUPPORT

This action is not supported by the transport provider.

TOUTSTATE The function was issued in the wrong sequence.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_accept() — Accept a Connect Request” on page 2124

t_optmgmt

Chapter 3. Part 3. Library Functions 2237

v “t_alloc() — Allocate a Library Structure” on page 2129

v “t_connect() — Establish a Connection with Another Transport User” on page

2156

v “t_getinfo() — Get Protocol-specific Service Information” on page 2200

v “t_listen() — Listen for a Connect Indication” on page 2211

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_rcvconnect() — Receive the Confirmation from a Connect Request” on page

2244

v X/Open CAE Specification, Networking Services, Issue 4, Chapter 6 “Use of

Options in XTI”.

t_optmgmt

2238 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

_toupper() — Translate Lowercase Characters to Uppercase

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <ctype.h>

int _toupper(int c);

General Description

The _toupper() macro is equivalent to toupper(c) except that the argument c must

be a lowercase letter.

Returned Value

_toupper() returns the uppercase letter corresponding to the argument passed.

Related Information

v “ctype.h” on page 39

v “isalnum() to isxdigit() — Test Integer Value” on page 1004

v “tolower(), toupper() — Convert Character Case” on page 2228

_toupper

Chapter 3. Part 3. Library Functions 2239

||||

|
|
|

||

|

towlower(), towupper() — Convert Wide Character Case

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <wctype.h>

wint_t towlower(wint_t wc);

wint_t towupper(wint_t wc);

General Description

Converts wc to the corresponding lowercase letter. The towupper() function

converts wc to the corresponding uppercase letter.

Returned Value

If wc is a wide character for which iswupper() (or iswlower()) is true and there is a

corresponding wide character for which iswlower() (or iswupper()) is true, towlower()

(or towupper()) returns the corresponding wide character; otherwise, wc is returned

unchanged.

Related Information

v “wctype.h” on page 100

v “iswalnum() to iswxdigit() — Test Wide Integer Value” on page 1039

v “tolower(), toupper() — Convert Character Case” on page 2228

towlower, towupper

2240 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

towctrans() — transliterate wide character transliteration

The information for this function is included in “wctrans(), towctrans() — transliterate

wide character” on page 2434.

towctrans

Chapter 3. Part 3. Library Functions 2241

t_rcv() — Receive Data or Expedited Data Sent Over a Connection

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_rcv(int fd, char *buf, unsigned int nbytes, int *flags);

General Description

Receives either normal or expedited data. The argument fd identifies the local

transport endpoint through which data will arrive. buf points to a receive buffer

where user data is placed. nbytes specifies the size of the receive buffer. The

argument flags may be set on return from t_rcv() and specifies optional flags as

described below.

By default, t_rcv() operates in synchronous mode and will wait for data to arrive if

none is currently available. However, if O_NONBLOCK is set (using t_open() or

fcntl()), t_rcv() will execute in asynchronous mode and will fail if no data is

available. (See TNODATA below.)

On return from the call, if T_MORE is set in flags, this indicates that there is more

data, and the current expedited transport service data unit (ETSDU) must be

received in multiple t_rcv() calls. In the asynchronous mode, the T_MORE flag may

be set on return from the t_rcv() call even when the number of bytes received is

less than the size of the receive buffer specified. Each t_rcv() with the T_MORE flag

set indicates that another t_rcv() must follow to get more data for the current

ETSDU. The end of the ETSDU is identified by the return of a t_rcv() call with the

T_MORE flag not set. The T_MORE flag is not meaningful for normal data when

using the TCP transport provider and should be ignored. If nbytes is greater than

zero on the call to t_rcv() , t_rcv() will return 0 only if the end of a TSDU is being

returned to the user.

On return, the data returned is expedited data if T_EXPEDITED is set in flags. If the

number of bytes of expedited data exceeds nbytes, t_rcv() will set T_EXPEDITED

and T_MORE on return from the initial call. Subsequent calls to retrieve the

remaining ETSDU will have T_EXPEDITED set on return. The end of the ETSDU is

identified by the return of a t_rcv() call with the T_MORE flag not set.

In synchronous mode, the only way for the user to be notified of the arrival of

normal or expedited data is to issue this function or check for the T_DATA or

T_EXDATA events using the t_look() function. Additionally, the process can arrange

to be notified by the select/poll interface.

Valid States

T_DATAXFER

t_rcv

2242 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Returned Value

If successful, t_rcv() returns the number of bytes received.

If unsuccessful, t_rcv() returns -1 and sets errno to one of the following values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint and

requires immediate attention.

TNODATA O_NONBLOCK was set, but no data is currently available from the

transport provider.

TNOTSUPPORT

This function is not supported by the underlying transport provider.

TOUTSTATE The function was issued in the wrong sequence on the transport

endpoint referenced by fd.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “fcntl() — Control Open File Descriptors” on page 527

v “t_getinfo() — Get Protocol-specific Service Information” on page 2200

v “t_look() — Look at the Current Event on a Transport Endpoint” on page 2213

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_snd() — Send Data or Expedited Data Over a Connection” on page 2259

t_rcv

Chapter 3. Part 3. Library Functions 2243

t_rcvconnect() — Receive the Confirmation from a Connect Request

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_rcvconnect(int fd, struct t_call *call);

General Description

Enables a calling transport user to determine the status of a previously sent

connect request. t_rcvconnect() is used in conjunction with t_connect() to establish

a connection in asynchronous mode. The connection will be established on

successful completion of this function.

The argument fd identifies the local transport endpoint where communication will be

established, and call contains information associated with the newly established

connection. The argument call points to a t_call structure which contains the

following members:

 struct netbuf addr;

 struct netbuf opt;

 struct netbuf udata;

 int sequence;

In call, addr returns the protocol address associated with the responding transport

endpoint. opt presents any options associated with the connection. udata is

meaningless since the TCP transport provider does not support transmission of user

data during connection establishment. sequence has no meaning for this function.

The maxlen field of each argument must be set before issuing this function to

indicate the maximum size of the buffer for each. However, call may be a NULL

pointer, in which case no information is given to the user on return from

t_rcvconnect() . By default, t_rcvconnect() executes in synchronous mode and waits

for the connection to be established before returning. On return, the addr field

contains the address of the remote endpoint, and opt reflects the result of

negotiation of the options the user specified on input.

If O_NONBLOCK is set (using t_open() or fcntl()), t_rcvconnect() executes in

asynchronous mode, and reduces to a poll for existing connect confirmations. If

none are available, t_rcvconnect() fails and returns immediately without waiting for

the connection to be established. (See TNODATA below.) In this case, t_rcvconnect()

must be called again to complete the connection establishment phase and retrieve

the information returned in call.

Valid States

T_OUTCON

t_rcvconnect

2244 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Returned Value

If successful, t_rcvconnect() returns 0.

If unsuccessful, t_rcvconnect() returns -1 and sets errno to one of the following

values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for an incoming argument (maxlen)

is greater than 0 but not sufficient to store the value of that

argument, and the connect information to be returned in call will be

discarded. The provider’s state, as seen by the user, will be

changed to T_DATAXFER.

TLOOK An asynchronous event has occurred on this transport connection

and requires immediate attention.

TNODATA O_NONBLOCK was set, but a connect confirmation has not yet

arrived.

TNOTSUPPORT

This function is not supported by the underlying transport provider.

TOUTSTATE The function was issued in the wrong sequence on the transport

endpoint referenced by fd.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_accept() — Accept a Connect Request” on page 2124

v “t_alloc() — Allocate a Library Structure” on page 2129

v “t_bind() — Bind an Address to a Transport Endpoint” on page 2135

v “t_connect() — Establish a Connection with Another Transport User” on page

2156

v “t_listen() — Listen for a Connect Indication” on page 2211

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_optmgmt() — Manage Options for a Transport Endpoint” on page 2232

t_rcvconnect

Chapter 3. Part 3. Library Functions 2245

t_rcvdis() — Retrieve Information from Disconnect

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_rcvdis(int fd, struct t_discon *discon);

General Description

Used to identify the cause of a disconnect. The argument fd identifies the local

transport endpoint where the connection existed, and discon points to a t_discon

structure containing the following members:

 struct netbuf udata;

 int reason;

 int sequence;

The field reason specifies the reason for the disconnect through a

protocol-dependent reason code, udata is always empty since the TCP transport

provider does not support sending of user data with a disconnect, and sequence

may identify an outstanding connect indication with which the disconnect is

associated. The field sequence is only meaningful when t_rcvdis() is issued by a

passive transport user who has executed one or more t_listen() functions and is

processing the resulting connect indications. If a disconnect indication occurs,

sequence can be used to identify which of the outstanding connect indications is

associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the

value of reason or sequence, discon may be a NULL pointer. However, if a user has

retrieved more than one outstanding connect indication (using t_listen()) and discon

is a NULL pointer, the user will be unable to identify with which connect indication

the disconnect is associated.

Valid States

T_DATAXFER,T_OUTCON,T_INCON(ocnt > 0)

Returned Value

If successful, t_rcvdis() returns 0.

If unsuccessful, t_rcvdis() returns -1 and sets errno to one of the following values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for incoming data (maxlen) is greater

than 0 but not sufficient to store the data. If fd is a passive endpoint

with ocnt > 1, it remains in state T_INCON; otherwise, the endpoint

state is set to T_IDLE.

t_rcvdis

2246 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

TNODIS No disconnect indication currently exists on the specified transport

endpoint.

TNOTSUPPORT

This function is not supported by the underlying transport provider.

TOUTSTATE The function was issued in the wrong sequence on the transport

endpoint referenced by fd.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_alloc() — Allocate a Library Structure” on page 2129

v “t_connect() — Establish a Connection with Another Transport User” on page

2156

v “t_listen() — Listen for a Connect Indication” on page 2211

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_snddis() — Send User-initiated Disconnect Request” on page 2261

t_rcvdis

Chapter 3. Part 3. Library Functions 2247

t_rcvrel() — Acknowledge Receipt of an Orderly Release Indication

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_rcvrel(int fd);

General Description

Since orderly release is not supported, this function always fails.

Returned Value

t_rcvrel() always returns -1 and sets t_errno to TNOTSUPPORT.

Related Information

v “xti.h” on page 100

v “t_getinfo() — Get Protocol-specific Service Information” on page 2200

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_sndrel() — Initiate an Orderly Release” on page 2263

t_rcvrel

2248 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_rcvudata() — Receive a Data Unit

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_rcvudata(int fd, struct t_unitdata *unitdata, int *flags);

General Description

T_CLTS service is not supported in this implementation, so this function always

fails.

Returned Value

t_rcvudata() always returns -1 and sets t_errno to TNOTSUPPORT.

Related Information

v “xti.h” on page 100

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_sndudata() — Send a Data Unit” on page 2264

v “t_rcvuderr() — Receive a Unit Data Error Indication” on page 2250

t_rcvudata

Chapter 3. Part 3. Library Functions 2249

t_rcvuderr() — Receive a Unit Data Error Indication

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_rcvuderr(int fd, struct t_uderr *uderr);

General Description

T_CLTS service is not supported in this implementation, so this function always

fails.

Returned Value

t_rcvuderr() always returns -1 and sets t_errno to TNOTSUPPORT.

Related Information

v “xti.h” on page 100

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_rcvudata() — Receive a Data Unit” on page 2249

v “t_sndudata() — Send a Data Unit” on page 2264

t_rcvuderr

2250 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

trunc(), truncf(), truncl() — Truncate an integer value

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R5

Format

#define _ISOC99_SOURCE

#include <math.h>

double trunc(double x);

float truncf(float x);

long double Truncl(long double x);

General Description

The trunc functions round x to the integer value, in floating-point format, nearest to

but no larger in magnitude than x.

Note: The following table shows the viable formats for these functions. See “IEEE

Binary Floating-Point ” on page 108 for more information about IEEE Binary

Floating-Point.

 Function Hex IEEE

trunc X X

truncf X X

truncl X X

Returned Value

The trunc functions return the truncated integer value of x.

Related Information

v “math.h” on page 60

trunc

Chapter 3. Part 3. Library Functions 2251

||||

|
|
||

|

truncd32(), truncd64(), truncd128() — CTruncate an integer value

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 truncd32(_Decimal32 x);

_Decimal64 truncd64(_Decimal64 x);

_Decimal128 truncd128(_Decimal128 x);

_Decimal32 trunc(_Decimal32 x); /* C++ only */

_Decimal64 trunc(_Decimal64 x); /* C++ only */

_Decimal128 trunc(_Decimal128 x); /* C++ only */

General Description

The trunc functions round x to the integer value, in decimal floating-point format,

nearest to but no larger in magnitude than x.

Note:

v To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

v These functions work in IEEE decimal floating-point format. See ″IEEE

Decimal Floating-Point″ for more information.

Returned Value

The trunc functions return the truncated integer value of x.

Example

/* CELEBT21

 This example illustrates the truncd128() function.

*/

#define __STDC_WANT_DEC_FP__

#include <math.h>

#include <stdio.h>

int main(void)

{

 _Decimal128 x = 123456789.40DL, y;

 y = truncd128(x);

 printf("The result of truncd128(%DDf) is %DDf\n", x, y);

}

Related Information

v “math.h” on page 60

v “trunc(), truncf(), truncl() — Truncate an integer value” on page 2251

truncd32, truncd64, truncd128

2252 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

truncate() — Truncate a File to a Specified Length

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int truncate(const char *path, off_t length);

General Description

Truncates the file indicated by the path to the indicated length. The calling process

must have write permission for the file. If the file size exceeds length, any extra

data is discarded. If the file size is smaller than length, bytes between the old and

new lengths are read as zeros. A change to the size of the file has no impact on the

file offset.

If truncate() would cause the file size to exceed the soft file size limit for the

process, truncate() will fail and a SIGXFSZ signal will be generated for the process.

If successful, truncate() marks the st_ctime and st_mtime fields of the file.

If unsuccessful, the file is unchanged.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, truncate() returns 0.

If unsuccessful, truncate() returns −1 and sets errno to one of the following values:

Error Code Description

EFBIG The length argument was greater than the maximum file size.

EINTR A signal was caught during execution

EINVAL path does not refer to a regular file, or the length specified is

incorrect.

EIO An I/O error occurred while reading from or writing to a file system.

EISDIR The file specified is a directory. The system cannot perform the

requested function on a directory.

EROFS The file resides on a read-only file system.

truncate

Chapter 3. Part 3. Library Functions 2253

||||

|
|
||

|

Related Information

v “ftruncate() — Truncate a File” on page 719

v “open() — Open a File” on page 1313

truncate

2254 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tsched() — Schedule MTF Subtask

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment C only

Format

#include <mtf.h>

int tsched(int task_id, const char *func_name, ...);

General Description

Restriction: This function is not supported in AMODE 64.

The tsched() built-in library function is used to schedule parallel functions under

MVS.

The tsched() library function schedules a parallel function (func_name) to be

executed in a subtask that has been attached and initialized by tinit(). The first

argument task_id can be used to specify the task where the parallel function is to

be executed. The task_id can be set to MTF_ANY to indicate that the parallel function

can be run in any task or, task_id can be set to a specific task number between 1

and the number of subtasks specified on tinit().

The tsched() function allocates approximately 2K of space as a work area. This

work area is not freed. However, a call to the tsyncro() function will make work

areas previously allocated by tsched() available for reuse by tsched(). Because

tsched() does not free the work area storage, it is possible the tsched() will cause

an application Short on Storage condition to occur if enough calls are made to the

tsched() function.

You can call tsched() from your main C task as often as necessary to schedule

parallel functions for execution. If all of the subtasks are busy running previously

scheduled functions, each call in excess of the number of subtasks will cause

func_name to be run after previously scheduled functions in the first qualifying

subtask that becomes available.

All scheduled functions must be computationally independent. A function cannot use

variables that are modified by another scheduled function or the scheduling

function. To determine if all other scheduled functions have completed, use the

tsyncro() library function (see “tsyncro() — Wait for MTF Subtask Termination” on

page 2268).

The name of the parallel function, func_name, must not be longer than 8

characters. If it is, the name will be truncated to the first 8 characters with no

warning.

Usually tsched() returns to the calling main task program before the scheduled

parallel function has completed execution. Therefore, you must call tsyncro() to

ensure that your parallel functions have completed execution.

tsched

Chapter 3. Part 3. Library Functions 2255

|
|
|
|
|
|

If tinit() has not been successfully called before tsched(), tsched() indicates that

MTF is inactive.

If tinit() is called by a program running under IMS, CICS, or DB2, the request will

not be processed and the returned value will indicate that MTF calls are not

supported under these systems.

Note: This function is not supported under the z/OS UNIX System Services

services with the POSIX(ON) run-time option.

Returned Value

If successful, scheduling the parallel function for execution in a subtask, tsched()

returns MTF_OK.

If unsuccessful, tsched() returns one of the following values:

Error Code Description

EBADLNKG tsched() has been invoked using an invalid linkage. The header file

mtf.h may have been missing from the source at compile.

EENTRY The parallel function was not found in the parallel module.

EINACTIVE MTF is inactive.

ENOMEM There was insufficient storage for MTF-internal areas.

ETASKABND One or more subtasks have terminated abnormally.

ETASKID The task_id specified is not valid.

Note: These values are macros. They can be found in the mtf.h header file.

Related Information

v “mtf.h” on page 64

v “tinit() — Attach and Initialize MTF Subtasks” on page 2209

v “tsyncro() — Wait for MTF Subtask Termination” on page 2268

v “tterm() — Terminate MTF Subtasks” on page 2270

tsched

2256 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tsearch() — Binary Tree Search

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <search.h>

void *tsearch(const void *key, void **rootp,

 int (*compar)(const void *, const void *));

General Description

The tsearch() function is used to build and access a binary search tree. The key

argument is a pointer to an element to be accessed or stored. If there is a node in

the tree whose element is equal to the value pointed to by key, a pointer to this

found node is returned. Otherwise, the value pointed to by key is inserted (that is, a

new node is created and the value of key is copied to this node), and a pointer to

this node returned. Only pointers are copied, so the calling routine must store the

data. The rootp argument points to a variable that points to the root node of the

tree. A NULL pointer value for the variable pointed to by rootp denotes an empty

tree; in this case, the variable will be set to point to the node which will be at the

root of the new tree.

Comparisons are made with a user-supplied routine, the address of which is passed

as the compar argument. This routine is called with two arguments, the pointers to

the elements being compared. The user-supplied routine must return an integer less

than, equal to or greater than 0, according to whether the first argument is to be

considered less than, equal to or greater than the second argument. The

comparison functions need not compare every byte, so arbitrary data may be

contained in the elements in addition to the values being compared.

Threading Behavior: Since the tree is anchored by the user’s rootp pointer, the tree

storage is visible to the user and could be shared among threads. The user would

be responsible for serializing access to a shared tree. There are no variables

related to these functions which are internal to the library and/or give rise to

multithreading considerations.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, tsearch() cannot receive

a C++ function pointer as the comparator argument. If you attempt to pass a C++

function pointer to tsearch(), the compiler will flag it as an error. You can pass a C

or C++ function to tsearch() by declaring it as extern ″C″.

Returned Value

If the node is found, tsearch() returns a pointer to it, otherwise it returns a pointer to

the inserted item.

tsearch

Chapter 3. Part 3. Library Functions 2257

||||

|
|
|

||

|

If there is not enough space available to create a new node, or if rootp is a NULL

pointer on entry, tsearch() returns a NULL pointer.

No errors are defined.

Related Information

v “search.h” on page 77

v “bsearch() — Search Arrays” on page 220

v “hsearch() — Search Hash Tables” on page 911

v “lsearch() — Linear Search and Update” on page 1160

v “tdelete() — Binary Tree Delete” on page 2187

v “tfind() — Binary Tree Find Node” on page 2195

v “twalk() — Binary Tree Walk” on page 2277

tsearch

2258 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_snd() — Send Data or Expedited Data Over a Connection

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_snd(int fd, char *buf, unsigned int nbytes, int flags);

General Description

Sends either normal or expedited data. The argument fd identifies the local

transport endpoint over which data should be sent, buf points to the user data,

nbytes specifies the number of bytes of user data to be sent, and flags specifies

any optional flags described below:

T_EXPEDITED

If set in flags, the data will be sent as expedited data and will be

subject to the interpretations of the transport provider.

T_MORE Since the TCP transport provider does not support the concept of a

TSDU, the T_MORE flag is not meaningful and will be ignored if

set.

By default, t_snd() operates in synchronous mode and may wait if flow control

restrictions prevent the data from being accepted by the local transport provider at

the time the call is made. However, if O_NONBLOCK is set (using t_open() or

fcntl()), t_snd() will execute in asynchronous mode, and will fail immediately if there

are flow control restrictions. The process can arrange to be informed when the flow

control restrictions are cleared using either t_look() or select/poll.

If successful, t_snd() returns the number of bytes accepted by the transport

provider. Normally this will equal the number of bytes specified in nbytes. However,

if O_NONBLOCK is set, it is possible that only part of the data will actually be

accepted by the transport provider. In this case, t_snd() will return a value that is

less than the value of nbytes.

The size of each TSDU or ETSDU must not exceed the limits of the transport

provider as specified by the current values in the TSDU or ETSDU fields in the info

argument returned by t_getinfo() . The error TLOOK may be returned to inform the

process that an event (for example, a disconnect) has occurred.

Valid States

T_DATAXFER

Returned Value

If successful, t_snd() returns the number of bytes accepted by the transport

provider.

t_snd

Chapter 3. Part 3. Library Functions 2259

Note that in asynchronous mode, if the number of bytes accepted by the transport

provider is less than the number of bytes requested, this may indicate that the

transport provider is blocked due to flow control.

If unsuccessful, t_snd() returns -1 and sets errno to one of the following values:

Error Code Description

TBADDATA Illegal amount of data:

v A single send was attempted specifying a TSDU (ETSDU) or

fragment TSDU (ETSDU) greater than that specified by the

current values of the TSDU or ETSDU fields in the info

argument.

v Multiple sends were attempted resulting in a TSDU (ETSDU)

larger than that specified by the current value of the TSDU or

ETSDU fields in the info argument

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADFLAG An invalid flag was specified.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented

the transport provider from accepting any data at this time.

TLOOK An asynchronous event has occurred on this transport endpoint.

TNOTSUPPORT

This function is not supported by the underlying transport provider.

TOUTSTATE The function was issued in the wrong sequence on the transport

endpoint referenced by fd.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

It is important to remember that the transport provider treats all users of a transport

endpoint as a single user. Therefore if several processes issue concurrent t_snd()

calls then the different data may be intermixed. Multiple sends which exceed the

maximum TSDU or ETSDU size may not be discovered by XTI. In this case an

implementation-dependent error will result (generated by the transport provider)

perhaps on a subsequent XTI call. This error may take the form of a connection

abort, a TSYSERR, a TBADDATA or a TPROTO error. If multiple sends which exceed the

maximum TSDU or ETSDU size are detected by XTI, t_snd() fails with TBADDATA.

Related Information

v “xti.h” on page 100

v “t_getinfo() — Get Protocol-specific Service Information” on page 2200

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_rcv() — Receive Data or Expedited Data Sent Over a Connection” on page

2242

t_snd

2260 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_snddis() — Send User-initiated Disconnect Request

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_snddis(int fd, struct t_call *call);

General Description

Initiates an abortive release on an already established connection, or rejects a

connect request. The argument fd identifies the local transport endpoint of the

connection, and call specifies information associated with the abortive release. The

argument call points to a t_call structure which contains the following members:

 struct netbuf addr;

 struct netbuf opt;

 struct netbuf udata;

 int sequence;

The values in call have different semantics, depending on the context of the call to

t_snddis() . When rejecting a connect request, call must be non-NULL and contain a

valid value of sequence to uniquely identify the rejected connect indication to the

transport provider. The sequence field is only meaningful if the transport connection

is in the T_INCON state. The addr and opt fields of call are ignored. In all other

cases, call should be a NULL pointer, since its only use would be to specify user

data to be passed on the disconnect request, which is not supported by the TCP

transport provider.

t_snddis() is an abortive disconnect. Therefore a t_snddis() issued on a connection

endpoint may cause data previously sent using t_snd(), or data not yet received, to

be lost (even if an error is returned).

Because of implementation restrictions, a t_snddis() called on one descriptor

referring to an endpoint will not affect descriptors in other processes referring to the

same endpoint. If descriptors in multiple processes refer to the same endpoint, the

endpoint will not actually be disconnected by a t_snddis in one process. Multiple

processes cooperating on an endpoint are responsible for providing their own

explicit synchronization to support coordinated disconnects.

Valid States

T_DATAXFER,T_OUTCON,T_INCON(ocnt > 0)

Returned Value

If successful, t_snddis() returns 0.

If unsuccessful, t_snddis() returns -1 and sets errno to one of the following values:

Error Code Description

t_snddis

Chapter 3. Part 3. Library Functions 2261

TBADDATA The amount of user data specified was not within the bounds

allowed by the transport provider.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADSEQ An invalid sequence number was specified, or a NULL call pointer

was specified, when rejecting a connect request.

TLOOK An asynchronous event, which requires attention, has occurred.

TNOTSUPPORT

This function is not supported by the underlying transport provider.

TOUTSTATE The function was issued in the wrong sequence on the transport

endpoint referenced by fd.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_connect() — Establish a Connection with Another Transport User” on page

2156

v “t_getinfo() — Get Protocol-specific Service Information” on page 2200

v “t_listen() — Listen for a Connect Indication” on page 2211

v “t_open() — Establish a Transport Endpoint” on page 2230

t_snddis

2262 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_sndrel() — Initiate an Orderly Release

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_sndrel(int fd);

General Description

Since orderly release is not supported, t_sndrel() always fails.

Returned Value

t_sndrel() always returns -1 and sets t_errno to TNOTSUPPORT.

Related Information

v “xti.h” on page 100

v “t_getinfo() — Get Protocol-specific Service Information” on page 2200

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_rcvrel() — Acknowledge Receipt of an Orderly Release Indication” on page

2248

t_sndrel

Chapter 3. Part 3. Library Functions 2263

t_sndudata() — Send a Data Unit

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_sndudata(int fd, struct t_unitdata *unitdata);

General Description

T_CLTS service is not supported in this implementation, so this function always

fails.

Returned Value

t_sndudata() always returns -1 and sets t_errno to TNOTSUPPORT.

Related Information

v “xti.h” on page 100

v “t_open() — Establish a Transport Endpoint” on page 2230

v “t_rcvudata() — Receive a Data Unit” on page 2249

v “t_rcvuderr() — Receive a Unit Data Error Indication” on page 2250

t_sndudata

2264 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

t_strerror() — Produce an Error Message String

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

char *t_strerror(int errnum);

General Description

Maps the error number in errnum that corresponds to an XTI error to a

language-dependent error message string and returns a pointer to the string. The

string pointed to should not be modified by the program, but may be overwritten by

a subsequent call to the t_strerror function. The string is not terminated by a

newline character. If the calling program is operating in any one of the C, POSIX,

SAA or S370 locales, then the error message string describing the value in t_errno

is identical to the comments following the t_errno codes defined in <xti.h>. Note that

no message number is prefixed to the message text in this situation. If an error

code is unknown, and the language is English, t_strerror() returns the string:

 "<error>: error unknown"

where <error> is the error number supplied as input. In other languages, an

equivalent text is provided.

Valid States

All - except for T_UNINIT

Returned Value

t_strerror() returns a pointer to the generated message string.

Related Information

v “xti.h” on page 100

v “t_error() — Produce Error Message” on page 2193

t_strerror

Chapter 3. Part 3. Library Functions 2265

t_sync() — Synchronize Transport Library

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_sync(int fd);

General Description

Synchronizes the data structures managed by the transport library with information

from the underlying transport provider, for the transport endpoint specified by fd, In

doing so, it can convert an uninitialized file descriptor (obtained using open(), dup(),

or as a result of a fork() and exec()) to an initialized transport endpoint, assuming

that the file descriptor referenced a transport endpoint, by updating and allocating

the necessary library data structures. This function also allows two cooperating

processes to synchronize their interaction with a transport provider.

For example, if a process forks a new process and issues an exec() , the new

process must issue a t_sync() to build the private library data structure associated

with a transport endpoint and to synchronize the data structure with the relevant

provider information.

It is important to remember that the transport provider treats all users of a transport

endpoint as a single user. If multiple processes are using the same endpoint, they

should coordinate their activities so as not to violate the state of the transport

endpoint. The function t_sync() returns the current state of the transport endpoint to

the user, thereby enabling the user to verify the state before taking further action.

This coordination is only valid among cooperating processes. It is possible that a

process or an incoming event could change the endpoint’s state after a t_sync() is

issued.

If the transport endpoint is undergoing a state transition when t_sync() is called, the

function will fail.

Valid States

All - except for T_UNINIT

Returned Value

If successful, t_sync() returns the state of the transport endpoint. The state returned

is one of the following:

T_DATAXFER Data transfer.

T_IDLE Idle.

T_INCON Incoming connection pending.

T_OUTCON Outgoing connection pending.

t_sync

2266 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

T_UNBND Unbound.

If unsuccessful, t_sync() returns -1 and sets errno to one of the following values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

This error may be returned when the fd has been previously closed

or an erroneous number may have been passed to the call.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSTATECHNG

The transport endpoint is undergoing a state change.

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “dup() — Duplicate an Open File Descriptor” on page 449

v “exec Functions” on page 486

v “fork() — Create a New Process” on page 632

v “open() — Open a File” on page 1313

t_sync

Chapter 3. Part 3. Library Functions 2267

tsyncro() — Wait for MTF Subtask Termination

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment C only

Format

#include <mtf.h>

int tsyncro(int MTF_ANY|MTF_ALL|nn);

General Description

Waits for termination of parallel functions under MVS.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

The tsyncro() library function causes the main task to wait for the first subtask, a

particular subtask, or all subtasks to finish executing all of the parallel functions that

have been scheduled for them. You can monitor the completion of any, all, or a

specific subtask by specifying:

MTF_ANY To wait for the completion of any subtask.

MTF_ALL To wait for the completion of all subtasks.

nn To wait for the completion of the subtask having a task_id of nn.

See “tinit() — Attach and Initialize MTF Subtasks” on page 2209 for

a description of task_id.

You can invoke tsyncro() from your main task program as often as necessary.

If tinit() is called by a program running under IMS, CICS, or DB2, the request will

not be processed and the returned value will indicate that MTF calls are not

supported under these systems.

Note: This function is not supported under the z/OS UNIX System Services

services with the POSIX(ON) run-time option.

Returned Value

If successful, tsyncro() will always return a value suitable for use as a target task on

a subsequent tsched(). In particular, the return codes on success depend on the

nature of the tsyncro() call, and the state of the subtasks at the time of the tsyncro()

call as follows:

tsyncro

2268 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Task_id passed to tsyncro() Return code (if successful)

MTF_ANY (and at least one subtask not previously returned

from a tsyncro())

nn = task_id of first subtask to

become free

MTF_ANY (and all subtasks have previously been returned

from a tsyncro())

MTF_ANY

MTF_ALL MTF_ANY

nn = task_id nn

If tinit() has not been successfully called before the tsyncro() call, tsyncro() indicates

that MTF is inactive and returns one of the following values:

Error Code Description

EINACTIVE MTF is inactive.

ETASKABND One or more subtasks have terminated abnormally.

ETASKID The task_id argument specified is out of range.

Note: These values are macros. They can be found in the mtf.h header file.

Related Information

v “mtf.h” on page 64

v “tinit() — Attach and Initialize MTF Subtasks” on page 2209

v “tsched() — Schedule MTF Subtask” on page 2255

v “tterm() — Terminate MTF Subtasks” on page 2270

tsyncro

Chapter 3. Part 3. Library Functions 2269

tterm() — Terminate MTF Subtasks

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment C only

Format

#include <mtf.h>

int tterm(void);

General Description

Restriction: This function is not supported in AMODE 64.

Terminates the MTF environment under MVS. The function is invoked by a main

task to await the completion of all parallel functions that were scheduled by tsched()

and to detach all subtasks and remove the MTF environment created by tinit(), see

“tinit() — Attach and Initialize MTF Subtasks” on page 2209.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

If tinit() has not been successfully called before a tterm() call, tterm() indicates that

MTF is already inactive.

If a tterm() call is not issued before main program termination, a system abend with

completion code A03 will occur. The program’s termination will terminate the main

task while subtasks are still active even if all scheduled parallel functions have

completed execution.

If tinit() is called by a program running under IMS, CICS, or DB2, the request will

not be processed and the returned value will indicate that MTF calls are not

supported under these systems.

Note: This function is not supported under the z/OS UNIX System Services

services with the POSIX(ON) run-time option.

Returned Value

If successful, detaching the subtasks and removing the MTF environment, tterm()

returns MTF_OK.

If unsuccessful, tsched() returns one of the following values:

Error Code Description

tterm

2270 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EINACTIVE MTF is inactive.

ETASKABND One or more subtasks have terminated abnormally.

Note: These values are macros. They can be found in the mtf.h header file (“mtf.h”

on page 64).

Related Information

v “mtf.h” on page 64

v “tinit() — Attach and Initialize MTF Subtasks” on page 2209

v “tsched() — Schedule MTF Subtask” on page 2255

v “tsyncro() — Wait for MTF Subtask Termination” on page 2268

tterm

Chapter 3. Part 3. Library Functions 2271

ttyname() — Get the Name of a Terminal

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

char *ttyname(int fildes);

General Description

Returns a string containing the pathname of the terminal associated with the given

file descriptor, fildes. Subsequent calls to ttyname() may overwrite this string,

because the pointer returned may point to static data.

Returned Value

If successful, ttyname() returns a string containing a pathname.

If unsuccessful because fildes is not a terminal, or the pathname cannot be

determined, ttyname() returns a NULL pointer.

Special Behavior for XPG4

ttyname() sets errno to one of the following values:

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

ENOTTY The fildes argument is not associated with a terminal.

Example

CELEBT16

/* CELEBT16

 This example provides the pathname of the terminal

 associated with stdin.

 */

#define _POSIX_SOURCE

#include <unistd.h>

#include <stdio.h>

main() {

 char *ret, tty[40];

 if ((ret = ttyname(STDIN_FILENO)) == NULL)

 perror("ttyname() error");

 else {

 strcpy(tty, ret);

ttyname

2272 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

printf("The ttyname associated with my stdin is %s\n", tty);

 }

}

Output

The ttyname associated with my stdin is /dev/ttyp0000

Related Information

v “unistd.h” on page 96

v “ctermid() — Generate Pathname for Controlling Terminal” on page 385

v “isatty() — Test if Descriptor Represents a Terminal” on page 1013

v “ttyname_r() — Find Pathname of a Terminal” on page 2274

ttyname

Chapter 3. Part 3. Library Functions 2273

ttyname_r() — Find Pathname of a Terminal

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, Version 2

Single UNIX Specification, Version 3

both OS/390 V2R8

Format

#define _XOPEN_SOURCE 500

#include <unistd.h>

int ttyname_r(int fildes, char *name, size_t namesize);

General Description

The ttyname_r() function stores the NULL-terminated pathname of the terminal

associated with the file descriptor, fildes, in the character array referenced by name.

The array is namesize characters long and should have space for the name and the

terminating NULL character. The maximum length of the terminal name is

TTY_NAME_MAX.

Returned Value

If successful, ttyname_r() returns 0.

If unsuccessful, ttyname_r() sets errno to one of the following values:

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The fildes argument does not refer to a tty.

ERANGE The value of namesize is smaller than the length of the string to be

returned including the terminating NULL character.

Related Information

v “unistd.h” on page 96

v “isatty() — Test if Descriptor Represents a Terminal” on page 1013

v “ctermid() — Generate Pathname for Controlling Terminal” on page 385

v “ttyname() — Get the Name of a Terminal” on page 2272

ttynamer_r

2274 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

ttyslot() — Find the Slot in the utmpx File of the Current User

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

int ttyslot(void);

General Description

The ttyslot() function returns the index of the current user’s entry in the utmpx

database. The current user’s entry is an entry for which the ut_line member

matches the name of a terminal device associated with any of the process’s file

descriptors 0, 1 or 2. The ttyname() function is used to obtain the terminal device.

The ″/dev/″ part returned by ttyname() is not used when searching the utmpx

database member ut_line.

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3.

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If successful, ttyslot() returns the index of the current user’s entry in the utmpx

database.

If unsuccessful, ttyslot() returns -1 if an error was encountered while searching the

database or if none of the file descriptors 0, 1, or 2 is associated with a terminal

device.

No errors are defined.

Related Information

v “stdlib.h” on page 85

v “endutxent() — Close the utmpx Database” on page 475

v “ttyname() — Get the Name of a Terminal” on page 2272

ttyslot

Chapter 3. Part 3. Library Functions 2275

|
|
|

|
|
|
|
|

t_unbind() — Disable a Transport Endpoint

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <xti.h>

int t_unbind(int fd);

General Description

Disables the transport endpoint specified by fd which was previously bound by

t_bind() . On completion of this call, no further data or events destined for this

transport endpoint will be accepted by the transport provider. An endpoint which is

disabled by using t_unbind() can be enabled by a subsequent call to t_bind() .

Due to implementation-imposed restrictions, t_unbind does not affect descriptors in

processes other than the caller which were derived from fd by normal descriptor

inheritance. Processes cooperating on an endpoint in this way must explicitly

provide their own synchronization for endpoint takedown.

Valid States

T_IDLE

Returned Value

If successful, t_unbind() returns 0.

If unsuccessful, t_unbind() returns -1 and sets errno to one of the following values:

Error Code Description

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint.

TOUTSTATE The function was issued in the wrong sequence.

TPROTO This error indicates that a communication problem has been

detected between XTI and the transport provider for which there is

no other suitable XTI (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information

v “xti.h” on page 100

v “t_bind() — Bind an Address to a Transport Endpoint” on page 2135

t_unbind

2276 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

twalk() — Binary Tree Walk

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <search.h>

void *twalk(const void *root, void (*action)(const void *, VISIT, int));

General Description

The twalk() function traverses a binary search tree. The root argument is a pointer

to the root node of the tree to be traversed. (Any node in a tree may be used as the

root for a walk below that node.) The argument action is the name of a routine to

be invoked at each node. This routine is, in turn, called with three arguments. The

first argument is the address of the node being visited. The structure pointed to by

this argument is unspecified and must not be modified by the application, but is

guaranteed that a pointer-to-node can be converted to pointer-to-pointer-to-element

to access the element stored in the node. The second argument is a value from an

enumeration data type:

typedef enum {preorder, postorder, endorder, leaf } VISIT;

(defined in the <search.h> header), depending on whether this is the first, second

or third time that the node is visited (during a depth-first, left-to-right traversal of the

tree), or whether the node is a leaf. The third argument is the level of the node in

the tree, with the root being level zero.

Threading Behavior: see “tsearch() — Binary Tree Search” on page 2257.

Special Behavior for C++

Because C and C++ linkage conventions are incompatible, twalk() cannot receive a

C++ function pointer as the argument. If you attempt to pass a C++ function pointer

to twalk(), the compiler will flag it as an error. You can pass a C or C++ function to

twalk() by declaring it as extern ″C″.

Returned Value

twalk() returns no values.

No errors are defined.

Related Information

v “search.h” on page 77

v “bsearch() — Search Arrays” on page 220

v “hsearch() — Search Hash Tables” on page 911

v “lsearch() — Linear Search and Update” on page 1160

v “tdelete() — Binary Tree Delete” on page 2187

v “tfind() — Binary Tree Find Node” on page 2195

twalk

Chapter 3. Part 3. Library Functions 2277

||||

|
|
|

||

|

v “tsearch() — Binary Tree Search” on page 2257

twalk

2278 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

tzset() — Set the Time Zone

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

z/OS UNIX System Services

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <time.h>

void tzset(void);

General Description

The tzset() function uses the value of the environment variable TZ to set time

conversion information used by ctime(), localtime(), mktime(), and strftime(). If TZ is

absent from the environment, or it is incorrect, time-conversion information is

obtained from the LC_TOD locale category.

tzset() also sets the external variable tzname:

extern char *tzname[2] = {"std", "dst"};

Here, std and dst are Standard and Daylight Savings time zone names, specified by

TZ or the LC_TOD local category, respectively.

tzset() is called by ctime(), localtime(), mktime(), setlocale(), and strftime(). It can

also be called explicitly by an application program.

The format of TZ values recognized by tzset() is as follows:

stdoffset[dst[offset][,rule]]

std and dst Indicate no fewer than three, but not more than TZNAME_MAX,

bytes that are the designation for the standard (std) and daylight

savings (dst) time zones. If more than TZNAME_MAX bytes are

specified for std or dst, tzset() truncates to TZNAME_MAX bytes.

Only std is required; if dst is missing, daylight savings time does not

apply in this locale. Uppercase and lowercase letters are explicitly

allowed. Any character except a leading colon (:) or digits, the

comma (,), the minus (−), the plus (+), and the NULL character are

permitted to appear in these fields. The meaning of these letters

and characters is unspecified.

offset Indicates the value that must be added to the local time to arrive at

Coordinated Universal Time (UTC). offset has the form:

hh[:mm[:ss]] The minutes (mm) and seconds (ss) are optional. The

hour (hh) is required and may be a single digit. offset following std

is required. If no offset follows dst, daylight savings time is

assumed to be 1 hour ahead of standard time. One or more digits

may be used; the value is always interpreted as a decimal number.

The hour must be between 0 and 24; minutes and seconds, if

tzset

Chapter 3. Part 3. Library Functions 2279

||||

|
|
|
|
|

||

|

present, between 0 and 59. The difference between standard time

offset and daylight savings time offset must be greater than or

equal to 0, but the difference may not be greater than 24 hours.

Use of values outside of these ranges causes tzset() to use the

LC_TOD category rather than the TZ environment variable for time

conversion information. An offset preceded by a minus (−) indicates

a time zone east of the Prime Meridian. A plus (+) preceding offset

is optional and indicates the time zone west of the Prime Meridian.

rule Indicates when to change to and back from daylight savings time.

The rule has the form: date[/time],date[/time]

 The first date describes when the change from standard to daylight

savings time occurs and the second date describes when the

change back happens. Each time field describes when, in current

local time, the change to the other time is made.

 The format of date must be one of the following:

Jn The Julian day n (1=<n=<365). Leap days are not

counted. That is, in all years—including leap

years—February 28 is day 59 and March 1 is day

60. It is impossible to explicitly refer to the

occasional February 29.

n The zero-based Julian day (0=<n=<365). Leap days

are counted, and it is possible to refer to February

29.

Mm.n.d The dth day (0=<d=<6) of week n of month m of

the year (1=<n=<5, and 1=<m=<12, where week 5

means “ the last d day in month m,” which may

occur in either the fourth or the fifth week). Day

zero is Sunday.

 The time has the same format as offset except that no leading sign,

minus (−) or plus (+), is allowed. The default, if time is not given, is

02:00:00.

 If dst is specified and rule is not specified by TZ or in LC_TOD

category, the default for the daylight savings time start date is

M4.1.0 and for the daylight savings time end date is M10.5.0.

Special Behavior for XPG4

tzset() sets the external variable timezone to the difference, in seconds, between

Coordinated Universal Time (UTC) and local standard time. tzset() sets the external

variable daylight to 0 if summer time conversions should never be applied for the

time zone in use; otherwise to nonzero.

Since the external variables timezone and daylight are global to the process, they

cannot be reliably used in a multithreaded application or an application running from

a DLL. The run-time library provides two special functions, __tzone() and __dlght(),

which return the address of thread-specific versions of these external variables. See

“External Variables” on page 110.

Special Behavior for z/OS UNIX System Services Services

tzset

2280 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

The tzset() function only parses the TZ environment variable if it is called from the

initial processing thread (IPT) by a threaded application.

Note: This function is sensitive to time zone information which is provided by:

v The TZ environmental variable when POSIX(ON) and TZ is correctly

defined, or by the _TZ environmental variable when POSIX(OFF) and _TZ

is correctly defined.

v The LC_TOD category of the current locale if POSIX(OFF) or TZ is not

defined.

The time zone external variables tzname, timezone, and daylight declarations

remain feature test protected in time.h.

Returned Value

tzset() returns no values.

There are no documented errno values.

Example

CELEBT17

/* CELEBT17

 This example set time conversion information for

 Eastern Standard and Eastern Daylight Savings Time in the

 United States.

 */

#define _POSIX_SOURCE

#include <env.h>

#include <time.h>

int main(void)

{

 setenv("TZ", "EST5EDT", 1);

 tzset();

}

Related Information

v “time.h” on page 93

v “asctime() — Convert Time to Character String” on page 184

v “asctime_r() — Convert Date and Time to a Character String” on page 186

v “ctime() — Convert Time to Character String” on page 389

v “ctime_r() — Convert Time Value to Date and Time Character String” on page

392

v “gmtime() — Convert Time to Broken-Down UTC Time” on page 902

v “gmtime_r() — Convert a Time Value to Broken-Down UTC Time” on page 904

v “localdtconv() — Date/Time Formatting Convention Inquiry” on page 1115

v “localtime() — Convert Time and Correct for Local Time” on page 1119

v “localtime_r() — Convert Time Value to Broken-Down Local Time” on page 1122

v “mktime() — Convert Local Time” on page 1228

v “strftime() — Convert to Formatted Time” on page 2038

v “time() — Determine current UTC time” on page 2204

tzset

Chapter 3. Part 3. Library Functions 2281

ualarm() — Set the Interval Timer

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single Unix Standard, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

useconds_t ualarm(useconds_t uscs, useconds_t intrval)

General Description

The ualarm() function causes the SIGALRM signal to be generated for the calling

process after the number of real-time microseconds specified by the uscs argument

has elapsed. When the intrval argument is nonzero, repeated timeout notification

occurs with a period in microseconds specified by the intrval argument. If the

notification signal, SIGALRM, is not caught or ignored, the calling process is

terminated.

The ualarm() function is a simplified interface to setitimer() and uses the

ITIMER_REAL interval timer.

Note: The ualarm() and usleep() functions have been moved to obsolescence in

Single UNIX Specification, Version 3 and may be withdrawn in a future

version. The setitimer(), timer_create(), timer_delete(), timer_getoverrun(),

timer_gettime(), or timer_settime() functions are preferred for portability.

Returned Value

ualarm() returns the number of microseconds remaining from the previous ualarm(),

alarm(), or setitimer(ITIMER_REAL) call.

If no timeouts are pending, ualarm() returns 0.

No errnos are defined for the ualarm() function.

Related Information

v “unistd.h” on page 96

v “alarm() — Set an Alarm” on page 180

v “setitimer() — Set Value of an Interval Timer” on page 1800

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sleep() — Suspend Execution of a Thread” on page 1959

v “usleep() — Suspend Execution for an Interval” on page 2316

ualarm

2282 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

__ucreate() — Create a Heap Using User-Provided Storage

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <uheap.h>

__uheapid_t __ucreate(void *block,

 size_t size,

 __uheap_cellpool_attrib_table_t *cellpool_attrib_table,

 void *rsvd1,

 void *rsvd2,

 void *rsvd3,

 void *rsvd4);

General Description

The __ucreate() function creates a heap out of storage that is provided by the

caller. The heap is divided up into cell pools based on the information provided in

the cellpool_attrib_table. Up to 12 cell pools can be created within the heap. Note

that this is a fixed-size heap; when storage within a given cell pool is exhausted, no

additional storage will be allocated. __ucreate() returns a uheapid that is used to

identify the heap on subsequent user-created heap function calls, such as

__umalloc(), __ufree(), and __uheapreport() calls.

Parameter Description

block A pointer to the storage which is to be used for the heap.

size The size of the block of storage. Note that Language Environment

reserves approximately 328 bytes of this storage for use in

allocating heap management control blocks. Additional storage is

reserved if storage report usage statistics are being collected for

the heap. The amount of this storage is related to the largest cell

size and the granularity of the statistics, and is calculated as:

storage amount = ((largestcellsize+granularity−1)/granularity)*4.

cellpool_attrib_table

A pointer to a structure describing the attributes of the cell pools to

be created by __ucreate().

 The first field of the structure, number_of_pools, indicates the

number of cell pools to be created. Up to 12 cell pools can be

created in the heap.

 The second field of the structure, granularity, indicates the

granularity to which storage usage statistics is to be collected. This

value must be zero, or a power of 2 greater than or equal to 8. If

the value is zero, then statistics are not collected.

 Following these words are pairs of words describing the attributes

of each cell pool in the heap:

 The first field in the pair, size, is the size of the cell in the cell pool.

The cell size must be a multiple of 8 and greater than or equal to 8,

up to a maximum of 64K (65536). Note that Language Environment

__ucreate

Chapter 3. Part 3. Library Functions 2283

adds an additional 8 bytes to the size of the cell for use in

managing the cells. The second field in the pair, count, is the

number of cells of this size to be allocated. Note the minimum is

four.

rsvd1-rsvd4 Reserved for future use.

Returned Value

If successful, __ucreate() returns a uheapid.

If unsuccessful, __ucreate() returns −1 and sets errno to EINVAL.

Related Information

v “uheap.h” on page 96

v “__ufree() — Return Storage to a User-Created Heap” on page 2285

v “__uheapreport() — Produce a Storage Report for a User-Created Heap” on

page 2286

v “__umalloc() — Allocate Storage from a User-Created Heap” on page 2290

__ucreate

2284 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__ufree() — Return Storage to a User-Created Heap

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <uheap.h>

void __ufree(__uheapid_t heapid, void *ptr);

General Description

The __ufree() function returns storage to the heap identified by the heapid. If the

returned storage does not belong to the given heap, the result is unpredictable.

Parameter Description

heapid The identifier of the user-created heap to which the storage is to be

returned.

ptr A pointer to the storage to be returned to the heap.

Returned Value

__ufree() returns no values.

Related Information

v “uheap.h” on page 96

v “__ucreate() — Create a Heap Using User-Provided Storage” on page 2283

v “__uheapreport() — Produce a Storage Report for a User-Created Heap” on

page 2286

v “__umalloc() — Allocate Storage from a User-Created Heap” on page 2290

__ufree

Chapter 3. Part 3. Library Functions 2285

__uheapreport() — Produce a Storage Report for a User-Created Heap

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <uheap.h>

void __uheapreport(__uheapid_t heapid);

General Description

The __uheapreport() function generates a report of the storage used within the

user-created heap identified by heapid. The report is directed to the ddname

specified in the MSGFILE run-time option except for AMODE 64 applications, in

which case the report is directed to the stderr stream. The report format is similar to

the heap pools portion of the storage report generated for the RPTSTG run-time

option.

Statistics for the user-created heap will only be collected if the granularity field of

the cellpool_attrib_table passed to __ucreate() is nonzero and a valid value.

Parameter Description

heapid The identifier of the user-created heap for which a report is to be

produced.

Returned Value

__uheapreport() returns no values.

Related Information

v “uheap.h” on page 96

v “__ucreate() — Create a Heap Using User-Provided Storage” on page 2283

v “__ufree() — Return Storage to a User-Created Heap” on page 2285

v “__umalloc() — Allocate Storage from a User-Created Heap” on page 2290

__uheapreport

2286 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ulimit() — Get/Set Process File Size Limits

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <ulimit.h>

long int ulimit(int cmd, ...);

General Description

The ulimit() function provides control over the process file size limits. The cmd

argument controls whether the file size limits are obtained or set. The cmd

argument can be one of the following, defined in <ulimit.h>:

UL_GETFSIZE

Return the soft (current) file size limit of the process. The limit

returned is in units of 512-byte blocks. The return value is the

integer portion of the soft file size limit divided by 512. Refer to the

setrlimit() function, RLIMIT_FSIZE resource description for more

detail.

UL_SETFSIZE Set the hard (maximum) and soft (current) file size limits for output

operations of the process. The value of the second argument is

used, and is treated as a long int. Refer to the setrlimit() function,

RLIMIT_FSIZE resource description for more detail and restrictions

on lowering and raising file size limits. The hard and soft file size

limits are set to the specified value multiplied by 512. The new file

size limit (in 512 byte increments) is returned.

Returned Value

If successful, ulimit() returns the value of the requested limit.

If unsuccessful, ulimit() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL The cmd argument is not valid.

EPERM To increase the file size limit, superuser authority is required.

Related Information

v “ulimit.h” on page 96

v “getrlimit() — Get Current/Maximum Resource Consumption.” on page 846

v “setrlimit() — Control Maximum Resource Consumption” on page 1837

ulimit

Chapter 3. Part 3. Library Functions 2287

||||

|
|
|

||

|

ulltoa() — Convert unsigned long long into a string

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R5

Format

#define _OPEN_SYS_ITOA_EXT

#include <stdlib.h>

char * ulltoa(uint64_t ll, char * buffer, int radix);

Compile Requirement

Use of this function requires the long long data type. See z/OS XL C/C++ Language

Reference for information on how to make long long available.

General Description

The ulltoa() function coverts the uint64_t ll into a character string. The string is

placed in the buffer passed, which must be large enough to hold the output. The

radix values can be OCTAL, DECIMAL, or HEX. When the radix is DECIMAL,

ulltoa() produces the same result as the following statement:

(void) sprintf(buffer, "%llu", ll);

with buffer the returned character string. When the radix is OCTAL, ulltoa() formats

uint64_t ll into an octal constant. When the radix is HEX, ulltoa() formats uint64_t ll

into a hexadecimal constant. The hexadecimal value will include lower case abcdef,

as necessary.

Returned Value

String pointer (same as buffer) will be returned. When passed an invalid radix

argument, function will return NULL and set errno to EINVAL.

Portability Considerations

This is a non-standard function. Even though the prototype given is commonly used

by compilers on other platforms, there is no guarantee that this function will behave

the same on all platforms, in all cases. You can use this function to help port

applications from other platforms, but you should avoid using it when writing new

applications, in order to ensure maximum portability.

Related Information

v “stdlib.h” on page 85

v “itoa() — Convert int into a string” on page 1048

v “lltoa() — Convert long long into a string” on page 1114

v “ltoa() — Convert long into a string” on page 1168

v “ultoa() — Convert unsigned long into a string” on page 2289

v “utoa() — Convert unsigned int into a string” on page 2323

ulltoa

2288 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ultoa() — Convert unsigned long into a string

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R5

Format

#define _OPEN_SYS_ITOA_EXT

#include <stdlib.h>

char * ultoa(unsigned long l, char * buffer, int radix);

General Description

The ultoa() function coverts the unsigned long l into a character string. The string is

placed in the buffer passed, which must be large enough to hold the output. The

radix values can be OCTAL, DECIMAL, or HEX. When the radix is DECIMAL,

ultoa() produces the same result as the following statement:

(void) sprintf(buffer, "%lu", l);

with buffer the returned character string. When the radix is OCTAL, ultoa() formats

unsigned long l into an octal constant. When the radix is HEX, ultoa() formats

unsigned long l into a hexadecimal constant. The hexadecimal value will include

lower case abcdef, as necessary.

Returned Value

String pointer (same as buffer) will be returned. When passed an invalid radix

argument, function will return NULL and set errno to EINVAL.

Portability Considerations

This is a non-standard function. Even though the prototype given is commonly used

by compilers on other platforms, there is no guarantee that this function will behave

the same on all platforms, in all cases. You can use this function to help port

applications from other platforms, but you should avoid using it when writing new

applications, in order to ensure maximum portability.

Related Information

v “stdlib.h” on page 85

v “itoa() — Convert int into a string” on page 1048

v “lltoa() — Convert long long into a string” on page 1114

v “ltoa() — Convert long into a string” on page 1168

v “ulltoa() — Convert unsigned long long into a string” on page 2288

v “utoa() — Convert unsigned int into a string” on page 2323

ultoa

Chapter 3. Part 3. Library Functions 2289

__umalloc() — Allocate Storage from a User-Created Heap

Standards

 Standards / Extensions C or C++ Dependencies

Language Environment both

Format

#include <uheap.h>

void *__umalloc(__uheapid_t heapid, size_t size);

General Description

The __umalloc() function allocates storage from the heap identified by the heapid.

__umalloc() will search for an available cell within the cell pool that contains cells at

least as large and closest in size to the requested size.

Parameter Description

heapid The identifier of the user-created heap from which the storage is to

be allocated.

size The amount of storage to be allocated.

Returned Value

If successful, __umalloc() returns a pointer to the reserved cell.

If a cell of the required size is not available, if size was larger than the largest

available cell size, or if size was specified as 0, __umalloc() returns NULL.

If there is not enough storage or if the requested size was too large, __umalloc()

returns NULL and sets errno to one of the following values:

Error Code Description

E2BIG Requested amount of storage is larger than the largest available

cell size

ENOMEM Insufficient memory is available

Related Information

v “uheap.h” on page 96

v “__ucreate() — Create a Heap Using User-Provided Storage” on page 2283

v “__ufree() — Return Storage to a User-Created Heap” on page 2285

v “__uheapreport() — Produce a Storage Report for a User-Created Heap” on

page 2286

__umalloc

2290 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

umask() — Set and Retrieve File Creation Mask

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/stat.h>

mode_t umask(mode_t newmask);

General Description

Changes the file creation mask of the process. newmask specifies new

file-permission bits for the file creation mask of the process.

This mask restricts the setting of (or turns off) file-permission bits specified in the

‘mode’ argument used with all open(), creat(), mkdir(), and mkfifo() functions issued

by the current process. File-permission bits set to 1 in the file creation mask are set

to 0 in the file-permission bits of files that are created by the process.

For example, if a call to open() specifies a mode argument with file-permission bits,

the file creation mask of the process affects the mode argument; bits that are 1 in

the mask are set to 0 in the mode argument, and therefore in the mode of the

created file.

Only the file-permission bits of the new mask are used. The meaning of other bits is

implementation-defined. For more information on these symbols, refer to “chmod()

— Change the Mode of a File or Directory” on page 280.

The _EDC_UMASK_DFLT environment variable controls how the C run-time library

sets the default umask. If z/OS UNIX System Services services are available, the

run-time library establishes a default umask value of 022 octal, and queries the

value of the _EDC_UMASK_DFLT environment variable. _EDC_UMASK_DFLT can

have the following values:

NO (case insensitive) The library should not change the umask.

A valid octal value The library should use this as the default value for

the umask.

Any other value for the environment variable causes the run-time library to use 022

octal as the umask value.

Returned Value

umask() is always successful and returns the previous value of the file creation

mask.

There are no documented errno values.

umask

Chapter 3. Part 3. Library Functions 2291

||||

|
|
|
|

||

|

Example

CELEBU01

/* CELEBU01

 This example will work only from C/MVS, not C++/MVS.

 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 int fd;

 mode_t oldmask;

 printf("Your old umask is %i\n",oldmask=umask(S_IRWXG));

 if ((fd = creat("umask.file", S_IRWXU|S_IRWXG)) < 0)

 perror("creat() error");

 else {

 system("ls −l umask.file");

 close(fd);

 unlink("umask.file");

 }

 umask(oldmask);

}

Output

-rwx------ 1 WELLIE SYS1 0 Apr 19 14:50 umask.file

Related Information

v “sys/stat.h” on page 89

v “chmod() — Change the Mode of a File or Directory” on page 280

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “mkdir() — Make a Directory” on page 1217

v “mkfifo() — Make a FIFO Special File” on page 1220

v “open() — Open a File” on page 1313

umask

2292 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

umount() — Remove a Virtual File System

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/stat.h>

int umount(const char *filesystem, mtm_t mtm);

General Description

Removes a file system from the file hierarchy, or changes the mount mode of a

mounted file system between read-only and read/write. The filesystem argument is

a NULL-terminated string containing the file-system name. This is the same name

that was specified when the file system was mounted.

In order to umount a file system, the caller must be an authorized program, or must

be running for a user with appropriate privileges.

The mtm argument can be one of the following:

MTM_UMOUNT

A normal unmount request. If the files in the named file system are

not in use, the unmount is done. Otherwise, the request is rejected.

MTM_DRAIN An unmount drain request. The requester is willing to wait for all

uses of this file system to be ended normally before the file system

is unmounted.

MTM_IMMED An immediate unmount request. The file system is unmounted

immediately, forcing any users of files in the specified file system to

fail. All data changes that were made up to the time of the request

are saved. If there is a problem saving the data, the unmount

request fails.

MTM_FORCE A forced unmount request. The file system is unmounted

immediately, forcing any users of any files in the specified file

system to fail. All data changes that were made up to the time of

the request are saved. If there is a problem saving the data, the

request continues, and the data may be lost. To prevent lost data,

issue an immediate umount() request before issuing a forced

umount() request.

MTM_RESET A reset unmount request. This allows a previous unmount drain

request to be stopped.

MTM_REMOUNT

A remount request. This changes the mount mode of a file system

from read-only to read/write or from read/write to read-only. If

neither MTM_RDONLY nor MTM_RDWR is specified, the mode is

set to the opposite of its current state. If a mode is specified, it

must be the opposite of the current state.

umount

Chapter 3. Part 3. Library Functions 2293

Returned Value

If successful, umount() returns 0.

If unsuccessful, umount() returns −1 and sets errno to one of the following values:

Error Code Description

EBUSY The file system is busy, for one of these reasons:

v A umount() (MTM_UMOUNT) was requested, and the file system

still has open files or other file systems mounted under it.

v A file system is currently mounted on the requested file system.

v A RESET was requested, and the previous umount() request was

either immediate or forced, instead of a drain request.

v There is a umount() request already in progress for the specified

file system.

v A umount() drain request is being reset.

EINTR umount() was interrupted by a signal.

EINVAL A parameter was incorrectly specified. Verify the spelling of the

file-system name and the setting of mtm.

EIO An I/O error occurred.

EPERM Superuser authority is required to issue an unmount.

Example

CELEBU02

/* CELEBU02

 This example removes a file, using umount().

 */

#define _OPEN_SYS 1

#include <sys/stat.h>

#include <stdio.h>

#include <unistd.h>

main() {

 char HFS[]="POSIX.NEW.HFS";

 char filesystype[9]="HFS ";

 setvbuf(stdout, NULL, _IOLBF, 0);

 puts("before umount()");

 system("df −Pk");

 if (umount(HFS, MTM_UMOUNT) != 0)

 perror("umount() error");

 else {

 puts("After umount()");

 system("df −Pk");

 }

}

Output

before umount()

Filesystem 1024-blocks Used Available Capacity Mounted on

POSIX.NEW.HFS 200 20 180 10% /new_fs

POSIX.ROOT.FS 9600 8180 1420 85% /

After umount()

Filesystem 1024-blocks Used Available Capacity Mounted on

POSIX.ROOT.FS 9600 8180 1420 85% /

umount

2294 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “sys/stat.h” on page 89

v “mount() — Make a File System Available” on page 1241

umount

Chapter 3. Part 3. Library Functions 2295

uname() — Display Current Operating System Name

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/utsname.h>

int uname(struct utsname *name);

General Description

Gets information identifying the operating system you are running on. The argument

name points to a memory area where uname() can store a structure describing the

operating system the process is running on.

The information about the operating system is returned in a utsname structure,

which has the following elements:

char *sysname;

The name of the implementation of the operating system.

char *nodename;

The node name of this particular machine. The node name is set by

the SYSNAME sysparm (specified at IPL), and usually differentiates

machines running at a single location.

char *release; The current release level of the implementation.

char *version; The current version level of the release.

char *machine;

The name of the hardware type the system is running on.

Each of these elements is a normal C string, terminated with a NULL character.

As of OS/390 Release 2, the uname() function will return ″OS/390″ as the sysname

value, even if the true name of the operating system is different. This is being done

for compatibility purposes. The version value will increase at every new version of

the operating system. The release will increase at every new release of the

operating system. Table 58 on page 2297 lists the true operating system names and

corresponding values returned by the uname() function. To retrieve the true

operating system name, version and release, use the __osname() function.

uname

2296 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

Table 58. uname() Operating System Information

Operating System Sysname Release Version

z/OS 1.9 OS/390 19.00 03

z/OS 1.8 or z/OS.e 1.8 OS/390 18.00 03

z/OS 1.7 or z/OS.e 1.7 OS/390 17.00 03

z/OS 1.6 or z/OS.e 1.6 OS/390 16.00 03

z/OS 1.5 or z/OS.e 1.5 OS/390 15.00 03

z/OS 1.4 or z/OS.e 1.4 OS/390 14.00 03

z/OS 1.3 or z/OS.e 1.3 OS/390 13.00 03

z/OS 1.2 OS/390 12.00 03

z/OS 1.1 OS/390 11.00 03

OS/390 Rel. 10 OS/390 10.00 02

OS/390 Rel. 9 OS/390 09.00 02

OS/390 Rel. 8 OS/390 08.00 02

OS/390 Rel. 7 OS/390 07.00 02

OS/390 Rel. 6 OS/390 06.00 02

OS/390 Rel. 5 OS/390 05.00 02

OS/390 Rel. 4 OS/390 04.00 02

OS/390 Rel. 3 OS/390 03.00 01

OS/390 Rel. 2 OS/390 02.00 01

OS/390 Rel. 1 MVS 100 1

MVS 2.2 5

Returned Value

If successful, uname() returns a nonnegative value.

If unsuccessful, uname() returns −1. It may set errno to indicate the reason for the

failure, but no errno values are specified by the POSIX.1 standard.

Example

CELEBU03

/* CELEBU03

 This example gets information about the system you are running on.

 */

#define _POSIX_SOURCE

#include <sys/utsname.h>

#include <stdio.h>

main() {

 struct utsname uts;

 if (uname(&uts) < 0)

 perror("uname() error");

 else {

 printf("Sysname: %s\n", uts.sysname);

 printf("Nodename: %s\n", uts.nodename);

 printf("Release: %s\n", uts.release);

 printf("Version: %s\n", uts.version);

 printf("Machine: %s\n", uts.machine);

 }

}

Output

uname

Chapter 3. Part 3. Library Functions 2297

||||

Sysname: OS/390

Nodename: SY1

Release: 12.00

Version: 03

Machine: 2064

Related Information

v “sys/utsname.h” on page 91

v “__osname() — Get True Operating System Name” on page 1333

uname

2298 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

uncaught_exception() — Determine if an Exception is being Processed

Standards

 Standards / Extensions C or C++ Dependencies

ANSI/ISO C++ C++ only z/OS V1R2

Format

#include <exception>

bool uncaught_exception(void);

General Description

The uncaught_exception() function returns true only if a thrown exception is

currently being processed.

When uncaught_exception() is true, throwing an exception can result in a call of

terminate().

Returned Value

uncaught_exception() returns true after completing evaluation of a throw expression

and before completing initialization of the exception declaration in the matching

handler or calling unexpected() as a result of the throw expression.

Otherwise, uncaught_exception() returns false.

Example

#include <exception>

#include <iostream.h>

using namespace std;

class X

{

 public:

 ~X ();

};

X::~X()

{

 if (uncaught_exception ())

 printf (" X::~X called during stack unwind\n");

 else

 printf (" X::~X called normally\n");

}

int main()

{

 X x1;

 try

 {

 X x2;

 throw 1;

 }

 catch (...) { /*...*/ }

 return 0;

uncaught_exception

Chapter 3. Part 3. Library Functions 2299

}

// under a Standard-conforming implementation, this program yields

// X::~X called during stack unwind

// X::~X called normally

Related Information

v “exception” on page 44

v “set_terminate() — Register a Function for terminate()” on page 1855

v “set_unexpected() — Register a Function for unexpected()” on page 1860

v “terminate() — Terminate After Failures in C++ Error Handling” on page 2192

v “unexpected() — Handle Exception Not Listed in Exception Specification” on

page 2305

uncaught_exception

2300 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

UnDoExportWorkUnit() — WLM Undo Export Service

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both OS/390 V2R9

Format

#include <sys/__wlm.h>

int UnDoExportWorkUnit(wlmxtok_t *exporttoken, unsigned long *conntoken);

AMODE 64

#include <sys/__wlm.h>

int UnDoExportWorkUnit(wlmxtok_t *exporttoken, unsigned int *conntoken);

General Description

Undoes an earlier request to export an enclave using the ExportWorkUnit() function.

The caller is expected to invoke UnDoExportWorkUnit() after all importing systems

have invoked the UnDoImportWorkUnit() function.

The UnDoExportWorkUnit() function uses the following parameters:

*exporttoken Points to a work unit export token that was returned from a call to

ExportWorkUnit().

*conntoken Specifies the connect token that represents the connection to WLM.

Returned Value

If successful, UnDoExportWorkUnit() returns 0.

If unsuccessful, UnDoExportWorkUnit() returns −1 and sets errno to one of the

following values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained a value that is not correct.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

A WLM service failed. Use __errno2() to obtain the WLM service

reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class, if the

BPX.WLMSERVER class is defined. If BPX.WLMSERVER is not

defined, the calling process is not defined as a superuser (UID=0).

UnDoExportWorkUnit

Chapter 3. Part 3. Library Functions 2301

Related Information

v “sys/__wlm.h” on page 91

v “ExportWorkUnit() — WLM Export Service” on page 503

v “ImportWorkUnit() — WLM Import Service” on page 939

v For more information, see z/OS MVS Programming: Workload Management

Services, SA22-7619.

UnDoExportWorkUnit

2302 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

UnDoImportWorkUnit() — WLM Undo Import Service

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both OS/390 V2R9

Format

#include <sys/__wlm.h>

int UnDoImportWorkUnit(wlmxtok_t *exporttoken, unsigned long *conntoken);

AMODE 64

#include <sys/__wlm.h>

int UnDoImportWorkUnit(wlmxtok_t *exporttoken, unsigned int *conntoken);

General Description

Undoes an earlier request to import an enclave using the ImportWorkUnit() function.

The UnDoImportWorkUnit() function uses the following parameters:

*exporttoken Points to a work unit export token that was returned from a call to

ExportWorkUnit().

*conntoken Specifies the connect token that represents the connection to WLM.

Returned Value

If successful, UnDoImportWorkUnit() returns 0.

If unsuccessful, UnDoImportWorkUnit() returns −1 and sets errno to one of the

following values:

Error Code Description

EFAULT An argument of this function contained an address that was not

accessible to the caller.

EINVAL An argument of this function contained a value that is not correct.

EMVSSAF2ERR

An error occurred in the security product.

EMVSWLMERROR

A WLM service failed. Use __errno2() to obtain the WLM service

reason code for the failure.

EPERM The calling thread’s address space is not permitted to the

BPX.WLMSERVER Facility class. The caller’s address space must

be permitted to the BPX.WLMSERVER Facility class, if the

BPX.WLMSERVER class is defined. If BPX.WLMSERVER is not

defined, the calling process is not defined as a superuser (UID=0).

Related Information

v “sys/__wlm.h” on page 91

v “ExportWorkUnit() — WLM Export Service” on page 503

v “ImportWorkUnit() — WLM Import Service” on page 939

UnDoImportWorkUnit

Chapter 3. Part 3. Library Functions 2303

v For more information, see z/OS MVS Programming: Workload Management

Services, SA22-7619.

UnDoImportWorkUnit

2304 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

unexpected() — Handle Exception Not Listed in Exception

Specification

Standards

 Standards / Extensions C or C++ Dependencies

ANSI/ISO C++ C++ only

Format

#include <exception>

void unexpected(void);

General Description

The unexpected() function is part of the z/OS XL C++ error handling mechanism. If

unexpected() is called directly by the program, the unexpected_handler is the one

most recently set by a call to set_unexpected(). If unexpected() is called when

control leaves a function by a thrown exception of a type not permitted by an

exception specification for the function, as in:

void f() throw() // function may throw no exceptions

 {throw "bad"; } // throw calls unexpected()

the unexpected_handler is the one in effect immediately after evaluating the throw

expression.

An unexpected_handler may not return to its caller. It may terminate execution by:

v Throwing an object of a type listed in the exception specification (or an object of

any type if the unexpected handler is called directly by the program).

v Throwing an object of type bad_exception.

v Calling terminate(), abort(), or exit(int).

If set_unexpected() has not yet been called, then unexpected() calls terminate().

In a multithreaded environment, if a thread throws an exception that is not listed in

its exception specification, then unexpected() is called. The default for unexpected()

is to call terminate(), which defaults to calling abort(), which then causes a

SIGABRT signal to be generated to the thread issuing the throw. If the SIGABRT

signal is not caught, the process is terminated. You can replace the default

unexpected() behavior for all threads in the process by using the set_unexpected()

function. One possible use of set_unexpected() is to call a function which issues a

pthread_exit(). If this is done, a throw of a condition by a thread that is not in the

exception specification results in thread termination, but not process termination.

Returned Value

unexpected() returns no values.

Refer to z/OS XL C/C++ Language Reference for more information about z/OS XL

C++ exception handling, including the unexpected() function.

Related Information

v “exception” on page 44

v “set_unexpected() — Register a Function for unexpected()” on page 1860

unexpected

Chapter 3. Part 3. Library Functions 2305

v “terminate() — Terminate After Failures in C++ Error Handling” on page 2192

unexpected

2306 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

ungetc() — Push Character onto Input Stream

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

POSIX.1

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdio.h>

int ungetc(int c, FILE *stream);

General Description

Pushes the character specified by the value of c converted to the unsigned char

back onto the given input stream. The pushed-back characters are returned by any

subsequent read on the same stream in the reverse order of their pushing. That is,

the last character pushed will be returned first.

Up to 4 characters can be pushed back to a given input stream. You can call

ungetc() up to 4 times consecutively; this will result in 4 characters being pushed

back in total.

The stream must be open for reading. A subsequent read operation on the stream

starts with c. You cannot push EOF back on the stream using ungetc(). A successful

call to the ungetc() function clears the EOF indicator for the stream.

Characters pushed back by ungetc(), and subsequently not read in, will be erased if

a fseek(), fsetpos(), rewind(), or fflush() function is called before the character is

read from the stream. After all the pushed-back characters are read in, the file

position indicator is the same as it was before the characters were pushed back.

Each character of pushback backs up the file position by one byte. This affects the

value returned by ftell() or fgetpos(), the result of an fseek() using SEEK_CUR, or

the result of an fflush(). For example, consider a file that contains: a b c d e f g

h

After you have just read ’a’, the current file position is at the start of ’b’. The

following operations will all result in the file position being at the start of ’a’, ready to

read ’a’ again.

/* 1 */ ungetc(’a’, fp);

 fflush(fp); /* flushes ungetc char and keeps position */

/* 2 */ ungetc(’a’, fp);

 pos = ftell(fp); /* points to first character */

 fseek(fp, pos, SEEK_SET);

/* 3 */ ungetc(’a’,fp);

 fseek(fp, 0, SEEK_CUR) /* starts at new file pos’n */

ungetc

Chapter 3. Part 3. Library Functions 2307

||||

|
|
|
|
|
|

||

|

/* 4 */ ungetc(’a’, fp);

 fgetpos(fp, &fpos); /* gets position of first char */

 fsetpos(fp, &fpos);

You can use the environment variable _EDC_COMPAT to cause a z/OS XL C/C++

application to ignore ungetc() characters for fflush(), fgetpos(), and fseek() using

SEEK_CUR. For more details, see z/OS XL C/C++ Programming Guide.

The ungetc() function is not supported for files opened with type=record.

ungetc() has the same restriction as any read operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, ungetc() returns the integer argument c converted to an unsigned

char

If c cannot be pushed back, ungetc() returns EOF.

ungetc() is treated as a read operation. A flush or reposition is required after a call

to ungetc() and before the next write operation.

Example

CELEBU04

/* CELEBU04

 In this example, the while statement reads decimal digits

 from an input data stream by using arithmetic statements to

 compose the numeric values of the numbers as it reads them.

 When a nondigit character appears before the EOF, &ungetc.

 replaces it in the input stream so that later input functions

 can process it.

 */

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 FILE *stream;

 int ch;

 unsigned int result = 0;

 stream = fopen("myfile.dat","r+");

 while ((ch = getc(stream)) != EOF && isdigit(ch))

 {

 result = result * 10 + ch − '0';

 }

 printf("result is %i\n",result);

 if (ch != EOF)

 {

 ungetc(ch,stream); /* Put the nondigit character back */

 ch=getc(stream);

 printf("value put back was %c\n",ch);

 }

}

ungetc

2308 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “stdio.h” on page 82

v “fflush() — Write Buffer to File” on page 584

v “fseek() — Change File Position” on page 693

v “getc(), getchar() — Read a Character” on page 742

v “putc(), putchar() — Write a Character” on page 1566

ungetc

Chapter 3. Part 3. Library Functions 2309

ungetwc() — Push a Wide Character onto a Stream

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);

General Description

Pushes the wide character specified by wc back onto the input stream pointed to by

stream. The pushed-back wide characters will be returned by subsequent reads on

that stream in the reverse order of their pushing. A successful intervening call (with

the stream pointed to by stream) to a file positioning function (fseek(), fsetpos(), or

rewind()) discards any pushed-back wide characters for the stream. The external

storage corresponding to the stream is unchanged. There is always at least one

wide character of push-back.

If the value of wc equals that of the macro WEOF, the operation fails and the input

stream is unchanged.

A successful call to the ungetwc() function clears the EOF indicator for the stream.

The value of the file position indicator for the stream after reading or discarding all

pushed-back wide characters is the same as it was before the wide characters were

pushed back.

For a text stream, the file position indicator is backed up by one wide character.

This affects ftell(), fflush(), fseek() using SEEK_CUR, and fgetpos(). The

environment variable, _EDC_COMPAT can be used to cause a pushed-back wide

char to be ignored by fflush(), fseek() with SEEK_CUR, and fgetpos(). For details,

see z/OS XL C/C++ Programming Guide.

For a binary stream, the position indicator is unspecified until all characters are read

or discarded, unless the last character is pushed back, in which case the file

position indicator is backed up by one wide character. This affects ftell() and fseek()

with SEEK_CUR, fgetpos(), and fflush(). The environment variable _EDC_COMPAT

can be used to cause the pushed-back wide character to be ignored by fflush(),

fgetpos(), and fseek().

ungetwc() is not supported for files opened with type=record.

ungetwc() has the same restriction as any read operation for a read immediately

following a write, or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

ungetwc

2310 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

Returned Value

If successful, ungetwc() returns the wide character pushed back after conversion.

If unsuccessful, ungetwc() returns WEOF.

Notes:

v For z/OS XL C/C++ applications, only 1 wide character can be pushed back.

v The position on the stream after a successful ungetwc() is one wide character

before the current position. See z/OS XL C/C++ Programming Guide for details

on backing up a wide char.

Example

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 FILE *stream;

 wint_t wc;

 unsigned int result = 0; ...
 while ((wc = fgetwc(stream)) != WEOF && iswdigit(wc))

 result = result * 10 + wc - L’0’;

 if (wc != WEOF)

 ungetwc(wc, stream);

 /* Put the nondigit wide character back */

}

Related Information

v “wchar.h” on page 98

v “fflush() — Write Buffer to File” on page 584

v “fgetwc() — Get Next Wide Character” on page 593

v “fputwc() — Output a Wide-Character” on page 666

v “fseek() — Change File Position” on page 693

v “fsetpos() — Set File Position” on page 701

ungetwc

Chapter 3. Part 3. Library Functions 2311

unlink() — Remove a Directory Entry

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

int unlink(const char *pathname);

General Description

Removes a directory entry. This unlink() deletes the link named by pathname and

decrements the link count for the file itself.

pathname can refer to a pathname, a link, or a symbolic link. If the pathname refers

to a symbolic link, unlink() removes the symbolic link but not any file or directory

named by the contents of the symbolic link.

If the link count becomes 0 and no process currently has the file open, the file itself

is deleted. The space occupied by the file is freed for new use, and the current

contents of the file are lost. If one or more processes have the file open when the

last link is removed, unlink() removes the link, but the file itself is not removed until

the last process closes the file.

unlink() cannot be used to remove a directory; use rmdir() instead.

If unlink() succeeds, the change and modification times for the parent directory are

updated. If the file’s link count is not 0, the change time for the file is also updated.

If unlink() fails, the link is not removed.

Returned Value

If successful, unlink() returns 0.

If unsuccessful, unlink() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The process did not have search permission for some component

of pathname, or did not have write permission for the directory

containing the link to be removed.

EBUSY pathname cannot be unlinked because it is currently being used by

the system or some other process.

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOP symbolic links are detected in the resolution of

pathname.

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

unlink

2312 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined using pathconf().

ENOENT pathname does not exist, or it is an empty string.

ENOTDIR Some component of the pathname prefix is not a directory.

EPERM pathname is a directory, and unlink() cannot be used on directories.

EROFS The link to be removed is on a read-only file system.

Example

CELEBU06

/* CELEBU06

 This example removes a directory entry, using unlink().

 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

main() {

 int fd;

 char fn[]="unlink.file";

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(fd);

 if (unlink(fn) != 0)

 perror("unlink() error");

 }

}

Related Information

v “unistd.h” on page 96

v “close() — Close a File” on page 299

v “link() — Create a Link to a File” on page 1101

v “open() — Open a File” on page 1313

v “remove() — Delete File” on page 1661

v “rmdir() — Remove a Directory” on page 1692

unlink

Chapter 3. Part 3. Library Functions 2313

unlockpt() — Unlock a Pseudoterminal Master/Slave Pair

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

int unlockpt(int fildes);

General Description

The unlockpt() function unlocks the slave pseudoterminal device associated with the

master to which fildes refers.

Portable applications must call unlockpt() before opening the slave side of a

pseudoterminal device.

Returned Value

If successful, unlockpt() returns 0.

If unsuccessful, unlockpt() returns -1 and sets errno to one of the following values:

Error Code Description

EACCESS Either a grantpt() has not yet been issued, or an unlockpt() has

already been issued. An unlockpt() must be issued after a grantpt(),

and can only be issued once.

EBADF The fildes argument is not a file descriptor open for writing.

EINVAL The fildes argument is not associated with a master pseudoterminal

device.

Related Information

v “stdlib.h” on page 85

v “grantpt() — Grant Access to the Slave Pseudoterminal Device” on page 906

v “open() — Open a File” on page 1313

v “ptsname() — Get Name of the Slave Pseudoterminal Device” on page 1566

unlockpt

2314 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

unsetenv() — Delete an Environment Variable

Standards

 Standards / Extensions C or C++ Dependencies

Single UNIX Specification, version 3 both z/OS V1R7

Format

#define _UNIX03_SOURCE

#include <stdlib.h>

int unsetenv(const char *name);

General Description

unsetenv() deletes an environment variable from the environment of the calling

process. The name argument points to a string, which is the name of the variable to

be removed. If the string pointed to by name contains an ’=’ character, unsetenv()

will fail. If the named variable does not exist in the current environment, the

environment will not be changed and unsetenv() will succeed.

Returned Value

If successful, unsetenv() returns 0. If unsuccessful, unsetenv() returns -1 and sets

errno to indicate the error.

v EINVAL – The name argument is a null pointer, points to an empty string, or

points to a string containing an ’=’ character.

Related Information

v ″Using Environment Variables″ in the z/OS XL C/C++ Programming Guide.

v “stdlib.h” on page 85

v “clearenv() — Clear Environment Variables” on page 291

v “getenv() — Get Value of Environment Variables” on page 761

v “__getenv() — Get an Environment Variable” on page 763

v “putenv() — Change or Add an Environment Variable” on page 1569

v “setenv() — Add, Delete, and Change Environment Variables” on page 1783

unsetenv

Chapter 3. Part 3. Library Functions 2315

||||

|||
|

usleep() — Suspend Execution for an Interval

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

int usleep(useconds_t useconds);

General Description

The usleep() function suspends thread execution for the number of microseconds

specified by the useconds argument. Because of other activity, or because of the

time spent processing the call, the actual suspension time may be longer than the

amount of time specified.

The useconds argument must be less than 1,000,000. If the value of useconds is 0,

then the call has no effect.

The usleep() function will not interfere with a previous setting of the real-time

interval timer. If the thread has set this timer before calling usleep(), and if the time

specified by useconds equals or exceeds the interval timer’s prior setting, then the

thread will be awakened when the previously set timer interval expires.

Note: The ualarm() and usleep() functions have been moved to obsolescence in

Single UNIX Specification, Version 3 and may be withdrawn in a future

version. The setitimer(), timer_create(), timer_delete(), timer_getoverrun(),

timer_gettime(), or timer_settime() functions are preferred for portability.

Returned Value

If successful, usleep() returns 0.

If unsuccessful, usleep() returns -1 and sets errno to one of the following values:

Error Code Description

EINVAL The useconds argument was greater than or equal to 1,000,000.

Related Information

v “unistd.h” on page 96

v “alarm() — Set an Alarm” on page 180

v “setitimer() — Set Value of an Interval Timer” on page 1800

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “sleep() — Suspend Execution of a Thread” on page 1959

v “ualarm() — Set the Interval Timer” on page 2282

usleep

2316 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|
|

utime() — Set File Access and Modification Times

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <utime.h>

int utime(const char *pathname, const struct utimbuf *newtimes);

General Description

Sets the access and modification times of pathname to the values in the utimbuf

structure. If newtimes is a NULL pointer, the access and modification times are set

to the current time.

Normally, the effective user ID (UID) of the calling process must match the owner

UID of the file, or the calling process must have appropriate privileges. However, if

newtimes is a NULL pointer, the effective UID of the calling process must match the

owner UID of the file, or the calling process must have write permission to the file

or appropriate privileges.

The contents of a utimbuf structure are:

time_t actime The new access time (The time_t type gives the number of seconds

since the epoch.)

time_t modtime

The new modification time

Returned Value

If successful, utime() returns 0 and updates the access and modification times of

the file to those specified.

If unsuccessful, utime() returns −1, does not update file times, and sets errno to

one of the following values:

Error Code Description

EACCES The process does not have search permission on some component

of the pathname prefix; or all of the following are true:

v newtimes is NULL.

v The effective user ID of the process does not match the file’s

owner.

v The process does not have write permission on the file.

v The process does not have appropriate privileges.

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOP symbolic links (defined in the limits.h header

file) are detected in the resolution of pathname.

utime

Chapter 3. Part 3. Library Functions 2317

||||

|
|
|
|

||

|

ENAMETOOLONG

pathname is longer than PATH_MAX characters, or some

component of pathname is longer than NAME_MAX characters

while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. The PATH_MAX and NAME_MAX values

can be determined using pathconf().

ENOENT There is no file named pathname, or the pathname argument is an

empty string.

ENOTDIR Some component of the pathname prefix is not a directory.

EPERM newtimes is not NULL, the effective user ID of the calling process

does not match the owner of the file, and the calling process does

not have appropriate privileges.

EROFS pathname is on a read-only file system.

Example

CELEBU07

/* CELEBU07 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <time.h>

#include <unistd.h>

#include <utime.h>

main() {

 int fd;

 char fn[]="utime.file";

 struct utimbuf ubuf;

 if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(fd);

 puts("before utime()");

 system("ls −l utime.file");

 ubuf.modtime = 0;

 time(&ubuf.actime);

 if (utime(fn, &ubuf) != 0)

 perror("utime() error");

 else {

 puts("after utime()");

 system("ls −l utime.file");

 }

 unlink(fn);

 }

}

Output

before utime()

--w------- 1 WELLIE SYS1 0 Apr 19 15:23 utime.file

after utime()

--w------- 1 WELLIE SYS1 0 Dec 31 1969 utime.file

Related Information

v “limits.h” on page 55

v “utime.h” on page 97

utime

2318 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “utimes() — Set File Access and Modification Times” on page 2320

utime

Chapter 3. Part 3. Library Functions 2319

utimes() — Set File Access and Modification Times

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

General Description

The utimes() function sets the access and modification times of the file pointed to

by the path argument to the value of the times argument.

The times argument is an array of two timeval structures. The first array member

represents the date and time of the last access, and the second member represents

the date and time of the last modification. The times in the timeval structure are

measured in seconds and microseconds since the Epoch, but the actual time stored

with the file are rounded to the nearest second. The timeval members are:

tv_sec seconds since January 1, 1970 (UTC)

tv_usec microseconds

If the times argument is a NULL pointer, the access and modification times of the

file are set to the current time. The same process privilege requirements of the

utime() function are required by utimes(). The last file status change, field st_ctime

in a stat(), is updated with the current time.

Note: The utimes() function has been moved to the Legacy Option group in Single

UNIX Specification, Version 3 and may be withdrawn in a future version. The

utime() function is preferred for portability.

Returned Value

If successful, utimes() returns 0.

If unsuccessful, utimes() returns −1 and sets errno to one of the following values:

Error Code Description

EACCES The process does not have search permission on some component

of the path prefix; or all of the following are true:

v times is NULL

v The effective user ID of the process does not match the file’s

owner

v The process does not have write permission on the file

v The process does not have appropriate privileges

ELOOP A loop exists in symbolic links. This error is issued if more than

POSIX_SYMLOOP symbolic links (defined in the limits.h header

file) are detected in the resolution of path.

utimes

2320 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

|
|
|

ENAMETOOLONG

path is longer than PATH_MAX characters or some component of

path is longer than NAME_MAX characters while

_POSIX_NO_TRUNC is in effect. For symbolic links, the length of

the pathname string substituted for a symbolic link exceeds

PATH_MAX. The PATH_MAX and NAME_MAX values can be

determined using pathconf().

ENOTDIR Some component of the path prefix is not a directory.

ENOTENT There is no file named path, or the path argument is an empty

string.

EPERM times is not NULL, the effective user ID of the calling process does

not match the owner of the file, and the calling process does not

have appropriate privileges.

EROFS path is on a read-only file system.

Related Information

v “sys/time.h” on page 89

v “utime() — Set File Access and Modification Times” on page 2317

utimes

Chapter 3. Part 3. Library Functions 2321

__utmpxname() — Change the utmpx Database Name

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <utmpx.h>

int __utmpxname(char *file);

General Description

The __utmpxname() function changes the name of the utmpx database file for the

current thread from default /etc/utmpx to the name specified by file. The

__utmpxname() function does not open the file. It closes the old utmpx database

file, if it is currently opened for the current thread, and saves the new utmpx

database file name. If the file does not exist no indication is given.

Because the __utmpxname() function processes thread-specific data the

__utmpxname() function can be used safely from a multithreaded application. If

multiple threads in the same process open the database, then each thread opens

the database with a different file descriptor. The thread’s database file descriptor is

closed when the calling thread terminates or the endutxent() function is called by

the calling thread.

Programs must not reference the data passed back by getutxline(), getutxid(),

getutxent(), or pututxline() after __utmpxname() has been called (the storage has

been freed.) The endutxent() function resets the name of the utmpx database back

to the default value. If you must do additional utmpx operations on a nonstandard

utmpx database after calling endutxent(), then call __utmpxname() again, to

reestablish the nonstandard name.

Returned Value

If successful, __utmpxname() returns 0.

If unsuccessful, __utmpxname() returns −1.

Related Information

v “utmpx.h” on page 98

v “endutxent() — Close the utmpx Database” on page 475

v “getutxent() — Read Next Entry in utmpx Database” on page 881

v “getutxid() — Search by ID utmpx Database” on page 883

v “getutxline() — Search by Line utmpx Database” on page 885

v “pututxline() — Write Entry to utmpx Database” on page 1576

v “setutxent() — Reset to Start of utmpx Database” on page 1861

__utmpxname

2322 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

utoa() — Convert unsigned int into a string

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R5

Format

#define _OPEN_SYS_ITOA_EXT

#include <stdlib.h>

char * utoa(unsigned int n, char * buffer, int radix);

General Description

The utoa() function coverts the unsigned integer n into a character string. The string

is placed in the buffer passed, which must be large enough to hold the output. The

radix values can be OCTAL, DECIMAL, or HEX. When the radix is DECIMAL,

utoa() produces the same result as the following statement:

(void) sprintf(buffer, "%u", n);

with buffer the returned character string. When the radix is OCTAL, utoa() formats

unsigned integer n into an octal constant. When the radix is HEX, utoa() formats

unsigned integer n into a hexadecimal constant. The hexadecimal value will include

lower case abcdef, as necessary.

Returned Value

String pointer (same as buffer) will be returned. When passed an invalid radix

argument, function will return NULL and set errno to EINVAL.

Portability Considerations

This is a non-standard function. Even though the prototype given is commonly used

by compilers on other platforms, there is no guarantee that this function will behave

the same on all platforms, in all cases. You can use this function to help port

applications from other platforms, but you should avoid using it when writing new

applications, in order to ensure maximum portability.

Related Information

v “stdlib.h” on page 85

v “itoa() — Convert int into a string” on page 1048

v “lltoa() — Convert long long into a string” on page 1114

v “ltoa() — Convert long into a string” on page 1168

v “ulltoa() — Convert unsigned long long into a string” on page 2288

v “ultoa() — Convert unsigned long into a string” on page 2289

utoa

Chapter 3. Part 3. Library Functions 2323

va_arg(), va_copy(), va_end(), va_start() — Access Function Arguments

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

C99

Single UNIX Specification, Version 3

both

Format

#include <stdarg.h>

var_type va_arg(va_list arg_ptr, var_type);

void va_end(va_list arg_ptr);

void va_start(va_list arg_ptr, variable_name);

C99

#define _ISOC99_SOURCE

#include <stdarg.h>

var_type va_arg(va_list arg_ptr, var_type);

void va_end(va_list arg_ptr);

void va_start(va_list arg_ptr, variable_name);

void va_copy(va_list dest, va_list src);

General Description

The va_arg(), va_end(), and va_start() macros access the arguments to a function

when it takes a fixed number of required arguments and a variable number of

optional arguments. You declare required arguments as ordinary parameters to the

function and access the arguments through the parameter names.

The va_start() macro initializes the arg_ptr pointer for subsequent calls to va_arg()

and va_end().

The argument variable_name is the identifier of the rightmost named parameter in

the parameter list (preceding , ...). Use the va_start() macro before the va_arg()

macro. Corresponding va_start() and va_end() macro calls must be in the same

function. If variable_name is declared as a register, with a function or an array type,

or with a type that is not compatible with the type that results after application of the

default argument promotions, then the behavior is undefined.

The va_arg() macro retrieves a value of the given var_type from the location given

by arg_ptr and increases arg_ptr to point to the next argument in the list. The

va_arg() macro can retrieve arguments from the list any number of times within the

function.

The macros also provide fixed-point decimal support under z/OS XL C. The

sizeof(xx) operator is used to determine the size and type casting that is used to

generate the values. Therefore, a call, such as, x = va_arg(ap, _Decimal(5,2)); is

valid. The size of a fixed-point decimal number, however, cannot be made a

variable. Therefore, a call, such as, z = va_arg(ap, _Decimal(x,y)) where x = 5

and y = 2 is invalid.

The va_end() macro is needed by some systems to indicate the end of parameter

scanning.

va_arg, va_end, va_start

2324 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

va_start() and va_arg() do not work with parameter lists of functions whose linkages

were changed with the #pragma linkage directive.

stdarg.h and varargs.h are mutually exclusive. Whichever #include comes first,

determines the form of macro that is visible.

The type definition for the va_list type is normally ″char *va_list[2]″. Some

applications (especially ported applications) require that the va_list type be defined

as ″char *va_list″. This alternate va_list type is available if the user defines the

feature test macro _VARARG_EXT_ before the inclusion of any system header file.

If the _VARARG_EXT_ feature test macro is defined, va_list will be typed as char *

va_list, and the functions vprintf(), vfprintf(), vsprintf(), and vswprintf() will use this

alternate va_list type.

The va_copy() function creates a copy (dest) of a variable of type va_list (src). The

copy appear as if it has gone through a va_start() and the exact set of sequences

of va_arg() as that of src.

After va_copy() initializes dest, the va_copy() macro shall not be invoked to

reinitialize dest without an intervening invocation of the va_end() macro for the

same dest.

Returned Value

The va_arg() macro returns the current argument.

The va_end(), va_copy(), and va_start() macros return no values.

Example

CELEBV01

/* CELEBV01

 This example passes a variable number of arguments to a function,

 stores each argument in an array, and prints each argument.

 */

#include <stdio.h>

#include <stdarg.h>

void vout(int max, ...);

int main(void)

{

 vout(3, "Sat", "Sun", "Mon");

 printf("\n");

 vout(5, "Mon", "Tues", "Wed", "Thurs", "Fri");

}

void vout(int max, ...)

{

 va_list arg_ptr;

 int args = 0;

 char *days[7];

 va_start(arg_ptr, max);

 while(args < max)

 {

 days[args] = va_arg(arg_ptr, char *);

 printf("Day: %s \n", days[args++]);

va_arg, va_end, va_start

Chapter 3. Part 3. Library Functions 2325

}

 va_end(arg_ptr);

}

Output

Day: Sat

Day: Sun

Day: Mon

Day: Mon

Day: Tues

Day: Wed

Day: Thurs

Day: Fri

/* This example uses a variable number of arguments for

 fixed-point decimal data types.

 The example works in z/OS XL C only.

 */

#include <stdio.h>

#include <stdarg.h>

#include <decimal.h>

void vprnt(int, ...);

int main(void) {

 int i = 168;

 decimal(10,2) pd01 = 12345678.12d;

 decimal(20,5) pd02 = -987.65d;

 decimal(31,20) pd03 = 12345678901.12345678900987654321d;

 int j = 135;

 vprnt(0, i, pd01, pd02, pd03, j);

 return(0);

}

void vprnt(int whichcase, ...) {

 va_list arg_ptr;

 int m, n;

 decimal(10,2) va01;

 decimal(20,5) va02;

 decimal(31,20) va03;

 va_start(arg_ptr, whichcase);

 switch (whichcase) {

 case 0:

 m = va_arg(arg_ptr, int);

 va01 = va_arg(arg_ptr, decimal(10,2));

 va02 = va_arg(arg_ptr, decimal(20,5));

 va03 = va_arg(arg_ptr, decimal(31,20));

 n = va_arg(arg_ptr, int);

 printf("m = %d\n", m);

 printf("va01 = %D(10,2)\n", va01);

 printf("va02 = %D(20,5)\n", va02);

 printf("va03 = %D(31,20)\n", va03);

 printf("n = %d\n", n);

 break;

 default:

 printf("Illegal case number : %d\n", whichcase);

 }

 va_end(arg_ptr);

}

va_arg, va_end, va_start

2326 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Output

m = 168

va01 = 12345678.12

va02 = -987.65000

va03 = 12345678901.12345678900987654321

n = 135

CELEBV02

/* CELEBV02

 These examples use the _XOPEN_SOURCE feature test macro,

 This ecample passes a variable number of arguments to a function,

 stores each argument in an array, and prints each argument.

 */

#define _XOPEN_SOURCE

#include <stdio.h>

#include <varargs.h>

void vout(va_alist)

va_dcl

{

 va_list arg_ptr;

 int args = 0;

 int max;

 char *days[7];

 va_start(arg_ptr);

 max = va_arg(arg_ptr, int);

 while(args < max) {

 days[args] = va_arg(arg_ptr, char *);

 printf("Days: %s \n", days[args++]);

 }

 va_end(arg_ptr);

}

int main(void)

{

 vout(3,"Sat","Sun","Mon");

 printf("\n");

 vout(5,"Mon","Tues","Wed","Thurs","Fri");

}

/* This example uses a variable number of arguments for

 fixed-point decimal data types.

 The example works in z/OS XL C only.

 */

#define _XOPEN_SOURCE

#include <stdio.h>

#include <varargs.h>

#include <decimal.h>

void vprnt(va_alist)

va_dcl

{

 va_list arg_ptr;

 int m, n, whichcase;

 decimal(10,2) va01;

 decimal(20,5) va02;

 decimal(31,20) va03;

 va_start(arg_ptr);

 whichcase = va_arg(arg_ptr, int);

 switch (whichcase) {

va_arg, va_end, va_start

Chapter 3. Part 3. Library Functions 2327

case 0:

 m = va_arg(arg_ptr, int);

 va01 = va_arg(arg_ptr, decimal(10,2));

 va02 = va_arg(arg_ptr, decimal(20,5));

 va03 = va_arg(arg_ptr, decimal(31,20));

 n = va_arg(arg_ptr, int);

 printf("m = %d\n", m);

 printf("va01 = %D(10,2)\n", va01);

 printf("va02 = %D(20,5)\n", va02);

 printf("va03 = %D(31,20)\n", va03);

 printf("n = %d\n", n);

 break;

 default:

 printf("Illegal case number : %d\n", whichcase);

 }

 va_end(arg_ptr);

}

int main(void) {

 int i = 168;

 decimal(10,2) pd01 = 12345678.12d;

 decimal(20,5) pd02 = -987.65d;

 decimal(31,20) pd03 = 12345678901.12345678900987654321d;

 int j = 135;

 vprnt(0, i, pd01, pd02, pd03, j);

 return(0);

}

}

#define _ISOC99_SOURCE

#include <stdio.h>

#include <stdarg.h>

void prnt(int max, ...);

int main(void)

 {

 prnt(8, "0", "1", "1", "2", "3", "5", "8", "13");

 }

void prnt(int max, ...)

 {

 va_list src;

 va_list dest;

 int args = 0;

 char *fib[8];

 va_start(src, max);

 va_copy(dest, src);

 while(args < max) {

 fib[args] = va_arg(dest, char *);

 printf("fib[%d]: %s \n", args, fib[args++]);

 }

 va_end(dest);

 }

Output

fib[0]: 0

fib[1]: 1

fib[2]: 1

fib[3]: 2

fib[4]: 3

fib[5]: 5

fib[6]: 8

fib[7]: 13

va_arg, va_end, va_start

2328 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “stdarg.h” on page 79

v “varargs.h” on page 98

v “vfprintf() — Format and Print Data to Stream” on page 2335

v “vprintf() — Format and Print Data to stdout” on page 2342

v “vsprintf() — Format and Print Data to Buffer” on page 2345

va_arg, va_end, va_start

Chapter 3. Part 3. Library Functions 2329

valloc() — Page-Aligned Memory Allocator

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <stdlib.h>

void *valloc(size_t size);

General Description

Restriction: This function is not supported in AMODE 64.

The valloc() function has the same effect as malloc(), except that the allocated

memory will be aligned to a multiple of the value returned by

sysconf(_SC_PAGESIZE).

Note: When free() is used to release storage obtained by valloc(), the storage is

not made available for reuse. The storage will not be freed until the enclave

goes away.

Special Behavior for C++

The C++ keywords new and delete are not interoperable with valloc(), calloc(),

free(), malloc(), or realloc().

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. The malloc() or

mmap() functions are preferred for portability.

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

If successful, valloc() returns a pointer to the reserved storage. The storage space

to which the returned value points is guaranteed to be aligned on a page boundary.

If unsuccessful, valloc() returns NULL if there is not enough storage available, or if

size is 0. If valloc() returns NULL because there is not enough storage, it sets errno

to one of the following values:

Error Code Description

ENOMEM Insufficient memory is available

valloc

2330 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|
|
|

Related Information

v “stdlib.h” on page 85

v “malloc() — Reserve Storage Block” on page 1172

v “sysconf() — Determine System Configuration Options” on page 2111

valloc

Chapter 3. Part 3. Library Functions 2331

vfork() — Create a New Process

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/types.h>

#include <unistd.h>

pid_t vfork(void);

Note: Although POSIX.1 does not require that the <sys/types.h> include file be

included, XPG4 has it as an optional header. Therefore it is recommended

that you include it for portability.

General Description

The vfork() function creates a new process. The vfork() function has the same effect

as fork(), except that the behavior is undefined, if the process created by vfork()

attempts to call any other C/370 function before calling either exec() or _exit(). The

new process (the child process) is an exact duplicate of the process that calls

vfork() (the parent process), except for the following:

v The child process has a unique process ID (PID), which does not match any

active process group ID.

v The child has a different parent process ID, that is, the process ID of the process

that called vfork().

v The child has its own copy of the parent’s file descriptors. Each file descriptor in

the child refers to the same open file description as the corresponding file

descriptor in the parent.

v The child has its own copy of the parent’s open directory streams. Each child’s

open directory stream may share directory stream positioning with the

corresponding parent’s directory stream.

v The following elements in the tms structure are set to 0 in the child:

 tms_utime

 tms_stime

 tms_cutime

 tms_cstime

For more information about these elements, see “times() — Get Process and

Child Process Times” on page 2206.

v The child does not inherit any file locks previously set by the parent.

v The child process has no alarms set (similar to the results of a call to alarm()

with an argument value of 0).

v The child has no pending signals.

v The child process may have its own copy of the parent’s message catalog

descriptors.

v All semadj values are cleared.

v Interval timers are reset in the child process.

vfork

2332 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

In all other respects, the child is identical to the parent. Because the child is a

duplicate, it contains the same call to vfork() that was in the parent. Execution

begins with this vfork() call, which returns a value of 0; the child then proceeds with

normal execution.

The vfork() function is not supported from a multithread environment.

For more information on vfork() from an z/OS perspective, refer to z/OS UNIX

System Services Programming: Assembler Callable Services Reference,

SA22-7803.

You can use z/OS memory files from an z/OS UNIX System Services program.

However, use of the vfork() function from the program removes access from a

hiperspace memory file for the child process. Use of an exec function from the

program clears a memory file when the process address space is cleared.

Special Behavior for C

For POSIX resources, vfork() behaves as just described. But in general, MVS

resources that existed in the parent do not exist in the child. This is true for open

streams in MVS data sets and assembler-accessed z/OS facilities, such as

STIMERS. In addition, z/OS allocations (through JCL, SVC99, or ALLOCATE) are

not passed to the child process.

Note: The vfork() function has been moved to obsolescence in Single UNIX

Specification, Version 3 and may be withdrawn in a future version. The fork()

function is preferred for portability.

Returned Value

If successful, vfork() returns 0 to the child process and the process ID of the newly

created child to the parent process.

If unsuccessful, vfork() fails to create a child process and returns −1 to the parent.

vfork() sets errno to one of the following values:

Error Code Description

EAGAIN There are insufficient resources to create another process, or else

the process has already reached the maximum number of

processes you can run.

ELEMSGERR Language Environment message file not available.

ELEMULTITHREAD

vfork() was invoked from a multi-threaded environment.

ELENOFORK Application contains a language that does not support fork().

ENOMEM The process requires more space than is available.

Related Information

v “sys/types.h” on page 90

v “unistd.h” on page 96

v “alarm() — Set an Alarm” on page 180

v “fcntl() — Control Open File Descriptors” on page 527

v “getrlimit() — Get Current/Maximum Resource Consumption.” on page 846

v “nice() — Change Priority of a Process” on page 1304

v “putenv() — Change or Add an Environment Variable” on page 1569

vfork

Chapter 3. Part 3. Library Functions 2333

|
|
|

v “rexec() — Execute Commands One at a Time on a Remote Host” on page 1685

v “semop() — Semaphore Operations” on page 1734

v “setlocale() — Set Locale” on page 1811

v “shmat() — Shared Memory Attach Operation” on page 1864

v “sigaction() — Examine or Change a Signal Action” on page 1880

v “signal() — Handle Interrupts” on page 1917

v “sigpending() — Examine Pending Signals” on page 1925

v “sigprocmask() — Examine or Change a Thread” on page 1927

v “stat() — Get File Information” on page 2008

v “system() — Execute a Command” on page 2118

v “times() — Get Process and Child Process Times” on page 2206

v “ulimit() — Get/Set Process File Size Limits” on page 2287

vfork

2334 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

vfprintf() — Format and Print Data to Stream

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdarg.h>

#include <stdio.h>

int vfprintf(FILE * __restrict__stream, const char * __restrict__format, va_list arg_ptr);

General Description

The vfprintf() function is similar to fprintf(), except that arg_ptr points to a list of

arguments whose number can vary from call to call in the program. These

arguments should be initialized by va_start() for each call. In contrast, fprintf() can

have a list of arguments, but the number of arguments in that list is fixed when you

compile the program. For a specification of the format string, see “fprintf(), printf(),

sprintf() — Format and Write Data” on page 648.

vfprintf() is not supported for files opened with type=record.

vfprintf() has the same restriction as any write operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, vfprintf() returns the number of characters written to stream.

If unsuccessful, vfprintf() returns a negative value.

Note: In contrast to some UNIX-based implementations of the C language, the

z/OS XL C/C++ implementation of the vprintf() family increments the pointer

to the variable arguments list. To control whether the pointer to the argument

is incremented, call the va_end macro after each call to vsprintf().

Example

CELEBV03

/* CELEBV03

 This example prints out a variable number of strings to the

 file myfile.dat, using &vfprt..

 */

#include <stdarg.h>

#include <stdio.h>

vfprintf

Chapter 3. Part 3. Library Functions 2335

||||

|
|
|
|
|

||

|

void vout(FILE *stream, char *fmt, ...);

char fmt1 [] = "%s %s %s\n";

int main(void)

{

 FILE *stream;

 stream = fopen("myfile.dat", "w");

 vout(stream, fmt1, "Sat", "Sun", "Mon");

}

void vout(FILE *stream, char *fmt, ...)

{

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 vfprintf(stream, fmt, arg_ptr);

 va_end(arg_ptr);

}

Output

Sat Sun Mon

Related Information

v “stdarg.h” on page 79

v “stdio.h” on page 82

v “va_arg(), va_copy(), va_end(), va_start() — Access Function Arguments” on

page 2324

v “vprintf() — Format and Print Data to stdout” on page 2342

v “vsprintf() — Format and Print Data to Buffer” on page 2345

vfprintf

2336 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

vfscanf(), vscanf(), vsscanf() — Format Input of a STDARG Argument

List

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <stdarg.h>

#include <stdio.h>

int vfscanf(FILE *__restrict__ stream,

 const char *__restrict__ format, va_list arg);

int vscanf(const char *__restrict__ format, va_list arg);

int vsscanf(const char *__restrict__ s,

 const char *__restrict__ format, va_list arg);

General Description

The vfscanf(), vscanf(), and vsscanf() functions are equivalent to the fscanf(),

scanf(), and sscanf() functions, respectively, except that instead of being called with

a variable number of arguments, they are called with an argument list as defined in

stdarg.h.

The argument list should be initialized using the va_start macro before each call.

These functions do not invoke the va_end macro, but instead invoke the va_arg

macro causing the value of arg after the return to be unspecified.

vfscanf() and vscanf() are not supported for files opened with a record type. They

also have the same restrictions as a write immediately following a read or a read

immediately following a write. This is because, between a write and a subsequent

read, there must be an intervening flush or reposition and between a read and a

subsequent write, there must also be an intervening flush or reposition unless EOF

has been reached.

Note: In contrast to some UNIX-based implementations of the C language, the

z/OS XL C/C++ implementation of the vscanf() family increments the pointer

to the variable arguments list. To control whether the pointer is incremented,

call the va_end macro after each function call.

Returned Value

Refer to fscanf().

Related Information

v stdarg.h

v stdio.h

v fscanf()

vfscanf, vscanf, vsscanf

Chapter 3. Part 3. Library Functions 2337

||||

|
|
||

|

vfwprintf(), vswprintf(), vwprintf() — Format and Write Wide Characters

of a stdarg Argument List

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <stdarg.h>

#include <wchar.h>

int vfwprintf(FILE * __restrict__ stream,

 const wchar_t * __restrict__ format, va_list arg);

int vswprintf(wchar_t * __restrict__ wcs, size_t n,

 const wchar_t * __restrict__ format, va_list arg);

int vwprintf(const wchar_t * __restrict__ format, va_list arg);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <stdarg.h>

#include <wchar.h>

int vfwprintf(FILE * __restrict__ stream,

 const wchar_t * __restrict__ format, va_list arg);

int vswprintf(wchar_t * __restrict__ wcs, size_t n,

 const wchar_t * __restrict__ format, va_list arg);

int vwprintf(const wchar_t * __restrict__ format, va_list arg);

General Description

vfwprintf(), vswprintf(), and vwprintf() functions are equivalent to fprintf(), sprintf(),

and printf() functions, respectively, except for the following:

v Instead of being called with a variable number of arguments, they are called with

an argument list as defined in stdarg.h.

v For vswprintf(), the argument wcs specifies an array of type wchar_t, rather than

an array of type char, into which the generated output is to be written.

v The argument format specifies an array of type wchar_t, rather than an array of

type char, which describes how subsequent arguments are converted for output.

v %c without an l prefix means an integer argument is to be converted to wchar_t,

as if by calling mbtowc(), and then written.

v %c with l prefix means a wint_t is converted to wchar_t and then written.

v %s without an l prefix means a character array containing a multibyte character

sequence is to be converted to an array of wchar_t and written. The conversion

will take place as if mbrtowc() were called repeatedly.

v %s with l prefix means an array of wchar_t will be written. The array is written

up to but not including the terminating NULL character, unless the precision

specifies a shorter output.

vfwprintf, vswprintf, vwprintf

2338 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

For vswprintf(), a NULL wide character is written at the end of the wide characters

written; the NULL wide character is not counted as part of the returned sum. If

copying takes place between objects that overlap, the behavior is undefined.

Note: The vfwprintf() and vwprintf() functions have a dependency on the level of

the Enhanced ASCII Extensions. See “Enhanced ASCII Support ” on page

2495 for details.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the vfwprintf(),

vswprintf(), or vwprintf() function in the wchar header available when you compile

your program. Please see Table 4 on page 22 for a list of XPG4 and other feature

test macros.

Returned Value

If successful, vfwprintf(), vswprintf(), and vwprintf() return the number of wide

characters written, not counting the terminating NULL wide character.

If unsuccessful, a negative value is returned.

If n or more wide characters were requested to be written, vswprintf() returns a

negative value and sets errno to indicate the error.

Note: In contrast to some UNIX-based implementations of the C language, the

z/OS XL C/C++ implementation of the vprintf() family increments the pointer

to the variable arguments list. To control whether the pointer to the argument

is incremented, call the va_end macro after each call to vfwprintf(),

vswprintf(), or vwprintf().

Example

CELEBV06

/* CELEBV06 */

#include <stdio.h>

#include <stdarg.h>

#include <wchar.h>

void vout(wchar_t *, size_t, wchar_t *, ...);

wchar_t *format3 = L"%s %d %s";

wchar_t *format5 = L"%s %d %s %d %s";

int main(void)

{

 wchar_t wcstr[100];

 vout(wcstr, 100, format3, L"ONE", 2L, L"THREE");

 printf("%S\n",wcstr);

 vout(wcstr, 100, format5, L"ONE", 2L, L"THREE", 4L, L"FIVE");

 printf("%S\n",wcstr);

}

void vout(wchar_t *wcs, size_t n, wchar_t *fmt, ...)

{

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

vfwprintf, vswprintf, vwprintf

Chapter 3. Part 3. Library Functions 2339

if(vswprintf(wcs, n, fmt, arg_ptr)<0)

 perror("vswprintf() error");

 va_end(arg_ptr);

}

Related Information

v “stdarg.h” on page 79

v “wchar.h” on page 98

v “fwprintf(), swprintf(), wprintf() — Format and Write Wide Characters” on page

729

v “vsprintf() — Format and Print Data to Buffer” on page 2345

vfwprintf, vswprintf, vwprintf

2340 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

vfwscanf(), vwscanf(), vswscanf() — Wide-character Formatted Input of

a STDARG Argument List

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int vfwscanf(FILE *__restrict__ stream,

 const wchar_t *__restrict__ format, va_list arg);

int vwscanf(const wchar_t *__restrict__ format, va_list arg);

int vswscanf(const wchar_t *__restrict__ ws,

 const wchar_t *__restrict__ format, va_list arg);

General Description

The vfwscanf(), vswscanf(), and vwscanf() functions are equivalent to the fwscanf(),

swscanf(), and wscanf() functions, respectively, except that instead of being called

with a variable number of arguments, they are called with an argument list as

defined in stdarg.h.

The argument list should be initialized using the va_start macro before each call.

These functions do not invoke the va_end macro, but instead invoke the va_arg

macro causing the value of arg after the return to be unspecified.

vfwscanf() and vwscanf() are not supported for files opened with a record type.

They also have the same restrictions as a write immediately following a read or a

read immediately following a write. This is because, between a write and a

subsequent read, there must be an intervening flush or reposition and between a

read and a subsequent write, there must also be an intervening flush or reposition

unless EOF has been reached.

Note: In contrast to some UNIX-based implementations of the C language, the

z/OS XL C/C++ implementation of the vwscanf() family increments the

pointer to the variable arguments list. To control whether the pointer is

incremented, call the va_end macro after each function call.

Returned Value

Refer to fwscanf().

Related Information

v stdarg.h

v stdio.h

v wchar.h

v fwscanf()

vfwscanf, vwscanf, vswscanf

Chapter 3. Part 3. Library Functions 2341

||||

|
|
||

|

vprintf() — Format and Print Data to stdout

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdarg.h>

#include <stdio.h>

int vprintf(const char * __restrict__format, va_list arg_ptr);

General Description

The vprintf() function is similar to printf(), except that arg_ptr points to a list of

arguments whose number can vary from call to call in the program. These

arguments should be initialized by va_start() for each call. In contrast, printf() can

have a list of arguments, but the number of arguments in that list is fixed when you

compile the program. For a specification of the format string, see “fprintf(), printf(),

sprintf() — Format and Write Data” on page 648.

vprintf() is not supported for files opened with type=record.

vprintf() has the same restriction as any write operation for a read immediately

following a write or a write immediately following a read. Between a write and a

subsequent read, there must be an intervening flush or reposition. Between a read

and a subsequent write, there must also be an intervening flush or reposition unless

an EOF has been reached.

Returned Value

If successful, vprintf() returns the number of characters written to stdout.

If unsuccessful, vprintf() returns a negative value.

Note: In contrast to some UNIX-based implementations of the C language, the

z/OS XL C/C++ implementation of the vprintf() family increments the pointer

to the variable arguments list. To control whether the pointer to the argument

is incremented, call the va_end macro after each call to vprintf().

Example

CELEBV04

/* CELEBV04

 This example prints out a variable number of strings to stdout,

 using &vprintf..

 */

#include <stdarg.h>

#include <stdio.h>

void vout(char *fmt, ...);

vprintf

2342 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

char fmt1 [] = "%s %s %s %s %s \n";

int main(void)

{

 FILE *stream;

 stream = fopen("myfile.dat", "w");

 vout(fmt1, "Mon", "Tues", "Wed", "Thurs", "Fri");

}

void vout(char *fmt, ...)

{

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 vprintf(fmt, arg_ptr);

 va_end(arg_ptr);

}

Output

Mon Tues Wed Thurs Fri

Related Information

v “stdarg.h” on page 79

v “stdio.h” on page 82

v “va_arg(), va_copy(), va_end(), va_start() — Access Function Arguments” on

page 2324

v “vfprintf() — Format and Print Data to Stream” on page 2335

v “vsprintf() — Format and Print Data to Buffer” on page 2345

vprintf

Chapter 3. Part 3. Library Functions 2343

vsnprintf() — Format and print data to fixed length buffer

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R6

Format

#define _ISOC99_SOURCE

#include <stdio.h>

#include <stdarg.h>

int vsnprintf(char *__restrict__ s, size_t n,

 const char *__restrict__ format, va_list arg);

General Description

Equivalent to snprintf(), except that instead of being called with a variable number

of arguments, it is called with an argument list as defined by <stdarg.h>.

Returned Value

Returns the number of characters that would have been written had n been

sufficiently large, not counting the terminating null character, or a negative value if

an encoding error occurred. Thus, the null-terminated output has been completely

written if and only if the returned value is nonnegative and less than n.

vsnprintf

2344 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

vsprintf() — Format and Print Data to Buffer

Standards

 Standards / Extensions C or C++ Dependencies

ISO C

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdarg.h>

#include <stdio.h>

int vsprintf(char * __restrict__target-string,

 const char * __restrict__format, va_list arg_ptr);

General Description

The vsprintf() function is similar to sprintf(), except that arg_ptr points to a list of

arguments whose number can vary from call to call in the program. In contrast,

sprintf() can have a list of arguments, but the number of arguments in that list is

fixed when you compile the program. For a specification of the format string, see

“fprintf(), printf(), sprintf() — Format and Write Data” on page 648.

Returned Value

If successful, vsprintf() returns the number of characters written target-string.

If unsuccessful, vsprintf() returns a negative value.

Note: In contrast to some UNIX-based implementations of the C language, the

z/OS XL C/C++ implementation of the vprintf() family increments the pointer

to the variable arguments list. To control whether the pointer to the argument

is incremented, call the va_end macro after each call to vsprintf().

Example

CELEBV05

/* CELEBV05

 This example assigns a variable number of strings to string

 and prints the resultant string, using &vsprintf..

 */

#include <stdarg.h>

#include <stdio.h>

void vout(char *string, char *fmt, ...);

char fmt1 [] = "%s %s %s\n";

int main(void)

{

 char string[100];

 vout(string, fmt1, "Sat", "Sun", "Mon");

 printf("The string is: %s\n", string);

}

void vout(char *string, char *fmt, ...)

vsprintf

Chapter 3. Part 3. Library Functions 2345

||||

|
|
|
|

||

|

{

 va_list arg_ptr;

 va_start(arg_ptr, fmt);

 vsprintf(string, fmt, arg_ptr);

 va_end(arg_ptr);

}

Output

The string is: Sat Sun Mon

Related Information

v “stdarg.h” on page 79

v “stdio.h” on page 82

v “va_arg(), va_copy(), va_end(), va_start() — Access Function Arguments” on

page 2324

v “vfprintf() — Format and Print Data to Stream” on page 2335

v “vprintf() — Format and Print Data to stdout” on page 2342

vsprintf

2346 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

vswprintf() — Format and Write Wide Characters of a stdarg Argument

List

The information for this function is included in “vfwprintf(), vswprintf(), vwprintf() —

Format and Write Wide Characters of a stdarg Argument List” on page 2338.

vswprintf

Chapter 3. Part 3. Library Functions 2347

vwprintf() — Format and Write Wide Characters of a stdarg Argument

List

The information for this function is included in “vfwprintf(), vswprintf(), vwprintf() —

Format and Write Wide Characters of a stdarg Argument List” on page 2338.

vwprintf

2348 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wait() — Wait for a Child Process to End

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/wait.h>

pid_t wait(int *status_ptr);

General Description

Suspends the calling process until any one of its child processes ends. More

precisely, wait() suspends the calling process until the system obtains status

information on the ended child. If the system already has status information on a

completed child process when wait() is called, wait() returns immediately. wait() is

also ended if the calling process receives a signal whose action is either to execute

a signal handler or to end the process.

The argument status_ptr points to a location where wait() can store a status value.

This status value is zero if the child process explicitly returns zero status. If it is not

zero, it can be analyzed with the status analysis macros, described in “Status

Analysis Macros,” below.

The status_ptr pointer may also be NULL, in which case wait() ignores the child’s

return status.

The following function calls are equivalent:

wait(status_ptr);

waitpid(−1,status_ptr,0);

wait3(status_ptr,0,NULL);

For more information, see “waitpid() — Wait for a Specific Child Process to End” on

page 2354.

Special Behavior for XPG4.2

If the calling process has SA_NOCLDWAIT set or has SIGCHLD set to SIG_IGN,

and the process has no unwaited for children that were transformed into zombie

processes, it will block until all of the children terminate, and wait() will fail and set

errno to ECHILD.

Status Analysis Macros

If the status_ptr argument is not NULL, wait() places the child’s return status in

*status_ptr. You can analyze this return status with the following macros, defined in

the sys/wait.h header file:

WIFEXITED(*status_ptr) This macro evaluates to a nonzero (true) value if

wait

Chapter 3. Part 3. Library Functions 2349

||||

|
|
|
|

||

|

the child process ended normally, that is, if it

returned from main() or called one of the exit() or

_exit() functions.

WEXITSTATUS(*status_ptr) When WIFEXITED() is nonzero, WEXITSTATUS()

evaluates to the low-order 8 bits of the child’s return

status passed on the exit() or _exit() function.

WIFSIGNALED(*status_ptr) This macro evaluates to a nonzero (true) value if

the child process ended because of a signal that

was not caught.

WIFSTOPPED(*status_ptr) This macro evaluates to a nonzero (true) value if

the child process is currently stopped. This should

only be used after a waitpid() with the

WUNTRACED option.

WSTOPSIG(*status_ptr) When WIFSTOPPED() is nonzero, WSTOPSIG()

evaluates to the number of the signal that stopped

the child.

WTERMSIG(*status_ptr) When WIFSIGNALED() is nonzero, WTERMSIG()

evaluates to the number of the signal that ended

the child process.

Returned Value

If successful, wait() returns a value that is the process ID (PID) of the child whose

status information has been obtained.

If unsuccessful, wait() returns −1 and sets errno to one of the following values:

Error Code Description

ECHILD The caller has no appropriate child processes, that is, it has no

child processes whose status has not been obtained by previous

calls to wait(), waitid(), waitpid(), or wait3(). ECHILD is also returned

when the SA_NOCLDWAIT flag is set.

EINTR wait() was interrupted by a signal. The value of *status_ptr is

undefined.

Example

CELEBW01

/* CELEBW01

 This example suspends the calling process until any child processes ends.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

main() {

 pid_t pid;

 time_t t;

 int status;

 if ((pid = fork()) < 0)

 perror("fork() error");

wait

2350 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

else if (pid == 0) {

 time(&t);

 printf("child (pid %d) started at %s", (int) getpid(), ctime(&t));

 sleep(5);

 time(&t);

 printf("child exiting at %s", ctime(&t));

 exit(42);

 }

 else {

 printf("parent has forked child with pid of %d\n", (int) pid);

 time(&t);

 printf("parent is starting wait at %s", ctime(&t));

 if ((pid = wait(&status)) == −1)

 perror("wait() error");

 else {

 time(&t);

 printf("parent is done waiting at %s", ctime(&t));

 printf("the pid of the process that ended was %d\n", (int) pid);

 if (WIFEXITED(status))

 printf("child exited with status of %d\n", WEXITSTATUS(status));

 else if (WIFSIGNALED(status))

 printf("child was terminated by signal %d\n",

 WTERMSIG(status));

 else if (WIFSTOPPED(status))

 printf("child was stopped by signal %d\n", WSTOPSIG(status));

 else puts("reason unknown for child termination");

 }

 }

}

Output

parent has forked child with pid of 65546

parent is starting wait at Fri Jun 16 10:53:03 2001

child (pid 65546) started at Fri Jun 16 10:53:04 2001

child exiting at Fri Jun 16 10:53:09 2001

parent is done waiting at Fri Jun 16 10:53:10 2001

the pid of the process that ended was 65546

child exited with status of 42

Related Information

v “signal.h” on page 77

v “sys/types.h” on page 90

v “sys/wait.h” on page 91

v “exit() — End Program” on page 494

v “_exit() — End a Process and Bypass the Cleanup” on page 496

v “fork() — Create a New Process” on page 632

v “pause() — Suspend a Process Pending a Signal” on page 1340

v “waitid() — Wait for Child Process to Change State” on page 2352

v “waitpid() — Wait for a Specific Child Process to End” on page 2354

v “wait3() — Wait for Child Process to Change State” on page 2358

wait

Chapter 3. Part 3. Library Functions 2351

waitid() — Wait for Child Process to Change State

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

General Description

The waitid() function suspends the calling process until one of its children changes

state. It records the current state of a child in the structure pointed to by infop. If a

child process changed state before the call, waitid() returns immediately.

The idtype and id arguments are used to specify which children waitid() will wait for.

If idtype is P_PID waitid() will wait for the child with a process ID equal to (pid_t)id.

If idtype is P_GID waitid() will wait for any child with a process group ID equal to

(pid_t)id.

If idtype is P_ALL waitid() will wait for any children and id is ignored.

The options argument is used to specify which state changes to wait for. It is

formed by OR-ing together one or more of the following flags:

WCONTINUED

Status will be returned for any child that has stopped and has been

continued.

WEXITED Wait for processes that have exited.

WNOHANG Return immediately if there are no children to wait for.

WNOWAIT Keep the process whose status is returned in infop in a waitable

state. This will not affect the state of the process; the process may

be waited for again after this call completes.

WSTOPPED Status will be returned for any child that has stopped upon receipt

of a signal.

The infop argument must point to a siginfo_t structure. If waitid() returns because a

child process was found that specified the conditions indicated by the arguments

idtype and options then the structure pointed to by infop will be filled in by the

system with the status of the process. The si_signo member will always be equal to

SIGCHLD.

Returned Value

If waitid() returns due to the change of state of one of its children, it returns 0.

If unsuccessful, waitid() returns -1 and sets errno to one of the following values:

waitid

2352 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

Error Code Description

ECHILD The calling process has no existing unwaited-for child processes.

EINTR The waitid() function was interrupted due to the receipt of a signal

by the calling process.

EINVAL An invalid value was specified for options, or idtype and id specify

an invalid set of processes.

Related Information

v “sys/wait.h” on page 91

v “exec Functions” on page 486

v “exit() — End Program” on page 494

v “wait() — Wait for a Child Process to End” on page 2349

waitid

Chapter 3. Part 3. Library Functions 2353

waitpid() — Wait for a Specific Child Process to End

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *status_ptr, int options);

General Description

Suspends the calling process until a child process ends or is stopped. More

precisely, waitpid() suspends the calling process until the system gets status

information on the child. If the system already has status information on an

appropriate child when waitpid() is called, waitpid() returns immediately. waitpid() is

also ended if the calling process receives a signal whose action is either to execute

a signal handler or to end the process.

pid_t pid Specifies the child processes the caller wants to wait for:

v If pid is greater than 0, waitpid() waits for termination of the

specific child whose process ID is equal to pid.

v If pid is equal to zero, waitpid() waits for termination of any child

whose process group ID is equal to that of the caller.

v If pid is −1, waitpid() waits for any child process to end.

v If pid is less than −1, waitpid() waits for the termination of any

child whose process group ID is equal to the absolute value of

pid.

int *status_ptr Points to a location where waitpid() can store a status value. This

status value is zero if the child process explicitly returns zero

status. Otherwise, it is a value that can be analyzed with the status

analysis macros described in “Status Analysis Macros”, below.

 The status_ptr pointer may also be NULL, in which case waitpid()

ignores the child’s return status.

int options Specifies additional information for waitpid(). The options value is

constructed from the bitwise inclusive-OR of zero or more of the

following flags defined in the sys/wait.h header file:

WCONTINUED

Special Behavior for XPG4.2: Reports the status

of any continued child processes as well as

terminated ones. The WIFCONTINUED macro lets

a process distinguish between a continued process

and a terminated one.

WNOHANG Demands status information immediately. If status

information is immediately available on an

appropriate child process, waitpid() returns this

waitpid

2354 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

information. Otherwise, waitpid() returns

immediately with an error code indicating that the

information was not available. In other words,

WNOHANG checks child processes without causing

the caller to be suspended.

WUNTRACED Reports on stopped child processes as well as

terminated ones. The WIFSTOPPED macro lets a

process distinguish between a stopped process and

a terminated one.

Special Behavior for XPG4.2

If the calling process has SA_NOCLDWAIT set or has SIGCHLD set to SIG_IGN,

and the process has no unwaited for children that were transformed into zombie

processes, it will block until all of the children terminate, and waitpid() will fail and

set errno to ECHILD.

Status Analysis Macros

If the status_ptr argument is not NULL, waitpid() places the child’s return status in

*status_ptr. You can analyze this return status with the following macros, defined in

the sys/wait.h header file:

WEXITSTATUS(*status_ptr) When WIFEXITED() is nonzero, WEXITSTATUS()

evaluates to the low-order 8 bits of the status

argument that the child passed to the exit() or

_exit() function, or the value the child process

returned from main().

WIFCONTINUED(*status_ptr) Special Behavior for XPG4.2: This macro

evaluates to a nonzero (true) value if the child

process has continued from a job control stop. This

should only be used after a waitpid() with the

WCONTINUED option.

WIFEXITED(*status_ptr) This macro evaluates to a nonzero (true) value if

the child process ended normally (that is, if it

returned from main(), or else called the exit() or

_exit() function).

WIFSIGNALED(*status_ptr) This macro evaluates to a nonzero (true) value if

the child process ended because of a signal that

was not caught.

WIFSTOPPED(*status_ptr) This macro evaluates to a nonzero (true) value if

the child process is currently stopped. This should

only be used after a waitpid() with the

WUNTRACED option.

WSTOPSIG(*status_ptr) When WIFSTOPPED() is nonzero, WSTOPSIG()

evaluates to the number of the signal that stopped

the child.

WTERMSIG(*status_ptr) When WIFSIGNALED() is nonzero, WTERMSIG()

evaluates to the number of the signal that ended

the child process.

waitpid

Chapter 3. Part 3. Library Functions 2355

Returned Value

If successful, waitpid() returns a value of the process (usually a child) whose status

information has been obtained.

If WNOHANG was given, and if there is at least one process (usually a child)

whose status information is not available, waitpid() returns 0.

If unsuccessful, waitpid() returns −1 and sets errno to one of the following values:

Error Code Description

ECHILD The process specified by pid does not exist or is not a child of the

calling process, or the process group specified by pid does not exist

or does not have any member process that is a child of the calling

process.

EINTR waitpid() was interrupted by a signal. The value of *status_ptr is

undefined.

EINVAL The value of options is incorrect.

Example

CELEBW02

/* CELEBW02

 The following function suspends the calling process using &waitpid.

 until a child process ends.

 */

#define _POSIX_SOURCE

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

main() {

 pid_t pid;

 time_t t;

 int status;

 if ((pid = fork()) < 0)

 perror("fork() error");

 else if (pid == 0) {

 sleep(5);

 exit(1);

 }

 else do {

 if ((pid = waitpid(pid, &status, WNOHANG)) == −1)

 perror("wait() error");

 else if (pid == 0) {

 time(&t);

 printf("child is still running at %s", ctime(&t));

 sleep(1);

 }

 else {

 if (WIFEXITED(status))

 printf("child exited with status of %d\n", WEXITSTATUS(status));

 else puts("child did not exit successfully");

 }

 } while (pid == 0);

}

waitpid

2356 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Output

child is still running at Fri Jun 16 11:05:43 2001

child is still running at Fri Jun 16 11:05:44 2001

child is still running at Fri Jun 16 11:05:45 2001

child is still running at Fri Jun 16 11:05:46 2001

child is still running at Fri Jun 16 11:05:47 2001

child is still running at Fri Jun 16 11:05:48 2001

child is still running at Fri Jun 16 11:05:49 2001

child exited with status of 1

Related Information

v “signal.h” on page 77

v “sys/types.h” on page 90

v “sys/wait.h” on page 91

v “exit() — End Program” on page 494

v “_exit() — End a Process and Bypass the Cleanup” on page 496

v “fork() — Create a New Process” on page 632

v “pause() — Suspend a Process Pending a Signal” on page 1340

v “wait() — Wait for a Child Process to End” on page 2349

v “waitid() — Wait for Child Process to Change State” on page 2352

v “wait3() — Wait for Child Process to Change State” on page 2358

waitpid

Chapter 3. Part 3. Library Functions 2357

wait3() — Wait for Child Process to Change State

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2 both

Format

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/wait.h>

pid_t wait3(int *stat_loc, int options, struct rusage *resource_usage);

General Description

The wait3() function allows the calling process to obtain status information for

specified child processes.

The following call:

 wait3(stat_loc, options, resource_usage)

is equivalent to the call:

 waitpid((pid_t)-1, stat_loc, options);

except that on successful completion, if the resource_usage argument to wait3() is

not a NULL pointer, the rusage structure that the third argument points to is filled in

for the child process identified by the return value.

Note:

This function is kept for historical reasons. It was part of the Legacy Feature

in Single UNIX Specification, Version 2, but has been withdrawn and is not

supported as part of Single UNIX Specification, Version 3. The waitpid()

function is preferred for portability.

If it is necessary to continue using this function in an application written for

Single UNIX Specification, Version 3, define the feature test macro

_UNIX03_WITHDRAWN before including any standard system headers. The

macro exposes all interfaces and symbols removed in Single UNIX

Specification, Version 3.

Returned Value

See “waitpid() — Wait for a Specific Child Process to End” on page 2354.

In addition to the error conditions specified on waitpid(), under the following

conditions, wait3() may fail and set errno to one of the following values:

Error Code Description

ECHILD The calling process has no existing unwaited-for child processes, or

if the set of processes specified by the argument pid can never be

in the states specified by the argument options.

wait3

2358 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|

|
|
|
|
|

Related Information

v “sys/wait.h” on page 91

v “exec Functions” on page 486

v “exit() — End Program” on page 494

v “fork() — Create a New Process” on page 632

v “pause() — Suspend a Process Pending a Signal” on page 1340

v “waitpid() — Wait for a Specific Child Process to End” on page 2354

wait3

Chapter 3. Part 3. Library Functions 2359

wcrtomb() — Convert a Wide Character to a Multibyte Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

size_t wcrtomb(char * __restrict__s, wchar_t wchar, mbstate_t * __restrict__pss);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

size_t wcrtomb(char *s, wchar_t wchar, mbstate_t *pss);

General Description

If s is a NULL pointer, the wcrtomb() function determines the number of bytes

necessary to enter the initial shift state (zero if encodings are not state-dependent

or if the initial conversion state is described). The resulting state described is the

initial conversion state.

If s is not a NULL pointer, the wcrtomb() function determines the number of bytes

needed to represent the multibyte character that corresponds to the wide character

given by wchar (including any shift sequences), and stores the resulting bytes in the

array whose first element is pointed to by s. At most, MB_CUR_MAX bytes are

stored. If wchar is a NULL wide character, the resulting state described is the initial

conversion state.

wcrtomb() is a “restartable” version of wctomb(). That is, shift state information is

passed as one of the arguments and is updated on return. With wcrtomb(), you can

switch from one multibyte string to another, provided that you have kept the

shift-state information for each multibyte string.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the wcrtomb()

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

wcrtomb

2360 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

Returned Value

If s is a NULL pointer, wcrtomb() returns the number of bytes needed to enter the

initial shift state. The value returned will not be greater than that of MB_CUR_MAX.

If s is not a NULL pointer, wcrtomb() returns the number of bytes stored in the array

object (including any shift sequences) when wchar is a valid wide character.

Otherwise, when wchar is not a valid wide character, an encoding error occurs, the

value of the macro EILSEQ is stored in errno and −1 is returned, but the conversion

state remains unchanged.

Example

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 char *string;

 wchar_t wc;

 size_t length;

 length = wcrtomb(string, wc, NULL);

}

Related Information

v “wchar.h” on page 98

v “mblen() — Calculate Length of Multibyte Character” on page 1184

v “mbrlen() — Calculate Length of Multibyte Character” on page 1187

v “mbrtowc() — Convert a Multibyte Character to a Wide Character” on page 1190

v “mbsrtowcs() — Convert a Multibyte String to a Wide-Character String” on page

1195

v “wcsrtombs() — Convert Wide-Character String to Multibyte String” on page 2390

v “wctomb() — Convert Wide Character to Multibyte Character” on page 2432

wcrtomb

Chapter 3. Part 3. Library Functions 2361

wcscat() — Append to Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wchar_t *wcscat(wchar_t * __restrict__string1, const wchar_t * __restrict__string2);

General Description

Appends a copy of the string pointed to by string2 to the end of the string pointed to

by string1.

The wcscat() function operates on NULL-terminated wide-character strings. The

string arguments to this function must contain a wide NULL character marking the

end of the string. Bounds checking is not performed.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

wcscat() returns the value of string1.

Example

CELEBW04

/* CELEBW04

 This example creates the wide character string "computer

 program" using &wcscat..

 */

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t buffer1[SIZE] = L"computer";

 wchar_t * string = L" program";

 wchar_t * ptr;

 ptr = wcscat(buffer1, string);

 printf("buffer1 = %ls\n", buffer1);

}

Output

buffer1 = computer program

wcscat

2362 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strcat() — Concatenate Strings” on page 2018

v “wcschr() — Search for Wide-Character Substring” on page 2364

v “wcscmp() — Compare Wide-Character Strings” on page 2366

v “wcscpy() — Copy Wide-Character String” on page 2370

v “wcscspn() — Find Offset of First Wide-Character Match” on page 2372

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

v “wcsncat() — Append to Wide-Character String” on page 2380

wcscat

Chapter 3. Part 3. Library Functions 2363

wcschr() — Search for Wide-Character Substring

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

SAA

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wchar_t *wcschr(const wchar_t *string1, wchar_t character);

General Description

Searches string for the occurrence of character. The character may be a wide

NULL character (\0). The wide NULL character at the end of string is included in

the search. The wcschr() function operates on NULL-terminated wide-character

strings. The argument to this function must contain a wide NULL character marking

the end of the string.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

If successful, wcschr() returns a pointer to the first occurrence of character in string.

If the character is not found, wcschr() returns a NULL pointer.

Example

CELEBW05

/* CELEBW05

 This example finds the first occurrence of the character p in

 the wide character string "computer program" using &wcschr..

 */

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t buffer1[SIZE] = L"computer program";

 wchar_t * ptr;

 wint_t ch = L'p';

 ptr = wcschr(buffer1, ch);

 printf("The first occurrence of %lc in '%ls' is '%ls'\n",

 ch, buffer1, ptr);

}

wcschr

2364 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|
|

||

|

Output

The first occurrence of p in ’computer program’ is ’puter program’

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strchr() — Search for Character” on page 2020

v “wcscat() — Append to Wide-Character String” on page 2362

v “wcscmp() — Compare Wide-Character Strings” on page 2366

v “wcscpy() — Copy Wide-Character String” on page 2370

v “wcscspn() — Find Offset of First Wide-Character Match” on page 2372

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

v “wcsncmp() — Compare Wide-Character Strings” on page 2382

wcschr

Chapter 3. Part 3. Library Functions 2365

wcscmp() — Compare Wide-Character Strings

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

int wcscmp(const wchar_t *string1, const wchar_t *string2);

General Description

Compares two wide-character strings. The wcscmp() function operates on

NULL-terminated wide-character strings. The string arguments to this function must

contain a wide NULL character marking the end of the string.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

wcscmp() returns a value indicating the relationship between the two strings, as

follows:

Value Meaning

< 0 string pointed to by string1 less than string pointed to by string2

= 0 string pointed to by string1 identical to string pointed to by string2

> 0 string pointed to by string1 greater than string pointed to by string2

Example

CELEBW06

/* CELEBW06

 This example compares the wide character string string1 to

 string2 using &wcscmp..

 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 int result;

 wchar_t string1[] = L"abcdef";

 wchar_t string2[] = L"abcdefg";

 result = wcscmp(string1, string2);

 if (result == 0)

 printf("\"%ls\" is identical to \"%ls\"\n", string1, string2);

 else if (result < 0)

wcscmp

2366 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

printf("\"%ls\" is less than \"%ls\"\n", string1, string2);

 else

 printf("\"%ls\" is greater than \"%ls\"\n", string1, string2);

}

Output

"abcdef" is less than "abcdefg"

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strcmp() — Compare Strings” on page 2022

v “wcscat() — Append to Wide-Character String” on page 2362

v “wcschr() — Search for Wide-Character Substring” on page 2364

v “wcscpy() — Copy Wide-Character String” on page 2370

v “wcscspn() — Find Offset of First Wide-Character Match” on page 2372

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

v “wcsncmp() — Compare Wide-Character Strings” on page 2382

wcscmp

Chapter 3. Part 3. Library Functions 2367

wcscoll() — Language Collation String Comparison

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

int wcscoll(const wchar_t *wcs1, const wchar_t *wcs2);

General Description

Compares the wide-character string pointed to by wcs1 to the wide-character string

pointed to by wcs2, both interpreted as appropriate to the LC_COLLATE category of

the current locale.

Returned Value

wcscoll() returns an integer greater than, equal to, or less than zero, according to

whether the wide string pointed to by wcs1 is greater than, equal to, or less than the

wide-character string pointed to by wcs2, when both wide-character strings are

interpreted as appropriate to the LC_COLLATE category of the current locale.

wcscoll() differs from wcscmp(). wcscoll() function performs a comparison between

two wide character strings based on language collation rules as controlled by the

LC_COLLATE category. On the other hand, wcscmp() performs a wide-character

code to wide-character code comparison.

wcscoll() indicates error conditions by setting errno; however, there is no returned

value to indicate an error. To check for errors, errno should be set to zero, and then

checked upon return from wcscoll(). If errno is nonzero, an error has occurred.

The EILSEQ error can be set to indicate that the wcs1 or wcs2 arguments contain

characters outside the domain of the collating sequence.

Note: The ISO/C Multibyte Support Extensions do not indicate that the wcscoll()

function may return with an error.

Example

CELEBW07

/* CELEBW07 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 int result;

 wchar_t *wcs1 = L"first_wide_string";

 wchar_t *wcs2 = L"second_wide_string";

wcscoll

2368 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

result = wcscoll(wcs1, wcs2);

 if (result == 0)

 printf("\"%ls\" is identical to \"%ls\"\n", wcs1, wcs2);

 else if (result < 0)

 printf("\"%ls\" is less than \"%ls\"\n", wcs1, wcs2);

 else

 printf("\"%ls\" is greater than \"%ls\"\n", wcs1, wcs2);

}

Output

"first_wide_string" is less than "second_wide_string"

Related Information

v “wchar.h” on page 98

v “setlocale() — Set Locale” on page 1811

v “strcoll() — Compare Strings” on page 2024

wcscoll

Chapter 3. Part 3. Library Functions 2369

wcscpy() — Copy Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wchar_t *wcscpy(wchar_t * __restrict__string1, const wchar_t * __restrict__string2);

General Description

Copies the contents of string2 (including the ending wide NULL character) into

string1. The wcscpy() function operates on NULL-terminated wide-character strings.

The string arguments to this function must contain a wide NULL character marking

the end of the string. Bounds checking is not performed.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

wcscpy() returns the value of string1.

Example

CELEBW08

/* CELEBW08

 This example copies the contents of source to destination using

 wcscpy().

 */

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t source[SIZE] = L"This is the source string";

 wchar_t destination[SIZE] = L"And this is the destination string";

 wchar_t * return_string;

 printf("destination is originally = \"%ls\"\n", destination);

 return_string = wcscpy(destination, source);

 printf("After wcscpy, destination becomes \"%ls\"\n", destination);

}

Output

destination is originally = "And this is the destination string"

After wcscpy, destination becomes "This is the source string"

wcscpy

2370 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strcpy() — Copy String” on page 2026

v “wcscat() — Append to Wide-Character String” on page 2362

v “wcschr() — Search for Wide-Character Substring” on page 2364

v “wcscmp() — Compare Wide-Character Strings” on page 2366

v “wcscspn() — Find Offset of First Wide-Character Match” on page 2372

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

v “wcsncpy() — Copy Wide-Character String” on page 2384

wcscpy

Chapter 3. Part 3. Library Functions 2371

wcscspn() — Find Offset of First Wide-Character Match

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

size_t wcscspn(const wchar_t *string1, const wchar_t *string2);

General Description

Determines the number of wide characters in the initial segment of the string

pointed to by string1 that do not appear in the string pointed to by string2. The

wcscspn() function operates on NULL-terminated wide-character strings. The string

arguments to these functions must contain a NULL wide character marking the end

of the string.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

wcscspn() returns the number of wide characters in the segment.

Example

CELEBW09

/* CELEBW09

 This example uses &wcscspn. to find the first occurrence of

 any of the characters a, x, l, or e in string.

 */

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t string[SIZE] = L"This is the source string";

 wchar_t * substring = L"axle";

 printf("The first %i characters in the string \"%ls\" are not in the "

 "string \"%ls\" \n", wcscspn(string, substring),

 string, substring);

}

Output

The first 10 characters in the string "This is the source string" are not

in the string "axle"

wcscspn

2372 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strcspn() — Compare Strings” on page 2028

v “wcscat() — Append to Wide-Character String” on page 2362

v “wcschr() — Search for Wide-Character Substring” on page 2364

v “wcscmp() — Compare Wide-Character Strings” on page 2366

v “wcscpy() — Copy Wide-Character String” on page 2370

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

wcscspn

Chapter 3. Part 3. Library Functions 2373

wcsftime() — Format Date and Time

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

size_t wcsftime(wchar_t * __restrict__ wcs, size_t maxsize,

 const wchar_t * __restrict__ format,

 const struct tm * __restrict__ time_ptr)

XPG4

#define _XOPEN_SOURCE

#include <wchar.h>

size_t wcsftime(wchar_t * __restrict__ wcs, size_t maxsize,

 const char * __restrict__ format,

 const struct tm * __restrict__ time_ptr)

XPG4 and MSE

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

size_t wcsftime(wchar_t * __restrict__ wcs, size_t maxsize,

 const wchar_t * __restrict__ format,

 const struct tm * __restrict__ time_ptr)

General Description

Format date and time into a wide character string. The wcsftime() function is

equivalent to the strftime() function, except that:

v The argument wcs specifies an array of a wide string into which the generated

output is to be placed.

v The argument maxsize indicates a number of wide characters.

v The argument *format specifies an array of wide characters comprising the

format string.

v The returned value indicates a number of wide characters.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then the compiler assumes

that your program is using the XPG4 variety of the wcsftime() function unless you

also define the _MSE_PROTOS feature test macro. Please see Table 4 on page 22

for a list of XPG4 and other feature test macros.

wcsftime

2374 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

The prototype for the XPG4 variety of the wcsftime() function is:

size_t wcsftime(wchar_t *wcs, size_t maxsize, const char *format,

 const struct tm *time_ptr)

The difference between this variety and the MSE variety of the wcsftime() function

is that the third argument *format specifies an array of characters rather than an

array of wide characters comprising the format string.

Returned Value

If the total number of resulting wide characters including the terminating NULL wide

character is not more than maxsize, wcsftime() returns the number of wide

characters placed into the array pointed to by wcs not including the terminating

NULL wide character.

If unsuccessful, wcsftime() returns 0 and the contents of the array are

indeterminate.

Example

CELEBW10

/* CELEBW10 */

#include <stdio.h>

#include <time.h>

#include <wchar.h>

int main(void)

{

 struct tm *timeptr;

 wchar_t dest[100];

 time_t temp;

 size_t rc;

 temp = time(NULL);

 timeptr = localtime(&temp);

 rc = wcsftime(dest, sizeof(dest)−1, L" Today is %A,"

 L" %b %d.\n Time: %I:%M %p", timeptr);

 printf("%d characters placed in string to make:\n\n%S", rc, dest);

}

Output

42 characters placed in string to make:

 Today is Friday, Jun 16.

 Time: 01:48 pm

Related Information

v “wchar.h” on page 98

v “strftime() — Convert to Formatted Time” on page 2038

wcsftime

Chapter 3. Part 3. Library Functions 2375

wcsid() — Character Set ID for Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <stdlib.h>

int wcsid(const wchar_t c)

External Entry Point

@@WCSID, __wcsid

General Description

Determines the character set identifier for the specified wide character.

To avoid infringing on the user’s name space, this nonstandard function has two

names. One name is prefixed with two underscore characters, and one name is not.

The name without the prefix underscore characters is exposed only when you use

LANGLVL(EXTENDED).

To use this function, you must either invoke the function using its external entry

point name (that is, the name that begins with two underscore characters), or

compile with LANGLVL(EXTENDED). When you use LANGLVL(EXTENDED) any

relevant information in the header is also exposed.

Returned Value

If successful, wcsid() returns the character set identifier for the wide character.

If the wide character is not valid, wcsid() returns -1.

Example

CELEBW11

/* CELEBW11

 This example checks character set id for wide character.

*/

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

main() {

 wchar_t wc = L'A';

 int rc;

 rc = wcsid(wc);

 printf("wide character '%lc' is in character set id %i\n", wc, rc);

}

wcsid

2376 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Related Information

v “stdlib.h” on page 85

wcsid

Chapter 3. Part 3. Library Functions 2377

wcslen() — Calculate Length of Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h> /* or #include <wcstr.h> */

size_t wcslen(const wchar_t *string);

General Description

Computes the number of wide characters in the string pointed to by string.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

wcslen() returns the number of wide characters that precede the terminating wide

NULL character.

Example

CELEBW12

/* CELEBW12

 This example computes the length of a wide−character string,

 using &wcslen.

 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t * string = L"abcdef";

 printf("Length of \"%ls\" is %i\n", string, wcslen(string));

}

Output

Length of "abcdef" is 6

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “mblen() — Calculate Length of Multibyte Character” on page 1184

v “strlen() — Determine String Length” on page 2043

v “wcsncat() — Append to Wide-Character String” on page 2380

v “wcsncmp() — Compare Wide-Character Strings” on page 2382

wcslen

2378 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

v “wcsncpy() — Copy Wide-Character String” on page 2384

wcslen

Chapter 3. Part 3. Library Functions 2379

wcsncat() — Append to Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wchar_t *wcsncat(wchar_t * __restrict__string1,

 const wchar_t * __restrict__string2, size_t count);

General Description

Appends up to count wide characters from string2 to the end of string1 and

appends a NULL wide character to the result. The wcsncat() function operates on

NULL-terminated wide-character strings. The string arguments to this function must

contain a NULL wide character marking the end of the string.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

wcsncat() returns string1.

Example

CELEBW13

/* CELEBW13

 This example demonstrates the difference between &wcscat. and

 &wcsncat..

 &wcscat. appends the entire second string to the first

 whereas &wcsncat. appends only the specified number of

 characters in the second string to the first.

 */

#include <stdio.h>

#include <wchar.h>

#include <string.h>

#define SIZE 40

int main(void)

{

 wchar_t buffer1[SIZE] = L"computer";

 wchar_t * ptr;

 /* Call wcscat with buffer1 and " program" */

 ptr = wcscat(buffer1, L" program");

 printf("wcscat : buffer1 = \"%ls\"\n", buffer1);

 /* Reset buffer1 to contain just the string "computer" again */

wcsncat

2380 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

memset(buffer1, L'\0', sizeof(buffer1));

 ptr = wcscpy(buffer1, L"computer");

 /* Call wcsncat with buffer1 and " program" */

 ptr = wcsncat(buffer1, L" program", 3);

 printf("wcsncat: buffer1 = \"%ls\"\n", buffer1);

}

Output

wcscat : buffer1 = "computer program"

wcsncat: buffer1 = "computer pr"

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strncat() — Concatenate Strings” on page 2046

v “wcsncmp() — Compare Wide-Character Strings” on page 2382

v “wcsncpy() — Copy Wide-Character String” on page 2384

wcsncat

Chapter 3. Part 3. Library Functions 2381

wcsncmp() — Compare Wide-Character Strings

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

int wcsncmp(const wchar_t *string1, const wchar_t *string2, size_t count);

General Description

Compares up to count wide characters in string1 to string2. The wcsncmp() function

operates on NULL-terminated wide-character strings. The string arguments to this

function must contain a NULL wide character marking the end of the string.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

wcsncmp() returns a value indicating the relationship between the two strings, as

follows:

Value Meaning

< 0 string pointed to by string1 less than the string pointed to by string2

= 0 string pointed to by string1 identical to string pointed to by string2

> 0 string pointed to by string1 greater than string pointed to by string2

Example

CELEBW14

/* CELEBW14

 This example demonstrates the difference between &wcscmp.

 and &wcsncmp..

 */

#include <stdio.h>

#include <wchar.h>

#define SIZE 10

int main(void)

{

 int result;

 int index = 3;

 wchar_t buffer1[SIZE] = L"abcdefg";

 wchar_t buffer2[SIZE] = L"abcfg";

 void print_result(int, wchar_t *, wchar_t *);

 result = wcscmp(buffer1, buffer2);

wcsncmp

2382 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

printf("Comparison of each character\n");

 printf(" wcscmp: ");

 print_result(result, buffer1, buffer2);

 result = wcsncmp(buffer1, buffer2, index);

 printf("\nComparison of only the first %i characters\n", index);

 printf(" wcsncmp: ");

 print_result(result, buffer1, buffer2);

}

void print_result(int res, wchar_t * p_buffer1, wchar_t * p_buffer2)

{

 if (res == 0)

 printf("\"%ls\" is identical to \"%ls\"\n", p_buffer1, p_buffer2);

 else if (res < 0)

 printf("\"%ls\" is less than \"%ls\"\n", p_buffer1, p_buffer2);

 else

 printf("\"%ls\" is greater than \"%ls\"\n", p_buffer1, p_buffer2);

}

Output

Comparison of each character

 wcscmp: "abcdefg" is less than "abcfg"

Comparison of only the first 3 characters

 wcsncmp: "abcdefg" is identical to "abcfg"

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strncmp() — Compare Strings” on page 2048

v “wcscmp() — Compare Wide-Character Strings” on page 2366

v “wcsncat() — Append to Wide-Character String” on page 2380

v “wcsncpy() — Copy Wide-Character String” on page 2384

wcsncmp

Chapter 3. Part 3. Library Functions 2383

wcsncpy() — Copy Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wchar_t *wcsncpy(wchar_t * __restrict__string1,

 const wchar_t * __restrict__string2, size_t count);

General Description

Copies up to count wide characters from string2 to string1. If string2 is shorter than

count characters, string1 is padded out to count characters with NULL wide

characters. The wcsncpy() function operates on NULL-terminated wide-character

strings. The string arguments to this function must contain a NULL wide character

marking the end of the string.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

wcsncpy() returns string1.

Example

CELEBW15

/* CELEBW15

 This example demonstrates the difference between &wcscpy. and &wcsncpy..

 */

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t source[SIZE] = L"123456789";

 wchar_t source1[SIZE] = L"123456789";

 wchar_t destination[SIZE] = L"abcdefg";

 wchar_t destination1[SIZE] = L"abcdefg";

 wchar_t * return_string;

 int index = 5;

 /* This is how wcscpy works */

 printf("destination is originally = '%ls'\n", destination);

 return_string = wcscpy(destination, source);

 printf("After wcscpy, destination becomes '%ls'\n\n", destination);

 /* This is how wcsncpy works */

wcsncpy

2384 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

printf("destination1 is originally = '%ls'\n", destination1);

 return_string = wcsncpy(destination1, source1, index);

 printf("After wcsncpy, destination1 becomes '%ls'\n", destination1);

}

Output

destination is originally = ’abcdefg’

After wcscpy, destination becomes ’123456789’

destination1 is originally = ’abcdefg’

After wcsncpy, destination1 becomes ’12345fg’

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strncpy() — Copy String” on page 2050

v “wcscpy() — Copy Wide-Character String” on page 2370

v “wcsncat() — Append to Wide-Character String” on page 2380

v “wcsncmp() — Compare Wide-Character Strings” on page 2382

wcsncpy

Chapter 3. Part 3. Library Functions 2385

wcspbrk() — Locate First Wide Characters in String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wchar_t *wcspbrk(const wchar_t *string1, const wchar_t *string2);

General Description

Locates the first occurrence in the string pointed to by string1 of any character from

the string pointed to by string2.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

If successful, wcspbrk() returns a pointer to the character.

If no wchar_t from string2 occurs in string1, wcspbrk() returns NULL.

Example

CELEBW16

/* CELEBW16

 This example returns a pointer to the first occurrence in the

 array string of either a or b, using &wcspbrk..

 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t * result;

 wchar_t * string = L"The Blue Danube";

 wchar_t *chars = L"ab";

 result = wcspbrk(string, chars);

 printf("The first occurrence of any of the characters \"%ls\" in "

 "\"%ls\" is \"%ls\"\n", chars, string, result);

}

Output

The first occurrence of any of the characters "ab" in "The Blue Danube" is "anube"

wcspbrk

2386 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strpbrk() — Find Characters in String” on page 2052

v “wcschr() — Search for Wide-Character Substring” on page 2364

v “wcscmp() — Compare Wide-Character Strings” on page 2366

v “wcscspn() — Find Offset of First Wide-Character Match” on page 2372

v “wcsncmp() — Compare Wide-Character Strings” on page 2382

v “wcsrchr() — Locate Last Wide Character in String” on page 2388

v “wcswcs() — Locate Wide-Character Substring in Wide-Character String” on

page 2425

wcspbrk

Chapter 3. Part 3. Library Functions 2387

wcsrchr() — Locate Last Wide Character in String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wchar_t *wcsrchr(const wchar_t *string, wchar_t character);

General Description

Locates the last occurrence of character in the string pointed to by string. The

terminating NULL wide character is considered to be part of the string.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

If successful, wcsrchr() returns a pointer to the character.

If character does not occur in the string, wcsrchr() returns NULL.

Example

CELEBW17

/* CELEBW17

 This example compares the use of wcschr() and wcsrchr().

 It searches the string for the first and last occurrence of p in the

 wide character string.

 */

#include <stdio.h>

#include <wchar.h>

#define SIZE 40

int main(void)

{

 wchar_t buf[SIZE] = L"computer program";

 wchar_t * ptr;

 int ch = 'p';

 /* This illustrates wcschr */

 ptr = wcschr(buf, ch);

 printf("The first occurrence of %c in '%ls' is '%ls'\n", ch, buf, ptr);

 /* This illustrates wscrchr */

 ptr = wcsrchr(buf, ch);

 printf("The last occurrence of %c in '%ls' is '%ls'\n", ch, buf, ptr);

}

wcsrchr

2388 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

Output

The first occurrence of p in ’computer program’ is ’puter program’

The last occurrence of p in ’computer program’ is ’program’

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strrchr() — Find Last Occurrence of Character in String” on page 2058

v “wcscmp() — Compare Wide-Character Strings” on page 2366

v “wcscspn() — Find Offset of First Wide-Character Match” on page 2372

v “wcsncmp() — Compare Wide-Character Strings” on page 2382

v “wcspbrk() — Locate First Wide Characters in String” on page 2386

v “wcswcs() — Locate Wide-Character Substring in Wide-Character String” on

page 2425

wcsrchr

Chapter 3. Part 3. Library Functions 2389

wcsrtombs() — Convert Wide-Character String to Multibyte String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

size_t wcsrtombs(char * __restrict__dst,

 const wchar_t ** __restrict__src, size_t len,

 mbstate_t * __restrict__ps);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

size_t wcsrtombs(char *dst,

 const wchar_t **src, size_t len, mbstate_t *ps);

General Description

Converts a sequence of wide characters from the array indirectly pointed to by src

into a sequence of corresponding multibyte characters that begin in the shift state

described by ps, which, if dst is not a NULL pointer, are then stored into the array

pointed to by dst. Conversion continues up to and including the terminating NULL

wide character; the terminating NULL wide character (byte) shall be stored.

Conversion shall stop earlier in two cases:

v When a code is reached that does not correspond to a valid multibyte character.

v If dst is not a NULL pointer, conversion stops when the next multibyte element

would exceed the limit of len total bytes to be stored into the array pointed to by

dst.

Each conversion takes places as if by a call to the wcrtomb() function.

If dst is not NULL a pointer, the object pointed to by src shall be assigned either a

NULL pointer (if conversion stopped due to reaching a terminating NULL wide

character) or the address of the code just past the last wide character converted. If

conversion stopped due to reaching a terminating NULL wide character, the

resulting state described shall be the initial conversion state.

wcsrtombs() is a “restartable” version of wcstombs(). That is, shift state information

is passed as on of the arguments, and gets updated on exit. With wcsrtombs(), you

may switch from one multibyte string to another, provided that you have kept the

shift state information.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

wcsrtombs

2390 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the wcsrtombs()

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

Returned Value

If successful, wcsrtombs() returns the number of bytes in the resulting multibyte

character sequence, which is the same as the number of array elements modified

when dst is not a NULL pointer.

If the string contains an invalid wide character, an encoding error occurs.

wcsrtombs() returns (size_t)−1 and stores the value of the macro EILSEQ in errno,

but the conversion state shall be unchanged.

Example

CELEBW18

/* CELEBW18 */

#include <stdio.h>

#include <string.h>

#include <wchar.h>

#define SIZE 20

int main(void)

{

 char dest[SIZE];

 wchar_t *wcs = L"string";

 const wchar_t *ptr;

 size_t count = SIZE;

 size_t length;

 ptr = (wchar_t *) wcs;

 length = wcsrtombs(dest, &ptr, count, NULL);

 printf("%d characters were converted.\n", length);

 printf("The converted string is \"%s\"\n\n", dest);

 /* Reset the destination buffer */

 memset(dest, '\0', sizeof(dest));

 /* Now convert only 3 characters */

 ptr = (wchar_t *) wcs;

 length = wcsrtombs(dest, &ptr, 3, NULL);

 printf("%d characters were converted.\n", length);

 printf("The converted string is \"%s\"\n\n", dest);

}

Output

6 characters were converted.

The converted string is "string"

3 characters were converted.

The converted string is "str"

Related Information

v “wchar.h” on page 98

v “mblen() — Calculate Length of Multibyte Character” on page 1184

v “mbrlen() — Calculate Length of Multibyte Character” on page 1187

wcsrtombs

Chapter 3. Part 3. Library Functions 2391

v “mbrtowc() — Convert a Multibyte Character to a Wide Character” on page 1190

v “mbsrtowcs() — Convert a Multibyte String to a Wide-Character String” on page

1195

v “wcrtomb() — Convert a Wide Character to a Multibyte Character” on page 2360

v “wcstombs() — Convert Wide-Character String to Multibyte Character String” on

page 2416

wcsrtombs

2392 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcsspn() — Search for Wide Characters in a String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

size_t wcsspn(const wchar_t *string1, const wchar_t *string2);

General Description

Computes the number of wide characters in the initial segment of the string pointed

to by string1, which consists entirely of wide characters from the string pointed to by

string2.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

wcsspn() returns the number of wide characters in the segment.

Example

CELEBW19

/* CELEBW19

 This example finds the first occurrence in the array string

 of a character that is neither an a, b, nor c. Because the

 string in this example is cabbage, &wcsspn. returns 5, the

 index of the segment of cabbage before a character that is

 not an a, b, or c.

 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t * string = L"cabbage";

 wchar_t * source = L"abc";

 int index;

 index = wcsspn(string, L"abc");

 printf("The first %d characters of \"%ls\" are found in \"%ls\"\n",

 index, string, source);

}

Output

The first 5 characters of "cabbage" are found in "abc"

wcsspn

Chapter 3. Part 3. Library Functions 2393

||||

|
|
|
|
|

||

|

Related Information

v “wchar.h” on page 98

v “wcstr.h” on page 100

v “strspn() — Search String” on page 2060

v “wcscat() — Append to Wide-Character String” on page 2362

v “wcschr() — Search for Wide-Character Substring” on page 2364

v “wcscmp() — Compare Wide-Character Strings” on page 2366

v “wcscspn() — Find Offset of First Wide-Character Match” on page 2372

v “wcsncmp() — Compare Wide-Character Strings” on page 2382

wcsspn

2394 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcsstr() — Locate a Wide Character Sequence

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

wchar_t *wcsstr(const wchar_t *__restrict__ wcs1,

 const wchar_t *__restrict__ wcs2);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

wchar_t *wcsstr(const wchar_t *__restrict__ wcs1,

 const wchar_t *__restrict__ wcs2);

General Description

Locates the first occurrence in the wide-character string pointed to by wcs1 of the

sequence of wide characters (excluding the terminating NULL character) in the

wide-character string pointed to by wcs2.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the wcsstr()

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

Returned Value

If successful, wcsstr() returns a pointer to the located wide string. If wcs2 points to

a wide-character string with zero length, wcsstr() returns wcs1.

If the wide-character string is not found, wcsstr() returns NULL.

Example

CELEBW20

/* CELEBW20 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

wcsstr

Chapter 3. Part 3. Library Functions 2395

||||

|
|
|

||

|

|
|
|
|

wchar_t *wcs1 = L"needle in a haystack";

 wchar_t *wcs2 = L"hay";

 wchar_t *result;

 result = wcsstr(wcs1, wcs2);

 /* result = a pointer to "hatstack" */

 printf("result: `%S`\n", result);

}

Related Information

v “wchar.h” on page 98

v “strstr() — Locate Substring” on page 2062

wcsstr

2396 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcstod() — Convert Wide-Character String to a Double Floating-Point

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

double wcstod(const wchar_t * __restrict__nptr, wchar_t ** __restrict__endptr);

General Description

The wcstod() function converts a wchar_t * type floating-point number input string to

a double value.

See the “fscanf Family of Formatted Input Functions” on page 686 for a description

of special infinity and NaN sequences recognized by z/OS formatted input functions,

including wcstod() in IEEE Binary Floating-Point mode.

Converts the initial portion of the wide-character string pointed to by nptr to double

representation. First it decomposes the input string into three parts:

1. An initial, possibly empty, sequence of white space characters (as specified by

the iswspace() function)

2. A subject sequence interpreted as a floating-point constant or representing

infinity or a NAN.

3. A final string of one or more unrecognized characters, including the terminating

NULL character of the input string.

Then it attempts to convert the subject sequence to a floating-point number, and

returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then

one of the following:

v A non-empty sequence of decimal digits optionally containing a radix character,

then an optional exponent part. Where radix character is the character that

separates the integer part of a number from the fractional part.

v A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally

containing a radix character, then an optional binary exponent part. Where radix

character is the character that separates the integer part of a number from the

fractional part.

v One of INF, ignoring case.

v One of NANQ or NANQ(n-char-sequence), ignoring case.

v One of NANS or NANS(n-char-sequence), ignoring case.

v One of NAN or NAN(n-char-sequence), ignoring case.

wcstod

Chapter 3. Part 3. Library Functions 2397

||||

|
|
|
|
|

||

|

The subject sequence is defined as the longest initial subsequence of the input

wide-character string, starting with the first non-white space wide character, that is

of the expected form. The subject sequence contains no wide characters if the input

wide-character string is empty or consists entirely of white space wide characters,

or if the first non-white space wide character is other than a sign, a digit, or a

decimal-point wide character.

If the subject sequence has the expected form, the sequence of wide characters

starting with the first digit or the decimal-point wide character (whichever occurs

first) is interpreted as a floating constant according to the rules of ISO/IEC 9899:

subclause 6.1.3.1, except the decimal-point wide character is used in place of a

period, and if neither an exponent part nor a decimal-point wide character appears,

a decimal-point is assumed to follow the last digit in the wide-character string. If the

subject sequence begins with a minus sign, the value resulting from the conversion

is negated. A pointer to the final wide-character string is stored in the object pointed

to by endptr, provided that endptr is not a NULL pointer.

In a locale other than the C locale, additional implementation-defined subject

sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no

conversion is performed; the value of nptr is stored in the object pointed to by

endptr, provided that endptr is not a NULL pointer.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

If successful, wcstod() returns the converted value, if any.

If no conversion could be performed, wcstod() returns 0.

The double value is hexadecimal floating-point or IEEE Binary Floating-Point format

depending on the floating-point mode of the thread invoking wcstod(). The wcstod()

function uses __isBFP() to determine the floating-point format (hexadecimal

floating-point or IEEE Binary Floating-Point) of the invoking thread.

If the correct value is outside the range of representable values, wcstod() returns

±HUGE_VAL—according to the sign of the value—and the value of the macro

ERANGE is stored in errno.

Example

CELEBW21

/* CELEBW21 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *wcs;

 wchar_t *stopwcs;

 double d;

 wcs = L"3.1415926This stopped it";

 d = wcstod(wcs, &stopwcs);

wcstod

2398 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

printf("wcs = `%ls`\n", wcs);

 printf(" wcstod = %f\n", d);

 printf(" Stopped scan at `%ls`\n", stopwcs);

}

Related Information

v “wchar.h” on page 98

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “wcstof() — Convert a Wide-Character String to Float” on page 2403

v “wcstold() — Convert a Wide-Character String to Long Double” on page 2411

wcstod

Chapter 3. Part 3. Library Functions 2399

wcstod32(), wcstod64(), wcstod128() — Convert Wide-Character String

to Decimal Floating Point

Standards

 Standards / Extensions C or C++ Dependencies

C/C++ DFP both z/OS V1.9

Format

#define __STDC_WANT_DEC_FP__

#include <wchar.h>

_Decimal32 wcstod32(const wchar_t * __restrict__ nptr,

 wchar_t ** __restrict__ endptr);

_Decimal64 wcstod64(const wchar_t * __restrict__ nptr,

 wchar_t ** __restrict__ endptr);

_Decimal128 wcstod128(const wchar_t * __restrict__ nptr,

 wchar_t ** __restrict__ endptr);

General Description

The wcstod32() wcstod64(), and wcstod128() functions convert the initial portion of

the wide-character string pointed to by nptr to _Decimal32, _Decimal64, and

_Decimal128 representation, respectively.

First, they decompose the input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide characters (as

specified by the iswspace() function).

2. A subject sequence resembling a floating-point constant or representing an

infinity or NaN.

3. A final wide-character string of one or more unrecognized wide characters,

including the terminating null wide character of the input wide-character string.

Then, they attempt to convert the subject sequence to a floating-point number, and

return the result.

The expected form of the subject sequence is an optional plus or minus sign, then

one of the following:

v a nonempty sequence of decimal digits optionally containing a decimal-point wide

character, then an optional exponent part

v INF or INFINITY, ignoring case

v NAN, NAN(n-char-sequence), NANQ, NANQ(n-char-sequence), NANS, or

NANS(n-char-sequence), ignoring case in the NAN, NANQ, or NANS part, where

n-char-sequence is one or more decimal numeric digits

Note: If the input string is not one of these forms (for example ″INFINITE″), the

output results are undefined.

The subject sequence is defined as the longest initial subsequence of the input

wide-character string, starting with the first non-white-space wide character, that is

of the expected form. The subject sequence contains no wide characters if the input

wide character string is not of the expected form.

wcstod32, wcstod64, wcstod128

2400 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|

|

||||

|||
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

|
|

|
|
|
|

If the subject sequence has the expected form for a floating-point number, the

sequence of wide characters starting with the first digit or the decimal-point wide

character (whichever occurs first) is interpreted as a floating constant. If neither an

exponent nor a decimal-point character appears in a decimal floating point number,

an exponent with value zero is assumed to follow the last digit in the string. If the

subject sequence begins with a minus sign, the sequence is interpreted as negated.

A wide character sequence INF or INFINITY is interpreted as an infinity. A wide

character sequence NAN, NAN(),or NAN(n-char-sequence) is interpreted as a quiet

NAN. A wide character sequence of NANS, NANS(),or NANS(n-char-sequence), is

interpreted as a signalling NaN.

A pointer to the final wide-character string is stored in the object pointed to by

endptr, provided that endptr is not a null pointer.

The converted value keeps the same precision as the input if possible, and the

value may be denormalized. Otherwise, rounding may occur. Rounding happens

after any negation.

In other than the ″C″ locale, additional locale-specific subject sequence forms are

accepted.

If the subject sequence is empty or does not have the expected form, no

conversion is performed; the value of nptr is stored in the object pointed to by

endptr, provided that endptr is not a null pointer.

 Argument Description

nptr Input pointer to start of the wide-character

string to be converted

endptr NULL, or a pointer to a output pointer field

that is filled in with the address of the first

wide character in the input wide-character

string that is not used in the conversion.

Note: To use IEEE decimal floating-point, the hardware must have the Decimal

Floating-Point Facility installed.

Returned Value

The functions return the converted value, if any. If no conversion could be

performed, the value +0.E0DF, +0.E0DD, or +0.E0DL is returned. If the correct

value is outside the range of representable values, plus or minus HUGE_VAL_D32,

HUGE_VAL_D64, or HUGE_VAL_D128 is returned (according to the return type

and sign of the value), and errno is set to ERANGE. If the result underflows, the

functions return a value whose magnitude is no greater than the smallest

normalized positive number in the return type. No signal is raised at the point of

returning a signaling NaN.

 errno Description

ERANGE The input wide-character string represents a

value too large to fit in the output Decimal

Floating Point type.

wcstod32, wcstod64, wcstod128

Chapter 3. Part 3. Library Functions 2401

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

|||

||
|

||
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|||

||
|
|
|

Example

See “wcstod() — Convert Wide-Character String to a Double Floating-Point” on

page 2397 for an example.

Related Information

v “wchar.h” on page 98

v “wcstod() — Convert Wide-Character String to a Double Floating-Point” on page

2397

v “strtod32(), strtod64(), strtod128() — Convert Character String to Decimal

Floating Point” on page 2069

wcstod32, wcstod64, wcstod128

2402 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|

|
|

|
|
|
|
|
|

wcstof() — Convert a Wide-Character String to Float

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <wchar.h>

float wcstof(const wchar_t *__restrict__ nptr, wchar_t **__restrict__ endptr);

General Description

wcstof() converts a wchar_t * floating-point number input string to a float value. The

parameter nptr points to a sequence of wide-characters that can be interpreted as a

numerical float value.

It decomposes the input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space character codes (as

specified by iswspace()).

2. A subject sequence resembling a floating-point constant, infinity, or NaN.

3. A final wide-character string of one or more unrecognized wide-characters

codes, including the terminating NULL wide-character of the input

wide-character string.

The function then attempts to convert the subject string into the floating-point

number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then

one of the following:

v A non-empty sequence of decimal digits optionally containing a radix character,

then an optional exponent. A radix character is the character that separates the

integer part of a number from the fractional part.

v A 0x or 0X, a non-empty sequence of hexadecimal digits optionally containing a

radix character, then a base 2 decimal exponent part with a p or P as prefix, a

plus or minus sign, then a sequence of at least one decimal digit. (Example

[-]0xh.hhhhp+/-d). A radix character is the character that separates the integer

part of a number from the fractional part.

v One INF, ignoring case.

v One NANQ or NANQ(n-char-sequence), ignoring case.

v One NANS or NANS(n-char-sequence), ignoring case.

v One NAN or NAN(n-char-sequence), ignoring case.

See the ″scanf() Family of Formatted Input Functions″ for a description of special

infinity and NaN sequences recognized by z/OS formatted input functions in IEEE

Binary Floating-Point mode. A pointer to the final wide-character string is stored in

the object pointed to by endptr, provided that endptr is not a NULL pointer.

wcstof

Chapter 3. Part 3. Library Functions 2403

||||

|
|
||

|

Returned Value

If successful, wcstof() returns the converted value, if any. If no conversion could be

performed, it returns 0.

The float value is a hexadecimal floating-point or IEEE Binary Floating-Point format

depending on the floating-point mode of the thread invoking wcstof(). This function

uses __isBFP() to determine the floating-point mode of the invoking thread.

If the correct value is outside the range of representable values, then

+/-HUGE_VALF, according to the sign of the value, is returned and the value of the

ERANGE macro is stored in errno. If the correct value would cause an underflow, 0

is returned and the value of the ERANGE macro is stored in errno.

Related Information

v “wchar.h” on page 98

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “wcstod() — Convert Wide-Character String to a Double Floating-Point” on page

2397

v “wcstold() — Convert a Wide-Character String to Long Double” on page 2411

v “wcstol() — Convert a Wide-Character String to a Long Integer” on page 2409

v “wcstoul() — Convert a Wide-Character String to an Unsigned Long Integer” on

page 2418

v “wcstoimax() — Convert a Wide-Character String to a intmax_t” on page 2405

v “wcstoumax() — Convert a Wide-Character String to a intmax_t” on page 2423

wcstof

2404 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcstoimax() — Convert a Wide-Character String to a intmax_t

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <inttypes.h>

intmax_t wcstoimax(const wchar_t * __restrict__ nptr, wchar_t ** __restrict__ endptr, int base);

Compile requirement

Function wcstoimax() requires long long to be available.

General Description

The wcstoimax() function converts the wide-character string nptr to an intmax_t

integer type. Valid input values for base are 0 and in the range 2-36. The

wcstoimax() function is equivalent to wcstol() and wcstoll(). The only difference

being that the return value is of type intmax_t. See wcstoll() for more information.

Returned Value

If successful, wcstoimax() returns the converted value, if any.

If unsuccessful, wcstoimax() returns 0 if no conversion could be performed. If the

correct value is outside the range of representable values, wcstoimax() returns

INTMAX_MAX or INTMAX_MIN, according to the sign of the value. If the value of

base is not supported, wcstoimax() returns 0.

If unsuccessful wcstoimax() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Example

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdio.h>

 int main(void)

{

 wchar_t *nptr;

 wchar_t *endptr;

 intmax_t j;

 int base = 10;

 nptr = L"10110134932";

 printf("nptr = `%ls`\n", nptr);

 j = wcstoimax(nptr, &endptr, base);

 printf("wcstoimax = %jd\n", j);

 printf("Stopped scan at `%ls`\n\n", endptr);

}

wcstoimax

Chapter 3. Part 3. Library Functions 2405

||||

|
|
||

|

Output

nptr = `10110134932 ̀

wcstoimax = 10110134932

Stopped scan at ` ̀

Related Information

v “inttypes.h” on page 49

v “stdint.h” on page 80

v “imaxdiv() — quotient and remainder for intmax_t” on page 938

v “strtoimax() — Convert character string to intmax_t integer type” on page 2074

v “strtoumax() — Convert character string to uintmax_t integer type” on page 2091

v “wcstoumax() — Convert a Wide-Character String to a intmax_t” on page 2423

wcstoimax

2406 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcstok() — Break a Wide-Character String into Tokens

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

wchar_t *wcstok(wchar_t * __restrict__wcs1,

 const wchar_t * __restrict__wcs2, wchar_t ** __restrict__ptr);

XPG4

#define _XOPEN_SOURCE

#include <wchar.h>

wchar_t *wcstok(wchar_t *wcs1, const wchar_t *wcs2);

XPG4 and MSE

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

wchar_t *wcstok(wchar_t *wcs1,

 const wchar_t *wcs2, wchar_t **ptr);

General Description

A sequence of calls to the wcstok() function breaks the wide string pointed to by

wcs1 into a sequence of tokens, each of which is delimited by a wide character

from the wide string pointed to by wcs2. The third argument points to a

caller-provided wide-character pointer into which the wcstok() function stores

information necessary for it to continue scanning the same string.

The first call in the sequence, wcs1 shall point to a wide-character string, while in

subsequent calls for the same wide string, wcs1 shall be a NULL pointer. If wcs1 is

a NULL pointer, the value pointed to by ptr shall match that set by the previous call

for the same wide-character string; otherwise its value is ignored. The separator

wide-character string pointed to by wcs2 may be different from call to call.

The first call in the sequence, searches the wide-character string pointed to by

wcs1 for the first wide character that is not contained in the current separator

wide-character string pointed to by wcs2. If no such wide character is found, then

there are no tokens in the wide-character string pointed to by wcs1 and wcstok()

returns a NULL pointer. If such a wide character is found, it is the start of the first

token.

wcstok() then searches from there for a wide character that is contained in the

current separator wide string. If no such wide character is found, the current token

extends to the end of the wide-character string pointed to by wcs1, and subsequent

wcstok

Chapter 3. Part 3. Library Functions 2407

||||

|
|
|
|
|

||

|

searches for a token will return a NULL pointer. If such a wide character is found, it

is overwritten by a NULL character, which terminates the current token.

In all cases, the wcstok() function stores sufficient information in the pointer ptr so

that subsequent calls, with a NULL pointer as the value of the first argument and

the unmodified pointer value as the third, will start searching just past the end of the

previously returned token (if any).

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then the compiler assumes

that your program is using the XPG4 variety of the wcstok() function, unless you

also define the _MSE_PROTOS feature test macro. Please see Table 4 on page 22

for a list of XPG4 and other feature test macros.

The prototype for the XPG4 variety of the wcstok() function is:

wchar_t *wcstok(wchar_t *wcs1, const wchar_t *wcs2);

This variety of the wcstok() function is missing a third parameter to specify the

address of restart information in your program storage. Instead, C/370 provides

comparable restart information in run-time library storage. Please note that this

library storage is provided on a per thread basis making the XPG4 wcstok() function

thread-specific for a threaded application.

Returned Value

If successful, wcstok() returns a pointer to the first wide character of a token.

If there is no token, wcstok() returns a NULL pointer.

Example

CELEBW22

/* CELEBW22 */

#include <wchar.h>

int main(void)

{

 static wchar_t str1[] = L"?a??b,,,#c";

 static wchar_t str2[] = L"\t \t";

 wchar_t *t, *ptr1, *ptr2;

 t = wcstok(str1, L"?", &ptr1); /* t points to the token L"a" */

 t = wcstok(NULL, L",", &ptr1); /* t points to the token L"??b" */

 t = wcstok(str2, L" \t,", &ptr2); /* t is a null pointer */

 t = wcstok(NULL, L"#,", &ptr1); /* t points to the token L"c" */

 t = wcstok(NULL, L"?", &ptr1); /* t is a null pointer */

}

Related Information

v “wchar.h” on page 98

v “strtok() — Tokenize String” on page 2076

v “strtok_r() — Split String into Tokens” on page 2078

wcstok

2408 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcstol() — Convert a Wide-Character String to a Long Integer

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

long int wcstol(const wchar_t * __restrict__nptr, wchar_t ** __restrict__endptr, int base);

General Description

Converts the initial portion of the wide-character string pointed to by nptr to long int

representation. First it decomposes the input wide-character string into three parts:

1. An initial, possibly empty, sequence of white space wide characters (as

specified by the iswspace() function).

2. A subject sequence resembling an integer determined by the value of base.

3. A final wide-character string of one or more unrecognized wide characters,

including the terminating NULL character of the input wide-character string.

Then it attempts to convert the subject sequence to an integer, and returns the

result.

If the value of base is zero, the expected form of the subject sequence is that of an

integer constant as described in ISO/IEC 9899: subclause 6.1.3.2, optionally

preceded by a plus or minus sign, but not including an integer suffix. If the value of

base is between 2 and 36, the expected form of the subject sequence is a

sequence of letters and digits from the portable character set representing an

integer with the radix specified by base, optionally preceded by a plus or minus

sign, but not including an integer suffix. The letters from a (or A) through z (or Z)

are ascribed the values 10 to 35; only letters whose ascribed values are less than

that of base are permitted. If the value of base is 16, the characters 0x or 0X may

optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input

wide-character string, starting with the first non-white space wide character, that is

of the expected form. The subject sequence contains no wide characters if the input

wide-character string is empty or consists entirely of white space, or if the first

non-white space wide character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the

sequence of wide characters starting with the first digit is interpreted as an integer

constant according to the rules of ISO/IEC 9899: subclause 6.1.3.2. If the subject

sequence has the expected form and the value of base is between 2 and 36, it is

used as the base for conversion, ascribing to each letter its value as given above. If

the subject sequence begins with a minus sign, the value resulting from the

conversion is negated. A pointer to the final wide-character string is stored in the

object pointed to by endptr, provided that endptr is not a NULL pointer.

wcstol

Chapter 3. Part 3. Library Functions 2409

||||

|
|
|
|
|

||

|

In a locale other than the C or POSIX locale, additional implementation-defined

subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no

conversion is performed; the value of nptr is stored in the object pointed to by

endptr, provided that endptr is not a NULL pointer.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Since 0, {LONG_MIN} and {LONG_MAX} are returned on error and are also valid

returns on success, an application wishing to check for error situations should set

errno to 0, then call wcstol(), then check errno.

Returned Value

If successful, wcstol() returns the converted value, if any.

If unsuccessful, wcstol() returns 0 if no conversion could be performed. If the

correct value is outside the range of representable values, wcstol() returns

LONG_MAX or LONG_MIN, according to the sign of the value. If the value of base

is not supported, wcstol() returns 0.

If unsuccessful wcstol() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Example

CELEBW23

/* CELEBW23 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *wcs;

 wchar_t *stopwcs;

 long l;

 int base;

 wcs = L"10110134932";

 printf("wcs = `%ls`\n", wcs);

 for (base=2; base<=8; base*=2) {

 l = wcstol(wcs, &stopwcs, base);

 printf(" wcstol = %ld\n", l);

 printf(" Stopped scan at `%ls`\n\n", stopwcs);

 }

}

Related Information

v “wchar.h” on page 98

v “strtol() — Convert Character String to Long” on page 2079

v “wcstoimax() — Convert a Wide-Character String to a intmax_t” on page 2405

v “wcstoumax() — Convert a Wide-Character String to a intmax_t” on page 2423

wcstol

2410 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|
|
|

wcstold() — Convert a Wide-Character String to Long Double

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <wchar.h>

long double wcstold(const wchar_t *__restrict__ nptr, wchar_t **__restrict__ endptr);

General Description

wcstold() converts a wchar_t * floating-point number input string to a long double

value. The parameter nptr points to a sequence of wide-characters that can be

interpreted as a numerical long double value.

It decomposes the input wide-character string into three parts:

1. An initial, possibly empty, sequence of white-space wide-character codes (as

specified by iswspace()).

2. A subject sequence resembling a floating-point constant, infinity, or NaN.

3. A final wide-character string of one or more unrecognized wide-characters

codes, including the terminating NULL wide-character of the input

wide-character string.

The function then attempts to convert the subject string into the floating-point

number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then

one of the following:

v A non-empty sequence of decimal digits optionally containing a radix character,

then an optional exponent. A radix character is the character that separates the

integer part of a number from the fractional.

v A 0x or 0X, a non-empty sequence of hexadecimal digits optionally containing a

radix character, then a base 2 decimal exponent part with a p or P as prefix, a

plus or minus sign, then a sequence of at least one decimal digit. (Example

[-]0xh.hhhhp+/-d). A radix character is the character that separates the integer

part of a number from the fractional part.

v One INF, ignoring case.

v One NANQ or NANQ(n-char-sequence), ignoring case.

v One NANS or NANS(n-char-sequence), ignoring case.

v One NAN or NAN(n-char-sequence), ignoring case.

See the ″scanf() Family of Formatted Input Functions″ for a description of special

infinity and NaN sequences recognized by z/OS formatted input functions in IEEE

Binary Floating-Point mode. The pointer to the final wide-character string is stored

in the object pointed to by endptr, provided that endptr is not a NULL pointer.

wcstold

Chapter 3. Part 3. Library Functions 2411

||||

|
|
||

|

Returned Value

If successful, wcstold() returns the converted value, if any. If no conversion could be

performed, it returns 0.

The long double value is a hexadecimal floating-point or IEEE Binary Floating-Point

format depending on the floating-point mode of the invoking thread. This function

uses __isBFP() to determine the floating-point mode of the invoking thread.

If the correct value is outside the range of representable values, then

+/-HUGE_VALL, according to the sign of the value, is returned and the value of the

ERANGE macro is stored in errno.

Related Information

v “wchar.h” on page 98

v “__isBFP() — Determine Application Floating-Point Format” on page 1015

v “wcstof() — Convert a Wide-Character String to Float” on page 2403

v “wcstod() — Convert Wide-Character String to a Double Floating-Point” on page

2397

v “wcstol() — Convert a Wide-Character String to a Long Integer” on page 2409

v “wcstoul() — Convert a Wide-Character String to an Unsigned Long Integer” on

page 2418

wcstold

2412 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcstoll() — Convert a Wide-Character String to a Long Long Integer

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services

C99

Single UNIX Specification, Version 3

both OS/390 V2R10

Format

#include <wchar.h>

long long wcstoll(const wchar_t * __restrict__nptr, wchar_t ** __restrict__endptr, int base);

Compile Requirement

Use of this function requires the long long data type. See z/OS XL C/C++ Language

Reference for information on how to make long long available.

General Description

Converts the initial portion of the wide-character string pointed to by nptr to long

long representation. First it decomposes the input wide-character string into three

parts:

1. An initial, possibly empty, sequence of white space wide characters (as

specified by the iswspace() function).

2. A subject sequence resembling an integer determined by the value of base.

3. A final wide-character string of one or more unrecognized wide characters,

including the terminating NULL character of the input wide-character string.

Then it attempts to convert the subject sequence to a long long integer, and returns

the result.

If the value of base is zero, the expected form of the subject sequence is that of an

integer constant as described in ISO/IEC 9899: subclause 6.1.3.2, optionally

preceded by a plus or minus sign, but not including an integer suffix. If the value of

base is between 2 and 36, the expected form of the subject sequence is a

sequence of letters and digits from the portable character set representing an

integer with the radix specified by base, optionally preceded by a plus or minus

sign, but not including an integer suffix. The letters from a (or A) through z (or Z)

are ascribed the values 10 to 35; only letters whose ascribed values are less than

that of base are permitted. If the value of base is 16, the characters 0x or 0X may

optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input

wide-character string, starting with the first non-white space wide character, that is

of the expected form. The subject sequence contains no wide characters if the input

wide-character string is empty or consists entirely of white space, or if the first

non-white space wide character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the

sequence of wide characters starting with the first digit is interpreted as an integer

constant according to the rules of ISO/IEC 9899: subclause 6.1.3.2. If the subject

sequence has the expected form and the value of base is between 2 and 36, it is

wcstoll

Chapter 3. Part 3. Library Functions 2413

||||

|
|
|

||

|

used as the base for conversion, ascribing to each letter its value as given above. If

the subject sequence begins with a minus sign, the value resulting from the

conversion is negated. A pointer to the final wide-character string is stored in the

object pointed to by endptr, provided that endptr is not a NULL pointer.

In a locale other than the C or POSIX locale, additional implementation-defined

subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no

conversion is performed; the value of nptr is stored in the object pointed to by

endptr, provided that endptr is not a NULL pointer. The behavior of this

wide-character function is affected by the LC_CTYPE category of the current locale.

If you change the category, undefined results can occur.

Since 0, {LLONG_MIN} and {LLONG_MAX} are returned on error and are also valid

returns on success, an application wishing to check for error situations should set

errno to 0, then call wcstoll(), then check errno.

Returned Value

If successful, wcstoll() returns the converted value, if any.

If unsuccessful, wcstoll() returns 0 if no conversion could be performed. If the

correct value is outside the range of representable values, wcstoll() returns

LLONG_MAX (LONGLONG_MAX) or LLONG_MIN (LONGLONG_MIN), according

to the sign of the value. If the value of base is not supported, wcstoll() returns 0.

If unsuccessful wcstoll() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Example

 /* Long Long example */

 #define _LONG_LONG 1

 #include <stdio.h>

 #include <wchar.h>

 int main(void)

 {

 wchar_t *wcs;

 wchar_t *stopwcs;

 long long l;

 int base;

 wcs = L"10110134932";

 printf("wcs = `%ls`\n", wcs);

 for (base=2; base<=8; base*=2) {

 l = wcstoll(wcs, &stopwcs, base);

 printf(" wcstoll = %lld\n", l);

 printf(" Stopped scan at `%ls`\n\n", stopwcs);

 }

 }

wcstoll

2414 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|

|
|
|

Related Information

v “wchar.h” on page 98

v “strtol() — Convert Character String to Long” on page 2079

v “strtoll() — Convert String to Signed Long Long” on page 2084

v “strtoul() — Convert String to Unsigned Integer” on page 2086

v “strtoull() — Convert String to Unsigned Long Long” on page 2089

v “wcstoimax() — Convert a Wide-Character String to a intmax_t” on page 2405

v “wcstol() — Convert a Wide-Character String to a Long Integer” on page 2409

v “wcstoul() — Convert a Wide-Character String to an Unsigned Long Integer” on

page 2418

v “wcstoull() — Convert a Wide-Character String to an Unsigned Long Long

Integer” on page 2420

v “wcstoumax() — Convert a Wide-Character String to a intmax_t” on page 2423

wcstoll

Chapter 3. Part 3. Library Functions 2415

wcstombs() — Convert Wide-Character String to Multibyte Character

String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

size_t wcstombs(char * __restrict__dest,

 const wchar_t * __restrict__string, size_t count);

General Description

Converts the wide-character string pointed to by string into the multibyte array

pointed to by dest. The converted string begins in the initial shift state. The

conversion stops after count bytes in dest are filled up or a NULL wide character is

encountered.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

If unsuccessful, mbstowcs() returns (size_t) -1 and sets errno to one of the following

values:

Error Code Description

EINVAL The input argument is a NULL rather than a pointer to a wide

character.

EILSEQ wcstombs() encountered a sequence that is not a valid wide

character code.

 The mbstowcs() interface checks for an invalid input arg. If the third arg, which

should be a pointer to a string of wchar_t elements, is NULL, the interface will set

errno to EINVAL as well as returning -1. This clearly differentiates from the situation

in which the third arg is a pointer to null, in which case should return 1 and the

multibyte target string will contain a null byte.

Returned Value

Returns the length in bytes of the multibyte character string, not including a

terminating NULL wide character. The value (size_t)−1 is returned if an invalid

multibyte character is encountered or if *string is a NULL pointer.

If count is the returned value, the array is not NULL-terminated.

If *dest is a NULL pointer, the number of characters required to convert the

wide-character string is returned.

wcstombs

2416 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

If the area pointed to by *dest is too small (as indicated by the value of count) to

contain the wide character codes represented as multibyte characters, the number

of bytes containing complete multibyte characters is returned.

Note: wcstombs() does not generate redundant shift characters between the DBCS

characters. When the wctomb() function is called for each character,

redundant shift characters are generated.

Example

CELEBW24

/* CELEBW24

 In this example, a wide−character string is converted to a

 char string twice. The first call converts the entire string, while

 the second call only converts three characters. The results are

 printed each time.

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define SIZE 20

int main(void)

{

 char dest[SIZE];

 wchar_t * dptr = L"string";

 size_t count = SIZE;

 size_t length;

 length = wcstombs(dest, dptr, count);

 printf("%d characters were converted.\n", length);

 printf("The converted string is \"%s\"\n\n", dest);

 /* Reset the destination buffer */

 memset(dest, '\0', sizeof(dest));

 /* Now convert only 3 characters */

 length = wcstombs(dest, dptr, 3);

 printf("%d characters were converted.\n", length);

 printf("The converted string is \"%s\"\n", dest);

}

Output

6 characters were converted.

The converted string is "string"

3 characters were converted.

The converted string is "str"

Related Information

v “stdlib.h” on page 85

v “mbstowcs() — Convert Multibyte Characters to Wide Characters” on page 1197

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

v “wcsrtombs() — Convert Wide-Character String to Multibyte String” on page 2390

v “wctomb() — Convert Wide Character to Multibyte Character” on page 2432

wcstombs

Chapter 3. Part 3. Library Functions 2417

wcstoul() — Convert a Wide-Character String to an Unsigned Long

Integer

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

unsigned long int wcstoul(const wchar_t * __restrict__nptr, wchar_t ** __restrict__endptr, int base);

General Description

Converts the initial portion of the wide-character string pointed to by nptr to

unsigned long integer representation. First it decomposes the input wide-character

string into three parts:

1. An initial, possibly empty, sequence of white space wide characters (as

specified by the iswspace() function).

2. A subject sequence resembling an unsigned integer represented in some radix

determined by the value of base.

3. A final wide-character string of one or more unrecognized wide characters,

including the terminating NULL character of the input wide-character string.

Then it attempts to convert the subject sequence to an unsigned integer, and

returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an

integer constant as described in ISO/IEC 9899: subclause 6.1.3.2, optionally

preceded by a plus or minus sign, but not including an integer suffix. If the value of

base is between 2 and 36, the expected form of the subject sequence is a

sequence of letters and digits from the portable character set representing an

integer with the radix specified by base, optionally preceded by a plus or minus

sign, but not including an integer suffix. The letters from a (or A) through z (or Z)

are ascribed the values 10 to 35; only letters whose ascribed values are less than

that of base are permitted. If the value of base is 16, the characters 0x or 0X may

optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial sub-sequence of the input

wide-character string, starting with the first non-white space wide character, that is

of the expected form. The subject sequence contains no wide characters if the input

wide-character string is empty or consists entirely of white space, or if the first

non-white space wide character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the

sequence of wide characters starting with the first digit is interpreted as an integer

constant according to the rules of ISO/IEC 9899: subclause 6.1.3.2. If the subject

sequence has the expected form and the value of base is between 2 and 36, it is

used as the base for conversion, ascribing to each letter its value as given above. If

wcstoul

2418 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

the subject sequence begins with a minus sign, the value resulting from the

conversion is negated. A pointer to the final string is stored in the object pointed to

by endptr, provided that endptr is not a NULL pointer.

In a locale other than the C or POSIX locale, additional implementation-defined

subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no

conversion is performed; the value of nptr is stored in the object pointed to by

endptr, provided that endptr is not a NULL pointer.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Since 0 and {ULONG_MAX} are returned on error and 0 is also a valid return on

success, an application wishing to check for error situations should set errno to 0,

then call wcstoul(), then check errno.

Returned Value

If successful, wcstoul() returns the converted value, if any.

If unsuccessful, wcstoul() returns 0 if no conversion could be performed. If the

correct value is outside the range of representable values, wcstoul() returns

ULONG_MAX. If the value of base is not supported, wcstoul() returns 0.

If unsuccessful wcstoul() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Example

CELEBW25

/* CELEBW25 */

#include <stdio.h>

#include <wchar.h>

#define BASE 2

int main(void)

{

 wchar_t *wcs = L"1000e13 camels";

 wchar_t **endptr;

 unsigned long int answer;

 answer = wcstoul(wcs, endptr, BASE);

 printf("The input wide string used: `%ls`\n", wcs);

 printf("The unsigned long int produced: %lu\n", answer);

 printf("The substring of the input wide string that was not");

 printf(" converted to unsigned long: `%ls`\n", *endptr);

}

Related Information

v “wchar.h” on page 98

v “strtoul() — Convert String to Unsigned Integer” on page 2086

v “wcstoimax() — Convert a Wide-Character String to a intmax_t” on page 2405

v “wcstoumax() — Convert a Wide-Character String to a intmax_t” on page 2423

wcstoul

Chapter 3. Part 3. Library Functions 2419

|
|

|
|
|

wcstoull() — Convert a Wide-Character String to an Unsigned Long

Long Integer

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services

C99

Single UNIX Specification, Version 3

both OS/390 V2R10

Format

#include <wchar.h>

unsigned long long wcstoull(const wchar_t * __restrict__nptr, wchar_t ** __restrict__endptr, int base);

Compile Requirement

Use of this function requires the long long data type. See z/OS XL C/C++ Language

Reference for information on how to make long long available.

General Description

Converts the initial portion of the wide-character string pointed to by nptr to

unsigned long long integer representation. First it decomposes the input

wide-character string into three parts:

1. An initial, possibly empty, sequence of white space wide characters (as

specified by the iswspace() function).

2. A subject sequence resembling an unsigned integer represented in some radix

determined by the value of base.

3. A final wide-character string of one or more unrecognized wide characters,

including the terminating NULL character of the input wide-character string.

Then it attempts to convert the subject sequence to an unsigned long long integer,

and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an

integer constant as described in ISO/IEC 9899: subclause 6.1.3.2, optionally

preceded by a plus or minus sign, but not including an integer suffix. If the value of

base is between 2 and 36, the expected form of the subject sequence is a

sequence of letters and digits from the portable character set representing an

integer with the radix specified by base, optionally preceded by a plus or minus

sign, but not including an integer suffix. The letters from a (or A) through z (or Z)

are ascribed the values 10 to 35; only letters whose ascribed values are less than

that of base are permitted. If the value of base is 16, the characters 0x or 0X may

optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial sub-sequence of the input

wide-character string, starting with the first non-white space wide character, that is

of the expected form. The subject sequence contains no wide characters if the input

wide-character string is empty or consists entirely of white space, or if the first

non-white space wide character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the

sequence of wide characters starting with the first digit is interpreted as an integer

wcstoull

2420 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

|
|

constant according to the rules of ISO/IEC 9899: subclause 6.1.3.2. If the subject

sequence has the expected form and the value of base is between 2 and 36, it is

used as the base for conversion, ascribing to each letter its value as given above. If

the subject sequence begins with a minus sign, the value resulting from the

conversion is negated. A pointer to the final string is stored in the object pointed to

by endptr, provided that endptr is not a NULL pointer. In a locale other than the C

or POSIX locale, additional implementation-defined subject sequence forms may be

accepted.

If the subject sequence is empty or does not have the expected form, no

conversion is performed; the value of nptr is stored in the object pointed to by

endptr, provided that endptr is not a NULL pointer.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Since 0 and {ULLONG_MAX} are returned on error and 0 is also a valid return on

success, an application wishing to check for error situations should set errno to 0,

then call wcstoull(), then check errno.

Returned Value

If successful, wcstoull() returns the converted value, if any.

If unsuccessful, wcstoull() returns 0 if no conversion could be performed. If the

correct value is outside the range of representable values, wcstoull() returns

ULLONG_MAX (ULONGLONG_MAX). If the value of base is not supported,

wcstoull() returns 0.

If unsuccessful wcstoull() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Example

 /* LongLong conversion */

 #define _LONG_LONG 1

 #include <stdio.h>

 #include <wchar.h>

 #define BASE 2

 int main(void)

 {

 wchar_t *wcs = L"1000e13 camels";

 wchar_t **endptr;

 unsigned long long answer;

 answer = wcstoull(wcs, endptr, BASE);

 printf("The input wide string used: `%ls`\n", wcs);

 printf("The unsigned long long produced: %llu\n", answer);

 printf("The substring of the input wide string that was not");

 printf(" converted to unsigned long long: `%ls`\n", *endptr);

 }

wcstoull

Chapter 3. Part 3. Library Functions 2421

|
|
|
|
|
|
|
|

|
|
|

Related Information

v “wchar.h” on page 98

v “strtol() — Convert Character String to Long” on page 2079

v “strtoll() — Convert String to Signed Long Long” on page 2084

v “strtoul() — Convert String to Unsigned Integer” on page 2086

v “strtoull() — Convert String to Unsigned Long Long” on page 2089

v “wcstoimax() — Convert a Wide-Character String to a intmax_t” on page 2405

v “wcstol() — Convert a Wide-Character String to a Long Integer” on page 2409

v “wcstoll() — Convert a Wide-Character String to a Long Long Integer” on page

2413

v “wcstoul() — Convert a Wide-Character String to an Unsigned Long Integer” on

page 2418

v “wcstoumax() — Convert a Wide-Character String to a intmax_t” on page 2423

wcstoull

2422 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcstoumax() — Convert a Wide-Character String to a intmax_t

Standards

 Standards / Extensions C or C++ Dependencies

C99

Single UNIX Specification, Version 3

both z/OS V1R7

Format

#define _ISOC99_SOURCE

#include <inttypes.h>

uintmax_t wcstoumax(const wchar_t * __restrict__ nptr, wchar_t ** __restrict__ endptr, int base);

Compile requirement

Function wcstoumax() requires long long to be available.

General Description

The wcstoumax() function converts the wide-character string nptr to an uintmax_t

integer type. Valid input values for base are 0 and in the range 2-36. The

wcstoumax() function is equivalent to wcstoul() and wcstoull(). The only difference

being that the return value is of type uintmax_t. See wcstoull() for more information.

Returned Value

If successful, wcstoumax() returns the converted value, if any.

If unsuccessful, wcstoumax() returns 0 if no conversion could be performed. If the

correct value is outside the range of representable values, wcstoumax() returns

UINTMAX_MAX. If the value of base is not supported, wcstoumax() returns 0.

If unsuccessful wcstoumax() sets errno to one of the following values:

Error Code Description

EINVAL The value of base is not supported.

ERANGE The conversion caused an overflow.

Example

#define _ISOC99_SOURCE

#include <inttypes.h>

#include <stdio.h>

 int main(void)

{

 wchar_t *nptr;

 wchar_t *endptr;

 uintmax_t j;

 int base = 10;

 nptr = L"10110134932";

 printf("nptr = `%ls`\n", nptr);

 j = wcstoumax(nptr, &endptr, base);

 printf("wcstoumax = %ju\n", j);

 printf("Stopped scan at `%ls`\n\n", endptr);

}

wcstoumax

Chapter 3. Part 3. Library Functions 2423

||||

|
|
||

|

Output

nptr = `10110134932 ̀

wcstoumax = 10110134932

Stopped scan at ` ̀

Related Information

v “inttypes.h” on page 49

v “stdint.h” on page 80

v “imaxdiv() — quotient and remainder for intmax_t” on page 938

v “strtoimax() — Convert character string to intmax_t integer type” on page 2074

v “strtoumax() — Convert character string to uintmax_t integer type” on page 2091

v “wcstoimax() — Convert a Wide-Character String to a intmax_t” on page 2405

wcstoumax

2424 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcswcs() — Locate Wide-Character Substring in Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wchar_t *wcswcs(const wchar_t *string1, const wchar_t *string2);

General Description

Locates the first occurrence in the string pointed to by string1 of the sequence of

wide characters (excluding the terminating wide NULL character) in the string

pointed to by string2.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Note: The wcswcs() function has been moved to the Legacy Option group in Single

UNIX Specification, Version 3 and may be withdrawn in a future version. The

wcsstr() function is preferred for portability.

Returned Value

If successful, wcswcs() returns a pointer to the located string.

If string2 points to a string with zero length, wcswcs() returns string1.

If the string is not found, wcswcs() returns NULL.

Example

CELEBW26

/* CELEBW26

 This example finds the first occurrence of the wide character string pr

 in buffer1, using wcswcs().

 */

#include <stdio.h>

#include <wcstr.h>

#define SIZE 40

int main(void)

{

 wchar_t buffer1[SIZE] = L"computer program";

 wchar_t *ptr;

 wchar_t *wch = L"pr";

wcswcs

Chapter 3. Part 3. Library Functions 2425

||||

|
|
|
|
|

||

|

|
|
|

ptr = wcswcs(buffer1, wch);

 printf("The first occurrence of %ls in '%ls' is '%ls'\n",

 wch, buffer1, ptr);

}

Output

The first occurrence of pr in ’computer program’ is ’program’

Related Information

v “wchar.h” on page 98

v “strstr() — Locate Substring” on page 2062

v “wcschr() — Search for Wide-Character Substring” on page 2364

v “wcscmp() — Compare Wide-Character Strings” on page 2366

v “wcscspn() — Find Offset of First Wide-Character Match” on page 2372

v “wcspbrk() — Locate First Wide Characters in String” on page 2386

v “wcsrchr() — Locate Last Wide Character in String” on page 2388

wcswcs

2426 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wcswidth() — Determine the Display Width of a Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

int wcswidth(const wchar_t *wcs, size_t n);

General Description

Determines the number of printing positions that a graphic representation of n wide

characters (or fewer than n wide characters, if a NULL wide character is

encountered before n wide characters have been exhausted), in the wide-character

string pointed to by wcs, occupies on a display device. The number of printing

positions is independent of its location on the device.

Returned Value

If successful, wcswidth() returns the number of printing positions occupied by the

wide-character string pointed to by wcs.

If wcs points to a NULL wide character, wcswidth() returns 0.

If any wide character in the wide-character string pointed to by wcs is not a printing

wide character, wcswidth() returns −1.

The behavior of wcswidth() is affected by the LC_CTYPE category.

Note: Under z/OS XL C/C++ applications, the width returned will be 1 for each

single-byte character and 2 for each double-byte character.

Example

CELEBW27

/* CELEBW27 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *wcs = L"ABC";

 printf("wcs has a width of: %d\n", wcswidth(wcs,3));

}

Output

wcs has a width of: 3

Related Information

v “wchar.h” on page 98

wcswidth

Chapter 3. Part 3. Library Functions 2427

||||

|
|
|

||

|

wcsxfrm() — Transform a Wide-Character String

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

size_t wcsxfrm(wchar_t * __restrict__wcs1,

 const wchar_t * __restrict__wcs2, size_t n);

General Description

Transforms the wide-character string pointed to by wcs2 to values which represent

character collating weights and places the resulting wide-character string into the

array pointed to by wcs1. The transformation is such that if the wcscmp() function is

applied to two transformed wide-character strings, it returns a value greater than,

equal to, or less than zero, corresponding to the result of the wcscoll() function

applied to the same two original wide-character strings. No more than n elements

are placed into the resulting array pointed to by wcs1, including the terminating

NULL wide-character code. If n is zero, wcs1 is permitted to be a NULL pointer. If

copying takes place between objects that overlap, the behavior is undefined.

Since no return value is reserved to indicate an error, an application wishing to

check for error situations should set errno to 0, then call wcsxfrm(), then check

errno.

Returned Value

Returns the length of the transformed wide-character string (not including the

terminating NULL wide character code). If the value returned is n or more, the

contents of the array pointed to by wcs1 are indeterminate.

If wcs1 is a NULL pointer, wcsxfrm() returns the number of elements required to

contain the transformed wide string.

The transformed value of invalid wide-character codes shall be either less than or

greater than the transformed values of valid wide-character codes depending on the

option chosen for the particular locale definition. In this case wcsxfrm() returns

(size_t)−1.

wcsxfrm() is controlled by the LC_COLLATE category.

The EILSEQ error may be set, indicating that the wide character string pointed to

by wcs2 contains wide character codes outside the domain of the collating

sequence.

Note: The ISO/C Multibyte Support Extensions do not indicate that the wcsxfrm()

function may return with an error.

wcsxfrm

2428 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

|
|
|

Example

CELEBW28

/* CELEBW28 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wchar_t *wcs;

 wchar_t buffer[80];

 int length;

 printf("Type in a string of characters.\n");

 wcs = fgetws(buffer, 80, stdin);

 length = wcsxfrm(NULL, wcs, 0);

 printf("You would need a %d element array to hold the wide string", length);

 printf("\n\n%ls\n\ntransformed according", wcs);

 printf(" to this program's locale.\n");

}

Related Information

v “wchar.h” on page 98

v “strxfrm() — Transform String” on page 2093

wcsxfrm

Chapter 3. Part 3. Library Functions 2429

wctob() — Convert Wide Character to Byte

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

int wctob(wint_t c);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

int wctob(wint_t c);

General Description

Determines whether c corresponds to a member of the extended character set

whose multibyte character corresponds to a single byte when in initial shift state.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the wctob()

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

Returned Value

If successful, wctob() returns the single-byte representation.

If c does not correspond to a multibyte character with length one, wctob() returns

EOF.

Example

CELEBW29

/* CELEBW29 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wint_t wc = L'A';

 if (wctob(wc) == wc)

wctob

2430 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

printf("wc is a valid single byte character\n");

 else

 printf("wc is not a valid single byte character\n");

}

Output

wc is a valid single-byte character

Related Information

v “wchar.h” on page 98

wctob

Chapter 3. Part 3. Library Functions 2431

wctomb() — Convert Wide Character to Multibyte Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <stdlib.h>

int wctomb(char *string, wchar_t character);

General Description

Converts the wchar_t value of character into a multibyte array pointed to by string.

If the value of character is 0, the function is left in the initial shift state. At most,

wctomb() stores MB_CUR_MAX characters in string.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

If successful, wctomb() returns the length in bytes of the multibyte character.

If character is not a valid multibyte character, wctomb() returns −1.

If string is a NULL pointer, wctomb() returns nonzero if shift-dependent encoding is

used, or 0 otherwise.

Example

CELEBW30

/* CELEBW30

 This example converts the wide character c to a character using wctomb().

 */

#include <stdio.h>

#include <stdlib.h>

#define SIZE 40

int main(void)

{

 static char buffer[SIZE];

 wchar_t wch = L'c';

 int length;

 length = wctomb(buffer, wch);

 printf("The number of bytes that comprise the multibyte "

 "character is %i\n", length);

 printf("And the converted string is \"%s\"\n", buffer);

}

wctomb

2432 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|
|

||

|

Output

The number of bytes that comprise the multibyte character is 1

And the converted string is "c"

Related Information

v “stdlib.h” on page 85

v “mbtowc() — Convert Multibyte Character to Wide Character” on page 1199

v “wcrtomb() — Convert a Wide Character to a Multibyte Character” on page 2360

v “wcslen() — Calculate Length of Wide-Character String” on page 2378

v “wcstombs() — Convert Wide-Character String to Multibyte Character String” on

page 2416

wctomb

Chapter 3. Part 3. Library Functions 2433

wctrans(), towctrans() — transliterate wide character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

 wctrans_t wctrans(const char * charclass);

 wint_t towctrans(wint_t wc, wctrans_t desc);

General Description

These two functions work together to provide transliteration of wide characters. For

valid results, the setting of the LC_CTYPE category of the current locale must

remain the same across the two calls. Character mapping rules are defined in the

LC_CTYPE category.

The wctrans() function takes the character mapping name pointed to by charclass

and returns a value of type wctrans_t for use as the second argument to the

towctrans() function.

The towctrans() function applies the indicated mapping to wide-character code wc

from the codeset identified in the current locale. The towctrans() function applies the

mapping returned by wctrans() and passed as desc.

The following character mapping names are reserved by the standard and are

defined in all locales: tolower and toupper.

Notes::

v towctrans(wc, wctrans(″tolower″)) is equivalent to towlower(wc)

v towctrans(wc, wctrans(″toupper″)) is equivalent to towupper(wc)

Returned Value

If successful, wctrans() returns the non-zero value of type wctrans_t for use in calls

to towctrans().

If unsuccessful, wctrans() returns 0 and sets errno to EINVAL if the mapping name

pointed to by charclass is not valid for the current locale.

If successful, the towctrans() function returns the mapped value of wc using the

mapping described by desc.

If unsuccessful, towctrans() returns wc unchanged. If the value of desc is invalid,

towctrans() returns 0.

Related Information

v “wctype.h” on page 100

v “tolower(), toupper() — Convert Character Case” on page 2228

wctrans(), towctrans

2434 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

wctype() — Obtain Handle for Character Property Classification

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

XPG4

XPG4.2

C99

Single UNIX Specification, Version 3

both

Format

#include <wchar.h>

wctype_t wctype(const char *property);

SUSV3

#define _POSIX_C_SOURCE 200112L

#include <wctype.h>

wctype_t wctype(const char *property);

General Description

The wctype() function is defined for valid property names as defined in the current

locale. The property is a string identifying a generic character class for which

code-page-specific type information is required. The function returns a value of type

wctype_t, which can be used as the second argument to a call of iswctype(). The

wctype() function determines values of wctype_t according to rules of the coded

character set defined by character type information in the program’s locale

(category LC_CTYPE). Values returned by wctype() are valid until a call to

setlocale() that modifies the category LC_CTYPE.

The behavior of this wide-character function is affected by the LC_CTYPE category

of the current locale. If you change the category, undefined results can occur.

Returned Value

If successful, wctype() returns a value of type wctype_t that can be used in calls to

iswctype().

If the given property name is not valid for the current locale (category LC_CTYPE),

wctype() returns 0.

Related Information

v “wchar.h” on page 98

v “wctype.h” on page 100

wctype

Chapter 3. Part 3. Library Functions 2435

||||

|
|
|
|
|

||

|

|
|
|

wcwidth() — Determine the Display Width of a Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

int wcwidth(const wint_t wc);

XPG4

#define _XOPEN_SOURCE

#include <wchar.h>

int wcwidth(const wchar_t wc);

General Description

Determines the number of printing positions that a graphic representation of wc

occupies on a display device. Each of the printing wide characters occupies its own

number of printing positions on a display device. The number is independent of its

location on the device.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then the compiler assumes

that your program is using the XPG4 variety of the wcwidth() function. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

The prototype for the XPG4 variety of the wcwidth() function is:

int wcwidth(const wchar_t wc);

The difference between this variety and the C/370, non-XPG4 variety of the

wcwidth() function is that its parameter, wc, is a wchar_t rather than a wint_t type.

Returned Value

If successful, wcwidth() returns the number of printing positions occupied by wc.

If wc is a NULL or non-spacing wide character, wcwidth() returns 0.

If wc is not a printing wide character, wcwidth() returns −1.

The behavior of wcwidth() is affected by the LC_CTYPE category.

Notes:

1. Under z/OS XL C/C++ applications, the width returned will be zero for a NULL

or non-spacing character, 1 for a single-byte character, and 2 for a double-byte

character.

wcwidth

2436 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|

||

|

2. A non-spacing character is a character belonging to the charclass named _zlc

(zero length character class) in the LC_CTYPE category.

Example

CELEBW31

/* CELEBW31 */

#include <stdio.h>

#include <wchar.h>

int main(void)

{

 wint_t wc = L'A';

 printf("wc has a width of: %d\n", wcwidth(wc));

}

Output

wc has a width of: 1

Related Information

v “wchar.h” on page 98

wcwidth

Chapter 3. Part 3. Library Functions 2437

w_getmntent() — Get Information on Mounted File Systems

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#define _OPEN_SYS

#include <sys/mntent.h>

int w_getmntent(char *buffer, int size);

General Description

Gets information about all currently mounted file systems.

buffer A pointer to storage that is filled with the retrieved information. The

returned information is mapped by the sys/mntent.h header file and

contains multiple entries, one for each mounted file system.

size The length of the buffer. If size is zero, the total number of mount

entries is returned. You can use this information in a subsequent

call to obtain a buffer large enough to hold all the information about

all the entries.

A header is placed at the beginning of the buffer, and you should zero it out before

the first call to w_getmntent(). In the header, the field mnth_size or mnt2h_cblen

returns the number of bytes of data put in the buffer. If more complete file system

information is desired, then the w_mntent2 structure can be used by setting the

header w_mnt2h ID field w_mnt2e_cid to MNTE2H_ID. The fields mnth_cur1 and

mnth_cur2 or mh2_cursor contain positioning information that w_getmntent() uses

to store the information. If multiple calls are made, use the same buffer because the

positioning information in mnth_cur1 and mnth_cur2 or mh2_cursor indicates where

the function should continue with its list. The positioning information should not be

changed between calls. See “__mount() — Make a File System Available” on page

1244 for more information on the fields in the w_mntent2 structure.

Three fields of interest returned in the buffer are:

mnt_fsname The file system name, which is up to 45 characters long and ends

with a NULL. The process can use this field to obtain more

information using w_statfs().

 mnt_fsname corresponds to the filesystem argument for mount().

mnt_mountpoint

The pathname of the directory where the file system is mounted.

This field ends with a NULL.

 If the caller of w_getmntent() lacks search authorization to one or

more of the directories in the mount point pathname,

mnt_mountpoint is returned empty. That is, mnt_pathlen is zero

and mnt_mountpoint contains a NULL as the first character.

mnt_parm The file-system-specific parameter specified on the mount() function

when the file system was mounted. This field ends with a NULL.

w_getmntent

2438 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If no parameter was specified, mnt_parmlen and mnt_parmoffset

are each zero. If a parameter was specified, its address is the sum

of the address of w_mntent and mnt_parmoffset.

If all entries do not fit in the buffer supplied, multiple calls are required. If an entry

together with its mount parameter will not fit in the buffer, the entry is returned

without the mount parameter. In this case, mnt_parmlen contains the length of the

mount parameter, and mnt_parmoffset is zero.

To assure that at least one entry, including the mount parameter, is returned, it is

advisable to allocate space for at least two entries.

When the final entry has been placed in the buffer, w_getmntent() returns no

entries.

Returned Value

If successful, w_getmntent() returns the number of entries in the buffer.

If unsuccessful, w_getmntent() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL A parameter was specified incorrectly.

ERANGE The result is too large to fit in the available buffer space.

Example

CELEBW32

/* CELEBW32

 This example gets information about currently

 mounted systems, using &wgetmnt..

 */

#define _OPEN_SYS

#include <sys/mntent.h>

#include <stdio.h>

main() {

 int entries, entry;

 struct {

 struct w_mnth header;

 struct w_mntent mount_table[10];

 } work_area;

 memset(&work_area, 0x00, sizeof(work_area));

 do {

 if ((entries = w_getmntent((char *) &work_area,

 sizeof(work_area))) == −1)

 perror("w_getmntent() error");

 else for (entry=0; entry<entries; entry++) {

 printf("filesystem %s is mounted at %s\n",

 work_area.mount_table[entry].mnt_fsname,

 work_area.mount_table[entry].mnt_mountpoint);

 }

 } while (entries > 0);

}

Output

w_getmntent

Chapter 3. Part 3. Library Functions 2439

filesystem POSIX.NEW.HFS is mounted at /new_fs

filesystem POSIX.ROOT.FS is mounted at /

filesystem Memphis.data is mounted at /memphis

 mount parameter is memphis1:/usr/remote/Memphis.data

Related Information

v “sys/mntent.h” on page 88

v “statvfs() — Get File System Information” on page 2012

v “w_statfs() — Get the File System Status” on page 2476

w_getmntent

2440 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

w_getpsent() — Get Process Data

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/ps.h>

int w_getpsent(int token, W_PSPROC *buffptr, size_t length);

General Description

Provides information about the status of any process that the calling process has

access to.

token A relative number that identifies the relative position of a process in

the system. Zero represents the first process in the system. On the

first call to w_getpsent(), pass the token 0; the function then returns

the token that identifies the next process to which the caller has

access. Use that token on the next call.

buffptr The address of the buffer where the data is to be stored.

length The length of the buffer.

The data returned is described in the ps.h header file. See Table 59 for the format

of the structure stored in the buffer.

 Table 59. Variables Stored in Structure Returned by w_getpsent()

Variable Type Variable Name General Description

unsigned int ps_state Process state

pid_t ps_pid Process ID

pid_t ps_ppid Parent ID

pid_t ps_sid Session ID (leader)

pid_t ps_pgpid Process group ID

pid_t ps_fgpid Foreground process group ID

uid_t ps_euid Effective user ID

uid_t ps_ruid Real user ID

uid_t ps_suid Saved set user ID

gid_t ps_egid Effective group ID

gid_t ps_rgid Real group ID

gid_t ps_sgid Saved set group ID

long ps_size Total size

time_t ps_starttime Starting time

clock_t ps_usertime User CPU time

clock_t ps_systime System CPU time

int ps_conttylen Length of ConTTY

w_getpsent

Chapter 3. Part 3. Library Functions 2441

Table 59. Variables Stored in Structure Returned by w_getpsent() (continued)

Variable Type Variable Name General Description

char *ps_conttyptr Controlling terminal

int ps_pathlen Length of arg0

char *ps_pathptr File name

int ps_cmdlen Length of command

char *ps_cmdptr Command and arguments

Note: The ps_cmdlen and ps_cmdptr elements of W_PSPROC identify the length

and location where w_getpsent() is to return the command and arguments

used to start the process. The maximum length that can be returned is 1023

bytes, not including the null terminator. The system will truncate the

command and arguments if the buffer is too small.

Notes

ps_usertime reports the user’s CPU time consumed for the address space the

process is running within. When only one process is running in the address space,

this CPU time represents the accumulated user CPU time for that process. When

more than one process is running in an address space, the information returned is

actually the accumulated CPU time consumed by the address space. It is the sum

of the CPU time used by all of the work running in that address space not including

the system time.

ps_systime reports the system’s CPU time consumed for the address space the

process is running within. When only one process is running in the address space,

this time represents the accumulated system CPU time for that process. However,

when more than one process is running in an address space, the information

returned is actually the accumulated system CPU time consumed by all of the work

running in the address space.

Returned Value

If successful, w_getpsent() returns the process token for the next process for which

the caller has access. For the last active process to which the user has access,

w_getpsent() returns 0, indicating there are no more processes to be accessed.

If unsuccessful, w_getpsent() returns −1 and sets errno to one of the following

values:

Error Code Description

EINVAL An incorrect process token.

Example

CELEBW33

/* CELEBW33

 This example provides status information, using wgetpsent().

 */

#define _OPEN_SYS

#include <stdio.h>

#include <sys/ps.h>

#include <sys/types.h>

#include <pwd.h>

w_getpsent

2442 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|
|
|

#include <time.h>

main() {

 int token;

 W_PSPROC buf;

 struct passwd *pw;

 token = 0;

 memset(&buf, 0x00, sizeof(buf));

 buf.ps_conttyptr = (char *) malloc(buf.ps_conttylen = 1024);

 buf.ps_pathptr = (char *) malloc(buf.ps_pathlen = 1024);

 buf.ps_cmdptr = (char *) malloc(buf.ps_cmdlen = 1024);

 if ((buf.ps_conttyptr == NULL) ||

 (buf.ps_pathptr == NULL) ||

 (buf.ps_cmdptr == NULL))

 perror("buffer allocation error");

 else do {

 if ((token = w_getpsent(token, &buf, sizeof(buf))) == −1)

 perror("w_getpsent() error");

 else if (token > 0)

 if ((pw = getpwuid(buf.ps_ruid)) == NULL)

 perror("getpwuid() error");

 else printf("token %d: pid %10d, user %8s, started %s", token,

 (int) buf.ps_pid, pw−>pw_name,

 ctime(&buf.ps_starttime));

 } while (token > 0);

}

Output

token 2: pid 131074, user MVSUSR1, started Fri Jun 16 08:09:17 2001

token 3: pid 65539, user MVSUSR1, started Fri Jun 16 08:09:41 2001

token 6: pid 589830, user MVSUSR1, started Fri Jun 16 10:29:17 2001

token 7: pid 851975, user MVSUSR1, started Fri Jun 16 10:30:04 2001

Related Information

v “sys/ps.h” on page 88

w_getpsent

Chapter 3. Part 3. Library Functions 2443

w_ioctl(), __w_pioctl() — Control of Devices

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both OS/390 V2R8

General Format

#define _OPEN_SYS

#include <termios.h>

int w_ioctl(int fildes,

 int cmd,

 int arglen,

 void *arg);

int __w_pioctl(const char *pathname,

 int cmd,

 int arglen,

 void *arg);

ACLs:

#define _OPEN_SYS

#include <termios.h>

#include <sys>

int w_ioctl(int fildes ,

int cmd ,

int arglen ,

void arg);

int __w_pioctl(const char pathname ,

int cmd ,

int arglen ,

void arg);

ACLs Format

#define _OPEN_SYS

#include <termios.h>

#include <sys>

int w_ioctl(int fildes ,

int cmd ,

int arglen ,

void arg);

int __w_pioctl(const char pathname ,

int cmd ,

int arglen ,

void arg);

General Description

The w_ioctl() and __w_pioctl() functions are general entry points for device-specific

commands. The specific actions specified by w_ioctl() and __w_pioctl() vary with

the device, and they are defined by the device driver.

fildes A descriptor for an open character special file (used by w_ioctl).

pathname The pathname of a file (used by __w_pioctl).

cmd The command to be passed to the device driver as an integer

value.

arglen The length of the argument passed to the device driver.

w_ioctl

2444 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

arg The address of the buffer where the argument to be passed to the

device driver is stored.

w_ioctl() and __w_pioctl() pass the cmd, arglen, and arg arguments to the device

driver to be interpreted and processed. When w_ioctl() and __w_pioctl() complete

successfully, the device driver returns arglen and arg, if appropriate.

Note: The __w_pioctl() function has a dependency on the level of the Enhanced

ASCII Extensions. See “Enhanced ASCII Support ” on page 2495 for details.

ACLs Description

The w_ioctl() and __w_pioctl() functions are general entry points for SETFACL and

GETFACL HFS commands. SETFACL is used to set information into an Access

Control List. GETFACL is used to retrieve information from an Access Control List.

fildes A descriptor for an open character special file (used by w_ioctl).

pathname The pathname of a file (used by __w_pioctl).

cmd The command to be passed to the device driver as an integer

value, either SETFACL or GETFACL.

arglen The length of the user buffer passed to the HFS device driver as a

value from 1 to 50,000 bytes. arglen is the combined size of the

struct ACL_buf and the array of struct ACL_entrys.

arg arg specifies the user buffer which is mapped by struct ACL_buf

followed immediately by an array of struct ACL_entrys. See z/OS

UNIX System Services Programming: Assembler Callable Services

Reference for more information about ACL_buf and the ACL_entrys.

 w_ioctl() and __w_pioctl() pass the cmd, arglen, and arg arguments to the device

driver to be interpreted and processed. When w_ioctl() and __w_pioctl() complete

successfully, the device driver returns arglen and arg, if appropriate.

Returned Value

If successful, w_ioctl() returns 0.

If unsuccessful, w_ioctl() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL An incorrect length was specified for arglen. The correct argument

length range is 0 to 50,000.

ENAMETOOLONG

The length of the pathname argument exceeds PATH_MAX, or a

pathname component is longer than NAME_MAX and

{_POSIX_NO_TRUNC} is in effect for that file. For symbolic links,

the length of the pathname string substituted for a symbolic link

exceeds PATH_MAX. PATH_MAX and NAME_MAX values can be

determined by using pathconf().

ENODEV The device does not exist. The function is not supported by the

device driver.

ENOENT Either there is no file named pathname or pathname is an empty

string.

ENOTDIR A component of the pathname prefix is not a directory.

w_ioctl

Chapter 3. Part 3. Library Functions 2445

ENOTTY An incorrect file descriptor was specified. fildes was not a character

special file.

ACLs Returned Value

If successful, w_ioctl() returns 0.

If unsuccessful, w_ioctl() returns −1 and sets errno to one of the following values:

Error Code Description

EBADF The fildes parameter is not a valid file descriptor.

EINVAL The request is invalid or not supported.

EMVSPARM Incorrect parameters were passed to the service.

ENODEV The device is incorrect. The function is not supported by the device

driver.

Example

CELEBW34

/* CELEBW34

 This example shows a general entry point for device−specific commands.

 */

#include <termios.h>

#include <stdio.h>

main() {

 char buf[256];

 int ret;

 memset(buf, 0x00, sizeof(buf));

 if ((ret = w_ioctl(0, 1, sizeof(buf), buf)) != 0)

 perror("w_ioctl() error");

 else

 printf("w_iotctl() returned '%s'\n", buf);

}

Output

w_ioctl() error: Invalid argument

Note: w_ioctl() is dependent upon the file system device driver.

Related Information

v “termios.h” on page 92

v “ioctl() — Control Device” on page 977

v “tcdrain() — Wait Until Output Has Been Transmitted” on page 2138

v “tcflow() — Suspend or Resume Data Flow on a Terminal” on page 2141

v “tcflush() — Flush Input or Output on a Terminal” on page 2144

v “tcgetattr() — Get the Attributes for a Terminal” on page 2147

v “tcgetpgrp() — Get the Foreground Process Group ID” on page 2152

v “tcsendbreak() — Send a Break Condition to a Terminal” on page 2161

v “tcsetattr() — Set the Attributes for a Terminal” on page 2163

v “tcsetpgrp() — Set the Foreground Process Group ID” on page 2179

w_ioctl

2446 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wmemchr() — Locate Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

General Description

Locates the first occurrence of the wide character c in the initial n wide chars of the

object pointed to by s.

If n has the value 0, wmemchr() finds no occurrence of c and returns a NULL

pointer.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the wmemchr()

function in the wchar header available when you compile your program. See Table 4

on page 22 for a list of XPG4 and other feature test macros.

Returned Value

If successful, wmemchr() returns a pointer to the first occurrence of the wide

character c in object s.

If the wide character c does not occur within the first n wide characters of s,

wmemchr() returns the NULL pointer.

Example

#include <stdio>

#include <wchar>

 main()

 {

 wchar_t *in = L"1234ABCD";

 wchar_t *ptr;

 wchar_t fnd = L’A’;

wmemchr

Chapter 3. Part 3. Library Functions 2447

||||

|
|
|

||

|

printf("\nEXPECTED: ABCD");

 ptr = wmemchr(in, L’A’, 6);

 if (ptr == NULL)

 printf("\n** ERROR ** ptr is NULL, char L’A’ not found\n");

 else

 printf("\nRECEIVED: %ls \n",ptr);

 }

Related Information

v “wchar.h” on page 98

v “wmemcmp() — Compare Wide Character” on page 2449

v “wmemcpy() — Copy Wide Character” on page 2451

v “wmemmove() — Move Wide Character” on page 2453

v “wmemset() — Set Wide Character” on page 2455

wmemchr

2448 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wmemcmp() — Compare Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

int wmemcmp(const wchar_t * __restrict__s1,

 const wchar_t * __restrict__s2, size_t n);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

General Description

Compares the first n wide chars of the object pointed to by s1 to the first n wide

chars of the object pointed to by s2.

If n has the value 0, wmemcmp returns 0.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the wmemcmp

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

Returned Value

wmemcmp() returns an integer that is:

< 0 If s1 is less than s2.

= 0 If s1 is equal to s2.

> 0 If s1 is greater than s2.

Example

#include <wchar.h>

#include <stdio.h>

main()

 {

 int ptr;

 wchar_t *in = L"12345678";

 wchar_t *out = L"12AAAAAB";

wmemcmp

Chapter 3. Part 3. Library Functions 2449

||||

|
|
|

||

|

printf("\nGREATER is the expected result");

 ptr = wmemcmp(in, out, 3);

 if (ptr == 0)

 printf("\nArrays are EQUAL %ls %ls \n",in, out);

 else

 {

 if (ptr > 0)

 printf("\nArray %ls GREATER than %ls \n",in, out);

 else

 printf("\nArray %ls LESS than %ls \n",in, out);

 }

 }

Related Information

v “wchar.h” on page 98

v “wmemchr() — Locate Wide Character” on page 2447

v “wmemcpy() — Copy Wide Character” on page 2451

v “wmemmove() — Move Wide Character” on page 2453

v “wmemset() — Set Wide Character” on page 2455

wmemcmp

2450 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wmemcpy() — Copy Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

wchar_t *wmemcpy(wchar_t * __restrict__s1,

 const wchar_t * __restrict__s2, size_t n);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

wchar_t *wmemcpy(wchar_t *s1, const wchar_t *s2, size_t n);

General Description

Copies n wide chars of the object pointed to by s2 to the object pointed to by s1.

Result of the copy is unpredictable if s1 and s2 overlap. If n has the value 0,

wmemcpy copies zero wide characters.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the wmemcpy

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

Returned Value

wmemcpy() returns the value of s1.

Example

#include <wchar.h>

#include <stdio.h>

main()

 {

 wchar_t *in = L"12345678";

 wchar_t *out = L"ABCDEFGH";

 wchar_t *ptr;

 printf("-nExpected result: First 4 chars of in change");

 printf(" and are the same as first 4 chars of out");

 ptr = wmemcpy(in, out, 4);

 if (ptr == in)

wmemcpy

Chapter 3. Part 3. Library Functions 2451

||||

|
|
|

||

|

printf("-nArray in %ls array out %ls -n",in, out);

 else

 {

 printf("-n*** ERROR ***");

 printf(" returned pointer wrong");

 }

 }

Related Information

v “wchar.h” on page 98

v “wmemchr() — Locate Wide Character” on page 2447

v “wmemcmp() — Compare Wide Character” on page 2449

v “wmemmove() — Move Wide Character” on page 2453

v “wmemset() — Set Wide Character” on page 2455

wmemcpy

2452 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wmemmove() — Move Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

General Description

Copies n wide chars of the object pointed to by s2 to the object pointed to by s1.

Copying takes place as if the n wide characters from s2 are first copied into a

temporary array of n wide characters that does not overlay the objects pointed to by

s1 and s2, and then copied from the temporary array into the object pointed to by

s1.

If n has the value 0, wmemmove() copies zero wide characters.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the

wmemmove() function in the wchar header available when you compile your

program. Please see Table 4 on page 22 for a list of XPG4 and other feature test

macros.

Returned Value

wmemmove() returns the value of s1.

Example

#include <wchar.h>

#include <stdio.h>

main()

 {

 wchar_t *in = L"12345678";

 wchar_t *out = L"ABCDEFGH";

 wchar_t *ptr;

wmemmove

Chapter 3. Part 3. Library Functions 2453

||||

|
|
|

||

|

printf("\nExpected result: First 4 chars of in and out the same");

 ptr = wmemmove(in, out, 4);

 if (ptr == in)

 printf("\nArray in %ls array out %ls \n",in, out);

 else

 {

 printf("\n*** ERROR ***");

 printf(" Returned pointer not correct.\n");

 }

 }

Related Information

v “wchar.h” on page 98

v “wmemchr() — Locate Wide Character” on page 2447

v “wmemcmp() — Compare Wide Character” on page 2449

v “wmemcpy() — Copy Wide Character” on page 2451

v “wmemset() — Set Wide Character” on page 2455

wmemmove

2454 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wmemset() — Set Wide Character

Standards

 Standards / Extensions C or C++ Dependencies

ISO C Amendment

C99

Single UNIX Specification, Version 3

both

Format

Non-XPG4

#include <wchar.h>

wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

XPG4

#define _XOPEN_SOURCE

#define _MSE_PROTOS

#include <wchar.h>

wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

General Description

Copies the value of c into the first n wide chars of the object pointed to by s.

If n has the value 0, wmemset() copies zero wide characters.

Special Behavior for XPG4

If you define any feature test macro specifying XPG4 behavior before the statement

in your program source file to include the wchar header, then you must also define

the _MSE_PROTOS feature test macro to make the declaration of the wmemset()

function in the wchar header available when you compile your program. Please see

Table 4 on page 22 for a list of XPG4 and other feature test macros.

Returned Value

wmemset() returns the value of s.

Example

#include <wchar.h>

#include <stdio.h>

 void main()

 {

 wchar_t *in = L"1234ABCD";

 wchar_t *ptr;

 printf("\nEXPECTED: AAAAAACD");

 ptr = wmemset(in, L’A’, 6);

 if (ptr == in)

 printf("\nResults returned - %ls \n",ptr);

 else

 {

wmemset

Chapter 3. Part 3. Library Functions 2455

||||

|
|
|

||

|

printf("\n** ERROR ** wrong pointer returned\n");

 }

 }

Related Information

v “wchar.h” on page 98

v “wmemchr() — Locate Wide Character” on page 2447

v “wmemcmp() — Compare Wide Character” on page 2449

v “wmemcpy() — Copy Wide Character” on page 2451

v “wmemmove() — Move Wide Character” on page 2453

wmemset

2456 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wordexp() — Perform Shell Word Expansions

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both POSIX(ON)

Format

#define _XOPEN_SOURCE

#include <wordexp.h>

int wordexp(const char *__restrict__ words,

 wordexp_t *__restrict__ pwordexp, int flags);

void wordfree(wordexp_t *pwordexp);

General Description

The wordexp() function performs word expansions as described in X/Open CAE

Specification, Commands and Utilities, Issue 4, Version 2 (XCU) Section 2.6 ,

Word Expansions, subject to quoting as in the XCU specification, Section 2.2 ,

Quoting, and places the list of expanded words into the structure pointed to by

pwordexp.

The words argument is a pointer to a string containing one or more words to be

expanded. The expansions will be the same as would be performed by the shell

described by the XCU specification if words were the part of a command line

representing the arguments to a utility. Therefore, words must not contain an

unquoted <newline> or any of the unquoted special shell characters:

 | & ; < >

except in the context of command substitution as specified in the XCU specification,

Section 2.6.3 , Command Substitution. It also must not contain unquoted

parentheses or braces, except in the context of command or variable substitution.

The structure type wordexp_t is defined in the header <wordexp.h> and includes

the following members:

 Member Type Member Name Description

 size_t we_wordc Count of words matched by words.

 char ** we_wordv Pointer to list of expanded words.

 size_t we_offs Slots to reserve at the beginning

 of pwordexp->we_wordv.

The wordexp() function stores the number of generated words into

pwordexp->we_wordc and a pointer to a list of pointers to words in

pwordexp->we_wordv. Each individual field created during field splitting (see the

XCU specification, Section 2.6.5 , Field Splitting) or pathname expansion (see the

XCU specification, Section 2.6.6 , Pathname Expansion) is a separate word in the

pwordexp->we_wordv list. The words are in order as described in the XCU

specification, Section 2.6 , Word Expansions. The first pointer after the last word

pointer will be a NULL pointer. The expansion of special parameters described in

the XCU specification, Section 2.5.2 , Special Parameters is unspecified.

wordexp

Chapter 3. Part 3. Library Functions 2457

||||

|
|
|

||

|

|
|
|
|
|
|
|

|

It is the caller’s responsibility to allocate the storage pointed to by pwordexp. The

wordexp() function allocates the other space as needed, including memory pointed

to by pwordexp->we_wordv. The wordfree() function frees any memory associated

with pwordexp from a previous call to wordexp().

The flags argument is used to control the behavior of wordexp(). The value of flags

is the bitwise inclusive-OR or zero or more of the following constants, which are

defined in <wordexp.h>:

WRDE_APPEND

Append words generated to the ones from a previous call to

wordexp().

WRDE_DOOFFS

Make use of pwordexp->we_offs. If this flag is set,

pwordexp->we_offs is used to specify how many NULL pointers to

add to the beginning of pwordexp->we_wordv. In other words,

pwordexp->we_wordv will point to pwordexp->we_offs NULL

pointers followed by pwordexp->we_wordc word pointers, followed

by a NULL pointer.

WRDE_NOCMD

Fail if command substitution, as specified in the XCU specification,

Section 2.6.3 , Command Substitution, is requested.

WRDE_REUSE

The pwordexp argument was passed to a previous successful call

to wordexp(), and has not been passed to wordfree(). The result will

be the same as if the application had called wordfree() and then

called wordexp() without WRDE_REUSE.

WRDE_SHOWERR

Do not redirect stderr to /dev/null.

WRDE_UNDEF

Report error on an attempt to expand an undefined shell variable.

The WRDE_APPEND flag can be used to append a new set of words to those

generated by a previous call to wordexp(). The following rules apply when two or

more calls to wordexp() are made with the same value of pwordexp and without

intervening calls to wordfree():

1. The first such call must not set WRDE_APPEND. All subsequent calls must set

it.

2. All of the calls must set WRDE_DOOFFS, or all must not set it.

3. After the second and each subsequent call, pwordexp->we_wordv will point to a

list containing the following:

a. zero or more NULL pointers, as specified by WRDE_DOOFFS and

pwordexp->we_offs

b. pointers to the words that were in the pwordexp->we_wordv list before the

call, in the same order as before

c. pointers to the new words generated by the latest call, in the specified order

4. The count returned in pwordexp->we_wordc will be the total number of words

from all of the calls.

5. The application can change any of the fields after a call to wordexp(), but if it

does, it must reset them to the original value before a subsequent call, using

the same wordexp value, to wordfree() or wordexp() with the WRDE_APPEND

or WRDE_REUSE flag.

wordexp

2458 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If words contains an unquoted

 <newline> | & ; < > () { }

in an inappropriate context, wordexp() will fail, and the number of expanded words

will be 0.

Unless WRDE_SHOWERR is set in flags, wordexp() will redirect stderr to /dev/null

for any utilities executed as a result of command substitution while expanding

words. If WRDE_SHOWERR is set, wordexp() may write messages to stderr if

syntax errors are detected while expanding words.

If WRDE_DOOFFS is set, then pwordexp->we_offs must have the same value for

each wordexp() call and wordfree() call using a given pwordexp.

The following constants are defined in <wordexp.h> as error return values:

WRDE_BADCHAR

One of the unquoted characters:

<newline> | & ; < > () { }

appears in words in an inappropriate context.

WRDE_BADVAL

Reference to undefined shell variable when WRDE_UNDEF is set

in flags.

WRDE_CMDSUB

Command substitution requested when WRDE_NOCMD is set in

flags.

WRDE_NOSPACE

Attempt to allocate memory failed.

WRDE_SYNTAX

Shell syntax error, such as unbalanced parentheses or

unterminated string.

WRDE_NOSYS

POSIX shell not available.

WRDE_EPOPEN

wordexp() was invoked in an environment that does not supported

a multi-threaded fork, or wordexp() was invoked from a

multithreaded process in TSO or MVS batch.

WRDE_INTRUPT

wordexp() was interrupted by a signal, such as an alarm. In this event, the

caller may re-issue wordexp().

 For further information about the cause of a failure, please refer to __errno2() and

errno in addition to the above error return values.

Returned Value

If successful, wordexp() returns 0.

If unsuccessful, wordexp() returns a nonzero value, as defined in <wordexp.h> and

described above, to indicate an error. If wordexp() returns the value

wordexp

Chapter 3. Part 3. Library Functions 2459

WRDE_NOSPACE, then pwordexp->we_wordc, and pwordexp->we_wordv will be

updated to reflect any words that were successfully expanded. In other cases, they

will not be modified.

Related Information

v “wordexp.h” on page 100

wordexp

2460 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wordfree() — Free Shell Word Expansion Memory

Standards

 Standards / Extensions C or C++ Dependencies

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _XOPEN_SOURCE

#include <wordexp.h>

int wordexp(const char *words, wordexp_t *pwordexp, int flags);

void wordfree(wordexp_t *pwordexp);

General Description

The wordfree() function frees any memory associated with pwordexp from a

previous call to wordexp(). Please refer to the description of wordexp() for the rules

governing use of wordexp() and wordfree().

Returned Value

wordfree() returns no values.

Related Information

v “wordexp.h” on page 100

wordfree

Chapter 3. Part 3. Library Functions 2461

||||

|
|
|

||

|

__w_pioctl() — Control of Devices

The information for this function is included in “w_ioctl(), __w_pioctl() — Control of

Devices” on page 2444.

__w_pioctl

2462 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

wprintf() — Format and Write Wide Characters

The information for this function is included in “fwprintf(), swprintf(), wprintf() —

Format and Write Wide Characters” on page 729.

wprintf

Chapter 3. Part 3. Library Functions 2463

write() — Write Data on a File or Socket

Standards

 Standards / Extensions C or C++ Dependencies

POSIX.1

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#define _POSIX_SOURCE

#include <unistd.h>

ssize_t write(int fs, const void *buf, size_t N);

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <unistd.h>

ssize_t write(int fs, const void *buf, ssize_t N);

Berkeley Sockets

#define _OE_SOCKETS

#include <unistd.h>

ssize_t write(int fs, const void *buf, ssize_t N);

General Description

Writes N bytes from buf to the file or socket associated with fs. N should not be

greater than INT_MAX (defined in the limits.h header file). If N is zero, write()

simply returns 0 without attempting any other action.

If fs refers to a regular file or any other type of file on which a process can seek,

write() begins writing at the file offset associated with fs. A successful write()

increments the file offset by the number of bytes written. If the incremented file

offset is greater than the previous length of the file, the length of the file is set to

the new file offset.

If fs refers to a file on which a process cannot seek, write() begins writing at the

current position. There is no file offset associated with such a file.

If O_APPEND (defined in the fcntl.h header file) is set for the file, write() sets the

file offset to the end of the file before writing the output.

If there is not enough room to write the requested number of bytes (for example,

because there is not enough room on the disk), write() outputs as many bytes as

the remaining space can hold.

If write() is interrupted by a signal, the effect is one of the following:

v If write() has not written any data yet, it returns −1 and sets errno to EINTR.

v If write() has successfully written some data, it returns the number of bytes it

wrote before it was interrupted.

write

2464 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

Write operations on pipes or FIFO special files are handled in the same way a write

operation on a regular file, with the following exceptions:

v A pipe has no associated file offset, so every write appends to the end of the

pipe.

v If N is less than or equal to PIPE_BUF, the output is not interleaved with data

written by other processes that are writing to the same pipe. If N is greater than

PIPE_BUF bytes, the output can be interleaved with other data (regardless of the

setting of O_NONBLOCK, which is defined in the fcntl.h header file). A write to a

pipe never returns with errno set to EINTR if it has transferred any data.

v If O_NONBLOCK (defined in the fcntl.h header file) is not set, write() may block

process execution until normal completion.

v If O_NONBLOCK is set, write() does not block process execution. If N is less

than or equal to PIPE_BUF, write() succeeds completely and returns the value of

N, or else it writes nothing, sets errno to EAGAIN, and returns −1. If N is greater

than PIPE_BUF, write() writes as many bytes as it can and returns this number

as its result, or else it writes nothing, sets errno to EAGAIN, and returns −1.

With other files that support nonblocking writes and cannot accept data immediately,

the effect is one of the following:

v If O_NONBLOCK is not set, write() blocks until the data can be written.

v If O_NONBLOCK is set, write() does not block the process. If some data can be

written without blocking the process, write() writes what it can and returns the

number of bytes written. Otherwise, it sets errno to EAGAIN and returns −1.

write() causes the signal SIGTTOU to be sent if all of these conditions are true:

v The process is attempting to write to its controlling terminal and TOSTOP is set

as a terminal attribute.

v The process is running in a background process group and the SIGTTOU signal

is not blocked or ignored.

v The process is not an orphan.

A successful write() updates the change and modification times for the file.

If fs refers to a socket, write() is equivalent to send() with no flags set.

Behavior for Sockets

The write() function writes data from a buffer on a socket with descriptor fs. The

socket must be a connected socket. This call writes up to N bytes of data.

Parameter Description

fs The file or socket descriptor.

buf The pointer to the buffer holding the data to be written.

N The length in bytes of the buffer pointed to by the buf parameter.

If there is not enough available buffer space to hold the socket data to be

transmitted, and the socket is in blocking mode, write() blocks the caller until

additional buffer space becomes available. If the socket is in nonblocking mode,

write() returns -1 and sets the error code to EWOULDBLOCK. See “fcntl() —

Control Open File Descriptors” on page 527 or “ioctl() — Control Device” on page

977 for a description of how to set the nonblocking mode.

write

Chapter 3. Part 3. Library Functions 2465

When the socket is not ready to accept data and the process is trying to write data

to the socket:

v Unless FNDELAY or O_NONBLOCK is set, write() blocks until the socket is

ready to accept data.

v If FNDELAY is set, write() returns 0.

v If O_NONBLOCK is set, write() does not block the process. If some data can be

written without blocking the process, write() writes what it can and returns the

number of bytes written. Otherwise, it sets the error code to EAGAIN and returns

-1.

For datagram sockets, this call sends the entire datagram, provided that the

datagram fits into the TCP/IP buffers. Stream sockets act like streams of information

with no boundaries separating data. For example, if an application program wishes

to send 1000 bytes, each call to this function can send 1 byte or 10 bytes or the

entire 1000 bytes. Therefore, application programs using stream sockets should

place this call in a loop, calling this function until all data has been sent.

Special Behavior for C++ and Sockets

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Large Files for HFS

Note: Large Files for HFS behavior is automatic for AMODE 64 applications
Applications that are compiled with the option LANGLVL(LONGLONG) and also

define the Feature Test Macro (FTM) _LARGE_FILES before any headers are

included will enable this function to operate on HFS files that are larger than 2 gig-1

in size. File size and offset fields will be enlarged to 63 bits in width so any other

function operating on this file will have to be enabled with the same FTM.

Returned Value

If successful, write() returns the number of bytes actually written, less than or equal

to N.

A value of 0 or greater indicates the number of bytes sent. However, this does not

assure that data delivery was complete. A connection can be dropped by a peer

socket and a SIGPIPE signal generated at a later time if data delivery is not

complete.

If unsuccessful, write() returns −1 and sets errno to one of the following values:

Error Code Description

EAGAIN Resources temporarily unavailable. Subsequent requests may

complete normally.

EBADF fs is not a valid file or socket descriptor.

ECONNRESET

A connection was forcibly closed by a peer.

EDESTADDRREQ

The socket is not connection-oriented and no peer address is set.

EFAULT Using the buf and N parameters would result in an attempt to

access storage outside the caller’s address space.

write

2466 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EFBIG Writing to the output file would exceed the maximum file size

supported by the implementation.

 An attempt was made to write a file that exceeds the system

established maximum file size or the process’s file size limit.

 The file is a regular file, nbyte is greater than 0 and the starting

position is greater than or equal to the offset maximum established

in the open file description associated with fields.

EINTR write() was interrupted by a signal before it had written any output.

EINVAL The request is invalid or not supported. The STREAM or multiplexer

referenced by fs is linked (directly or indirectly) downstream from a

multiplexer.

EIO The process is in a background process group and is attempting to

write to its controlling terminal, but TOSTOP (defined in the

termios.h header file) is set, the process is neither ignoring nor

blocking SIGTTOU signals, and the process group of the process is

orphaned. An I/O error occurred.

EMSGSIZE The message was too big to be sent as a single datagram.

ENOBUFS Buffer space is not available to send the message.

ENOSPC There is no available space left on the output device.

ENOTCONN The socket is not connected.

ENXIO A hang-up occurred on the STREAM being written to.

EPIPE write() is trying to write to a pipe that is not open for reading by any

other process. This error also generates a SIGPIPE signal. For a

connected stream socket the connection to the peer socket has

been lost.

ERANGE The transfer request size was outside the range supported by the

STREAMS file associated with fs.

EWOULDBLOCK

The socket is in nonblocking mode and data is not available to

write.

A write to a STREAMS file may fail if an error message has been received at the

STREAM head. In this case, errno is set to the value included in the error message.

Note: z/OS UNIX System Services services do not supply any STREAMS devices

or pseudodevices. It is impossible for write() to write any data on a

STREAM. None of the STREAMS errnos will be visible to the invoker. See

“open() — Open a File” on page 1313

Example

CELEBW35

/* CELEBW35

 This example writes a certain amount of bytes to a file, using write().

 */

#define _POSIX_SOURCE

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

write

Chapter 3. Part 3. Library Functions 2467

#include <unistd.h>

#undef _POSIX_SOURCE

#include <stdio.h>

#define mega_string_len 1000000

main() {

 char *mega_string;

 int fd, ret;

 char fn[]="write.file";

 if ((mega_string = (char*) malloc(mega_string_len)) == NULL)

 perror("malloc() error");

 else if ((fd = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 memset(mega_string, '0', mega_string_len);

 if ((ret = write(fd, mega_string, mega_string_len)) == −1)

 perror("write() error");

 else printf("write() wrote %d bytes\n", ret);

 close(fd);

 unlink(fn);

 }

}

Output

write() wrote 1000000 bytes

Related Information

v “fcntl.h” on page 45

v “termios.h” on page 92

v “unistd.h” on page 96

v “connect() — Connect a Socket” on page 325

v “creat() — Create a New File or Rewrite an Existing One” on page 366

v “dup() — Duplicate an Open File Descriptor” on page 449

v “fcntl() — Control Open File Descriptors” on page 527

v “fwrite() — Write Items” on page 731

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “lseek() — Change the Offset of a File” on page 1161

v “open() — Open a File” on page 1313

v “pipe() — Create an Unnamed Pipe” on page 1348

v “pwrite() — Write Data on a File or Socket Without File Pointer Change” on page

1583

v “read() — Read From a File or Socket” on page 1602

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “recv() — Receive Data on a Socket” on page 1628

v “recvfrom() — Receive Messages on a Socket” on page 1631

v “recvmsg() — Receive Messages on a Socket and Store in an Array of Message

Headers” on page 1635

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “send() — Send Data on a Socket” on page 1740

v “sendmsg() — Send Messages on a Socket” on page 1747

v “sendto() — Send Data on a Socket” on page 1752

v “setsockopt() — Set Options Associated with a Socket” on page 1843

write

2468 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

v “socket() — Create a Socket” on page 1970

v “writev() — Write Data on a File or Socket from an Array” on page 2472

write

Chapter 3. Part 3. Library Functions 2469

__writedown() — Query or change the setting of the write-down

privilege of an ACEE.

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX both z/OS V1R5

Format

#define _OPEN_SYS

#include <sys/stat.h>

int __writedown (int writedownop, int writedownscope);

General Description

The __writedown() function will enable callers to query or change the setting of the

write-down privilege of an ACEE (access control environment element) at the

address space level or task level. User’s having write-down privilege can write data

to a resource protected by a seclabel of lower authority then that of the seclabel

represented in the address space level ACEE.

To activate the write-down privilege the userid in the target ACEE must be permitted

to the the IRR.WRITEDOWN.BYUSER profile in the FACILITY class. The FACILITY

class must be active and RACLISTed, and the SETROPTS MLS option must be

active.

See z/OS V1R5 Planning for Multilevel Security for more details on the usage of

this function.

writedownop

The operation to be performed

__WD_QUERY

Query the current setting of the write-down privelege

__WD_ACTIVATE

Activate the write-down privilege

__WD_INACTIVATE

Inactivate the write-down privilage

__WD_RESET

Reset the write-down privilage to the users original default value.

writedownscope

Scope of the write-down operation.

__WD_SCOPE_AS

Perform write-down operation on the address space level ACEE.

__WD_SCOPE_THD

Perform write-down operation on the task level ACEE.

Returned Value

For the __writedown() activate, inactivate, and reset operations:

If successful, __writedown() returns 0.

__writedown

2470 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

For the __writedown() query operation:

If successful, __writedown() returns one of the following values indicating the state

of the current setting of the writedown privelege.

__WD_IS_ACTIVE

The write-down privelege is active for the ACEE.

__WD_IS_INACTIVE

The write-down privelege is inactive for the ACEE.

For all __writedown() operations:

If unsuccessful, all __writedown() operations return -1 and sets errno to EINVAL.

Related Information

__writedown

Chapter 3. Part 3. Library Functions 2471

writev() — Write Data on a File or Socket from an Array

Standards

 Standards / Extensions C or C++ Dependencies

XPG4.2

Single UNIX Specification, Version 3

both

Format

X/Open

#define _XOPEN_SOURCE_EXTENDED 1

#include <sys/uio.h>

ssize_t writev(int fs, const struct iovec *iov, int iovcnt);

Berkeley Sockets

#define _OE_SOCKETS

#include <sys/uio.h>

int writev(int fs, struct iovec *iov, int iovcnt);

General Description

The writev() function writes data to a file or socket with descriptor fs from a set of

buffers. The data is gathered from the buffers specified by iov[0]...iov[iovcnt−1].

When the descriptor refers to a socket, it must be a connected socket.

Parameter Description

fs The file or socket descriptor.

iov A pointer to an array of iovec buffers.

iovcnt The number of buffers pointed to by the iov parameter.

The iovec structure is defined in uio.h and contains the following fields:

Element Description

iov_base Pointer to the buffer.

iov_len Length of the buffer.

This call writes the sum of the iov_len bytes of data.

If there is not enough available buffer space to hold the socket data to be

transmitted, and the socket is in blocking mode, writev() blocks the caller until

additional buffer space becomes available. If the socket is in a nonblocking mode,

writev() returns -1 and sets the error code to EWOULDBLOCK. See “fcntl() —

Control Open File Descriptors” on page 527 or “ioctl() — Control Device” on page

977 for a description of how to set nonblocking mode.

When the socket is not ready to accept data and the process is trying to write data

to the socket:

v Unless FNDELAY or O_NONBLOCK is set, writev() blocks until the socket is

ready to accept data.

v If FNDELAY is set, writev() returns a 0.

writev

2472 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
||

|

v If O_NONBLOCK is set, writev() does not block the process. If some data can be

written without blocking the process, writev() writes what it can and returns the

number of bytes written. Otherwise, it sets the error code to EAGAIN and returns

-1.

For datagram sockets, this call sends the entire datagram, provided that the

datagram fits into the TCP/IP buffers. Stream sockets act like streams of information

with no boundaries separating data. For example, if an application program wishes

to send 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or the

entire 1000 bytes. Therefore, application programs using stream sockets should

place this call in a loop, calling this function until all data has been sent.

Special Behavior for C++

To use this function with C++, you must use the _XOPEN_SOURCE_EXTENDED 1

feature test macro.

Returned Value

If successful, writev() returns the number of bytes written from the buffer.

A value of 0 or greater indicates the number of bytes sent, however, this does not

assure that data delivery was complete. A connection can be dropped by a peer

socket and a SIGPIPE signal generated at a later time if data delivery is not

complete.

If unsuccessful, writev() returns −1 and sets errno to one of the following values:

Error Code Description

EAGAIN Resources temporarily unavailable. Subsequent requests may

complete normally.

EBADF fs is not a valid file or socket descriptor.

ECONNRESET

A connection was forcibly closed by a peer.

EDESTADDRREQ

The socket is not connection-oriented and no peer address is set.

EFAULT Using the iov and iovcnt parameters would result in an attempt to

access storage outside the caller’s address space.

EINTR A signal interrupted writev() before any data was transmitted.

EINVAL An incorrect value for iocvnt was detected.

EMSGSIZE The message was too big to be sent as a single datagram.

ENOBUFS Buffer space is not available to send the message.

ENOTCONN The socket is not connected.

EPIPE For a connected stream socket the connection to the peer socket

has been lost. A SIGPIPE signal is sent to the calling process.

EPROTOTYPE

The protocol is the wrong type for this socket. A SIGPIPE signal is

sent to the calling process.

writev

Chapter 3. Part 3. Library Functions 2473

EWOULDBLOCK

The socket is in nonblocking mode and data buffers are not

available.

Related Information

v “sys/uio.h” on page 91

v “connect() — Connect a Socket” on page 325

v “fcntl() — Control Open File Descriptors” on page 527

v “getsockopt() — Get the Options Associated with a Socket” on page 861

v “ioctl() — Control Device” on page 977

v “read() — Read From a File or Socket” on page 1602

v “readv() — Read Data on a File or Socket and Store in a Set of Buffers” on page

1617

v “recv() — Receive Data on a Socket” on page 1628

v “recvfrom() — Receive Messages on a Socket” on page 1631

v “recvmsg() — Receive Messages on a Socket and Store in an Array of Message

Headers” on page 1635

v “select(), pselect() — Monitor Activity on Files/Sockets and Message Queues” on

page 1715

v “selectex() — Monitor Activity on Files/Sockets and Message Queues” on page

1725

v “send() — Send Data on a Socket” on page 1740

v “sendmsg() — Send Messages on a Socket” on page 1747

v “sendto() — Send Data on a Socket” on page 1752

v “setsockopt() — Set Options Associated with a Socket” on page 1843

v “socket() — Create a Socket” on page 1970

v “write() — Write Data on a File or Socket” on page 2464

writev

2474 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

__wsinit() — Reinitialize Writable Static

Standards

 Standards / Extensions C or C++ Dependencies

C Library both

Format

#include <unistd.h>

int __wsinit(void (*func_ptr)());

General Description

The __wsinit() function reinitializes the writable static area of a module that was

loaded by the fetch() library call. func_ptr must be a valid fetch pointer returned by

fetch() or fetchep(). If the module contains C++, __wsinit() first runs any C++ static

destructors, then __wsinit() runs the static constructors that are present in the load

module.

Program variables with the static or extern storage class and writable strings

receive the initial value defined in the program, if any initial value was assigned.

The C header files contain external variable declarations for those variables defined

by the POSIX, XPG4 and XPG4.2 standards. If the fetched module contains these

variables, __wsinit() reinitializes them as described in z/OS XL C/C++ Programming

Guide.

Returned Value

If successful, __wsinit() returns 0 .

If unsuccessful, __wsinit() returns -1 and sets errno to one of the following values:

Error Code Description

EINVAL func_ptr is not a valid fetch pointer.

Related Information

v “unistd.h” on page 96

v “fetch() — Get a Load Module” on page 565

__wsinit

Chapter 3. Part 3. Library Functions 2475

w_statfs() — Get the File System Status

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#include <sys/statfs.h>

int w_statfs(const char *filesystem, struct w_statfs *statbuf, size_t length);

General Description

Gets status about a specific file system.

filesystem The name of the file system for which status is being retrieved. This

file system name can be one of the following:

v The name specified in the FILESYSTEM parameter of the ROOT

or MOUNT statements in the BPXPRMxx parmlib member.

v The name specified in a TSO/E MOUNT command.

v The name returned on a previous call to w_getmntent().

statbuf A buffer that the status information is put into. The status

information is mapped by the sys/statfs.h header file.

int statfs_len Length of statfs

int statfs_blksize Block size

unsigned int statfs_total_space

Total space in block size units

unsigned int statfs_used_space

Allocated space in block size units

unsigned int statfs_free_space Space available to unprivileged

users in block size units

length The length of the buffer. The length of the buffer and the length of

the structure are compared, and the shorter of the two is used to

determine how much information to return in the buffer.

If the buffer length is zero, only the return value is returned. A process can use a

length of zero to detect if a file system exists or not.

Special Behavior for XPG4.2:

w_statfs() is replaced by w_statvfs().

Returned Value

If successful, w_statfs() returns the length of the data in the buffer.

If unsuccessful, w_statfs() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL A parameter was incorrectly specified.

w_statfs

2476 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Example

CELEBW36

/* CELEBW36 */

#define _OPEN_SYS

#include <sys/statfs.h>

#include <stdio.h>

main() {

 char fs[]="POSIX.ROOT.FS";

 struct w_statfs buf;

 if (w_statfs(fs, &buf, sizeof(buf)) == −1)

 perror("w_statfs() error");

 else {

 printf("each block in %s is %d bytes big\n", fs,

 buf.statfs_blksize);

 printf("there are %d blocks in use out of a total of %d\n",

 buf.statfs_used_space, buf.statfs_total_space);

 printf("in bytes, that's %.0f bytes used out of a total of %.0f\n",

 ((double)buf.statfs_used_space * buf.statfs_blksize),

 ((double)buf.statfs_total_space * buf.statfs_blksize));

 }

}

Output

each block in POSIX.ROOT.FS is 4096 bytes big

there are 2089 blocks in use out of a total of 2400

in bytes, that’s 8556544 bytes used out of a total of 9830400

Related Information

v “sys/statfs.h” on page 89

v “mount() — Make a File System Available” on page 1241

v “w_getmntent() — Get Information on Mounted File Systems” on page 2438

w_statfs

Chapter 3. Part 3. Library Functions 2477

w_statvfs() — Get the File System Status

Standards

 Standards / Extensions C or C++ Dependencies

z/OS UNIX System Services both

Format

#define _OPEN_SOURCE 2

#include <sys/statvfs.h>

int w_statvfs(const char *filesystem, struct statvfs *buffer, size_t buflen);

General Description

The w_statvfs() function gets status about a specific file system.

filesystem The name of the file system for which status is being retrieved. This

file system name can be one of the following:

v The name specified in the FILESYSTEM parameter of the ROOT

or MOUNT statements in the BPXPRMxx parmlib member.

v The name specified in a TSO/E MOUNT command.

v The name returned on a previous call to w_getmntent().

buffer A buffer that the status information is put into. The information is

returned in a statvfs structure, as defined in the sys/statvfs.h

header file. The elements of this structure are described in “statvfs()

— Get File System Information” on page 2012.

buflen The length of the buffer. The length of the buffer and the length of

the structure are compared, and the shorter of the two is used to

determine how much information to return in the buffer.

 If the buffer length is zero, only the return value is returned. A

process can use a length of zero to detect if a file system exists or

not.

Returned Value

If successful, w_statvfs() returns the length of the data in the buffer.

If unsuccessful, w_statvfs() returns −1 and sets errno to one of the following values:

Error Code Description

EINVAL A parameter was specified incorrectly. For example, the file system

name (filesystem) was not found.

Example

#define _OPEN_SOURCE 2

#include <sys/statvfs.h>

#include <stdio.h>

main() {

 char fs[]="POSIX.ROOT.FS";

 struct statvfs buf;

 if (w_statvfs(fs, &buf, sizeof(buf)) == -1)

w_statvfs

2478 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

perror("w_statvfs() error");

 else {

 printf("each block in %s is %d bytes big\n", fs,

 buf.f_bsize);

 printf("there are %d blocks available out of a total of %d\n",

 buf.f_bavail, buf.f_blocks);

 printf("in bytes, that’s %.0f bytes free out of a total of %.0f\n",

 ((double)buf.f_bavail * buf.f_bsize),

 ((double)buf.f_blocks * buf.f_bsize));

 }

}

Output

each block in POSIX.ROOT.FS is 4096 bytes big

there are 2089 blocks available out of a total of 2400

in bytes, that’s 8556544 bytes free out of a total of 9830400

Related Information

v “sys/statvfs.h” on page 89

v “fstatvfs() — Get File System Information” on page 707

v “mount() — Make a File System Available” on page 1241

v “statvfs() — Get File System Information” on page 2012

v “w_getmntent() — Get Information on Mounted File Systems” on page 2438

w_statvfs

Chapter 3. Part 3. Library Functions 2479

y0(), y1(), yn() — Bessel Functions of the Second Kind

Standards

 Standards / Extensions C or C++ Dependencies

SAA

XPG4

XPG4.2

Single UNIX Specification, Version 3

both

Format

#include <math.h>

double y0(double x);

double y1(double x);

double yn(int n, double x);

Compiler Option

LANGLVL(SAA), LANGLVL(SAA2), or LANGLVL(EXTENDED)

General Description

Bessel functions are solutions to certain types of differential equations.

The y0(), y1(), and yn() functions are Bessel functions of the second kind, for orders

0, 1, and n, respectively. The argument x must be positive. The argument n should

be greater than or equal to zero. If n is less than zero, there will be a negative

exponent in the result.

Note: This function works in both IEEE Binary Floating-Point and hexadecimal

floating-point formats. See “IEEE Binary Floating-Point ” on page 108 for

more information about IEEE Binary Floating-Point.

Returned Value

If successful, the function returns the calculated value.

For y0(), y1(), or yn(), if x is negative, the function sets errno to EDOM and returns

-HUGE_VAL.

For y0(), y1(), or yn(), if x causes overflow, the function sets errno to ERANGE and

returns -HUGE_VAL.

Special Behavior for IEEE

If x is negative, y0(), y1(), and yn() return the value NaNQ. If x is 0, y0(), y1(), and

yn() return the value -HUGE_VAL. In all cases, errno remains unchanged.

Example

CELEBY01

Bessel y functions

2480 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

||||

|
|
|
|

||

|

/* CELEBY01

 This example computes y to be the order 0 Bessel function of the first

 kind for x and z to be the order 3 Bessel function of the second kind for x.

 */

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x, y, z;

 x = 4.27;

 y = y0(x); /* y = −0.3660 is the order 0 bessel */

 /* function of the first kind for x */

 z = yn(3,x); /* z = −0.0875 is the order 3 bessel */

 /* function of the second kind for x */

 printf("x = %f\n y = %f\n z = %f\n", x, y, z);

}

Related Information

v “math.h” on page 60

v “erf(), erfc(), erff(), erfl(), erfcf(), erfcl() — Calculate Error and Complementary

Error Functions” on page 478

v “gamma() — Calculate Gamma Function” on page 736

v “j0(), j1(), jn() — Bessel Functions of the First Kind” on page 1053

Bessel y functions

Chapter 3. Part 3. Library Functions 2481

Library Functions for the System Programming C (SPC) Facilities

Restriction: The SPC facility is not supported in AMODE 64.

The library functions specific to the System Programming C (SPC) environment are

described in z/OS XL C/C++ Programming Guide. These system programming

functions are as follows:

v __xhotc()

v __xhotl()

v __xhott()

v __xhotu()

v __xregs()

v __xsacc()

v __xsrvc()

v __xusr()

v __xusr2()

v __24malc()

v __4kmalc()

System Programming C Facilities

2482 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Appendix A. XL C/C++ Macros

You can use the macros listed here to write programs that use built-in services of

the z/OS XL C/C++ product. The general purpose macros, labelled General, are

predefined macros that are either ANSI-standard macros or extensions to the

Systems Application Architecture (SAA) definition. The internal-use-only macros,

labelled Internal, are developed by IBM to provide you with additional z/OS XL

C/C++ functionality. Internal macros are defined in corresponding include files.

 Table 60. C/C++ Macros: A - E

Macro Include File General or Internal

ABDAY_1 nl_langinfo.h General

ABDAY_2 nl_langinfo.h General

ABDAY_3 nl_langinfo.h General

ABDAY_4 nl_langinfo.h General

ABDAY_5 nl_langinfo.h General

ABDAY_6 nl_langinfo.h General

ABDAY_7 nl_langinfo.h General

__abendcode signal.h General

ABMON_1 nl_langinfo.h General

ABMON_10 nl_langinfo.h General

ABMON_11 nl_langinfo.h General

ABMON_12 nl_langinfo.h General

ABMON_2 nl_langinfo.h General

ABMON_3 nl_langinfo.h General

ABMON_4 nl_langinfo.h General

ABMON_5 nl_langinfo.h General

ABMON_6 nl_langinfo.h General

ABMON_7 nl_langinfo.h General

ABMON_8 nl_langinfo.h General

ABMON_9 nl_langinfo.h General

__abnd_i signal.h General

_ABS(x) math.h Internal

abs(x) stdlib.h General

acos(x) math.h General

AM_STR nl_langinfo.h General

__amrc stdio.h General

__amrc_i stdio.h Internal

__APPEND stdio.h General

asin(x) math.h General

__assert assert.h Internal

assert(expr) assert.h General

assert(ignore) assert.h General

atan(x) math.h General

atan2(x,y) math.h General

__B dynit.h General

B dynit.h General

__BINARY stdio.h General

__BSAM_CLOSE stdio.h General

__BSAM_CLOSE_T stdio.h General

__BSAM_NOTE stdio.h General

__BSAM_OPEN stdio.h General

__BSAM_POINT stdio.h General

__BSAM_READ stdio.h General

© Copyright IBM Corp. 1996, 2007 2483

Table 60. C/C++ Macros: A - E (continued)

Macro Include File General or Internal

__BSAM_WRITE stdio.h General

BUFSIZ stdio.h General

cdump(x) ctest.h General

__CELMSGF_WRITE stdio.h General

CHAR_BIT limits.h General

CHAR_MAX limits.h General

CHAR_MIN limits.h General

__cics cics.h Internal

__cics_CD cics.h Internal

CLK_TCK time.h General

CLOCKS_PER_SEC time.h General

__CLOSE dynit.h General

clrmemf(x) stdio.h General

__CMS_CLOSE stdio.h General

__CMS_OPEN stdio.h General

__CMS_READ stdio.h General

__CMS_STATE stdio.h General

__CMS_WRITE stdio.h General

__cntrl(c) stdio.h Internal

CODESET nl_langinfo.h General

__CONTIG dynit.h General

cos(x) math.h General

cosh(x) math.h General

CRNCYSTR nl_langinfo.h General

csnap(x) ctest.h General

ctdli ims.h General

ctest(x) ctest.h General

__ctest__ ctest.h Internal

ctime(t) time.h General

ctrace(x) ctest.h General

__ctype ctype.h Internal

__ctype_i ctype.h Internal

__ctypec ctype.h Internal

__ctypec_i ctype.h Internal

__CURR stdarg.h Internal

__CURRENT stdio.h General

__CURRENT_LOWER stdio.h General

__cust_def ctype.h Internal

__CYL dynit.h General

D dynit.h General

D_FMT nl_langinfo.h General

D_T_FMT nl_langinfo.h General

DAY_1 nl_langinfo.h General

DAY_2 nl_langinfo.h General

DAY_3 nl_langinfo.h General

DAY_4 nl_langinfo.h General

DAY_5 nl_langinfo.h General

DAY_6 nl_langinfo.h General

DAY_7 nl_langinfo.h General

DBL_DIG float.h General

__dbl_eps float.h Internal

DBL_EPSILON float.h General

__dbl_flts_i float.h Internal

2484 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 60. C/C++ Macros: A - E (continued)

Macro Include File General or Internal

DBL_MANT_DIG float.h General

DBL_MAX float.h General

DBL_MAX_EXP float.h General

DBL_MAX_10_EXP float.h General

DBL_MIN float.h General

DBL_MIN_EXP float.h General

DBL_MIN_10_EXP float.h General

__DEF_CLASS dynit.h General

difftime(t1, t0) time.h General

__DISK dynit.h General

__DISP_CATLG dynit.h General

__DISP_DELETE dynit.h General

__DISP_KEEP dynit.h General

__DISP_MOD dynit.h General

__DISP_NEW dynit.h General

__DISP_OLD dynit.h General

__DISP_SHR dynit.h General

__DISP_UNCATLG dynit.h General

DOMAIN math.h General

__DSORG_DA dynit.h General

__DSORG_DAU dynit.h General

__DSORG_GS dynit.h General

__DSORG_IS dynit.h General

__DSORG_ISU dynit.h General

__DSORG_PO dynit.h General

__DSORG_POU dynit.h General

__DSORG_PS dynit.h General

__DSORG_PSU dynit.h General

__DSORG_unknown dynit.h General

__DSORG_VSAM dynit.h General

__DUMMY stdio.h General

__DUMMY_DSN dynit.h General

dynalloc(x) dynit.h General

dynfree(x) dynit.h General

dyninit(__dynp) dynit.h General

__dynit dynit.h Internal

EACTIVE mtf.h General

EAUTOALC mtf.h General

EBADLNKG mtf.h General

EDOM errno.h General

EENTRY mtf.h General

EINACTIVE mtf.h General

EMODFIND mtf.h General

EMODFMT mtf.h General

EMODREAD mtf.h General

ENAME2LNG mtf.h General

ENOMEM mtf.h General

EOF stdio.h General

ERANGE errno.h General

erf(x) math.h General

erfc(x) math.h General

errno errno.h General

__errno_a errno.h Internal

Appendix A. XL C/C++ Macros 2485

Table 60. C/C++ Macros: A - E (continued)

Macro Include File General or Internal

__errno_i errno.h Internal

__errnoflg errno.h Internal

__errnoh errno.h Internal

__ESDS stdio.h General

__ESDS_PATH stdio.h General

ESUBCALL mtf.h General

ETASKABND mtf.h General

ETASKFAIL mtf.h General

ETASKID mtf.h General

ETASKNUM mtf.h General

EWRONGOS mtf.h General

EXIT_FAILURE stdlib.h General

EXIT_SUCCESS stdlib.h General

exp(x) math.h General

 Table 61. C/C++ Macros: F - M

Macro Include File General or Internal

__F dynit.h General

F dynit.h General

fabs(x) math.h General

__FB dynit.h General

FB dynit.h General

__FBS dynit.h General

FBS dynit.h General

fdelrec(x) stdio.h General

fetch(x) stdlib.h General

fetchep(x) stdlib.h General

__FILE assert.h Internal

FILENAME_MAX stdio.h General

fldata(x,y,z) stdio.h General

__floath float.h Internal

flocate(w,x,y,z) stdio.h General

FLT_DIG float.h General

__flt_eps float.h Internal

__flt_eps_i float.h Internal

FLT_EPSILON float.h General

FLT_MANT_DIG float.h General

FLT_MAX float.h General

FLT_MAX_EXP float.h General

FLT_MAX_10_EXP float.h General

FLT_MIN float.h General

FLT_MIN_EXP float.h General

FLT_MIN_10_EXP float.h General

FLT_RADIX float.h General

FLT_ROUNDS float.h General

FOPEN_MAX stdio.h General

fupdate(x,y,z) stdio.h General

gamma(x) math.h General

getc(p) stdio.h General

__getc(p) stdio.h Internal

getchar(c) stdio.h General

__gtab(x) stdio.h Internal

2486 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 61. C/C++ Macros: F - M (continued)

Macro Include File General or Internal

__gtca() assert.h Internal

__HFS stdio.h General

__HIPERSPACE stdio.h General

__HOLDQ dynit.h General

__HSP_CREATE stdio.h General

__HSP_DELETE stdio.h General

__HSP_EXTEND stdio.h General

__HSP_READ stdio.h General

__HSP_WRITE stdio.h General

HUGE math.h General

HUGE_VAL math.h General

iconv iconv.h General

__ims ims.h Internal

__imspcb_a ims.h Internal

INT_MAX limits.h General

INT_MIN limits.h General

__INTERCEPT_READ stdio.h General

__INTERCEPT_WRITE stdio.h General

__IO_DEVTYPE stdio.h General

__IO_INIT stdio.h General

__IO_RDJFCB stdio.h General

_IOFBF stdio.h General

_IOLBF stdio.h General

__ISALNUM ctype. and wchar.h Internal

isalnum(c) ctype.h General

__isalnum(c) ctype.h Internal

__ISALPHA ctype. and wchar.h Internal

isalpha(c) ctype.h General

__isalpha(c) ctype.h Internal

isblank ctype.h General

__ISBLANK ctype. and wchar.h Internal

iscics cics.h General

__ISCNTRL ctype. and wchar.h Internal

iscntrl(c) ctype.h General

__iscntrl(c) ctype.h Internal

__ISDIGIT ctype. and wchar.h Internal

isdigit(c) ctype.h General

__isdigit(c) ctype.h Internal

__ISGRAPH ctype. and wchar.h Internal

isgraph(c) ctype.h General

__isgraph(c) ctype.h Internal

islower(c) ctype.h General

__islower(c) ctype.h Internal

__ISPRINT ctype. and wchar.h Internal

isprint(c) ctype.h General

__isprint(c) ctype.h Internal

__ISPUNCT ctype. and wchar.h Internal

ispunct(c) ctype.h General

__ispunct(c) ctype.h Internal

__ISSPACE ctype. and wchar.h Internal

isspace(c) ctype.h General

__isspace(c) ctype.h Internal

__ISUPPER ctype. and wchar.h Internal

Appendix A. XL C/C++ Macros 2487

Table 61. C/C++ Macros: F - M (continued)

Macro Include File General or Internal

isupper(c) ctype.h General

__isupper(c) ctype.h Internal

iswalnum wchar.h General

iswalpha wchar.h General

iswcntrl wchar.h General

iswctype wchar.h General

iswdigit wchar.h General

iswgraph wchar.h General

iswlower wchar.h General

iswprint wchar.h General

iswpunct wchar.h General

iswspace wchar.h General

iswupper wchar.h General

iswxdigit wchar.h General

isxdigit(c) ctype.h General

__isxdigit(c) ctype.h Internal

__KEY_EQ stdio.h General

__KEY_EQ_BWD stdio.h General

__KEY_FIRST stdio.h General

__KEY_GE stdio.h General

__KEY_LAST stdio.h General

__KSDS stdio.h General

__KSDS_PATH stdio.h General

L_tmpnam stdio.h General

LC_ALL locale.h General

LC_C locale.h General

LC_C_FRANCE locale.h General

LC_C_GERMANY locale.h General

LC_C_ITALY locale.h General

LC_C_SPAIN locale.h General

LC_C_UK locale.h General

LC_C_USA locale.h General

LC_COLLATE locale.h General

LC_CTYPE locale.h General

LC_MONETARY locale.h General

LC_NUMERIC locale.h General

LC_SYNTAX locale.h General

LC_TIME locale.h General

LC_TOD locale.h General

LDBL_DIG float.h General

__ldbl_eps float.h Internal

LDBL_EPSILON float.h General

__ldbl_flts_i float.h Internal

LDBL_MANT_DIG float.h General

LDBL_MAX float.h General

LDBL_MAX_EXP float.h General

LDBL_MAX_10_EXP float.h General

LDBL_MIN float.h General

LDBL_MIN_EXP float.h General

LDBL_MIN_10_EXP float.h General

LEAWI_INCLUDED leawi.h Internal

__limits limits.h Internal

__locale locale.h Internal

2488 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 61. C/C++ Macros: F - M (continued)

Macro Include File General or Internal

log(x) math.h General

log10(x) math.h General

__LOWER stdio.h General

M dynit.h General

M_E math.h General

M_LN10 math.h General

M_LN2E math.h General

M_LOG math.h General

M_LOG10E math.h General

M_PI math.h General

M_PI_2 math.h General

M_PI_4 math.h General

M_SQRT1_2 math.h General

M_SQRT2 math.h General

M_1_PI math.h General

M_2_PI math.h General

M_2_SQRTPI math.h General

M_2PI math.h General

__math math.h Internal

__max_flt math.h Internal

__max_flts_i float.h Internal

MAXTASK mtf.h General

MB_CUR_MAX stdlib.h General

MB_LEN_MAX limits.h General

memchr(x,y,z) string.h General

memcmp(x,y,z) string.h General

memcpy(x,y,z) string.h General

memset(x,y,z) string.h General

__min_flts float.h Internal

__min_flts_i float.h Internal

MON_1 nl_langinfo.h General

MON_2 nl_langinfo.h General

MON_3 nl_langinfo.h General

MON_4 nl_langinfo.h General

MON_5 nl_langinfo.h General

MON_6 nl_langinfo.h General

MON_7 nl_langinfo.h General

MON_8 nl_langinfo.h General

MON_9 nl_langinfo.h General

MON_10 nl_langinfo.h General

MON_11 nl_langinfo.h General

MON_12 nl_langinfo.h General

__MSGFILE stdio.h General

MTF_ALL mtf.h General

MTF_ANY mtf.h General

MTF_OK mtf.h General

__mtfh mtf.h Internal

 Table 62. C/C++ Macros: N - Y

Macro Include File General or Internal

__NEXT stdarg.h Internal

__nextword(base) stdarg.h Internal

Appendix A. XL C/C++ Macros 2489

Table 62. C/C++ Macros: N - Y (continued)

Macro Include File General or Internal

__NL_NUM_ITEMS nl_langinfo.h Internal

NOEXPR nl_langinfo.h General

__NOTVSAM stdio.h General

NULL stddef.h General

offsetof(x,y) stddef.h General

OMIT_FC leawi.h General

__osplist stdlib.h General

__OTHER stdio.h General

OVERFLOW math.h General

PCB_STRUCT(key_len ims.h General

__pcblist ims.h General

__PCBLIST_INDEX ims.h Internal

__PERM dynit.h General

PLOSS math.h General

PM_STR nl_langinfo.h General

pow(x,y) math.h General

__PRINTER dynit.h General

__psizeof(type) stdarg.h Internal

putc(c, p) stdio.h General

__putc(c, p) stdio.h Internal

putchar(c) stdio.h General

RADIXCHAR nl_langinfo.h General

RAND_MAX stdlib.h General

__RBA_EQ stdio.h General

__RBA_EQ_BWD stdio.h General

__READ stdio.h General

__RECORD stdio.h General

REG_BADBR regex.h General

REG_BADPT regex.h General

REG_BADRPT regex.h General

REG_EBOL regex.h General

REG_EBRACE regex.h General

REG_EBRACK regex.h General

REG_ECHAR regex.h General

REG_ECOLLATE regex.h General

REG_ECTYPE regex.h General

REG_EEOL regex.h General

REG_EESCAPE regex.h General

REG_EPAREN regex.h General

REG_ERANGE regex.h General

REG_ESPACE regex.h General

REG_NOMATCH regex.h General

__RELEASE dynit.h General

release(x) stdlib.h General

__ROUND dynit.h General

__RRDS stdio.h General

__rsn_i signal.h Internal

__rsncode signal.h General

__R1 stdlib.h General

S dynit.h General

SCHAR_MAX limits.h General

SCHAR_MIN limits.h General

SEEK_CUR stdio.h General

2490 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 62. C/C++ Macros: N - Y (continued)

Macro Include File General or Internal

SEEK_END stdio.h General

SEEK_SET stdio.h General

__setjmp setjmp.h Internal

setjmp(x) setjmp.h General

SHRT_MAX limits.h General

SHRT_MIN limits.h General

SIG_DFL signal.h General

SIG_ERR signal.h General

SIG_IGN signal.h General

SIG_PROMOTE signal.h General

SIGABND signal.h General

SIGABRT signal.h General

SIGFPE signal.h General

SIGILL signal.h General

SIGINT signal.h General

__signal signal.h Internal

SIGSEGV signal.h General

SIGTERM signal.h General

SIGUSR1 signal.h General

SIGUSR2 signal.h General

sin(x) math.h General

SING math.h General

sinh(x) math.h General

__size_t time.h Internal

__spc spc.h Internal

sqrt(x) math.h General

__stdarg stdarg.h Internal

__stddef stddef.h Internal

stderr assert.h General

__stderr_i assert.h Internal

stdin stdio.h General

__stdin_i stdio.h Internal

__stdio stdio.h Internal

__stdlib stdlib.h Internal

stdout stdio.h General

__stdout_i stdio.h Internal

strcat(x,y) string.h General

strchr(x,y) string.h General

strcmp(x,y) string.h General

strcpy(x,y) string.h General

__string string.h Internal

strlen(x) string.h General

strrchr(x,y) string.h General

__SVC99 stdio.h Internal

svc99(x) stdio.h General

__SVC99_ALLOC stdio.h General

__SVC99_ALLOC_NEW stdio.h General

__sysplist stdlib.h General

__sysplist_i stdlib.h Internal

__SYSPLIST_INDEX stdlib.h Internal

T_FMT nl_langinfo.h General

T_FMT_AMPM nl_langinfo.h General

tan(x) math.h General

Appendix A. XL C/C++ Macros 2491

Table 62. C/C++ Macros: N - Y (continued)

Macro Include File General or Internal

tanh(x) math.h General

__TAPE stdio.h General

__TDQ stdio.h General

__temp ctype.h Internal

__temp_a stdio.h Internal

__temp_i ctype.h Internal

__TERM dynit.h General

__TERMINAL stdio.h General

__TEXT stdio.h General

__TGET_READ stdio.h General

THOUSEP nl_langinfo.h General

__time time.h Internal

tinit(x,y) mtf.h General

TLOSS math.h General

TMP_MAX stdio.h General

tolower(c) ctype.h General

__tolower(c) ctype.h Internal

__TOLOWER_INDEX ctype.h Internal

toupper(c) ctype.h General

__toupper(c) ctype.h Internal

__TOUPPER_INDEX ctype.h Internal

towlower wchar.h General

towupper wchar.h General

__TPUT_WRITE stdio.h General

__TRK dynit.h General

tsched mtf.h General

tsetsubt(x,y) mtf.h General

tsyncro(x) mtf.h General

tterm(x) mtf.h General

U dynit.h General

UCHAR_MAX limits.h General

UINT_MAX limits.h General

ULONG_MAX limits.h General

UNDERFLOW math.h General

__UNKN_ERROR stdio.h General

__UPDATE stdio.h General

USHRT_MAX limits.h General

__V dynit.h General

V dynit.h General

va_arg(ap, type) stdarg.h General

va_end(ap) stdarg.h General

va_list stdarg.h General

va_start(ap, arg) stdarg.h General

__valist stdarg.h Internal

__valist_ stdio.h Internal

__VB dynit.h General

VB dynit.h General

__VBS dynit.h General

VBS dynit.h General

__VSAM_CLOSE stdio.h General

__VSAM_ENDREQ stdio.h General

__VSAM_ERASE stdio.h General

__VSAM_GENCB stdio.h General

2492 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 62. C/C++ Macros: N - Y (continued)

Macro Include File General or Internal

__VSAM_GET stdio.h General

__VSAM_MODCB stdio.h General

__VSAM_OPEN_ESDS stdio.h General

__VSAM_OPEN_ESDS_PAT stdio.h General

__VSAM_OPEN_FAIL stdio.h General

__VSAM_OPEN_KSDS stdio.h General

__VSAM_OPEN_KSDS_PAT stdio.h General

__VSAM_OPEN_RRDS stdio.h General

__VSAM_POINT stdio.h General

__VSAM_PUT stdio.h General

__VSAM_SHOWCB stdio.h General

__VSAM_TESTCB stdio.h General

__wchar_t stddef.h Internal

__wcstr wcstr.h Internal

WEOF wchar.h General

__WRITE stdio.h General

YESEXPR nl_langinfo.h General

Appendix A. XL C/C++ Macros 2493

2494 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Appendix B. Function support table

Preinitialized Environments for Authorized Programs

Preinitialized Environments for Authorized Programs is a new feature of z/OS

Language Environment. It is intended to provide support for authorized components

or products to create preinitialized environments that are capable of executing C,

C++, and Language Environment-conforming assembler code in supervisor state,

on a TCB or an SRB, or in cross-memory mode (with some restrictions).

Table 64 on page 2497 lists all the functions in the z/OS XL C/C++ Run-
Time Library and their support of Preinitialized Environments for Authorized

Programs.

Note: The function table does not include compiler built-in functions (builtin.h).

Enhanced ASCII Support

Restriction: Enhanced ASCII and __LIBASCII are independent, and should not be

used together. Using Enhanced ASCII and __LIBASCII together is not supported.

Enhanced ASCII support provides the means to write z/OS XL C/C++ applications

which will execute with ASCII data representation.

Enhanced ASCII support makes it easier to port internationalized C/C++

applications developed on or for ASCII platforms to z/OS platforms by providing

conversion from ASCII to EBCDIC and EBCDIC to ASCII.

In order to use Enhanced ASCII support, a C or C++ module must be compiled

specifying ASCII as the data representation. Application compile units will be bound

to ASCII versions of external variables and interfaces at compile time if they:

1. Use headers to declare external variables and interfaces used in compile unit

source.

2. Are compiled with the ASCII option.

New ASCII function-versions and other support functions have been added to the

z/OS XL C/C++ Run-Time Library to handle ASCII data in files, data manipulations,

and conversions between ASCII and EBCDIC. The compile-time binding will

determine which ASCII or EBCDIC function version is called during run-time

execution.

Table 64 on page 2497 lists all the functions in the z/OS XL C/C++ Run-
Time Library and their support of Enhanced ASCII processing.

Note: The function table does not include compiler built-in functions (builtin.h).

Table 63 lists all the External Variables and their support status in Enhanced ASCII.

For other information about these variables, see “External Variables” on page 110.

 Table 63. Status of External Variables in Enhanced ASCII

External Variable Enhanced ASCII Support Level

daylight Neutral

environ Yes

errno Neutral

© Copyright IBM Corp. 1996, 2007 2495

Table 63. Status of External Variables in Enhanced ASCII (continued)

External Variable Enhanced ASCII Support Level

getdate_err Neutral

h_errno Neutral

locs No

loc1 No

__loc1 Neutral

loc2 No

optarg Neutral

opterr Neutral

optind Neutral

optopt Neutral

signgam Neutral

stderr Neutral

stdin Neutral

stdout Neutral

t_errno Neutral

timezone Neutral

tzname Yes

For a description of Limitations to the use of Enhanced ASCII, see z/OS XL C/C++

Programming Guide.

Enhanced ASCII Extensions

z/OS V1R2 base introduced Enhanced ASCII support. Applications compiled ASCII

were permitted to use library functions that did not have ASCII support for character

data with the understanding that all ASCII to EBCDIC conversion was the

responsibility of the application.

As service updates or new releases extend Enhanced ASCII to previously

unsupported functions, it is necessary to protect the ASCII applications that have

been calling those functions (with user-supplied character conversions).

A new feature test macro is defined to control the exposure of extensions to

Enhanced ASCII. This feature test macro is _ENHANCED_ASCII_EXT and should

be set to a non-zero, numeric value indicating the level of Enhanced ASCII support

desired. Otherwise, the default value of 0x41020000 is assumed, which will limit

exposure to only the Enhanced ASCII support provided in the z/OS V1R2 base.

Numeric values less than the default will behave as if the default were specified.

The special value 0xFFFFFFFF provides exposure to all Enhanced ASCII support,

regardless of the service level, available for the TARGET release.

Functions whose Enhanced ASCII support exposure is controlled by values of this

feature test macro, other than the default value or the special 0xFFFFFFFF value,

will have the specific value documented in Table 64 on page 2497.

Note: Functions which are introduced in a release, and include Enhanced ASCII

support, are not controlled using this macro. For example, getnameinfo() first

appears in z/OS V1R4 base and has Enhanced ASCII support. It is always

available in its ASCII form since there was no prior release containing the

function.

Table 64 on page 2497 lists all the functions in the z/OS XL C/C++ Run-
Time Library and their support of Enhanced ASCII processing.

2496 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Library function support

Table 64 shows all the z/OS XL C/C++ Run-Time Library functions in alphabetical

order, their support of Enhanced ASCII processing and their support of Preinitialized

Environments for Authorized Programs.

Enhanced ASCII

Each function is identified by the extent to which it supports Enhanced ASCII

processing:

v Yes = supports Enhanced ASCII.

v No = does not support Enhanced ASCII.

v Neutral = not sensitive to the issue of ASCII/EBCDIC character encoding.

Following is a list of values for feature test macro _ENHANCED_ASCII_EXT:

0x41020000

z/OS V1R2 base support plus all functions first introduced in subsequent

releases. This is the default.

0x41020010

Includes support added with APAR PQ63405

0x41060000

Includes support added in z/OS V1R6.

0x41070000

Includes support added in z/OS V1R7

0xFFFFFFFF

Exposes all Enhanced ASCII support regardless of service level for the

TARGET release.

Each higher value includes all support exposed with the lesser values.

Functions which are used for conversion to ASCII or EBCDIC are labelled with

those data types.

Preinitialized Environments for Authorized Programs

Each function is identified by the extent to which it supports Preinitialized

Environments for Authorized Programs:

v Yes = supports Preinitialized Environments for Authorized Programs.

v No = does not support Preinitialized Environments for Authorized Programs.

 Table 64. Library function support table

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

abort() Neutral Yes 4

abs() Neutral Yes

absf() Neutral Yes

absl() Neutral Yes

Appendix B. Function support table 2497

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

accept() Yes 0x41020010 Yes 2,3,8

accept_and_recv() Yes 0x41020010 No 3

access() Yes No

acl_create_entry() Neutral No

acl_delete_entry() Neutral No

acl_delete_fd() Neutral No

acl_delete_file() Neutral No

acl_first_entry() Neutral No

acl_free() Neutral No

acl_from_text() Neutral No

acl_get_entry() Neutral No

acl_get_fd() Neutral No

acl_get_file() Neutral No

acl_init() Neutral No

acl_set_fd() Neutral No

acl_set_file() Neutral No

acl_sort() Neutral No

acl_to_text() Neutral No

acl_update_entry() Neutral No

acl_valid() Neutral No

acos() Neutral Yes

acosf() Neutral Yes

acosh() Neutral Yes

acoshf() Neutral Yes

acoshl() Neutral Yes

acosl() Neutral Yes

advance() No No

__ae_correstbl_query() Yes No

aio_cancel() No No

aio_error() No No

aio_read() No No

aio_return() No No

2498 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

aio_suspend() No No

aio_write() No No

alarm() Neutral No

alloca() Neutral Yes

asctime() Yes Yes

asctime_r() Yes Yes

asin() Neutral Yes

asinf() Neutral Yes

asinh() Neutral Yes

asinhf() Neutral Yes

asinhl() Neutral Yes

asinl() Neutral Yes

assert() Neutral No

atan() Neutral Yes

atanf() Neutral Yes

atanh() Neutral Yes

atanhf() Neutral Yes

atanhl() Neutral Yes

atanl() Neutral Yes

atan2() Neutral Yes

atan2f() Neutral Yes

atan2l() Neutral Yes

atexit() Neutral Yes

__atoe() ASCII No

__atoe_l() ASCII No

atof() Yes Yes

atoi() Yes Yes

atol() Yes Yes

atoll() No No

__a2e_l() ASCII No

__a2e_s() ASCII No

a64l() Yes Yes

Appendix B. Function support table 2499

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

basename() Yes Yes

bcmp() Neutral Yes

bcopy() Neutral Yes

bind() Yes 0x41020010 Yes 2,3,8

brk() Neutral No

bsd_signal() Neutral No

bsearch() Neutral Yes

btowc() Yes Yes

bzero() Neutral Yes

__cabend() No No

calloc() Neutral Yes

catclose() Neutral No

catgets() Yes No

catopen() Yes No

cbrt() Neutral Yes

cbrtf() Neutral Yes

cbrtl() Neutral Yes

cclass() No Yes

__CcsidType() Yes No

cds() Neutral Yes

cdump() Yes No

ceil() Neutral Yes

ceild32(), ceild64(), ceild128() Neutral No

ceilf() Neutral Yes

ceill() Neutral Yes

__certificate() No No

cfgetispeed() No No

cfgetospeed() No No

cfsetispeed() No No

cfsetospeed() No No

__chattr() Yes No

chaudit() Yes No

2500 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

chdir() Yes No

__check_resource_auth_np() Yes No

CheckSchEnv() Yes No

chmod() Yes No

chown() Yes No

chpriority() Neutral No

chroot() Yes No

clearenv() Neutral Yes

clearerr() Neutral Yes

clock() Neutral No

close() Neutral Yes 8

closedir() Neutral No

closelog() Neutral No

clrmemf() Neutral Yes

__cnvblk() Neutral No

collequiv() No Yes

collorder() No Yes

collrange() No Yes

colltostr() No Yes

compile() No No

confstr() Yes Yes

connect() Yes 0x41020010 Yes 2,3,8

ConnectExportImport() No No

ConnectServer() Yes No

ConnectWorkMgr() Yes No

__console() Yes No

__console2() No No

ContinueWorkUnit() Neutral No

__convert_id_np() No No

copysign() Neutral Yes

copysignd32(), copysingd64()

copysingd128()

Neutral No

copysignf() Neutral Yes

Appendix B. Function support table 2501

|
|
||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

copysignl() Neutral Yes

cos() Neutral Yes

cosd32(), cosd64(), cosd128() Neutral No

cosf() Neutral Yes

cosh() Neutral Yes

coshf() Neutral Yes

coshl() Neutral Yes

cosl() Neutral Yes

__cospid32(), __cospid64(),

__cospid128()

Neutral No

__cotan() Neutral No

__cotanf() Neutral No

__cotanl() Neutral No

__cpl() Neutral No

creat() Yes No

CreateWorkUnit() Yes No

crypt() Yes Yes

cs() Neutral Yes

csid() Yes Yes

__CSNameType() Yes No

csnap() Yes No

__csplist No No

ctdli() Neutral No

ctermid() Yes No

ctest() Yes Yes

ctime() Yes Yes

ctime_r() Yes Yes

ctrace() Yes No

cuserid() Yes No

dbm_clearerr() Neutral No

dbm_close() Neutral No

dbm_delete() Neutral No

dbm_error() Neutral No

2502 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|||||

|
|
||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

dbm_fetch() Neutral No

dbm_firstkey() Neutral No

dbm_nextkey() Neutral No

dbm_open() Yes No

dbm_store() Neutral No

decabs() Neutral Yes

decchk() Neutral Yes

decfix() Neutral Yes

DeleteWorkUnit() Neutral No

difftime() Neutral Yes

dirname() Yes No

__discarddata() Neutral No

DisconnectServer() Neutral No

div() Neutral Yes

dlclose() Neutral No

dlerror() Yes No

dllfree() Neutral Yes

dllload() Yes Yes 7

dllqueryfn() Yes Yes

dllqueryvar() Yes Yes

dlopen() Yes No 7

dlsym() Yes No

dn_comp() Yes 0x41020010 No

dn_expand() Yes 0x41020010 No

dn_find() Yes 0x41020010 No

dn_skipname() Yes 0x41020010 No

drand48() Neutral Yes

dup() Neutral No

dup2() Neutral No

dynalloc() Yes 0x41020010 No

dynfree() Yes 0x41020010 No

dyninit() No No

Appendix B. Function support table 2503

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

ecvt() Yes Yes

encrypt() Neutral Yes

endgrent() Neutral No

endhostent() Neutral No

endnetent() Neutral No

endprotoent() Neutral No

endpwent() Neutral No

endservent() Neutral No

endutxent() Neutral No

erand48() Neutral Yes

erf() Neutral Yes

erfc() Neutral Yes

erfcf() Neutral Yes

erfcl() Neutral Yes

erff() Neutral Yes

erfl() Neutral Yes

__errno2() Neutral Yes

__err2ad() Neutral Yes

__etoa() EBCDIC No

__etoa_l() EBCDIC No

execl() Yes No

execle() Yes No

execlp() Yes No

execv() Yes No

execve() Yes No

execvp() Yes No

exit() Neutral Yes

_exit() Neutral No

_Exit() Neutral No

exp() Neutral Yes

expd32(), expd64(), expd128() Neutral No

exp2() Neutral Yes

2504 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

exp2f() Neutral Yes

exp2l() Neutral Yes

expf() Neutral Yes

expl() Neutral Yes

expm1() Neutral Yes

expm1f() Neutral Yes

expm1l() Neutral Yes

ExportWorkUnit() Neutral No

extlink_np() Yes No

ExtractWorkUnit() Neutral No

__e2a_l() EBCDIC No

__e2a_s() EBCDIC No

fabs() Neutral Yes

fabsd32(), fabsd64(), fabsd128() Neutral No

fabsf() Neutral Yes

fabsl() Neutral Yes

fattach() No No

__fchattr() Neutral No

fchaudit() Neutral No

fchdir() Neutral No

fchmod() Neutral No

fchown() Neutral No

fclose() Neutral No

fcntl() Neutral No

fcvt() Yes Yes

fdelrec() Neutral No

fdetach() No No

fdim() Neutral Yes

fdimd32(), fdimd64(), fdimd128() Neutral No

fdimf() Neutral Yes

fdiml() Neutral Yes

fdopen() Yes No

Appendix B. Function support table 2505

|||||

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

fe_dec_getround() Neutral No

fe_dec_setround() Neutral No

fegetround() Neutral No

feof() Neutral No

ferror() Neutral No

fesetenv() Neutral No

fetch() Yes Yes

fetchep() Neutral Yes

fetestexcept() Neutral No

fflush() Neutral No

ffs() Neutral Yes

fgetc() Neutral No

fgetpos() Neutral No

fgets() Yes No

fgetwc() Yes No

fgetws() Yes No

fileno() Neutral No

finite() Neutral Yes

fldata() Yes No

flocate() Neutral No

flockfile() Neutral No

floor() Neutral Yes

floord32(), floord64(), floord128() Neutral No

floorf() Neutral Yes

floorl() Neutral Yes

fmaxd32(), fmaxd64(), fmaxd128() Neutral No

fmod() Neutral Yes

fmodf() Neutral Yes

fmodl() Neutral Yes

fmtmsg() Yes No

fnmatch() Yes Yes

fopen() Yes No

2506 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

fork() Neutral No

fortrc() Neutral No

fp_clr_flag() Neutral Yes

fp_raise_xcp() Neutral Yes

fp_read_flag() Neutral Yes

fp_read_rnd() Neutral Yes

fp_swap_rnd() Neutral Yes

fpathconf() Neutral No

fprintf() Yes No

fputc() Yes No

fputs() Yes No

fputwc() Yes No

fputws() Yes No

fread() Yes No

free() Neutral Yes

freeaddrinfo() Neutral No

freopen() Yes No

frexp() Neutral Yes

frexpd32(), frexpd64(),

frexpd128()

Neutral No

frexpf() Neutral Yes

frexpl() Neutral Yes

fscanf() Yes No

fseek() Neutral No

fseeko() Neutral No

fsetpos() Neutral No

fstat() Neutral No

fstatvfs() Neutral No

fsync() Neutral No

ftell() Neutral No

ftello() Neutral No

ftime() Neutral Yes

ftok() Yes No

Appendix B. Function support table 2507

|
|
||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

ftruncate() Neutral No

ftrylockfile() Neutral No

ftw() Yes No

funlockfile() Neutral No

fupdate() Neutral No

fwide() Neutral No

fwprintf() Yes 0x41070000 No

fwrite() Yes No

fwscanf() Yes No

gai_strerror Yes No

gamma() Neutral Yes

gcvt() Yes Yes

getaddrinfo() Yes No

getc() Neutral No

getc_unlocked() Neutral No

getchar() Neutral No

getchar_unlocked() Neutral No

getclientid() No No

__getclientid() No No

getcontext() Neutral No

__get_cpuid() No Yes

getcwd() Yes No

getdate() Yes Yes

getdtablesize() Neutral No

getegid() Neutral No

getenv() Yes Yes

__getenv() Yes 0x41060000 Yes

geteuid() Neutral No

getgid() Neutral No

getgrent() Yes No

getgrgid() Yes No

getgrgid_r() Yes No

2508 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

getgrnam() Yes No

getgrnam_r() Yes No

getgroups() Neutral No

getgroupsbyname() Yes No

gethostbyaddr() Yes No 2

gethostbyname() Yes No 2

gethostent() Yes No 2

gethostid() Neutral No

gethostname() Yes No

getibmopt() No No

getibmsockopt() No No

__getipc() No No

getipv4sourcefilter() Neutral No

getitimer() Neutral No

getlogin() Yes No 1

getlogin_r() Yes No

__getlogin1() No No

getmccoll() No Yes

getmsg() No No

getnameinfo() Yes No

getnetbyaddr() Yes No 2

getnetbyname() Yes No 2

getnetent() Yes No 2

getopt() Yes Yes

getpagesize() Neutral Yes

getpass() Yes No

getpeername() Yes 0x41020010 No 2,3

getpgid() Neutral No

getpgrp() Neutral No

getpid() Neutral No

getpmsg() No No

getppid() Neutral No

Appendix B. Function support table 2509

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

getpriority() Neutral No

getprotobyname() Yes No 2

getprotobynumber() Yes No 2

getprotoent() Yes No 2

getpwent() Yes No

getpwnam() Yes No

getpwnam_r() Yes No

getpwuid() Yes No

getpwuid_r() Yes No

getrlimit() Neutral No

getrusage() Neutral No

gets() Yes No

getservbyname() Yes No 2

getservbyport() Yes No 2

getservent() Yes No 2

getsid() Neutral No

getsockname() Yes 0x41020010 Yes 2,3,8

getsockopt() No Yes 8

getsourcefilter() Neutral No

getstablesize() No No

getsubopt() No Yes

getsyntx() No Yes

__get_system_settings() No No

gettimeofday() Yes Yes

getuid() Neutral No

__getuserid() No No

getutxent() Neutral No

getutxid() No No

getutxline() No No

getw() Neutral No

getwc() Yes No

getwchar() Yes No

2510 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

getwd() Yes No

getwmccoll() No Yes

givesocket() No No

glob() Yes No

globfree() Neutral No

gmtime() Yes Yes

gmtime_r() Yes Yes

grantpt() Neutral No

hcreate() Neutral Yes

hdestroy() Neutral Yes

__heaprpt() Neutral No

hsearch() Neutral Yes

htonl() Neutral No

htons() Neutral No

hypot() Neutral Yes

hypotf() Neutral Yes

hypotl() Neutral Yes

ibmsflush() Neutral No

iconv() Neutral No

iconv_close() Neutral No

iconv_open() Yes No

if_freenameindex() Neutral No

if_indextoname() Yes No

if_nameindex() Yes No

if_nametoindex() Yes No

ilogb() Neutral Yes

ilogbd32(), ilogbd64(), ilogbd128() Neutral No

imaxabs() Neutral No

imaxdiv() Neutral No

ImportWorkUnit() Neutral No

index() Neutral Yes

inet6_opt_append() Neutral No

Appendix B. Function support table 2511

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

inet6_opt_find() Neutral No

inet6_opt_finish() Neutral No

inet6_opt_get_val() Neutral No

inet6_opt_init() Neutral No

inet6_opt_next() Neutral No

inet6_opt_set_val() Neutral No

inet6_rth_add() Neutral No

inet6_rth_getaddr() Neutral No

inet6_opt_init() Neutral No

inet6_rth_reverse() Neutral No

inet6_rth_segments() Neutral No

inet6_rth_space() Neutral No

inet_addr() Yes 0x41020010 No 2

inet_lnaof() Neutral No

inet_makeaddr() No No

inet_netof() Neutral No

inet_network() Yes 0x41020010 No 2

inet_ntoa() Yes 0x41020010 No 2

inet_ntop() Yes 0x41020010 Yes 8

inet_pton() Yes 0x41020010 Yes 8

initgroups() Yes No

initstate() No Yes

insque() Neutral Yes

ioctl() No Yes 8

__ipdbcs() No No

__ipDomainName() No No

__ipdspx() No No

__iphost() No No

__ipmsgc() No No

__ipnode() No No

__iptcpn() No No

isalnum() Yes Yes

2512 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

isalpha() Yes Yes

isascii() Neutral Yes

isastream() Neutral No

isatty() Neutral No

__isBFP() Neutral No

isblank() Yes 0x41070000 Yes

iscics() Neutral No

iscntrl() Yes Yes

isdigit() Yes Yes

isgraph() Yes Yes

islower() Yes Yes

ismccollel() No Yes

isnan() Neutral Yes

__isPosixOn() Neutral No

isprint() Yes Yes

ispunct() Yes Yes

isspace() Yes Yes

isupper() Yes Yes

iswalnum() Yes Yes

iswalpha() Yes Yes

iswblank() Yes 0x41070000 Yes

iswcntrl() Yes Yes

iswctype() Yes Yes

iswdigit() Yes Yes

iswgraph() Yes Yes

iswlower() Yes Yes

iswprint() Yes Yes

iswpunct() Yes Yes

iswspace() Yes Yes

iswupper() Yes Yes

iswxdigit() Yes Yes

isxdigit() Yes Yes

Appendix B. Function support table 2513

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

itoa() Yes Yes

jn() Neutral Yes

JoinWorkUnit() Neutral No

jrand48() Neutral Yes

j0() Neutral Yes

j1() Neutral Yes

kill() Neutral No

killpg() Neutral No

labs() Neutral Yes

__lchattr() Yes No

lchown() Yes No

lcong48() Neutral Yes

ldexp() Neutral Yes

ldexpd32(), ldexpd64(),

ldexpd128()

Neutral No

ldexpf() Neutral Yes

ldexpl() Neutral Yes

ldiv() Neutral Yes

LeaveWorkUnit() Neutral No

__le_cib_get() No No

__le_condition_token_build() No No

__le_msg_add_insert() No No

__le_msg_get() No No

__le_msg_get_and_write() No No

__le_msg_write() No No

__le_traceback() Neutral No

lfind() Neutral Yes

lgamma() Neutral Yes

lgammaf() Neutral Yes

lgammal() Neutral Yes

__librel() Neutral Yes

link() Yes No

listen() Neutral Yes 8

2514 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
||||

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

llabs() Neutral Yes

lldiv() Neutral Yes

llroundd32(), llroundd64(),

llroundd128()

Neutral No

lltoa() Yes Yes

localdtconv() No No

localeconv() Yes No

localtime() Yes Yes

localtime_r() Yes Yes

lockf() Neutral No

log() Neutral Yes

logb() Neutral Yes

logbd32(), logbd64(), logbd128() Neutral No

logd32(), logd64(), logd128() Neutral No

log10d32(), log10d64(),

log10d128()

Neutral No

logf() Neutral Yes

__login() Yes No

logl() Neutral Yes

log1p() Neutral Yes

log1pf() Neutral Yes

log1pl() Neutral Yes

log10() Neutral Yes

log10f() Neutral Yes

log10l() Neutral Yes

log2() Neutral Yes

log2f() Neutral Yes

log2l() Neutral Yes

longjmp() Neutral Yes

_longjmp() Neutral No

lrand48() Neutral Yes

lrintd32(), lrintd64(), lrintd128()

and llrintd32(), llrintd64(),

llrintd128()

Neutral No

Appendix B. Function support table 2515

|
|
||||

|||||

|||||

|
|
||||

|
|
|

||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

lround() Neutral Yes

lroundd32(), lroundd64(),

lroundd128()

Neutral No

lroundf() Neutral Yes

lsearch() Neutral Yes

lseek() Neutral No

lstat() Yes No

l64a() Yes Yes

ltoa() Yes Yes

m_create_layout() No Yes 5

m_destroy_layout() No Yes

m_getvalues_layout() No Yes

m_setvalues_layout() No Yes

m_transform_layout() No Yes

m_wtransform_layout() No Yes

makecontext() Neutral No

malloc() Neutral Yes

__malloc24() Neutral Yes

__malloc31() Neutral Yes

__map_init() Neutral No

__map_service() Neutral No

maxcoll() No Yes

maxdesc() Neutral No

mblen() Yes Yes

mbrlen() No Yes

mbrtowc() No Yes

mbsinit() No Yes

mbsrtowcs() No Yes

mbstowcs() Yes Yes

mbtowc() Yes Yes

memccpy() Neutral Yes

memchr() Neutral Yes

memcmp() Neutral Yes

2516 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

memcpy() Neutral Yes

memmove() Neutral Yes

memset() Neutral Yes

mkdir() Yes No

mkfifo() Yes No

mknod() Yes No

mkstemp() Yes No

mktemp() Yes No

mktime() Yes Yes

__mlockall() Neutral No

mmap() Neutral No

modf() Neutral Yes

modfd32(), modfd64(),

modfd128()

Neutral No

modff() Neutral Yes

modfl() Neutral Yes

mount() Yes No

__mount() No No

mprotect() Neutral No

mrand48() Neutral Yes

msgctl() Neutral No

msgget() Neutral No

msgrcv() Yes No

__msgrcv_timed() No No

msgsnd() Yes No

msgxrcv() Yes No

msync() Neutral No

munmap() Neutral No

__must_stay_clean() Neutral No

nan(), nanf(), nanl() No No

nand32(), nand64(), nand128() No No

nearbyintd32(), nearbyintd64(),

nearbyintd128()

Neutral No

Appendix B. Function support table 2517

|
|
||||

|||||

|||||

|
|
||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

nextafter() Neutral Yes

nextafterd32(), nextafterd64(),

nextafterd128()

Neutral No

nexttowardd32(),

nexttowardd64(),

nexttowardd128()

Neutral No

nftw() Yes No

nice() Neutral No

nl_langinfo() Yes Yes

nlist() Yes No

nrand48() Neutral Yes

ntohl() Neutral No

ntohs() Neutral No

open() Yes No

__open_stat() Yes No

opendir() Yes No

__opendir2() Yes No

openlog() Neutral No

__osenv() Neutral No

__osname() Yes Yes

__passwd() Yes No

pathconf() Yes No

pause() Neutral No

pclose() Neutral No

perror() Yes No

__pid_affinity() Neutral No

pipe() Neutral No

__poe Neutral No

poll() Neutral No

popen() Yes No

posix_openpt() Neutral No

pow() Neutral Yes

powd32(), powd64(), powd128() Neutral No

powf() Neutral Yes

2518 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
||||

|
|
|

||||

|||||

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

powl() Neutral Yes

pread() Neutral No

printf() Yes No

pselect() Neutral No

pthread_atfork() Neutral No

pthread_attr_destroy() Neutral No

pthread_attr_getdetachstate() Neutral No

pthread_attr_getguardsize() Neutral No

pthread_attr_getschedparam() Neutral No

pthread_attr_getstack() Neutral No

pthread_attr_getstackaddr() Neutral No

pthread_attr_getstacksize() Neutral No

pthread_attr_getsynctype_np() Neutral No

pthread_attr_getweight_np() Neutral No

pthread_attr_init() Neutral No

pthread_attr_setdetachstate() Neutral No

pthread_attr_setguardsize() Neutral No

pthread_attr_setschedparam() Neutral No

pthread_attr_setstack() Neutral No

pthread_attr_setstackaddr() Neutral No

pthread_attr_setstacksize() Neutral No

pthread_attr_setsynctype_np() Neutral No

pthread_attr_setweight_np() Neutral No

pthread_cancel() Neutral No

pthread_cleanup_pop() Neutral No

pthread_cleanup_push() Neutral No

pthread_cond_broadcast() Neutral No

pthread_cond_destroy() Neutral No

pthread_cond_init() Neutral No

pthread_cond_signal() Neutral No

pthread_cond_timedwait() Neutral No

pthread_cond_wait() Neutral No

Appendix B. Function support table 2519

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

pthread_condattr_destroy() Neutral No

pthread_condattr_getkind_np() Neutral No

pthread_condattr_getpshared() Neutral No

pthread_condattr_init() Neutral No

pthread_condattr_setkind_np() Neutral No

pthread_condattr_setpshared() Neutral No

pthread_create() Neutral No

pthread_detach() Neutral No

pthread_equal() Neutral No

pthread_exit() Neutral No

pthread_getconcurrency() Neutral No

pthread_getspecific() Neutral No

pthread_getspecific_d8_np() Neutral No

pthread_join() Neutral No

pthread_join_d4_np() Neutral No

pthread_key_create() Neutral No

pthread_key_delete() Neutral No

pthread_kill() Neutral No

pthread_mutex_destroy() Neutral No

pthread_mutex_init() Neutral No

pthread_mutex_lock() Neutral No

pthread_mutex_trylock() Neutral No

pthread_mutex_unlock() Neutral No

pthread_mutexattr_destroy() Neutral No

pthread_mutexattr_getkind_np() Neutral No

pthread_mutexattr_getpshared() Neutral No

pthread_mutexattr_gettype() Neutral No

pthread_mutexattr_init() Neutral No

pthread_mutexattr_setkind_np() Neutral No

pthread_mutexattr_setpshared() Neutral No

pthread_mutexattr_settype() Neutral No

pthread_once() Neutral No

2520 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

pthread_quiesce_and_get_np() Neutral No

pthread_rwlock_destroy() Neutral No

pthread_rwlock_init() Neutral No

pthread_rwlock_rdlock() Neutral No

pthread_rwlock_tryrdlock() Neutral No

pthread_rwlock_trywrlock() Neutral No

pthread_rwlock_unlock() Neutral No

pthread_rwlock_wrlock() Neutral No

pthread_rwlockattr_destroy() Neutral No

pthread_rwlockattr_getpshared() Neutral No

pthread_rwlockattr_init() Neutral No

pthread_rwlockattr_setpshared() Neutral No

pthread_security_np() Yes No

pthread_self() Neutral No

pthread_setcancelstate() Neutral No

pthread_setcanceltype() Neutral No

pthread_setconcurrency() Neutral No

pthread_set_limit_np() Neutral No

pthread_setintr() Neutral No

pthread_setintrtype() Neutral No

pthread_setspecific() Neutral No

pthread_sigmask() Neutral No

pthread_tag_np() No No

pthread_testcancel() Neutral No

pthread_testintr() Neutral No

pthread_yield() Neutral No

ptsname() Yes No

putc() Yes No

putc_unlocked() Yes No

putchar() Yes No

putchar_unlocked() Yes No

putenv() Yes Yes

Appendix B. Function support table 2521

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

putmsg() No No

putpmsg() No No

puts() Yes No

pututxline() No No

putw() Neutral No

putwc() Yes No

putwchar() Yes No

pwrite() Neutral No

qsort() Neutral Yes

quantized32(), quantized64(),

quantized128()

Neutral No

QueryMetrics() Yes No

QuerySchEnv() Yes No

QueryWorkUnitClassification() No No

read() Neutral No

raise() Neutral Yes 6

rand() Neutral Yes

rand_r() Neutral Yes

random() Neutral Yes

readdir() Yes No

readdir_r() Yes No

__readdir2() Yes No

readlink() Yes No

readv() Neutral No

realloc() Neutral Yes

realpath() Yes No

re_comp() No No

recv() No Yes 8

recvfrom() Yes 0x41020010 No 2,3

recvmsg() Yes 0x41020010 No 2,3

re_exec() No No

regcmp() No No

regcomp() Yes Yes

2522 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

regerror() Yes Yes

regex() No No

regexec() Yes Yes

regfree() Yes Yes

release() Neutral Yes

remainder() Neutral Yes

remainderf() Neutral Yes

remainderl() Neutral Yes

remove() Yes No

remque() Neutral Yes

remquo() Neutral Yes

remquof() Neutral Yes

remquol() Neutral Yes

rename() Yes No

__reset_exception_handler() No No

res_init() Yes No

res_mkquery() Yes 0x41020010 No

res_query() Yes 0x41020010 No

res_querydomain() Yes 0x41020010 No

res_search() Yes 0x41020010 No

res_send() Yes 0x41020010 No

rewind() Neutral No

rewinddir() Neutral No

rexec() Yes 0x41060000 No

rexec_af() Yes 0x41060000 No

rindex() Neutral Yes

rint() Neutral Yes

rintd32(), rintd64(), rintd128() Neutral No

rmdir() Yes No

roundd32(), roundd64(),

roundd128()

Neutral No

rpmatch() Yes No

Appendix B. Function support table 2523

|||||

|
|
||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

samequantumd32(),

samequantumd64(),

samequantumd128()

Neutral No

sbrk() Neutral No

scalb() Neutral Yes

scalbn() Neutral Yes

scalbnd32(), scalbnd64(),

scalbnd128() and scalblnd32(),

scalblnd64(), scalblnd128()

Neutral No

scanf() Yes No

sched_yield() Neutral No

seed48() Neutral Yes

seekdir() Neutral No

select() No Yes 8

selectex() No No

semctl() Neutral No

semget() Neutral No

semop() Neutral No

__semop_timed() Neutral No

send() No Yes 8

send_file() No No

sendmsg() Yes 0x41020010 No 2,3

sendto() Yes 0x41020010 No 2,3

__server_classify() Yes No

__server_classify_create() Neutral No

__server_classify_destroy() Neutral No

__server_classify_reset() Neutral No

__server_init() Yes No

__server_pwu() Yes No

__server_threads_query() Neutral No

setbuf() Neutral No

setcontext() Neutral No

setegid() Neutral No

setenv() Yes Yes

2524 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
|

||||

|
|
|

||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

seteuid() Neutral No

__set_exception_handler() Neutral No

setgid() Neutral No

setgrent() Neutral No

setgroups() Neutral No

sethostent() Neutral No

setibmopt() No No

setibmsockopt() No No

setipv4sourcefilter() Neutral No

setitimer() Neutral No

setjmp() Neutral Yes

_setjmp() Neutral No

setkey() No Yes

setlocale() Yes Yes 5

setlogmask() Neutral Yes

setnetent() Neutral No

set_new_handler() Neutral Yes

setpeer() No No

setpgid() Neutral No

setpgrp() Neutral No

setpriority() Neutral No

setprotoent() Neutral No

setpwent() Neutral No

setregid() Neutral No

setreuid() Neutral No

setrlimit() Neutral No

setservent() Neutral No

setsid() Neutral No

setsockopt() No Yes 8

setsourcefilter() Neutral No

setstate() No Yes

set_terminate() Neutral Yes

Appendix B. Function support table 2525

|||||

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

_SET_THLIIPADDR() Neutral No

setuid() Neutral No

set_unexpected() Neutral Yes

setutxent() Neutral No

setvbuf() Neutral No

shmat() Neutral No

shmctl() Neutral No

shmdt() Neutral No

shmget() Neutral No

shutdown() Neutral No

__shutdown_registration() Neutral No

sigaction() Neutral No

__sigactionset() Neutral No

sigaddset() Neutral No

sigaltstack() Neutral No

sigdelset() Neutral No

sigemptyset() Neutral No

sigfillset() Neutral No

sighold() Neutral No

sigignore() Neutral No

siginterrupt() Neutral No

sigismember() Neutral No

siglongjmp() Neutral No

signal() Neutral No

__signgam() Neutral No

sigpause() Neutral No

sigpending() Neutral No

sigprocmask() Neutral No

sigqueue() Neutral No

sigrelse() Neutral No

sigset() Neutral No

sigsetjmp() Neutral No

2526 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

sigstack() Neutral No

sigsuspend() Neutral No

sigtimedwait() Neutral No

sigwait() Neutral No

sigwaitinfo() Neutral No

sin() Neutral Yes

sind32(), sind64(), sind128() Neutral No

sinf() Neutral Yes

sinh() Neutral Yes

sinhf() Neutral Yes

sinhl() Neutral Yes

sinl() Neutral Yes

__sinpid32(), __sinpid64(),

__sinpid128()

Neutral No

sleep() Neutral No

__smf_record() No No

snprintf() Yes Yes

sockatmark() Neutal No

sock_debug() Neutral No

sock_debug_bulk_perf0() Neutral No

sock_do_bulkmode() Neutral No

sock_do_teststor() Neutral No

socket() Neutral Yes 8

socketpair() Neutral No

spawn() Yes No

spawnp() Yes No

__spawnp2() Yes No

__spawn2() Yes No

sprintf() Yes Yes

sqrt() Neutral Yes

sqrtd32(), sqrtd64(), sqrtd128() Neutral No

sqrtf() Neutral Yes

sqrtl() Neutral Yes

Appendix B. Function support table 2527

|||||

|
|
||||

|||||

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

srand() Neutral Yes

srandom() Neutral Yes

srand48() Neutral Yes

sscanf() Yes Yes

stat() Yes No

statvfs() Yes No

step() No No

strcasecmp() Yes Yes

strcat() Neutral Yes

strchr() Neutral Yes

strcmp() Neutral Yes

strcoll() Yes Yes

strcpy() Neutral Yes

strcspn() Neutral Yes

strdup() Neutral Yes

strerror() Yes Yes

strerror_r() Yes No

strfmon() Yes Yes

strftime() Yes Yes

strlen() Neutral Yes

strncasecmp() Yes Yes

strncat() Neutral Yes

strncmp() Neutral Yes

strncpy() Neutral Yes

strpbrk() Neutral Yes

strptime() Yes Yes

strrchr() Neutral Yes

strspn() Neutral Yes

strstr() Neutral Yes

strtocoll() No Yes

strtod() Yes Yes

strtof() Yes No

2528 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

strtoimax() Yes No

strtok() Neutral Yes

strtok_r() Neutral Yes

strtod32(), strtod64(), strtod128() Yes No

strtol() Yes Yes

strtold() No No

strtoll() Yes Yes

strtoul() Yes Yes

strtoull() Yes Yes

strtoumax() Yes No

strxfrm() Yes Yes

__superkill() Neutral No

svc99() No No

swab() Neutral Yes

swapcontext() Neutral No

swprintf() Yes Yes

swscanf() Yes Yes

symlink() Yes No

sync() Neutral No

sysconf() Neutral No

syslog() Yes No

system() Yes No

t_accept() No No

t_alloc() No No

t_bind() No No

tcgetattr() Yes 0x41020010 No

__tcgetcp() Yes 0x41020010 No

t_close() Neutral No

t_connect() No No

tcsetattr() Yes 0x41020010 No

__tcsetcp() Yes 0x41020010 No

t_error() No No

Appendix B. Function support table 2529

|||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

t_free() No No

t_getinfo() No No

t_getprotaddr() No No

t_getstate() Neutral No

t_listen() No No

t_look() Neutral No

t_open() No No

t_optmgmt() No No

t_rcv() No No

t_rcvconnect() No No

t_rcvdis() No No

t_rcvrel() Neutral No

t_rcvudata() No No

t_rcvuderr() No No

t_snd() No No

t_snddis() No No

t_sndrel() Neutral No

t_sndudata() No No

t_strerror() No No

t_sync() Neutral No

t_unbind() Neutral No

takesocket() No No

tan() Neutral Yes

tanf() Neutral Yes

tanh() Neutral Yes

tanhf() Neutral Yes

tanhl() Neutral Yes

tanl() Neutral Yes

tcdrain() Neutral No

tcflow() Neutral No

tcflush() Neutral No

tcgetattr() Yes No

2530 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

__tcgetcp() Yes No

tcgetpgrp() Neutral No

tcgetsid() Neutral No

tcperror() No No

tcsendbreak() Neutral No

tcsetattr() Yes No

__tcsetcp() Yes No

tcsetpgrp() Neutral No

__tcsettables() No No

tdelete() Neutral Yes

telldir() Neutral No

tempnam() Yes No

terminate() Neutral No

tfind() Neutral Yes

tgamma() Neutral Yes

tgammaf() Neutral Yes

tgammal() Neutral Yes

time() Neutral Yes

times() Neutral No

tinit() No No

tmpfile() Neutral No

tmpnam() Yes No

toascii() Neutral Yes

__toCcsid() Yes No

__toCSName() Yes No

tolower() Yes Yes

_tolower() Yes No

toupper() Yes Yes

_toupper() Yes No

towlower() Yes Yes

towupper() Yes Yes

trunc() Neutral Yes

Appendix B. Function support table 2531

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

truncate() Yes No

truncd32(), truncd64(),

truncd128()

Neutral No

truncf() Neutral Yes

truncl() Neutral Yes

tsched() No No

tsearch() Neutral Yes

tsyncro() Neutral No

tterm() Neutral No

ttyname() Yes No

ttyname_r() Yes No

ttyslot() Neutral No

twalk() Neutral Yes

tzset() Yes No

ualarm() Neutral No

__ucreate() Neutral No

__ufree() Neutral No

__uheapreport() Neutral No

ulimit() Neutral No

ulltoa() Yes No

ultoa() Yes No

__umalloc() Neutral No

umask() Neutral No

umount() Yes No

uname() Yes No

uncaught_exception() Neutral Yes

UnDoExportWorkUnit() Neutral No

UnDoImportWorkUnit() Neutral No

unexpected() Neutral Yes

ungetc() Neutral No

ungetwc() Yes No

unlink() Yes No

unlockpt() Neutral No

2532 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

unsetenv() Yes No

usleep() Neutral No

utime() Yes No

utimes() Yes No

__utmpxname() Neutral No

utoa() Yes Yes

va_arg() Neutral Yes

va_copy() Neutral Yes

va_end() Neutral Yes

va_start() Neutral Yes

valloc() Neutral No

vfork() Neutral No

vfprintf() Yes No

vfscanf() Yes No

vfwprintf() Yes 0x41070000 No

vfwscanf() Yes No

vprintf() Yes No

vsnprintf() Yes Yes

vsprintf() Yes Yes

vscanf() Yes No

vsscanf() Yes Yes

vswprintf() Yes Yes

vswscanf() Yes No

vwprintf() Yes 0x41070000 No

vwscanf() Yes No

w_getmntent() Yes No

w_getpsent() Yes No

w_ioctl() No No

w_statfs() Yes No

w_statvfs() Yes No

wait() Neutral No

waitid() Neutral No

Appendix B. Function support table 2533

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

waitpid() Neutral No

wait3() Neutral No

wcrtomb() No No

wcscat() Neutral No

wcschr() Neutral No

wcscmp() Neutral No

wcscoll() Yes No

wcscpy() Neutral No

wcscspn() Neutral No

wcsftime() Yes No

wcsid() Yes No

wcslen() Neutral No

wcsncat() Neutral No

wcsncmp() Neutral No

wcsncpy() Neutral No

wcspbrk() Neutral No

wcsrchr() Neutral No

wcsrtombs() No No

wcsspn() Neutral No

wcsstr() Neutral No

wcstod() Yes No

wcstod32(), wcstod64(),

wcstod128()

Yes No

wcstof() No No

wcstoimax() Yes No

wcstok() Neutral No

wcstol() Yes No

wcstold() No No

wcstoll() No No

wcstombs() Yes No

wcstoul() Yes No

wcstoull() No No

wcstoumax() Yes No

2534 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

|
|
||||

Table 64. Library function support table (continued)

Function

Enhanced

ASCII

Support

Level

Minimum Value for

_ENHANCED_ASCII_EXT

Feature Test Macro

Preinitialized

Environments for

Authorized Programs

Support Level Notes

wcswcs() Neutral No

wcswidth() Yes No

wcsxfrm() Yes No

wctob() Yes No

wctomb() Yes No

wctype() Yes No

wcwidth() Yes No

wmemchr() Neutral No

wmemcmp() Neutral No

wmemcpy() Neutral No

wmemmove() Neutral No

wmemset() Neutral No

wordexp() No No

wordfree() No No

__w_pioctl() Yes 0x41020010 No

wprintf() Yes 0x41070000 No

write() Neutral No

__writedown() Neutral No

writev() Neutral No

wscanf() Yes No

__wsinit() Neutral No

yn() Neutral Yes

y0() Neutral Yes

y1() Neutral Yes

[1] ASCII support provided only for XPG4 (or higher) interface.

[2] ASCII support provided only for X/Open Sockets interface.

[3] ASCII support is for the sun_path element of struct sockaddr_un when working

with the AF_UNIX address family.

[4] Preinitialized Environments for Authorized Programs support provided only for

non-posix signals.

Appendix B. Function support table 2535

[5] Preinitialized Environments for Authorized Programs support provided only if

locale file resides in a dataset, not in a UNIX file system.

[6] Preinitialized Environments for Authorized Programs support provided only for

non-posix form of the function.

[7] Preinitialized Environments for Authorized Programs support provided only for

non UNIX file system dlls.

[8] Preinitialized Environments for Authorized Programs support provided only

when dispatchable unit mode is task and cross memory mode is

PASN=HASN=SASN. In addition, the RECOVERY=ESTAE parameter must be used

on the CELAAUTH macro invocation.

Note: This function table does not include compiler built-in functions (builtin.h).

2536 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Appendix C. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1996, 2007 2537

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

2538 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2007 2539

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change

without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

2540 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This book documents intended Programming Interfaces that allow the customer to

write programs to obtain the services of IBM z/OS XL C/C++ and IBM Language

Environment in z/OS.

Standards

The Institute of Electrical and Electronics Engineers and The Open Group have

granted IBM permission to reprint portions of their documentation.

In the following statement, the phrase ″this text″ refers to portions of the system

documentation.

Portions of this text are reprinted and reproduced in electronic form in the z/OS,

from IEEE Std 1003.1, 2004 Edition, Standard for Information Technology --

Portable Operating System Interface (POSIX), The Open Group Base Specifications

Issue 6, copyright 2001-2004 by the Institute of Electrical and Electronics

Engineers, Inc and The Open Group. In the event of any discrepancy between

these versions and the original IEEE and The Open Group Standard, the original

IEEE and The Open Group Standard is the referee document. The original

Standard can be obtained online at http://www.opengroup.org/unix/online.html.

Portions of this text are derived from IEEE Std 1003.1—1990, IEEE Standard

Information Technology—Portable Operating System Interface (POSIX)—Part 1:

System Application Program Interface (API) [C language], copyright 1990 by the

Institute of Electrical and Electronic Engineers, Inc. No further reproduction of this

material is permitted without the written permission of the publisher.

Portions of this document are derived from IEEE P1003.1a Draft 6 July 1991, Draft

Revision to Information Technology—Portable Operating System Interface (POSIX),

Part 1: System Application Program Interface (API) [C Language], copyright 1992

by the Institute of Electrical and Electronic Engineers, Inc. No further reproduction

of this material is permitted without the written permission of the publisher.

Portions of this document are derived from IEEE Std 1003.2—1992, IEEE Standard

Information Technology—Portable Operating System Interface (POSIX)—Part 2:

Shells and Utilities, copyright 1990 by the Institute of Electrical and Electronic

Engineers, Inc. No further reproduction of this material is permitted without the

written permission of the publisher.

Portions of this document are derived from IEEE Std P1003.4a/D6—1992, IEEE

Draft Standard Information Technology—Portable Operating System Interface

(POSIX)—Part 1: System Application Program Interface (API)—Amendment 2:

Threads Extension [C language], copyright 1990 by the Institute of Electrical and

Electronic Engineers, Inc. No further reproduction of this material is permitted

without the written permission of the publisher.

Portions of this document are derived from X/Open Specification, Programming

Languages, Issue 3, copyright 1988, 1989, February 1992 by the X/Open Company

Limited. No further reproduction of this material is permitted without the written

permission of the publisher.

Notices 2541

http://www.opengroup.org/unix/online.html

Portions of this book are derived from X/Open CAE Specification, System Interfaces

and Headers, Issue 4, Version 2, copyright September 1994 by the X/Open

Company Limited. No further reproduction of this material is permitted without the

written permission of the publisher.

Portions of this document are derived from the Single UNIX Specification, Version

2, copyright 1997 by the Open Group. No further reproduction of this material is

permitted without the written permission of the publisher.

Portions of this text are derived from ISO/IEC 9899:1990, copyright 1990 by

ISO/IEC. The complete standard can be obtained from any ISO or IEC member or

from the ISO or IEC Central Offices, Case Postal, 1211 Geneva 20, Switzerland.

Copyright remains with ISO and IEC. No further reproduction of this material is

permitted without the written permission of the publisher.

Portions of this text are derived from ISO/IEC 9899:1990/Amendment 1:1994,,

copyright 1994 by the ISO/IEC. The complete standard can be obtained from any

ISO or IEC member or from the ISO or IEC Central Offices, Case Postal, 1211

Geneva 20, Switzerland. Copyright remains with ISO and IEC. No further

reproduction of this material is permitted without the written permission of the

publisher.

Portions of this text are derived from ISO/IEC 9899:1999, copyright 1999 by

ISO/IEC. The complete standard can be obtained from any ISO or IEC member or

from the ISO or IEC Central Offices, Case Postal, 1211 Geneva 20, Switzerland.

Copyright remains with ISO and IEC. No further reproduction of this material is

permitted without the written permission of the publisher.

Trademarks

The following terms are trademarks of the IBM

Corporation in the United States or other countries

or both:

 AIX

 BookManager

 BookMaster

 C++/MVS

 CICS

 CICS/ESA

 C/370

 DB2 Universal Database

 DFS

 DFSMS/MVS

 Hiperspace

 IBM

 IBMLink

 IMS

 IMS/ESA

 Language Environment

 Library Reader

 Linux

MVS

 MVS/ESA

 Open Class

 OS/2

 OS/400

 Parallel Sysplex

 pSeries

 QMF

 RACF

 Resource Link

 RS/6000

 Resource Link

 SAA

 S/390

 Systems Application Architecture

 VisualAge

 VM/ESA

 VSE/ESA

 z/Architecture

 z/OS

2542 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

z/VM

 zSeries

Linux is a trademark of Linus Torvalds in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the

Windows logo are trademarks of Microsoft

Corporation in the United States, other countries,

or both.

UNIX is a registered trademark of The Open

Group in the United States and other countries.

Java and all Java-based trademarks and logos are

trademarks of Sun Microsystems, Inc. in the

United States.

Adobe, Acrobat, and PostScript are either

registered trademarks or trademarks of Adobe

Systems Incorporated in the United States, other

countries, or both.

Other company, product, or service names may be

trademarks or service marks of others.

ANSI American National Standards

Institute

IEEE Institute of Electrical and

Electronic Engineers

ISO International Organization for

Standardization

OSF Open Software Foundation Inc.

POSIX Institute of Electrical and

Electronic Engineers

X/Open X/Open Company Ltd.

XPG3 X/Open Company Ltd.

XPG4 X/Open Company Ltd.

XTI X/Open Company Ltd.

Notices 2543

|
|
|
|

2544 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Index

Special characters
__ characters, mapping from __ 103

__ characters, mapping to __ 103

___loc1() function 112

__24malc() library function 2482

__4kmalc() library function 2482

__a2e_l() library function 205

__a2e_s() library function 206

__ae_correstbl_query() library function 165

__ALTER_RESOURCE symbolic constant 276

__amrc structure
macros 84

__atoe_l() library function 200

__atoe() library function 199

__cabend() library function 224

__CcsidType() library function 247

__certificate() library function 255

__chattr() library function 267

__check_resource_auth_np() library function 275

__cnvblk() library function 307

__console() library function 336

__console2() library function 339

__CONTROL_RESOURCE symbolic constant 276

__convert_id_np() library function 345

__cotan() library function 358

__cpl() library function 359

__CSNameType() library function 377

__csplist macro 37, 379

__CURRENT macro 84

__CURRENT_LOWER macro 84

__discarddata() library function 420

__dlght() function 111

__dyn_t structure
dynalloc() 453

elements 453

initialization 462

__e2a_l() library function 509

__e2a_s() library function 510

__EDC_COMPAT environment variable 584, 693,

2310

__err2ad() library function 481

__errno2() library function 482

__etoa_l() library function 485

__etoa() library function 484

__fchattr() library function 516

__ftchep entry point in fetchep() 578

__ftp.h header file 48

__gderr() function 111

__get_cpuid() library function 753

__get_system_settings() library function 875

__GET_USERID symbolic constant 345

__GET_UUID symbolic constant 345

__getclientid() library function 748

__getenv() library function 763

__getipc() library function 793

__getlogin1() library function 802

__getuserid() library function 880

__h_errno() function 112

__heaprpt() library function 909

__IPC_BELOWBAR symbolic constant 1869, 1870

__ipdbcs() library function 997

__ipDomainName() library function 998

__ipdspx() library function 999

__iphost() library function 1000

__ipmsgc() library function 1001

__ipnode() library function 1002

__iptcpn() library function 1003

__isBFP() library function 1015

__isPosixOn() library function 1035

__lchattr() library function 1061

__le_api.h header file 55

__le_cib_get() library function 1075

__le_condition_token_build() library function 1076

__le_debug_set_resume_mch() library function 1087

__le_msg_add_insert() library function 1079

__le_msg_get_and_write() library function 1083

__le_msg_get() library function 1081

__le_msg_write() library function 1085

__le_traceback() library function 1088

__LIBASCII feature test macro 24

__librel() library function 1098

__login() library function 1134

__LOWER macro 84

__malloc24() library function 1174

__malloc31() library function 1175

__map_init() library function 1176

__map_service() library function 1178

__MIXED symbolic constant 1001

__mlockall() library function 1231

__mount() library function 1244

__msgrcv_timed() library function 1262

__must_stay_clean() library function 1277

__opargf() function 113

__open_stat() library function 1326

__opendir2() library function 1322

__operrf() function 113

__opindf() function 114

__opoptf() function 114

__osenv() library function 1329

__osname() library function 1333

__passwd() library function 1335

__pid_affinity() library function 1346

__poe() library function 1351

__pow_i() library function 1366

__pow_ii() library function 1367

__READ_RESOURCE symbolic constant 276

__readdir2() library function 1611

__reset_exception_handler() library function 1680

__S99parms structure in svc99() 2096

__semop_timed() library function 1737

__server_classify_create() library function 1760

__server_classify_destroy() library function 1761

__server_classify_reset() library function 1762

__server_classify() library function 1756

__server_init() library function 1763

© Copyright IBM Corp. 1996, 2007 2545

__server_pwu() library function 1766

__server_threads_query() library function 1771

__set_exception_handler() library function 1772

__shutdown_registration() library function 1875

__sigactionset() library function 1891

__signgam() library function 1923

__smf_record() library function 1961

__STDC_CONSTANT_MACROS feature test

macro 31

__STDC_FORMAT_MACROS feature test macro 31

__STDC_LIMIT_MACROS feature test macro 31

__t_errno() function 114

__tccp_flags 2176

__tccp_fromname 2176

__tccp_toname 2176

__tcgetcp() library function 2149

__tcsetcp() library function 2175

__tcsettables() library function 2182

__termcp structure 2176

__toCcsid() library function 2226

__toCSName() library function 2227

__tzone() function 114

__ucreate() library function 2283

__ufree() library function 2285

__uheapreport() library function 2286

__umalloc() library function 2290

__UPDATE_RESOURCE symbolic constant 276

__UPPER symbolic constant 1001

__utmpxname() library function 2322

__w_pioctl() library function 2444

__wsinit() library function 2475

_ALL_SOURCE feature test macro 22

_ALL_SOURCE_NO_THREADS feature test macro 23

_BPX_JOBNAME environment variable 487

_Ccsid.h header file 35

_CPCN_NAMES symbolic constant 2149

_CPCN_TABLES symbolic constant 2149

_CS_PATH symbolic constant 320

_CS_SHELL symbolic constant 321

_EDC_UMASK_DFLT environment variable 2291

_exit() library function 496

_Exit() library function 498

_ICONV_UCS2 environment variable 926

_ICONV_UCS2_PREFIX environment variable 926

_Ieee754.h header file 49

_IOFBF macro 84

_IOLBF macro 84

_IONBF macro 84

_ISOC99_SOURCE feature test macro 24

_LARGE_FILES feature test macro 24

_LARGE_MEM feature test macro 24

_longjmp() library function 1147

_LONGMAP feature test macro 25

_MSE_PROTOS feature test macro 25

_Nascii.h header file 64

_NOISOC99_SOURCE feature test macro 25

_OE_SOCKETS feature test macro 26

_OPEN_DEFAULT feature test macro 26

_OPEN_MSGQ_EXT feature test macro 26

_OPEN_SYS feature test macro 26

_OPEN_SYS_DIR_EXT feature test macro 27

_OPEN_SYS_FILE_EXT feature test macro 27

_OPEN_SYS_IPC_EXTENSIONS feature test

macro 27

_OPEN_SYS_MUTEX_EXT feature test macro 27

_OPEN_SYS_PTY_EXTENSIONS feature test

macro 27

_OPEN_SYS_SOCK_EXT feature test macro 27

_OPEN_SYS_SOCK_EXT2 feature test macro 27

_OPEN_SYS_SOCK_IPV6 feature test macro 27

_OPEN_THREADS feature test macro 28

_POSIX_C_SOURCE feature test macro 29

_POSIX_SOURCE feature test macro 29

_POSIX1_SOURCE feature test macro 29

_SET_THLIIPADDR() library function 1856

_setjmp() library function 1806

_SHARE_EXT_VARS feature test macro 29, 110

_SHR__LOC1 feature test macro 30

_SHR_DAYLIGHT feature test macro 29

_SHR_ENVIRON feature test macro 30

_SHR_H_ERRNO feature test macro 30

_SHR_LOC1 feature test macro 30

_SHR_LOC2 feature test macro 30

_SHR_LOCS feature test macro 30

_SHR_OPTARG feature test macro 30

_SHR_OPTERR feature test macro 30

_SHR_OPTIND feature test macro 30

_SHR_OPTOPT feature test macro 30

_SHR_SIGNGAM feature test macro 30

_SHR_T_ERRNO feature test macro 31

_SHR_TIMEZONE feature test macro 31

_SHR_TZNAME feature test macro 31

_superkill() library function 2095

_TCCP_BINARY symbolic constant 2150

_TCCP_CPNAMEMAX symbolic constant 2176

_TCCP_FASTP symbolic constant 2149

_tolower() library function 2229

_toupper() library function 2239

_UNIX03_SOURCE feature test macro 31

_VARARG_EXT_ feature test macro 33, 2325

_XOPEN_SOURCE feature test macro 33

_XOPEN_SOURCE_EXTENDED feature test

macro 34

() library function 1142, 2470

Numerics
24malc() 2482

4kmalc() 2482

A
a64l() library function 207

abend 116

user 116

abnormal program termination 116

See abend

abort() library function 116

aborting
See also abend

See also terminating

abort() 116

2546 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

abs() library function 118

absf() library function 118

absl() library function 118

absolute value 118

abs() 118

decabs() 411

decimal data type 411

fabs() 511

floating-point data type 511

integer argument 118

labs() 1060

llabs() 1106

long integer 1060

long long integer argument 1106

ac;_set_fd() library function 147

acc parameter for fopen() 628

accept_and_recv() library function 123

accept() library function 120

accepting
accept_and_recv() 123

accept() 120

t_accept() 2124

access mode
fopen() 626

access() library function 127

accessibility 2537

acl_create_entry() library function 130

acl_delete_entry() library function 131

acl_delete_fd() library function 132

acl_delete_file() library function 133

acl_first_entry() library function 135

acl_from_text() library function 137

acl_get_entry() library function 140

acl_get_fd() library function 142

acl_get_file() library function 144

acl_init() library function 146

acl_set_file() library function 150

acl_sort() library function 153

acl_to_text() library function 154

acl_valid() library function 157

aclfree() library function 136

aclupdateentry() library function 156

acos() library function 159

acosf() library function 159

acosh() library function 161

acosl() library function 159

address
socket peer 1825

address, host 779

advance() library function 163

AF_INET domain
example 214

servers 326

socket descriptor created in 211

AF_INET6 domain
servers 326

socket descriptor created in 212

AF_UNIX domain
example 215

servers 326

socket descriptor created in 213

affinity
__pid_affinity() 1346

aio_cancel() library function 167

aio_error() library function 169

aio_read() library function 170

aio_return() library function 174

aio_suspend() library function 175

aio_write() library function 177

aio.h header file 34

alarm() library function 180

alloca() library function 183

allocating
__umalloc() 2290

See also freeing

alloca() 183

brk() 216

calloc() 230

dynalloc() 453

malloc() 1172

realloc() 1620

sbrk() 1703

t_alloc() 2129

valloc() 2330

AMODE
switching 567

AMODE 64 considerations 7

appending
See concatenating

Arabic data (Bidi) 87, 1201, 1203, 1215, 1253, 1271,

1279

arccosine 159

calculating 159

hyperbolic, calculating 161

arccosine library function 159

arcsine 187

calculating 187

hyperbolic, calculating 189

arcsine library function 187

arctangent 192

calculating 192

hyperbolic, calculating 194

arctangent library function 192

arguments
accessing 2324

arpa/inet.h header file 34

arpa/nameser.h header file 34

arrays 729, 1635, 2472

See also lists

searching 220

sorting 1585

ASCII
CEL4CTBL Lookup Table 165

codeset
ID type 165, 247

ISO8859-1 25

name type 377

correspondence table 165

Enhanced 2495

LIBASCII 24

test character 1007

translate integer to character 2220

Index 2547

ASCII characters table 1007, 2221

ASCII-like environment 24

asctime_r() library function 186

asctime() library function 184

asin() library function 187

asinf() library function 187

asinh() library function 189

asinl() library function 187

assert.h header file 34

assert() macro 190

assertion diagnostic 190

assigning buffers 1776

asynchronous
signal catching 1886

signal, wait for an 1946

at (@) character, mapping to 103

atan() library function 192

atan2() library function 192

atan2f() library function 192

atan2l() library function 192

atanf() library function 192

atanh() library function 194

atanl() library function 192

atexit() library function 196

atof() library function 201

atoi() library function 202

atol() library function 203

atoll() library function 204

attributes
__chattr() 267

__fchattr() 516

directory
changing 267, 516

file
changing 267, 516

tcgetattr() 2147

tcsetattr() 2163

attributes, terminal 2147

audit flags 271, 518

change by file descriptor 518

change by path 271

B
base 10 logarithm 1138

base 64 character representation 207, 1167

base e logarithm 1126

basename() library function 208

baud rate
input

determining 258

termios 263

output 261

determining 261

termios 265

bcmp() library function 209

bcopy() library function 210

Berkeley software distribution (BSD) 26, 218

bessel library functions 1053

first kind 1053

second kind 2480

bidirectional (Bidi) data 1201, 1203, 1215, 1253, 1271,

1279

Arabic/Hebrew 1201, 1203, 1215, 1253, 1271, 1279

binary
files 627

search 220, 2195

tree
delete 2187

find node 2195

searching 2257

walk 2277

bind() library function 211

binding 9

bind() 211

t_bind() 2135

t_unbind() 2276

bit operations
See also mask

ffs() 586

blank character attribute 1016

blank character, wide 1042

blksize parameter 628

BookManager documents xl

BPX_ACCT_DATA environment variable 487

break condition 2161

brk() library function 216

broadcast, unblock a thread 1421

BSD (Berkeley software distribution) 26, 218

bsd_signal() library function 218

bsearch() library function 220

btowc() library function 222

buffers 1776

assigning 1776

BUFSIZ macro 83

comparing 1207

copying 1209, 1211

data stored in 1617

flushing 116, 584

format and print data 2345

receive data and store in 1628

receive messages and store in 1631, 1635

searching 1205

setting characters 1213

BUFSIZ macro 83

built-in library functions 107

list of 107

byteseek parameter in fopen() 628

bzero() library function 223

C
C

macros 2483

C language 3

C++ language 3

C89 utility 110, 111

CAA (Common Anchor Area) 378, 1514

cabs() library function 225

cacos() library function 227

cacosh() library function 229

callable services 249, 378, 393, 639, 1338, 1784

2548 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

callable services (continued)
assembler 340, 359, 633, 1553, 1980, 1983, 1993,

2333

calloc() library function 230

cancel a thread 1414

cancelability
point, establishing 1562

PTHREAD_INTR_ASYNCHRONOUS type 1414

PTHREAD_INTR_CONTROLLED type 1414

PTHREAD_INTR_DISABLE type 1414

PTHREAD_INTR_ENABLE type 1414

canceling
See also exiting

See also terminating

aio_cancel() 167

pthread_cancel() 1414

pthread_setintr() 1547

pthread_setintrtype() 1550

pthread_testintr() 1562

canonical input processing 2169

carg() library function 232

casin() library function 233

casinh() library function 234

cassert header file 34

catan() library function 235

catanh() library function 236

catclose() library function 237

category argument of setlocale() 1811

catgets() library function 238

catopen() library function 240

cbrt() library function 242

cclass() library function 243

ccos() library function 245

ccosh() library function 246

CCSID (coded character set ID) 35, 165, 247, 2226,

2227

cctype header file 35

cds() library function 248

cdump() library function 249

ceeedcct.h header file 35

ceil() library function 251

ceilf() library function 251

ceiling of value, determining 251

ceill() library function 251

CEL4CTBL
EBCDIC/ASCII Lookup Table 165

cerrno header file 35

cexp() library function 257

CF (Coupling Facility) 87, 359

cfgetispeed() library function 258

cfgetospeed() library function 261

cfloat header file 35

cfsetispeed() library function 263

cfsetospeed() library function 265

characters
See also strings

See also wide characters

ASCII table 1007, 2221

classification with ctype.h 39

classifying 1004

characters (continued)
conversions

lowercase 2228, 2229, 2239, 2240

uppercase 2228, 2229, 2239, 2240

finding in a string 2052

multibyte
conversion using mbrtowc() 1190

conversion using mbstowcs() 1197

conversion using mbtowc() 1199

length 1184, 1187

property 1045

property classification 2435

reading
fgetc() 587

getc(), getchar() 742

getwc() 888

getwchar() 890

setting 1213

testing 1004, 1007, 1039, 1042

blank 1016

ungetting 2307, 2310

writing
fputc() 662

fputwc() 666

putc(), putchar() 1566

characters mapping from 103

characters mapping to 103

chaudit() library function 271

chdir() library function 273

CheckSchEnv() library function 278

child process 632

chmod() library function 280

chown() library function 283

chpriority() library function 286

chroot() library function 288

CICS (Customer Information Control System)
cics.h header file 35

verify running 1018

cimag() library function 290

ciso646 header file 35

class libraries 5

classify
__server_classify_create() 1760

__server_classify_destroy() 1761

__server_classify_reset() 1762

__server_classify() 1756

classifying characters 1004

cleanup thread handler 1417, 1419

clearenv() library function 291

clearerr() library function 294

clearing
See also flushing

See also resetting

bzero() 223

clearenv() 291

clearerr() 294

clrmemf() 305

dbm_clearerr() 397

error indicators 294

fp_clr_flag() 642

Index 2549

client
__getclientid() 748

getclientid() 746

incoming requests, preparing server for 1104

climits header file 36

clocale header file 36

clock ticking in times() library function 2206

clock() library function 296

CLOCKS_PER_SEC 296

clog() library function 298

close() library function 299

closedir() library function 302

closelog() library function 304

closing
See also freeing

See also opening

See also releasing

catclose() 237

close() 299

closedir() 302

closelog() 304

dbm_close() 398

fclose() 525

files 525

iconv_close() 924

pclose() 1342

streams 525

t_close() 2155

clrmemf() library function 305

associated macros 84

cmath header file 36

coded character set
ID (CCSID) 35, 165, 247, 2226, 2227

codeset 2226

conversion utilities
iconv.h header file 49

iconv() 920

iso646.h header file 52

ID
ASCII 165, 247

EBCDIC 165, 247

ID conversion 2226, 2227

ID type 165, 247

name
ASCII 377

EBCDIC 377

name conversion 2226, 2227

name type 377

types 165, 247, 377

collate.h header file 36

collating elements
See also locale

get next 804

maximum 1181

multicharacter 1030

wide character 893

collequiv() library function 308

collorder() library function 310

collrange() library function 312

colltostr() library function 314

command
syntax diagrams xxxiii

commands, invoking from library function 2118

Common Anchor Area (CAA) 378, 1514

common features of z/OS XL C and XL C++

compilers 3

comparing
bcmp() 209

buffers 1207

cds() 248

cs() 372

memcmp() 1207

pthread_equal() 1453

strcasecmp() 2017

strcmp() 2022

strcoll() 2024

strcspn() 2028

strings 2022, 2024, 2028, 2048

strncasecmp() 2045

strncmp() 2048

wcscmp() 2366

wcscoll() 2368

wcsncmp() 2382

wmemcmp() 2449

compile() library function 316

complex.h header file 36

compressing
See also expanding

dn_comp() 442

concatenating
strcat() 2018

strings 2018, 2046

strncat() 2046

wcscat() 2362

wcsncat() 2380

concurrent access 532

condition
attribute object

destroy 1436

initialize a 1442

variable
wait on a 1433

wait on for a limited time 1430

configuration
system 2111

configuration variable 1337

confstr() library function 320

conj() library function 323

connect() library function 325

ConnectExportImport() library function 330

connecting
See also disconnecting

between sockets 325

connect() 325

ConnectExportImport() 330

ConnectServer() 332

ConnectWorkMgr() 334

t_connect() 2156

t_listen() 2211

t_rcvconnect() 2244

2550 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

connection
duplex, shutting down 1873

connection request 120

ConnectServer() library function 332

ConnectWorkMgr() library function 334

ContinueWorkUnit() library function 343

control block information 601

controlling terminal, pathname 385

conversions
character

base 64 string to long integer 207

multibyte to wide with mbrtowc() 1190

multibyte to wide with mbstowcs() 1197

multibyte to wide with mbtowc() 1199

single-byte to wide-character 222

string to double 2066

to lowercase 2228, 2240

to uppercase 2228, 2240

code set 920

date and time 2054

date and time structure to string 186

EBCDIC 199, 200, 484, 485

floating-point numbers to integers and

fractions 1237

Internet address
binary to text 970

text to binary 972

ISO8859-1 199, 200, 484, 485

long integer to base 64 string 1167

specifier
argument in fscanf(), scanf() and sscanf() 685

fscanf(), scanf() 683

used by strftime() 2038

used by strptime() 2054

string to unsigned integer 2086

string, multibyte to wide 1195

strings to integer values 202

time structure to string 184

time to character string 389, 392

wide character to multibyte 2360, 2447, 2449,

2451, 2453, 2455

coordinated
See time

Coordinated Universal Time (UTC) 902, 904

copying
See also moving

bcopy() 210

bytes 1209, 1211

copysign() 347

memccpy() 1204

memcpy() 1209

strcpy() 2026

strings 2026, 2050

strncpy() 2050

swab() 2100

wcscpy() 2370

wcsncpy() 2384

wmemcpy() 2451

copysign() library function 347

cos() library function 350

cosf() library function 350

cosh() library function 354

coshf() library function 354

coshl() library function 354

cosine
calculating 350

hyperbolic, calculating 354

cosl() library function 350

Coupling Facility (CF) 87, 359

cpio.h header file 37

cpow() library function 361

cproj() library function 363

CPU ID
__get_cpuid() 753

creal() library function 365

creat() library function 366

CreateWorkUnit() library function 369

creating
__login() 1134

__ucreate() 2283

See also deleting

creat() 366

extlink_np() 506

fork() 632

hcreate() 907

inet_makeaddr() 963

link() 1101

m_create_layout() 1201

pipe() 1348

pthread_create() 1448

pthread_key_create() 1470

setsid() 1841

socket 1970

socket pair 1974

socket() 1970

socketpair() 1974

symbolic link to pathname 2107

symbolic links, external 506

symlink() 2107

temporary file 2216, 2218

thread key identifiers 1470

threads 1448

tmpfile() 2216

vfork() 2332

Cross System Product (CSP) 379, 438

crypt() library function 371

cs() library function 372

csetjmp header file 37

csid() library function 373

csignal header file 37

csin() library function 375

csinh() library function 376

csnap() library function 378

CSP (Cross System Product) 379, 438

csp.h header file 37

csplist macro 37

csqrt() library function 380

cstdarg header file 38

cstddef header file 38

cstdio header file 38

cstdlib header file 38

cstring header file 38

Index 2551

ctan() library function 381

ctanh() library function 382

ctdli() library function 383

ctermid() library function 385

ctest.h header file 38

ctest() library function 387

ctime header file 39

ctime_r() library function 392

ctime() library function 389

ctrace() library function 393

ctype.h header file 39

current file position, changing 693, 697, 701, 1681

current host address 787

CURRENT LOWER macro 84

CURRENT macro 84

current terminal
__getlogin1() 802

getlogin_r() 801

getlogin() 799

cuserid() library function 395

Customer Information Control System
See CICS

cwchar header file 39

cwctype header file 39

D
data

buffers, stored in 1617

items
reading 670

writing 731

receiving 1628

sending on socket 1752

store in buffers 1628

Data Encryption Standard (DES) 371, 466, 1809

Data Language 1 (DL/I) 383

data set
allocation 453

freeing 460

host information 1793

network information 1822

network services, opening 1840

protocol, opening 1831

data types
See also numbers

See also type specifier

fixed-point decimal 39

floating-point 46, 678

limits 55

database
group 769, 771, 772, 774

user 840, 842, 843, 845

datagram
flushing queue 918

sending on socket 1740

date 756

__gderr() 111

See also time

asctime_r() 186

conversion 2054

date (continued)
ctime_r() 392

format
to wide character string 2374

ftime() 717

getdate_err 111

getdate() 756

gettimeofday() 876

localdtconv() 1115

strptime() 2054

wcsftime() 2374

daylight
__dlght() function 111

DBCS (Double-Byte Character Set)
shift state information 701

tables to load 997

dbm_clearerr() library function 397

dbm_close() library function 398

dbm_delete() library function 399

dbm_error() library function 401

dbm_fetch() library function 402

dbm_firstkey() library function 403

DBM_INSERT symbolic constant 409

dbm_nextkey() library function 405

dbm_open() library function 407

DBM_REPLACE symbolic constant 409

dbm_store() library function 409

dbx 6

deadlocks 534

Debug Tool 16

Debug Tool library function 387

debugging
ctest.h 38

ctest() 387

Debug Tool 16

sock_debug() 1966

with __errno2(), reason codes 482

decabs() library function 411

decchk() library function 412

decfix() library function 414

decimal
See also hexadecimal

data type
absolute value 411

preferred sign 414

valid types 412

decabs() 411

decchk() 412

decfix() 414

fixed-point operations in decimal.h 39

decimal host address
from network number 966

decimal.h header file 39

DeleteWorkUnit() library function 415

deleting
See also destroying

See also freeing

See also releasing

See also removing

dbm_delete() 399

DeleteWorkUnit() 415

2552 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

deleting (continued)
fdelrec() 539

mutex object 1477

remove() 1661

sigdelset() 1903

tdelete() 2187

VSAM records 539

DES (Data Encryption Standard) 371, 466, 1809

descriptor, socket 211, 212

destroying
__server_classify_destroy() 1761

See also deleting

See also freeing

condition variable attribute objects 1436

condition variables 1423

hdestroy() 908

m_destroy_layout() 1203

mutex attribute objects 1489

pthread_attr_destroy() 1377

pthread_cond_destroy() 1423

pthread_condattr_destroy() 1436

pthread_mutex_destroy() 1477

pthread_mutexattr_destroy() 1489

pthread_rwlock_destroy() 1520

pthread_rwlockattr_destroy() 1533

thread attributes object 1377

destructor routine 1470

detach a thread 1451

detachstate attribute
getting 1379

setting 1397

device ID
lstat() 1163

stat() 2008

diagnostic error messages
specifying 190

difftime() library function 417

directories
__chattr() 267

__fchattr() 516

__opendir2() 1322

__readdir2() 1611

attributes
changing 267, 516

chdir() 273

chmod() 280

chown() 283

chroot() 288

closedir() 302

closing 302

dirname() 419

entry removal 2312

fchdir() 520

fchmod() 521

getcwd() 754

getwd() 892

mkdir() 1217

mknod() 1223

mode
changing 521

opendir() 1319

directories (continued)
opening 1319, 1322

readdir_r() 1613

readdir() 1608

reading 1608, 1611, 1613

removing 1692

renaming 1666

repositioning 1683

rewind() 1681

rewinding 1683

rmdir() 1692

seekdir() 1714

telldir() 2189

unlink() 2312

working 754

directory mode
changing 280

directory operations 40

dirent.h header file 40

dirname() library function 419

disability 2537

disconnecting
See also connecting

DisconnectServer() 421

t_rcvdis() 2246

t_snddis() 2261

DisconnectServer() library function 421

div_t structure 423

div() library function 423

division 423

div() 423, 1107

integral 1071

ldiv() 1071

DL/I (Data Language 1) 383

dlclose() library function 424

dlerror() library function 426

dlfcn.h header file 40

dll.h header file 40

dllfree() library function 432

dllload() library function 435

dllqueryfn() library function 438

dllqueryvar() library function 440

DLLs (Dynamic Link Libraries)
explicit use 432, 435

freeing 432

loading 435

obtaining function pointers 438

obtaining variable pointers 440

dlopen() library function 427

dlsym() library function 430

dn_comp() library function 442

dn_expand() library function 444

dn_find() library function 445

dn_skipname() library function 446

DNS (Domain Name Server) 1672, 1673, 1675, 1677,

1679

domain
servers in the AF_INET 326

servers in the AF_INET6 326

servers in the AF_UNIX 326

Index 2553

domain name
compression 442

expansion 444

find 445

skipping 446

Domain Name Server (DNS) 1672, 1673, 1675, 1677,

1679

downward compatibility 8

draining
tcdrain() 2138

drand48() library function 447

dtconv structure 59

address 1115

dumps
cdump() 249

csnap() 378

ctrace() 393

formatted 249

traceback 393

dup() library function 449

dup2() library function 451

duplex connection 1873

dynalloc() library function 453

dynamic
allocations in dynit.h 41

data set allocation 453

data set deallocation 460

function call 565, 578

Dynamic Link Libraries (DLLs)
See DLLs

dynfree() library function 460

dyninit() library function 462

dynit.h header file 41

E
EBCDIC

CEL4CTBL Lookup Table 165

codeset
IBM-1047 165, 650, 688, 922, 1007, 1117, 1811,

1818, 2150, 2184, 2221

ID type 165, 247

name type 377

conversion, ISO8859-1 199, 200, 484, 485

correspondence table 165

ecvt() library function 464

effective ID
group 760, 1789

user 765, 1857

EINVAL 994

ELPA (Extended Link Pack Area) 566

EMVSBADCHAR symbolic constant 43

EMVSCATLG symbolic constant 43

EMVSCVAF symbolic constant 43

EMVSDYNALC symbolic constant 43

EMVSERR symbolic constant 43

EMVSNORTL symbolic constant 43

EMVSNOTUP symbolic constant 43

EMVSPARM symbolic constant 43

EMVSPATHOPTS symbolic constant 43

EMVSPFSFILE symbolic constant 43

EMVSPFSPERM symbolic constant 43

EMVSSAF2ERR symbolic constant 43

EMVSSAFEXTRERR symbolic constant 43

EMVSTODNOTSET symbolic constant 43

ENAMETOOLONG symbolic constant 43

enclave, WLM 343, 369, 415, 503, 508, 939, 1049,

1073, 1329, 1330, 1593, 1766, 2301, 2303

encrypt() library function 466

encryption
crypt() 371

encrypt() 466

setkey() 1809

endgrent() library function 468

endhostent() library function 470

ending
a process or program 116

endnetent() library function 471

endprotoent() library function 472

endpwent() library function 473

endservent() library function 474

endutxent() library function 475

ENFILE symbolic constant 43

Enhanced ASCII 2495

ENODEV symbolic constant 43

ENOENT symbolic constant 43

ENOEXEC symbolic constant 43

ENOLCK symbolic constant 43

ENOMEM symbolic constant 43

ENOSPC symbolic constant 43

ENOSYS symbolic constant 43

ENOTDIR symbolic constant 43

ENOTEMPTY symbolic constant 43

ENOTTY symbolic constant 43

env.h header file 41

environ variable 1569

environment
__getenv() 763

__login() 1134

CheckSchEnv() 278

clearenv() 291

getenv() 761

longjmp() 1143

putenv() 1569

QuerySchEnv() 1591

setenv() 1783

setjmp() 1802

siglongjmp() 1914

sigsetjmp() 1936

table 761

variables 489, 761

_EDC_COMPAT 584, 693, 2310

add, delete or change 1783

clearing 291

setting 41

ENXIO symbolic constant 43

EOF (End Of File)
clearing 294, 1681

feof() 556

flag 556

indicator reset 294

macro 83

2554 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

EOF (End Of File) (continued)
setting 887

testing 556

WEOF 99, 100

EPERM symbolic constant 43

EPIPE symbolic constant 43

erand48() library function 476

erf() library function 478

erfc() library function 478

erfcf() library function 478

erfcl() library function 478

erff() library function 478

erfl() library function 478

EROFS symbolic constant 43

errno
in perror() 1344

values 41, 111, 114, 2193

errno.h header file 41

error
__err2ad() 481

__errno2() 482

__gderr() 111

__h_errno() 112

__operrf() 113

__t_errno() 114

See also clearing

See also exception handling

See also reason codes

aio_error() 169

cerrno header file 35

clearerr() 294

dbm_clearerr() 397

dbm_error() 401

erf() 478

errno 111

errno.h 41

ferror() 559

function
diagnostic 2193

math 478

getdate_err 111

h_errno 112

handler 1823

handling 294

in files 559

indicator 559

indicator, clearing 1681

messages 1649, 1823, 2193

diagnostic, specifying 190

pointer to 2031

printing 1344

opterr 113

perror() 1344

regerror() 1649

socket
diagnostic 2159

stderr 114

strerror() 2031

t_errno 114

t_error() 2193

t_rcvuderr() 2250

error (continued)
t_strerror() 2265

tcperror() 2159

testing 559

values 41, 111, 114, 2193

variables 30

ESDS (Entry-Sequenced Data Set)
use of 725

ESPIPE symbolic constant 43

ESRCH symbolic constant 43

establish
cancelability point 1562

cleanup thread handler 1419

examples
machine-readable xl

naming of xl

softcopy xl

examples, softcopy
CELEBA01 117

CELEBA03 128

CELEBA05 181

CELEBA06 185

CELEBA08 190

CELEBA10 197

CELEBB01 220

CELEBC01 230

CELEBC02 243

CELEBC05 259

CELEBC06 261

CELEBC07 263

CELEBC08 265

CELEBC09 272

CELEBC10 273

CELEBC11 282

CELEBC12 284

CELEBC13 292

CELEBC14 292

CELEBC15 294

CELEBC18 302

CELEBC22 308

CELEBC23 310

CELEBC24 312

CELEBC25 314

CELEBC28 368

CELEBC29 373

CELEBC32 385

CELEBC33 390

CELEBC34 393

CELEBD01 411

CELEBD04 417

CELEBD05 449

CELEBD06 451

CELEBD07 458

CELEBD09 462

CELEBDL1 436

CELEBDL2 438

CELEBDL3 440

CELEBDL4 433

CELEBE01 479

CELEBE02 482

CELEBE03 492

Index 2555

examples, softcopy (continued)
CELEBE05 497

CELEBE07 506

CELEBF02 519

CELEBF03 521

CELEBF04 524

CELEBF06 536

CELEBF08 546

CELEBF09 556

CELEBF10 559

CELEBF15 585

CELEBF16 587

CELEBF17 590

CELEBF18 592

CELEBF19 594

CELEBF20 596

CELEBF21 598

CELEBF26 630

CELEBF27 635

CELEBF29 640

CELEBF30 657

CELEBF31 658

CELEBF32 658

CELEBF34 662

CELEBF35 664

CELEBF36 667

CELEBF37 668

CELEBF38 670

CELEBF42 689

CELEBF43 690

CELEBF44 690

CELEBF46 691

CELEBF47 705

CELEBF48 709

CELEBF49 720

CELEBF50 726

CELEBF51 731

CELEBF52 571

CELEBF53 572

CELEBF54 572

CELEBF55 573

CELEBF56 573

CELEBF57 573

CELEBF58 574

CELEBF59 574

CELEBF60 575

CELEBF61 575

CELEBF62 576

CELEBF63 576

CELEBG02 743

CELEBG03 754

CELEBG04 760

CELEBG05 761

CELEBG06 765

CELEBG07 767

CELEBG08 769

CELEBG09 772

CELEBG10 775

CELEBG11 777

CELEBG12 800, 802

CELEBG13 824

examples, softcopy (continued)
CELEBG14 826

CELEBG15 829

CELEBG16 840

CELEBG17 843

CELEBG18 850

CELEBG19 873

CELEBG20 878

CELEBG21 888

CELEBG22 890

CELEBG23 903

CELEBH01 917

CELEBI01 922

CELEBI02 1005

CELEBI03 1013

CELEBI04 1018

CELEBI05 1030

CELEBI06 1040

CELEBI07 1045

CELEBJ01 1053

CELEBK01 1056

CELEBL01 1060

CELEBL03 1071

CELEBL04 1100

CELEBL06 1117

CELEBL07 1120

CELEBL12 1165

CELEBM01 1172

CELEBM03 1188

CELEBM04 1191

CELEBM05 1193

CELEBM06 1196

CELEBM07 1197

CELEBM11 1205

CELEBM12 1207

CELEBM13 1209

CELEBM14 1211

CELEBM15 1213

CELEBM16 1219

CELEBM17 1221

CELEBM18 1225

CELEBM19 1229

CELEBM21 1242

CELEBN01 1306

CELEBO01 1320

CELEBP01 1339

CELEBP02 1340

CELEBP03 1345

CELEBP04 1348

CELEBP06 1377

CELEBP08 1390

CELEBP09 1393

CELEBP10 1396

CELEBP11 1398

CELEBP12 1410

CELEBP13 1412

CELEBP14 1415

CELEBP15 1417

CELEBP16 1419

CELEBP17 1421

CELEBP18 1423

2556 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

examples, softcopy (continued)
CELEBP19 1426

CELEBP20 1428

CELEBP21 1431

CELEBP22 1434

CELEBP23 1436

CELEBP24 1438

CELEBP25 1443

CELEBP26 1444

CELEBP27 1449

CELEBP28 1451

CELEBP29 1453

CELEBP30 1455

CELEBP31 1458

CELEBP32 1467

CELEBP33 1468

CELEBP34 1471

CELEBP35 1475

CELEBP36 1477

CELEBP37 1480

CELEBP38 1483

CELEBP40 1486

CELEBP41 1487

CELEBP42 1489

CELEBP43 1492

CELEBP44 1498

CELEBP45 1501

CELEBP46 1508

CELEBP47 1542

CELEBP48 1547

CELEBP50 1550

CELEBP51 1554

CELEBP52 1562

CELEBP53 1564

CELEBP54 1567

CELEBP55 1574

CELEBP56 1580

CELEBP57 1582

CELEBQ01 1585

CELEBR01 1596

CELEBR02 1598

CELEBR03 1606

CELEBR04 1609

CELEBR05 1616

CELEBR06 1621

CELEBR07 1648

CELEBR08 1650

CELEBR09 1654

CELEBR10 1656

CELEBR12 1661

CELEBR13 1668

CELEBR14 1681

CELEBR15 1683

CELEBR16 1693

CELEBR17 1699

CELEBS01 1777

CELEBS02 1781

CELEBS03 1784

CELEBS04 1785

CELEBS05 1788

CELEBS06 1789

examples, softcopy (continued)
CELEBS07 1818

CELEBS08 1819

CELEBS09 1827

CELEBS10 1841

CELEBS11 1858

CELEBS13 1889

CELEBS14 1889

CELEBS15 1899

CELEBS16 1903

CELEBS17 1905

CELEBS18 1907

CELEBS19 1912

CELEBS20 1919

CELEBS22 1925

CELEBS23 1928

CELEBS25 1941

CELEBS26 1947

CELEBS29 1959

CELEBS31 2002

CELEBS32 692

CELEBS33 2010

CELEBS34 2018

CELEBS35 2020

CELEBS36 2022

CELEBS37 2024

CELEBS38 2026

CELEBS39 2028

CELEBS41 2036

CELEBS42 2041

CELEBS43 2043

CELEBS44 2046

CELEBS45 2048

CELEBS46 2050

CELEBS47 2052

CELEBS48 2057

CELEBS49 2058

CELEBS50 2060

CELEBS51 2062

CELEBS52 2064

CELEBS53 2067

CELEBS54 2076

CELEBS55 2080

CELEBS56 2087

CELEBS57 2094

CELEBS58 2097

CELEBS61 2115

CELEBT03 2138

CELEBT04 2142

CELEBT05 2145

CELEBT06 2147

CELEBT07 2152

CELEBT08 2162

CELEBT09 2173

CELEBT10 2180

CELEBT11 2204

CELEBT12 2207

CELEBT13 2217

CELEBT14 2218

CELEBT15 2228

CELEBT16 2272

Index 2557

examples, softcopy (continued)
CELEBT17 2281

CELEBU01 2292

CELEBU02 2294

CELEBU03 2297

CELEBU04 2308

CELEBU06 2313

CELEBU07 2318

CELEBV01 2325, 2327

CELEBV03 2335

CELEBV04 2342

CELEBV05 2345

CELEBV06 2339

CELEBW01 2350

CELEBW02 2356

CELEBW04 2362

CELEBW05 2364

CELEBW06 2366

CELEBW07 2368

CELEBW08 2370

CELEBW09 2372

CELEBW10 2375

CELEBW11 2376

CELEBW12 2378

CELEBW13 2380

CELEBW14 2382

CELEBW15 2384

CELEBW16 2386

CELEBW17 2388

CELEBW18 2391

CELEBW19 2393

CELEBW20 2395

CELEBW21 2398

CELEBW22 2408

CELEBW23 2410

CELEBW24 2417

CELEBW25 2419

CELEBW26 2425

CELEBW27 2427

CELEBW28 2429

CELEBW29 2430

CELEBW30 2432

CELEBW31 2437

CELEBW32 2439

CELEBW33 2442

CELEBW34 2446

CELEBW35 2467

CELEBW36 2477

CELEBY01 2480

exception handling 1823

See also error

assert() library function 190

clearerr() library function 294

fp_raise_xcp() 643

in C++ 1823, 2192, 2305

perror() library function 1344

signal.h header file 77

uncaught_exception() 2299

unexpected() 2305

exception header file 44

EXDEV symbolic constant 43

exec family of functions
described 486

execl() library function 486

execle() library function 486

execlp() library function 486

execv() library function 486

execve() library function 486

execvp() library function 486

EXIT_FAILURE macro 85

EXIT_FAILURE macro in stdlib.h 494

EXIT_SUCCESS macro 85

EXIT_SUCCESS macro in stdlib.h 494

exit() library function 494

exiting
_exit() 496

_Exit() 498

a program 494

a thread 1455

atexit() 196

exit() 494

pthread_exit() 1455

exp() library function 498

exp2() library function 505

expanding
See also compressing

dn_expand() 444

wordexp() 2457

expf() library function 498

expl() library function 498

expm1() library function 502

exponent 1362

exponential functions 498, 502, 505, 933, 1128, 1705

exp() 498

expf() 498

expl() 498

scalb() 1705

ExportWorkUnit() library function 503

Extended Link Pack Area (ELPA) 566

external
symbolic link, create 506

extlink_np() library function 506

ExtractWorkUnit() library function 508

F
fabs() library function 511

fabsf() library function 511

fabsl() library function 511

fattach() library function 514

fchaudit() library function 518

fchdir() library function 520

fchmod() library function 521

fchown() library function 523

fclose() library function 525

fcntl.h header file 45

fcntl() library function 527

fcvt() library function 538

fdelrec() library function 539

fdetach() library function 541

fdim() library function 543

fdopen() library function 545

2558 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

feature test macro 21

features.h header file 45

FECB (fetch control block) 578

feclearexcept() library function 547

fegetenv() library function 552

fegetexceptflag() library function 553

fegetround() library function 554

feholdexcept() library function 555

feof() library function 556

feraiseexcept() library function 558

ferror() library function 559

fesetenv() library function 561

fesetexceptflag() library function 563

fesetround() library function 564

fetch
a module 565

control block 578

fetchable module, program flow 566

without FETCHABLE 567

fetch() library function 565

alternatives under C++ 568

examples of alternatives under C++ 571

FETCHABLE preprocessor directive 567

fetchep() library function 578

fetestexcept() library function 581

feupdateenv() library function 582

fflush() library function 584

ffs() library function 586

fgetc() library function 587

fgetpos() library function 589

stdio.h types 83

fgets() library function 591

fgetwc() library function 593

fgetws() library function 595

FIFO 1315

special files
creating 1220, 1223

file system
mount a 1241

mounted, information 2438

removing 2293

status 2476

file tree walk (FTW) 48, 722, 1301

FILE type 83

FILENAME_MAX macro 83

fileno() library reference 598

files
attributes

changing 516

changing mode 283, 521

closing 299

descriptor 1313

associating with streams 545

controlling 527

duplicate 449, 451

flags 528

open stream 598

testing 1012

errors in 294

file tag
attributes 268

files (continued)
locking 532, 534

maximum opened 83

memory 1862

name
temporary 2218

names
length 83

unique 1226, 1227

offset 1313, 1368, 1583, 1602, 2464

opening 626

positioning 589, 693, 697, 701, 711, 1681

read data
no file pointer change 1368

renaming 1666

status flags 528

STREAMS 514, 541, 805, 828, 1012, 1315, 1571,

1603, 2467

time access 2317

tree
traversal 48, 722, 1301

type=record used with putwc(), putwchar() 1581

write data
no file pointer change 1583

writing to 2464

finding
See also searching

dn_find() 445

domain name 445

lfind() 1095

node
binary tree 2195

tfind() 2195

finite() library function 600

fixed-point decimal
decimal.h 39

flags
audit 271

EOF 556

file descriptor 531

open
append mode 532

asynchronous update 532

blocking 532

extracting 532

file access mode 532

synchronous update 532

fldata_t data structure elements 602

fldata() library function 601

associated macros 84

stdio.h types 83

float.h header file
constants defined in 46

defined 46

floating-point
absolute value 511, 643, 645

break up value 1237

breaking down value 678

conversions
string to double floating-point 2397

copying sign 347

Index 2559

floating-point (continued)
data type 46

determine format 1015

double precision representation 1292

exception 642

IEEE 108

infinity class 600

nextafter() 1292

remainder 1659

rounding 647, 660, 1689

flocate() library function 605

associated macros 84

floor() library function 609

floorf() library function 609

floorl() library function 609

flushing
See also clearing

buffers 584

datagrams queue 918

fflush() 584

ibmsflush() 918

streams 525

tcflush() 2144

terminal I/O 2144

fma() library function 613

fmax() library function 614

fmin() library function 617

fmod() library function 619

fmodf() library function 619

fmodl() library function 619

fmtmsg.h header file 48

fmtmsg() library function 621

fnmatch.h header file 48

fnmatch() library function 624

FOPEN_MAX macro 83

fopen() library function 626

maximum simultaneous files 83

fork() library function 632

format specification
fprintf family 648, 649

fscanf(), scanf() 683

formatted I/O 648

formatted time 2038

FORTRAN
return code 637

fortrc() library function 637

fp_clr_flag() library function 642

fp_raise_xcp() library function 643

fp_read_flag() library function 645

fp_read_rnd() library function 647

fp_swap_rnd() library function 660

fpathconf() library function 638

fpclassify() library function 641

fpos_t type in stdio.h file 83

fprintf() library function 648

fputc() library function 662

fputs() library function 664

fputwc() library function 666

fputws() library function 668

fpxcp.h header file 48

fread() library function 670

free() library function 672

freeaddrinfo() library function 674

freeing
__ufree() 2285

See also allocating

See also closing

See also destroying

See also releasing

data set 460

dll 432

dllfree() 432

dynfree() 460

free() 672

globfree() 901

regfree() 1656

storage 672, 901, 1656, 2197, 2285, 2461

t_free() 2197

wordfree() 2461

freezing
pthread_quiesce_and_get_np() 1510

freopen() library function 675

frexp() library function 678

frexpf() library function 678

frexpl() library function 678

fscanf() library function 682

fseek() library function 693

fseeko() library function 697

fsetpos() library function 701

stdio.h types 83

fstat() library function 704

fstatvfs() library function 707

fsync() library function 709

ftell() library function 711

ftello() library function 714

ftime() library function 717

FTM (Feature Test Macro) 21

ftok() library function 718

ftruncate() library function 719

FTW (file tree walk) 48, 722, 1301

FTW_CHDIR symbolic constant 1301

FTW_D symbolic constant 722, 1301

FTW_DEPTH symbolic constant 1301

FTW_DNR symbolic constant 722, 1301

FTW_DP symbolic constant 1301

FTW_F symbolic constant 722, 1301

FTW_MOUNT symbolic constant 1301

FTW_NS symbolic constant 722, 1301

FTW_PHYS symbolic constant 1301

FTW_SL symbolic constant 722, 1302

FTW_SLN symbolic constant 1302

ftw.h header file 48

ftw() library function 722

functions
arguments 2324

restartable 1884

signal-catching 1887

fupdate() library function 725

fwide() library function 727

fwprintf() library function 729

fwrite() library function 731

fwscanf(),swscanf(),wscanf() library function 733

2560 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

G
gai_strerror() library function 735

gamma functions 736

__signgam() 1923

gamma() 736

lgamma() 1096

signgam 114

gamma() library function 736

gcvt() library function 737

getaddrinfo() library function 738

GETALL symbolic constant 1729

getc() library function 742

getchar() library function 742

getclientid() library function 746

getcontext() library function 750

getcwd() library function 754

getdate() library function 756

getdtablesize() library function 759

getegid() library function 760

getenv() library function 761

geteuid() library function 765

getgid() library function 767

getgrent() library function 468

getgrgid_r() library function 771

getgrgid() library function 769

getgrnam_r() library function 774

getgrnam() library function 772

getgroups() library function 775

getgroupsbyname() library function 777

gethostbyaddr() library function 779

gethostbyname() library function 782

gethostent() library function 785

gethostid() library function 787

gethostname() library function 788

getibmopt() library function 789

getibmsockopt() library function 790

getitimer() library function 797

getlogin_r() library function 801

getlogin() library function 799

getmccoll() library function 804

getmsg() library function 805

getnameinfo() library function 808

GETNCNT symbolic constant 1729

getnetbyaddr() library function 811

getnetbyname() library function 813

getnetent() library function 815

getopt() library function 817

getpagesize() library function 819

getpass() library function 820

getpeername() library function 821

getpgid() library function 823

getpgrp() library function 824

GETPID symbolic constant 1729

getpid() library function 826

getpmsg() library function 805

getppid() library function 829

getpriority() library function 831

getprotobyname() library function 833

getprotobynumber() library function 835

getprotoent() library function 837

getpwent() library function 473

getpwnam_r() library function 842

getpwnam() library function 840

getpwuid_r() library function 845

getpwuid() library function 843

getrlimit() library function 846

getrusage() library function 849

gets() library function 850

getservbyname() library function 852

getservbyport() library function 854

getservent() library function 856

getsid() library function 858

getsockname() library function 859

getsockopt() library function 861

getstablesize() library function 870

getsubopt() library function 871

getsyntx() library function 873

gettimeofday() library function 876

getting
__tcgetcp() 2149

See also querying

See also reading

See also receiving

catgets() 238

cfgetispeed() 258

cfgetospeed() 261

condition variable attribute object 1438

fgetc() 587

fgets() 591

fgetwc() 593

fgetws() 595

file position
fgetpos() 589

get() 589

m_getvalues_layout() 1215

msgget() 1257

pthread_attr_getdetachstate() 1379

pthread_attr_getstacksize() 1390

pthread_attr_getsynctype_np() 1392

pthread_attr_getweight_np() 1393

pthread_condattr_getkind_np() 1438

pthread_getspecific_d8_np() 1463

pthread_getspecific() 1458

pthread_mutexattr_getkind_np() 1491

pthread_mutexattr_getpshared() 1494

pthread_mutexattr_gettype() 1496

pthread_quiesce_and_get_np() 1510

pthread_rwlockattr_getpshared() 1534

semget() 1731

shmget() 1869

sys/__getipc.h 87

t_getinfo() 2200

t_getprotaddr() 2202

t_getstate() 2203

tcgetattr() 2147

tcgetpgrp() 2152

tcgetsid() 2154

ungetc() 2307

ungetwc() 2310

w_getmntent() 2438

w_getpsent() 2441

getuid() library function 878

Index 2561

getutxent() library function 881

getutxid() library function 883

getutxline() library function 885

GETVAL symbolic constant 1728

getw() library function 887

getwc() library function 888

getwchar() library function 890

getwd() library function 892

getwmccoll() library function 893

GETZCNT symbolic constant 1729

givesocket() library function 894

GLOB_ABORTED symbolic constant 900

GLOB_APPEND symbolic constant 899

GLOB_DOOFFS symbolic constant 899

GLOB_ERR symbolic constant 899

GLOB_MARK symbolic constant 899

GLOB_NOCHECK symbolic constant 899

GLOB_NOESCAPE symbolic constant 899

GLOB_NOMATCH symbolic constant 900

GLOB_NOSORT symbolic constant 899

GLOB_NOSPACE symbolic constant 900

glob.h header file 48

glob() library function 898

globfree() library function 901

gmtime_r() library function 904

gmtime() library function 902

goto
See jumping

grantpt() library function 906

group database
getgrgid_r() 771

getgrgid() library function 769

getgrnam_r() 774

getgrnam() library function 772

group ID
effective 760

job control 1826

lstat() 1163

process 824

real 767

setting 1781

stat() 2008

supplementary 775, 777

grp.h header file 48

H
h_errno variable 30

handle, character property class 2435

handling interrupt signals 1917

hash search tables
create 907, 911

destroy 908

hcreate() library function 907

hdestroy() library function 908

header files
__ftp.h header file 48

__le_api.h header file 55

__ussos.h header file 91

_Ccsid.h header file 35

_Ieee754.h header file 49

header files (continued)
_Nascii.h header file 64

aio.h header file 34

arpa/inet.h header file 34

arpa/nameser.h header file 34

assert.h header file 34

cassert header file 34

cctype header file 35

ceeedcct.h header file 35

cerrno header file 35

cfloat header file 35

cics.h header file 35

ciso646 header file 35

climits header file 36

clocale header file 36

cmath header file 36

collate.h header file 36

complex.h header file 36

cpio.h header file 37

csetjmp header file 37

csignal header file 37

csp.h header file 37

cstdarg header file 38

cstddef header file 38

cstdio header file 38

cstdlib header file 38

cstring header file 38

ctest.h header file 38

ctime header file 39

ctype.h header file 39

cwchar header file 39

cwctype header file 39

decimal.h header file 39

dirent.h header file 40

dlfcn.h header file 40

dll.h header file 40

dynit.h header file 41

env.h header file 41

errno.h header file 41

exception header file 44

fcntl.h header file 45

features.h header file 45

float.h header file 46

fmtmsg.h header file 48

fnmatch.h header file 48

fpxcp.h header file 48

ftw.h header file 48

glob.h header file 48

grp.h header file 48

iconv.h header file 49

ims.h header file 49

inttypes.h header file 49

iso646.h header file 52

langinfo.h header file 53

lc_core.h header file 54

lc_sys.h header file 54

leawi.h header file 55

libgen.h header file 55

limits.h header file 55

localdef.h header file 56

locale.h header file 57

2562 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

header files (continued)
math.h header file 60

memory.h header file 64

monetary.h header file 64

msgcat.h header file 64

mtf.h header file 64

ndbm.h header file 64

net/if.h header file 65

net/rtrouteh.h header file 65

netdb.h header file 64

netinet/icmp6.h header file 65

netinet/in.h header file 68

netinet/ip6.h header file 69

new header file 70

new.h header file 71

nl_types.h header file 72

nlist.h header file 71

poll.h header file 72

pthread.h header file 72

re_comp.h header file 75

regex.h header file 76

regexp.h header file 76

resolv.h header file 76

rexec.h header file 76

sched.h header file 76

search.h header file 77

setjmp.h header file 77

signal.h header file 77

spawn.h header file 78

spc.h header file 78

stdarg.h header file 79

stdbool.h header file 79

stddef.h header file 79

stdefs.h header file 80

stdint.h header file 80

stdio.h header file 82

stdlib.h header file 85

string.h header file 86

strings.h header file 86

stropts.h header file 86

sys/__cpl.h header file 87

sys/__getipc.h header file 87

sys/acl.h header file 87

sys/file.h header file 87

sys/ioctl.h header file 87

sys/ipc.h header file 87

sys/layout.h header file 87

sys/mman.h header file 87

sys/modes.h header file 88

sys/msg.h header file 88

sys/resource.h header file 88

sys/sem.h header file 88

sys/shm.h header file 89

sys/socket.h header file 89

sys/statvfs.h header file 89

sys/time.h header file 89

sys/timeb.h header file 89

sys/ttydev.h header file 89

sys/uio.h header file 91

sys/un.h header file 91

sys/wlm.h header file 91

header files (continued)
syslog.h header file 87

tar.h header file 91

terminat.h header file 92

tgmath.h header file 92

time.h header file 93

typeinfo header file 94

typeinfo.h header file 96

ucontext.h header file 96

uheap.h header file 96

ulimit.h header file 96

unexpect.h header file 96

utmpx.h header file 98

varargs.h header file 98

variant.h header file 98

wchar.h header file 98

wcstr.h header file 100

wctype.h header file 100

wordexp.h header file 100

xti.h header file 100

heap storage
__ucreate() 2283

create 2283

report 909, 2286

uheap.h header file 96

Hebrew data (Bidi) 87, 1201, 1203, 1215, 1253, 1271,

1279

hexadecimal 1005

See also decimal

See also floating-point

isxdigit() 1005

numbers
testing 1005

HFS (Hierarchical File System)
adding system 1241

changing file offset 1161

large files 24, 1124, 1161, 1164, 1235

hiperspace 305, 602, 629, 633, 2333

host
address 779

endhostent() 470

gethostbyaddr() 779

gethostbyname() 782

gethostent() 785

gethostid() 787

gethostname() 788

name 782

name entry 785

sethostent() 1793

host byte order
short integer translated to 1311

translating long integer to 1309

host information data sets
closing 470

opening 1793

hsearch() library function 911

htonl() library function 912

htons() library function 914

HUGE_VAL macro 63

hyperbolic arccosine, calculating 161

hyperbolic arcsine, calculating 189

Index 2563

hyperbolic arctangent, calculating 194

hyperbolic cosine, calculating 354

hyperbolic sine, calculating 1955

hyperbolic tangent, calculating 2133

hypot() library function 916

I
I/O

See also accepting

See also closing

See also connecting

See also disconnecting

See also draining

See also flushing

See also getting

See also listening

See also opening

See also putting

See also querying

See also reading

See also receiving

See also seeking

See also sending

See also updating

See also writing

controlling devices 2444

error testing 559

errors 294

opening files 626

write to file 2464

I/O interfaces 13

ibmsflush() library function 918

iconv_close() library function 924

iconv_open() library function 925

iconv.h header file 49

iconv() library function 920

IEEE Binary Floating-Point 108

if_freenameindex() library function 929

if_indextoname() library function 930

if_nameindex() library function 931

if_nametoindex() library function 932

if.h header file 65

ilogb() library function 933

imaxabs() library function 937

imaxdiv() library function 938

importing functions and variables 435

ImportWorkUnit() library function 939

IMS (Information Management System) 49, 384

ims.h header file 49

in.h header file 68

index() library function 941

indicators, error 294

inet_addr() library function 960

inet_lnaof() library function 962

inet_makeaddr() library function 963

inet_netof() library function 965

inet_network() library function 966

inet_ntoa() library function 968

inet_ntop() library function 970

inet_pton() library function 972

inet6_opt_append() library function 942

inet6_opt_find() library function 944

inet6_opt_finish() library function 946

inet6_opt_get_val() library function 947

inet6_opt_init() library function 949

inet6_opt_next() library function 950

inet6_opt_set_val() library function 952

inet6_rth_add() library function 954

inet6_rth_getaddr() library function 955

inet6_rth_init() library function 956

inet6_rth_reverse() library function 957

inet6_rth_segments() library function 958

inet6_rth_space() library function 959

Information Management System (IMS) 49, 384

initgroups() library function 974

initialization
__map_init() 1176

__server_init() 1763

__wsinit() 2475

condition attribute objects 1442

condition variables 1425

dyninit() 462

mbsinit() 1193

mutex 1479

mutex attribute object 1498

pthread_attr_init() 1395

pthread_cond_init() 1425

pthread_condattr_init() 1442

pthread_mutex_init() 1479

pthread_mutexattr_init() 1498

pthread_rwlock_init() 1522

pthread_rwlockattr_init() 1536

res_init() 1669

strings 2050

thread attributes objects 1395

tinit() 2209

initstate() library function 975

inode
lstat() 1163

stat() 2008

input
baud rate

determining 258

termios 263

input and output 13

insque() library function 976

integer
See also numbers

See also rounding

division 1071

long
translating 912

long absolute value 1060

pseudo-random 1598, 1600

representation
base 64 characters 207, 1167

translated to host byte order
long 1309

short 1311

translating
network byte order 914

2564 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

integer (continued)
unsigned short 914

wide 1039

interaction with other IBM products 16

internationalization header file 57

Internet
servers 1672, 1673, 1675, 1677, 1679

Internet address
host 963

decimal 968

from network number 965

into network byte order 960

interoperability
fortrc() 634

vfork() 2333

Interprocess Communication (IPC) 718, 793, 1176,

1257, 1261, 1262, 1265, 1268

interrupt signal 1917

intrinsic functions
See built-in library functions

inttypes.h header file 49

invoke a function once 1507

invoking commands from a library function 2118

ioctl.h header file 87

ioctl() library function 977

IOFBF macro 84

IOLBF macro 84

IONBF macro 84

IP address
resolution 1669

IPC (Interprocess Communication) 718, 793, 1176,

1257, 1261, 1262, 1265, 1268

IPC_CREAT symbolic constant 1257, 1731, 1869,

1870

IPC_EXCL symbolic constant 1257, 1731, 1870

IPC_NOWAIT symbolic constant 1261, 1265, 1267,

1735

IPC_PRIVATE symbolic constant 1731, 1869

IPC_RCVTYPEPID symbolic constant 1257

IPC_RMID symbolic constant 1255, 1730, 1867

IPC_SET symbolic constant 1255, 1729, 1866

IPC_SNDTYPEPID symbolic constant 1257

IPC_STAT symbolic constant 1255, 1729, 1866

IPCQALL symbolic constant 793

IPCQMAP symbolic constant 793

IPCQMSG symbolic constant 793

IPCQOVER symbolic constant 793

IPCQSEM symbolic constant 793

IPCQSHM symbolic constant 793

isalnum() library function 1004

isalpha() library function 1004

isascii() library function 1007

isastream() library function 1012

isatty() library function 1013

isblank() library function 1016

iscics() library function 1018

iscntrl() library function 1004

isdigit() library function 1004

isfinite() library function 1021

isgraph() library function 1005

isgreater() library function 1023

isgreaterequal() library function 1024

isinf() library function 1025

isless() library function 1026

islessequal() library function 1027

islessgreater() library function 1028

islower() library function 1005

ismccollel() library function 1030

isnan() library function 1032

isnormal() library function 1034

ISO4217 2035

ISO646 35

iso646.h header file 52

ISO8859-1 1007, 2150, 2184, 2221

ASCII 25

conversion, EBCDIC 199, 200, 484, 485

ISPF (Interactive System Productivity Facility) 1516

isprint() library function 1005

ispunct() library function 1005

isspace() library function 1005

isunordered() library function 1037

isupper() library function 1005

iswalnum() library function 1039

iswalpha() library function 1039

iswblank() library function 1042

iswcntrl() library function 1039

iswctype() library function 1045

iswdigit() library function 1039

iswgraph() library function 1039

iswlower() library function 1039

iswprint() library function 1039

iswpunct() library function 1040

iswspace() library function 1040

iswupper() library function 1040

iswxdigit() library function 1040

isxdigit() library function 1005

ITIMER_PROF symbolic constant 797, 1800

ITIMER_REAL symbolic constant 797, 1800

ITIMER_VIRTUAL symbolic constant 797, 1800

itoa() library function 1048

J
j0() library function 1053

j1() library function 1053

jn() library function 1053

job control process group ID 1826

JoinWorkUnit() library function 1049

jrand48() library function 1051

jumping
_longjmp() 1147

_setjmp() 1806

longjmp() 1143

setjmp.h 77

setjmp() 1802

siglongjmp() 1914

sigsetjmp() 1936

K
key identifier

create thread-specific data key 1470

Index 2565

key identifier (continued)
get the specific value 1458, 1463

set the specific value 1554

keyboard 2537

keyword parameters 628

kill() library function 1055

killpg() library function 1058

kind attribute
getting from a mutex attribute object 1491

setting from a mutex attribute object 1500

KSDS (Key Sequenced Data Set) 725

L
L_ctermid macro 83

L_tmpnam macro 83

l64a() library function 1167

labs() library function 1060

langinfo.h header file 53

language
collation string comparison 2368

langinfo.h header file 53

nl_langinfo() 1306

Language Environment 6

effect of setlocale() 1811

layout object (Bidi data)
create 1201

destroy 1203

initialize 1201

query value memory size 1215

query values 1215

set values 1253

transform 1271, 1279

lc_core.h header file 54

LC_CTYPE locale variable 595

LC_MONETARY locale variable 2035

LC_SYNTAX locale variable 873, 2034

lc_sys.h header file 54

lchown() library function 1063

lcong48() library function 1065

lconv structure, elements of 57

ldexp() library function 1067

ldexpf() library function 1067

ldexpl() library function 1067

ldiv() library function 1071

LeaveWorkUnit() library function 1073

LEAWI_INCLUDED macro 55

leawi.h header file 55

length function 2043

lfind() library function 1095

lgamma() library function 1096

LIBASCII
ASCII 24

libgen.h header file 55

library
functions 107

release number 1098

limits
resource 55

limits.h header file 55

line
mode 2169

reading with fgets() 591

reading with fgetwc() 593

reading with fgetws() 595

writing
puts() 1574

link count 1101

Link Pack Area (LPA) 566

link() library function 1101

linking 9

extlink_np() 506

link() 1101

readlink() 1615

symlink() 2107

listen() library function 1104

listening 1104

listen() 1104

t_listen() 2211

lists
See also arrays

See also queues

See also searching

See also sorting

See also tables

doubly-linked
insert element 976

remove element 1663

nlist() 1305

llabs() library function 1106

lldiv() library function 1107

llround() library function 1109

lltoa() library function 1114

load module
fetchep() library function 578

fetching 565

release() 1657

local network address
into host byte order 962

local time corrections 1119, 1122

localdef.h header file 56

localdtconv() library function 1115

locale
_Ieee754.h header file 49

categories
LC_CTYPE locale variable 595

LC_SYNTAX variable 873

character class 243

collate.h header file 36

collating elements
converting 314

equivalent 308

list of 310

rangelist 312

default 1814

elements
converting collating 314

equivalent collating 308

list of collating 310

rangelist of collating 312

fpxcp.h header file 48

2566 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

locale (continued)
iconv.h header file 49

ims.h header file 49

iso646.h header file 52

library functions
localeconv() 1117

locale.h header file 57

localeconv() 1117

m_create_layout() 1201

m_transform_layout() 1273

m_wtransform_layout() 1281

nl_types.h header file 72

NULL-string (″″) category 1813

retrieving information 1306

setlocale() 1811

strxfrm() 2093

tgmath.h header file 92

time.h header file 93

variant.h header file 98

localeconv() library function 1117

localtime_r() library function 1122

localtime() library function 1119

locating storage 672

lock
__mlockall() 1231

attempt to a mutex object 1485

lockf() 1123

pthread_mutex_lock() 1482

pthread_mutex_trylock() 1485

pthread_rwlock_tryrdlock() 1526

pthread_rwlock_trywrlock() 1528

read/write
destroying 1520, 1533

getting attribute 1534

initializing 1522

initializing attribute 1536

locking 1526

setting attribute 1537

unlocking 1529

waiting 1524, 1531

writing 1528

wait on a mutex object 1482

lockf() library function 1123

LOG_ALERT symbolic constant 2116

LOG_CONS symbolic constant 1324

LOG_CRIT symbolic constant 2116

LOG_DEBUG symbolic constant 2116

LOG_EMERG symbolic constant 2116

LOG_ERR symbolic constant 2116

LOG_INFO symbolic constant 2116

LOG_LOCAL0 symbolic constant 2117

LOG_LOCAL1 symbolic constant 2117

LOG_LOCAL2 symbolic constant 2117

LOG_LOCAL3 symbolic constant 2117

LOG_LOCAL4 symbolic constant 2117

LOG_LOCAL5 symbolic constant 2117

LOG_LOCAL6 symbolic constant 2117

LOG_LOCAL7 symbolic constant 2117

LOG_MASK macro 1821

LOG_NDELAY symbolic constant 1324

LOG_NOTICE symbolic constant 2116

LOG_NOWAIT symbolic constant 1324

LOG_ODELAY symbolic constant 1324

LOG_PID symbolic constant 1324

LOG_UPTO macro 1821

LOG_USER symbolic constant 1324, 2117

LOG_WARNING symbolic constant 2116

log() library function 1126

log10() library function 1138

log10f() library function 1138

log10l() library function 1138

log1p() library function 1136

logarithm functions
base 10 1138

base e 1126

natural 1126

logb() library function 1128

logf() library function 1126

logic errors 190

login name
__getlogin1() 802

getlogin_r() 801

getlogin() 799

logl() library function 1126

longjmp() library function 1143

LookAt message retrieval tool xli

looking
t_look() 2213

LOWER macro 84

lowercase
_tolower() 2229

tolower() 2228

towlower() 2240

LPA (Link Pack Area) 566

lrand48() library function 1150

LRECL (logical record length)
fopen() 628

lrint() library function 1152

lround() library function 1157

lsearch() library function 1160

lseek() library function 1161

lstat() library function 1163

ltoa() library function 1168

M
m_create_layout() library function 1201

m_destroy_layout() library function 1203

m_getvalues_layout() library function 1215

m_setvalues_layout() library function 1253

m_transform_layout() library function 1271

m_wtransform_layout() library function 1279

macros
__csplist 37

accessing arguments, variable-length lists 79

assert() macro 34

csplist 37

defined in assert.h 34

defined in csp.h 37

defined in dynit.h 41

defined in errno.h 41

defined in langinfo.h 53

Index 2567

macros (continued)
defined in leawi.h 55

defined in locale.h 57

defined in math.h 60

defined in regex.h 76

defined in signal.h 77

defined in stdarg.h 79

defined in stddef.h 79

defined in stdio.h 83

defined in stdlib.h header 85

defined in string.h header 88

defined in sys/modes.h header 88

defined in time.h header 93

defined in wchar.h header 98

feature test (FTM) 21

HUGE_VAL 63

LEAWI_INCLUDED 55

NULL 79

offsetof 79

OMIT_FC 55

preprocessor 108

regular expressions 76

use with __amrc structure 84

use with clrmemf() 84

use with fldata() 84

use with flocate() 84

WEOF 99, 100

magic number 491, 1983

makecontext() library function 1169

malloc() library function 1172

mapping
__map_init() 1176

__map_service() 1178

__must_stay_clean() 1277

mprotect() 1249

munmap() 1275

mask
See also bit operations

setlogmask() 1821

sigaddset() 1899

sigdelset() 1903

sigemptyset() 1905

sigfillset() 1907

sigismember() 1912

sigsuspend() 1941

umask() 2291

matching failure 689

math functions
See also absolute value

See also bessel library functions

See also decimal

See also division

See also error

See also exponential functions

See also floating-point

See also gamma functions

See also hexadecimal

See also integer

See also logarithm functions

See also numbers

See also random

math functions (continued)
See also remainder

See also root functions

See also rounding

See sign (number)

math.h header file 60

maxcoll() library function 1181

maxdesc() library function 1182

maximum
file names 83

number values 55

opened files 83

temporary file name 83

MB_CUR_MAX macro 85

mblen() library function 1184

mbrlen() library function 1187

mbrtowc() library function 1190

mbsinit() library function 1193

mbsrtowcs() library function 1195

mbstowcs() library function 1197

mbtowc() library function 1199

memccpy() library function 1204

memchr() library function 1205

memcmp() library function 1207

memcpy() library function 1209

memmove() library function 1211

memory
See also allocating

See also copying

See also freeing

See also heap storage

See also mapping

See also stack

See also storage

allocation 230, 907, 1172, 1620, 2129, 2290, 2330

clearing 223, 305

clrmemf() 305

memccpy() 1204

memchr() 1205

memcmp() 1207

memcpy() 1209

memmove() 1211

memory.h 64

memset() 1213

mmap() 1232

mprotect() 1249

msync() 1269

page map 1232

page unmap 1275

shmat() 1864

shmctl() 1866

shmdt() 1868

shmget() 1869

memory files 305

clearing 305

memory.h header file 64

memset() library function 1213

message retrieval tool, LookAt xli

messages
__ipmsgc() 1001

__msgrcv_timed() 1262

2568 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

messages (continued)
fmtmsg.h 48

fmtmsg() 621

getmsg() 805

getpmsg() 805

msgcat.h 64

msgctl() 1255

msgget() 1257

msgrcv() 1260

msgsnd() 1265

msgxrcv() 1267

putmsg() 1571

putpmsg() 1571

queues 1257, 1725

receive and store in buffers 1631, 1635

recvmsg() 1635

sending on socket 1747

sendmsg() 1747

sys/msg.h 88

minimum
number values 55

miscellaneous functions 190

mkdir() library function 1217

mkfifo() library function 1220

mknod() library function 1223

mkstemp() library function 1226

mktemp() library function 1227

mktime() library function 1228

mmap() library function 1232, 1275

mntent.h header file 88

mode
changing 280, 521

fopen() 626

modf() library function 1237

modff() library function 1237

modfl() library function 1237

monetary
localeconv() 1117

setlocale() 1811

strfmon() 2033

monetary.h header file 64

MORECTL symbolic constant 806, 1572

MOREDATA symbolic constant 806, 1572

mount() library function 1241

mounting
__mount() 1244

mount() 1241

umount() 2293

moving
See also copying

memmove() 1211

wmemmove() 2453

mprotect() library function 1249

mrand48() library function 1251

MSE (multibyte extension support) 25

MSG_ANY symbolic constant 806, 1572

MSG_BAND symbolic constant 806, 1572

MSG_HIPRI symbolic constant 806, 1572

MSG_NOERROR symbolic constant 1260, 1267

msgcat.h header file 64

msgctl() library function 1255

msgget() library function 1257

msgrcv() library function 1260

msgsnd() library function 1265

msgxrcv() library function 1267

msync() library function 1269

MTF (multitasking facility) 64, 438

functions 64

initializing subtasks 2209

scheduling subtasks 2255

terminating subtasks 2270

waiting for subtasks 2268

mtf.h header file 64

multibyte characters
character set ID 373

multibyte extension support (MSE) 25

multiple entry points 578

multitasking facility (MTF) 64, 438

munmap() library function 1275

mutex
attribute object

destroy a 1489

initialize a 1498

kind attribute, get a 1491

kind attribute, set a 1500

object
delete 1477

initialize a 1479

lock, attempt to 1485

lock, wait for a 1482

unlock 1487

MVS (Multiple Virtual Storage)
compiling fetched modules 568

interoperability 634, 2333

N
name list 1305, 1818

name, binding to a socket 211

naming
__utmpxname() 2322

mkstemp() 1226

mktemp() 1227

rename() 1666

tempnam() 2190

tmpnam() 2218

NaN (not a number) 1032

nan() library function 1283

natural logarithm 1126

ndbm.h header file 64

NDEBUG compiler option 190

nearbyint() library function 1287

net/if.h header file 65

net/rtrouteh.h header file 65

netdb.h header file 64

netinet/icmp6.h header file 65

netinet/in.h header file 68

netinet/ip6.h header file 69

network
services information data set, opening 1840

network byte order 912, 914, 960

network entry 813

Index 2569

network information data set 471

opening 1822

network name 811

network number
getting decimal host address 966

getting Internet host address 965

network protocol information data sets 472

network service
by name 852

by port 854

network services information data sets 474

new header file 70

new.h header file 71

nextafter() library function 1292

nexttoward() library function 1296

nftw() library function 1301

nice() library function 1304

nl_langinfo() library function 1306

nl_types.h header file 72

nlist.h header file 71

nlist() library function 1305

nonlocal goto
_setjmp() 1806

longjmp() 1143

setjmp() 1802

nonrecursive mutex
pthread_mutexattr_getkind_np() 1491

pthread_mutexattr_setkind_np() 1500

not a number (NaN) 1032

nrand48() library function 1307

ntohl() library function 1309

ntohs() library function 1311

NULL macro 79, 83

NULL pointer 79, 83

NULL pointer constant 85

NULL-string locale category 1813

numbers
See also decimal

See also floating-point

See also hexadecimal

See also integer

See also maximum

See also minimum

See also random

See also rounding

See also sign (number)

conventions 1117

limits.h header file 55

not a (NaN) 1032

testing 1004, 1032, 1039

O
O_NONBLOCK symbolic constant 806, 1572

OCS (Outboard Communications Server) 2168

OFFSET compiler option 393

offsetof macro 79

OMIT_FC macro 55

Open Transaction Environment (OTE) 268, 516

open() library function 1313

opendir() library function 1319

opening
__open_stat() 1326

__opendir2() 1322

See also closing

catopen() 240

dbm_open() 407

fdopen() 545

files 626

fopen() 626

freopen() 675

iconv_open() 925

open() 1313

opendir() 1319

openlog() 1324

popen() 1358

streams 626, 675

t_open() 2230

openlog() library function 1324

options, socket 1843

OTE (Open Transaction Environment) 268, 516

Outboard Communications Server (OCS) 2168

output
baud rate

determining 261

termios 265

ownership
files/directories 283, 523

P
pages

See also mapping

See memory

parent process ID 829

password structure 75

pathconf() library function 1337

pathname
of controlling terminal 385

pause() library function 1340

pausing
See also suspend

See also time

See also waiting

pause() 1340

sigpause() 1924

pclose() library function 1342

PDF documents xl

peer
getpeername() 821

setpeer() 1825

socket address, presetting 1825

perror() library function 1344

pipe() library function 1348

pipes
pclose() 1342

pipe() 1348

popen() 1358

PKTXTND symbolic constant 2175

poll.h header file 72

poll() library function 1353

popen() library function 1358

2570 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

position options for flocate() library function 605

positional parameters 626

POSIX test 1035

pow() library function 1362

power functions 1067, 1362

See also exponential functions

See root functions

powf() library function 1362

powl() library function 1362

pragmas
linkage with fetch() 567

pread() library function 1368

precision argument, fprintf() family 651

prelinking 9

printf() library function 648

printing
fprintf() 648

fwprintf() 729

isprint() 1005

iswprint() 1039

printf() 648

sprintf() 648

swprintf() 729

vfprintf() 2335

vfwprintf() 2338

vprintf() 2342

vsprintf() 2345

vswprintf() 2338

vwprintf() 2338

wprintf() 729

PRIO_PGRP symbolic constant 831, 1829

PRIO_PROCESS symbolic constant 831, 1829

PRIO_USER symbolic constant 831, 1829

priority
See also scheduling

changing 286, 1304

chpriority() 286

getpriority() 831

getting 831

message 805

nice() 1304

setpriority() 1829

setting 1757

process
control from within programs 2118

creating 632

data 2441

fork() 632

group 1841

group ID 824, 1841

group ID, foreground 2152, 2179

group leader 1841

ID 826, 829, 1841

signal 1055

vfork() 2332

program management binder 11

protocol
endprotoent() 472

get name by name 833

get name by number 835

getprotobyname() 833

protocol (continued)
getprotobynumber() 835

getprotoent() 837

getting next entry 837

information data set, opening 1831

setprotoent() 1831

t_getinfo() 2200

t_getprotaddr() 2202

ps.h header file 88

pseudo-random integers
See random

pseudotty (pty) 2175

pthread_attr_destroy() library function 1377

pthread_attr_getdetachstate() library function 1379

pthread_attr_getstacksize() library function 1390

pthread_attr_getsynctype_np() library function 1392

pthread_attr_getweight_np() library function 1393

pthread_attr_init() library function 1395

pthread_attr_setdetachstate() library function 1397

pthread_attr_setstacksize() library function 1409

pthread_attr_setsynctype_np() library function 1411

pthread_attr_setweight_np() library function 1412

pthread_cancel() library function 1414

pthread_cleanup_pop() library function 1417

pthread_cleanup_push() library function 1419

pthread_cond_broadcast() library function 1421

pthread_cond_destroy() library function 1423

pthread_cond_init() library function 1425

pthread_cond_signal() library function 1428

pthread_cond_timedwait() library function 1430

pthread_cond_wait() library function 1433

pthread_condattr_destroy() library function 1436

pthread_condattr_getkind_np() library function 1438

pthread_condattr_getpshared() library function 1440

pthread_condattr_init() library function 1442

pthread_condattr_setkind_np() library function 1444

pthread_condattr_setpshared() library function 1446

pthread_create() library function 1448

pthread_detach() library function 1451

pthread_equal() library function 1453

pthread_exit() library function 1455

pthread_getconcurrency() library function 1457

pthread_getspecific_d8_np() library function 1463

pthread_getspecific() library function 1458

PTHREAD_INTR_ASYNCHRONOUS cancelability

type 1414

PTHREAD_INTR_CONTROLLED cancelability

type 1414

PTHREAD_INTR_DISABLE cancelability type 1414

PTHREAD_INTR_ENABLE cancelability type 1414

pthread_join_d4_np() library function 1468

pthread_join() library function 1466

pthread_key_create() library function 1470

pthread_key_delete() library function 1473

pthread_kill() library function 1474

pthread_mutex_destroy() library function 1477

pthread_mutex_init() library function 1479

pthread_mutex_lock() library function 1482

pthread_mutex_trylock() library function 1485

pthread_mutex_unlock() library function 1487

pthread_mutexattr_destroy() library function 1489

Index 2571

pthread_mutexattr_getkind_np() library function 1491

pthread_mutexattr_getpshared() library function 1494

pthread_mutexattr_gettype() library function 1496

pthread_mutexattr_init() library function 1498

pthread_mutexattr_setkind_np() library function 1500

pthread_mutexattr_setpshared() library function 1503

pthread_mutexattr_settype() library function 1505

pthread_once() library function 1507

pthread_quiesce_and_get_np() library function 1510

pthread_rwlock_destroy() library function 1520

pthread_rwlock_init() library function 1522

pthread_rwlock_rdlock() library function 1524

pthread_rwlock_tryrdlock() library function 1526

pthread_rwlock_trywrlock() library function 1528

pthread_rwlock_unlock() library function 1529

pthread_rwlock_wrlock() library function 1531

pthread_rwlockattr_destroy() library function 1533

pthread_rwlockattr_getpshared() library function 1534

pthread_rwlockattr_init() library function 1536

pthread_rwlockattr_setpshared() library function 1537

pthread_security_np() library function 1539

pthread_self() library function 1542

pthread_set_limit_np() library function 1553

pthread_setcancelstate() library function 1544

pthread_setcanceltype() library function 1545

pthread_setconcurrency() library function 1546

pthread_setintr() library function 1547

pthread_setintrtype() library function 1550

pthread_setspecific() library function 1554

pthread_sigmaskl() library function 1557

pthread_tag_np() library function 1560

pthread_testcancel() library function 1561

pthread_testintr() library function 1562

pthread_yield() library function 1564

pthread.h header file 72

ptrdiff_t type in stddef header file 79

ptsname() library function 1566

pty (pseudotty) 2175

pushing characters back onto input stream 2307

putc() library function 1566

putchar() library function 1566

putenv() library function 1569

putmsg() library function 1571

putpmsg() library function 1571

puts() library function 1574

putting
See also sending

See also writing

fputc() 662

fputs() 664

fputwc() 666

fputws() 668

putc() 1566

putchar() 1566

putenv() 1569

putmsg() 1571

putpmsg() 1571

puts() 1574

pututxline() 1576

putw() 1578

putwc() 1579

putting (continued)
putwchar() 1581

pututxline() library function 1576

putw() library function 1578

putwc() library function 1579

putwchar() library function 1581

pwd.h header file 75

pwrite() library function 1583

Q
qsort() library function 1585

querying
__ae_correstbl_query() 165

__getipc() 793

__librel() 1098

__server_threads_query() 1771

See also searching

dllqueryfn() 438

dllqueryvar() 440

localeconv() 1117

QueryMetrics() 1589

QuerySchEnv() 1591

QueryWorkUnitClassification() 1593

res_mkquery() 1672

res_query() 1673

res_querydomain() 1675

res_search() 1677

QueryMetrics() library function 1589

QuerySchEnv() library function 1591

QueryWorkUnitClassification() library function 1593

queues
See also lists

datagrams 918

messages 1257, 1353, 1715, 1725

sigqueue() 1930

quick sort 1585

quiescing
pthread_quiesce_and_get_np() 1510

R
raise() library function 1595

RAND_MAX macro 85

rand_r() library function 1600

rand() library function 1598

random 1601

access 711

drand48() 447

erand48() 476

file access 693

initstate() 975

jrand48() 1051

lcong48() 1065

lrand48() 1150

mrand48() 1251

nrand48() 1307

number generator 447, 476, 1051, 1150, 1251,

1307, 1598, 1600, 1601

number initializer 975, 1065, 1712, 1854, 2002,

2004, 2005

2572 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

random (continued)
rand_r() 1600

rand() 1598

random() 1601

seed48() 1712

setstate() 1854

srand() 2002

srand48() 2005

srandom() 2004

random() library function 1601

re_comp.h header file 75

re_comp() library function 1625

re_exec() library function 1640

read operations with fgetc() 587

read/write lock 1520, 1522, 1524, 1526, 1528, 1529,

1531, 1533, 1534, 1536, 1537

read() library function 1602

readdir_r() library function 1613

readdir() library function 1608

reading
__readdir2() 1611

See also getting

See also receiving

aio_read() 170

buffers, data stored in 1617

character from stdin 587, 742, 888, 890

character from stream 742, 888, 890

data
no file pointer change 1368

data items from stream 670

data, and store in buffers 1617

directory
__readdir2() 1611

readdir_r() 1613

readdir() 1608

formatted 682

fread() 670

from file
read() 1602

line from stdin 850

line from stream 591, 593, 595

lock while reading a file 532

pread() 1368

read a string
fgets() 591

read() 1602

readdir_r() 1613

readdir() 1608

readlink() 1615

readv() 1617

scanning 682

value of symbolic link 1615

readlink() library function 1615

readv() library function 1617

real
group ID 767, 1789

user ID 878, 1857

realloc() library function 1620

reallocation of block size 1620

realpath() library function 1623

reason codes
See also error

debugging with __errno2() 482

receiving
__msgrcv_timed() 1262

See also getting

accept_and_recv() 123

data and store in buffers 1628

messages and store in buffers 1631, 1635

msgrcv() 1260

msgxrcv() 1267

recv() 1628

recvfrom() 1631

recvmsg() 1635

t_rcv() 2242

t_rcvconnect() 2244

t_rcvdis() 2246

t_rcvrel() 2248

t_rcvudata() 2249

t_rcvuderr() 2250

recfm parameter 628

record
format parameter 628

recursive mutex 1491, 1500

recv() library function 1628

recvfrom() library function 1631

recvmsg() library function 1635

redirection
streams, using freopen() 675

REG_EXTENDED macro 76

REG_ICASE macro 76

REG_NEWLINE macro 76

REG_NOSUB macro 76

REG_NOTEOL macro 76

regcmp() library function 1642

regcomp() library function 1646

regerror() library function 1649

regex.h header file 76

regex() library function 1651

regexec() library function 1653

regexp.h header file 76

regfree() library function 1656

regular expressions 76, 317, 1625, 1646

release
__librel() 1098

level value 1098

release changes 1

release() library function 1657

releasing
__discarddata() 420

See also closing

See also destroying

See also freeing

load module 1657

processor to other threads 1564

release() 1657

sigrelse() 1932

t_sndrel() 2263

virtual storage 420

remainder 423

division 423, 1071, 1107, 1659

Index 2573

remainder (continued)
floating-point 619

remainder() library function 1659

remote-tty (rty) 2182

remove cleanup thread handler 1417

remove() library function 1661

removing
See also deleting

remove() 1661

remque() 1663

rmdir() 1692

sigrelse() 1932

umount() 2293

unlink() 2312

remque() library function 1663

remquo() library function 1664

rename() library function 1666

renaming
See also naming

files 1666

reopening streams 675

res_init() library function 1669

res_mkquery() library function 1672

res_query() library function 1673

res_querydomain() library function 1675

res_search() library function 1677

res_send() library function 1679

reserved names 103

resetting
__server_classify_reset() 1762

See also clearing

setgrent() 468, 1791

setpwent() 473, 1832

setutxent() 1861

resolv.h header file 76

resolver function
build domain name 1675

initialization 1669

query DNS 1672, 1673

search query 1677

send query 1679

resource limits defined 55

response match 1699

restartable
functions 1884

restoring
See also saving

context 1778, 2101

environment 1143, 1914

longjmp() 1143

setcontext() 1778

siglongjmp() 1914

swapcontext() 2101

return codes
FORTRAN 637

rewind a stream 1681

rewind() library function 1681

rewinddir() library function 1683

rexec_af() library function 1687

rexec.h header file 76

rexec() library function 1685

rindex() library function 1688

rint() library function 1689

rmdir() library function 1692

root functions
cube 242

square 1998

round() library function 1695

rounding
ceil() 251

down 609

floor() 609

fp_read_rnd() 647

fp_swap_rnd() 660

integral 1689

mode 647, 660

rint() 1689

up 251

rpmatch() library function 1699

RRDS (Relative Record Data Set) 725

RS_HIPRI symbolic constant 1571, 1572

rtrouteh.h header file 65

rty (remote-tty) 2182

run-time library file types 14

S
S_IRGRP symbolic constant 1257, 1732, 1870

S_IROTH symbolic constant 1258, 1732, 1870

S_IRUSR symbolic constant 1257, 1732, 1870

S_ISBLK(mode) macro 1164, 2008

S_ISCHR(mode) macro 1164, 2008

S_ISDIR(mode) macro 1164, 2008

S_ISEXTL(mode) macro 1164, 2008

S_ISFIFO(mode) macro 1164, 2008

S_ISLNK(mode) macro 1164, 2008

S_ISREG(mode) macro 1164, 2008

S_ISSOCK(mode) macro 2008

S_IWGRP symbolic constant 1258, 1732, 1870

S_IWOTH symbolic constant 1258, 1732, 1870

S_IWUSR symbolic constant 1257, 1732, 1870

SAA (Systems Application Architecture) 106, 107, 478,

676, 736, 916, 1053, 1811, 1814, 1815, 1817, 2193,

2265, 2480, 2483

SAF (Security Authorization Facility) 91, 974, 1787,

1792, 1833, 1835, 1836, 1856, 1857, 1984, 1994

safety, signal 1880

saved set-user-ID 1857

saving
See also restoring

environment 1936

sigsetjmp() 1936

swapcontext() 2101

sbrk() library function 1703

scalb() library function 1705

scalbn() library function 1706

scanf() library function 682

scanning
fscanf() 682

scanf() 682

sscanf() 682

SCEELIB data set 110

2574 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

SCEELIB dataset 110, 111

SCEEOBJ autocall library 110

sched_yield() library function 1711

sched.h header file 76

scheduling
See also priority

See also synchronizing

See also time

CheckSchEnv() 278

chpriority() 286

getpriority() 831

QuerySchEnv() 1591

setpriority() 1829

sync() 2110

tsched() 2255

search.h header file 77

searching
See also finding

See also hash search tables

See also lists

See also querying

See also sorting

arrays 220

binary tree 2195, 2257

bsearch() 220

buffers 1205

hsearch() 911

index() 941

lfind() 1095

linear 1095, 1160

lsearch() 1160

qsort() 1585

res_search() 1677

rindex() 1688

search.h 77

strchr() 2020

strings 941, 2020, 2052

strings for tokens 2076, 2078

strspn() 2060

tsearch() 2257

wcschr() 2364

wcsspn() 2393

security
__login() 1134

__osenv() 1329

pthread_security_np() 1539

Security Authorization Facility (SAF) 91, 974, 1787,

1792, 1833, 1835, 1836, 1856, 1857, 1984, 1994

seed for random numbers 2002

seed48() library function 1712

SEEK_CUR macro 84

effects of ungetc(), ungetwc() 693

SEEK_END macro 84

SEEK_SET macro 84

seekdir() library function 1714

seeking
See also searching

fseek() 693

fseeko() 697

lseek() 1161

seekdir() 1714

select() library function 1715

selectex() library function 1725

SEM_UNDO symbolic constant 1735

semaphore
control 1728

get 1731

operations 1734

operations with timeout 1737

semctl() library function 1728

semget() library function 1731

semop() library function 1734

send a signal to a thread 1474

send_file() library function 1743

send() library function 1740

sending
See also putting

See also receiving

See also writing

msgsnd() 1265

res_send() 1679

send_file() 1743

send() 1740

sendmsg() 1747

sendto() 1752

t_snd() 2259

t_snddis() 2261

t_sndrel() 2263

t_sndudata() 2264

tcsendbreak() 2161

sendmsg() library function 1747

sendto() library function 1752

serial number
lstat() 1163

stat() 2008

server
AF_INET domain 326

AF_INET6 domain 326

AF_UNIX domain 326

incoming client requests 1104

session leader 1841

set a condition variable attribute object 1444

set_new_handler() library function 1823

set_terminate() library function 1855

set_unexpected() library function 1860

SETALL symbolic constant 1729

setbuf() library function 1776

setcontext() library function 1778

setegid() library function 1781

setenv() library function 1783

seteuid() library function 1787

setgid() library function 1789

setgrent() library function 468

setgroups() library function 1792

sethostent() library function 1793

setibmopt() library function 1794

setibmsockopt() library function 1796

setitimer() library function 1800

setjmp.h header file 77

setjmp() library function 1802

setkey() library function 1809

setlocale() library function 1811

Index 2575

setlogmask() library function 1821

setnetent() library function 1822

setpeer() library function 1825

setpgid() library function 1826

setpgrp() library function 1828

setpriority() library function 1829

setprotoent() library function 1831

setpwent() library function 473, 1832

setregid() library function 1833

setreuid() library function 1835

setrlimit() library function 1837

setservent() library function 1840

setsid() library function 1841

setsockopt() library function 1843

setstate() library function 1854

setting
See also resetting

memset() 1213

wmemset() 2455

setuid() library function 1857

setutxent() library function 1861

SETVAL symbolic constant 1728

setvbuf() library function 1862

sharing
See also memory

shmat() 1864

shmctl() 1866

shmdt() 1868

shmget() 1869

shell
wordexp() 2457

wordfree() 2461

SHM_RDONLY symbolic constant 1864

SHM_RND symbolic constant 1864

shmat() library function 1864

shmctl() library function 1866

shmdt() library function 1868

shmget() library function 1869

shortcut keys 2537

shutdown
duplex connection 1873

shutdown() library function 1873

sig argument in signal() library function 1917

SIG_DFL macro 77

SIG_DFL signal action 1933

SIG_ERR macro 77

SIG_HOLD 1934

SIG_IGN macro 77

SIG_IGN signal action 1933

SIG_PROMOTE macro 77

SIGABND signal 77

SIGABRT signal 77

sigaction() library function 1880

sigaddset() library function 1899

SIGALRM signal 180

sigaltstack() library function 1901

sigdelset() library function 1903

sigemptyset() library function 1905

sigfillset() library function 1907

SIGFPE signal 77

sighold() library function 1909

sigignore() library function 1910

SIGILL signal 77

SIGINT signal 77

siginterrupt() library function 1911

SIGIOERR signal 77

sigismember() library function 1912

siglongjmp() library function 1914

sign (number)
copying 347

decimal 414

signal
change mask and suspend thread 1936, 1941

handler 1917

mask 1340

pending 1925

safety 1880

send to a thread 1474

sets 1899

unblock a thread 1428

signal-catching
functions 1887

signal.h header file 77

signal() library function 1917

signbit() library function 1922

sigpause() library function 1924

sigpending() library function 1925

sigprocmask() library function 1927

sigqueue() library function 1930

sigrelse() library function 1932

SIGSEGV signal 77

sigset() library function 1933

sigsetjmp() library function 1936

sigstack() library function 1939

sigsuspend() library function 1941

SIGTERM signal 77

sigtimedwait() library function 1944

SIGTTOU signal in tcdrain() library function 2138

SIGUSR1 signal 77

SIGUSR2 signal 77

sigwait() library function 1946

sigwaitinfo() library function 1949

sin() library function 1951

sine
calculating 1951

hyperbolic, calculating 1955

sinf() library function 1951

sinh() library function 1955

sinhf() library function 1955

sinhl() library function 1955

sinl() library function 1951

size_t structure 79

sleep() library function 1959

sleeping
See also time

See also waiting

alarm() 180

sleep() 1959

usleep() 2316

SMF (System Management Facility) 1961

snprintf() library function 1962

sock_debug_bulk_perf0() library function 1967

2576 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

sock_debug() library function 1966

sock_do_bulkmode() library function 1968

sock_do_teststor() library function 1969

socket
address, peer 1825

creating 1970

creating a pair 1974

data, sending on 1752

data, writing 2464, 2472

datagrams, sending on 1740

descriptor AF_UNIX domain 213

descriptor in AF_INET domain 211

descriptor in AF_INET6 domain 212

getting name 859

ioctl() library function 977

messages, sending on 1747

operating characteristics, specifying 977

options, getting 861

options, setting 1843

pairs, creating 1974

peer address, presetting 1825

peer connected to 821

send data on 1740, 1752

send messages on 1747

shutdown 1873

writing data on 2464, 2472

socket() library function 1970

socketpair() library function 1974

sorting
See also searching

qsort() 1585

space (white space)
characters

testing 1005, 1040

space= parameter 628

spawn.h header file 78

spawn() library function 1976

spawn2() library function 1989

spawnp() library function 1976

spawnp2() library function 1989

SPC (System Programming C) 79, 108, 230, 231, 438,

494, 495, 657, 659, 672, 673, 1172, 1173, 1174, 1175,

1620, 1622, 2482

spc.h header file 78

special file
create 1223

specific value for a key
get 1458, 1463

set 1554

SPF (System Productivity Facility) 1172

sprintf() library function 648

sqrt() function 1998

sqrtf() function 1998

sqrtl() function 1998

square root function 1998

srand() library function 2002

srand48() library function 2005

srandom() library function 2004

SS_DISABLE symbolic constant 1901

SS_ONSTACK symbolic constant 1901

sscanf() library function 682

sstrtold() library function 2082

ST_NOSUID 2013

ST_OEEXPORTED 2013

ST_RDONLY 2013

stack
See also memory

allocation 183

restoring the environment 1143, 1914

saving an environment 1802, 1806, 1936

stacksize attribute
get 1390

set 1409

standard
stream

redirecting 675

standard streams 83

standards, indicated by table 104

START
character 2165

stat structure 2008

stat.h header file 89

stat() library function 2008

statfs.h header file 89

status
__open_stat() 1326

fstat() 704

fstatvfs() 707

lstat() 1163

stat() 2008

statvfs() 2012

sys/stat.h 89

sys/statfs.h 89

sys/statvfs.h 89

w_statfs() 2476

w_statvfs() 2478

status analysis macros 2349, 2355

statvfs() library function 2012

stdarg.h header file 79

stdbool.h header file 79

stddef.h header file 79

stdefs.h header file 80

stderr 114

stdin 114

stdint.h header file 80

stdio.h header file 82

stdlib.h header file 85

stdout 114

format and print data 2342

step() library function 2015

STEPLIB environment variable 486

STIMER REAL TQE 296

stop bits 2168

STOP character 2165

stopping
See also aborting

See also freezing

See also quiescing

a process or program 116

storage
See also memory

Index 2577

storage (continued)
allocation 78, 230, 907, 1172, 1620, 2129, 2290,

2330

freeing 672, 901, 1656, 2197, 2285, 2461

locating 672

reserving with malloc() 1172

sock_do_teststor() 1969

virtual 1232

release pages 420

strbuf 805

strcasecmp() library function 2017

strcat() library function 2018

strchr() library function 2020

strcmp() library function 2022

strcoll() library function 2024

strcpy() library function 2026

strcspn() library function 2028

strdup() library function 2030

streams
access mode 675

associating with file descriptor 545

binary mode 675

buffering 1776

changing current file position 693, 697, 701, 711,

1681

closing 525

EOF (End Of File) 556

flushing 525

format and print data 2335

formatted I/O 648, 682

Input/Output 525

opening 626

reading characters
fgetc() 587

getc(), getchar() 742

getwc() 888

getwchar() 890

reading data items with fread() 670

reading lines
fgets() 591

fgetwc() 593

fgetws() 595

gets() 850

redirection 675

reopening 675

rewinding 1681

text mode 675

translation mode 675

ungetting characters 2307

ungetting wide characters 2310

updating 626, 675

writing characters
fputc() 662

fputwc() 666

putc(), putchar() 1566

writing data items 731

writing lines
puts() 1574

writing strings 664, 668

STREAMS data areas
strbuf 805

STREAMS interfaces
fattach() 514

fdetach() 541

getmsg(), getpmsg() 805

isastream() 1012

putmsg(), putpmsg() 1571

strerror_r() library function 2032

strerror() library function 2031

strfmon() library function 2033

strftime() library function 2038

string.h header file 86

strings
See also characters

See also wide characters

comparing 2028, 2048

language collation 2368

concatenating 2018, 2046

conversions
to double 2066

to integer 202

to unsigned integer 2086

copying 2026, 2050

ignoring case 2022, 2028

initializing 2050

length of 2043

multibyte
conversion with mbsrtowcs() 1195

searching 2020, 2052

strspn() 2060

searching for tokens 2076, 2078

substring
locating 2062

writing
fputs() 664

fputws() 668

strings.h header file 86

strlen() library function 2043

strncasecmp() library function 2045

strncat() library function 2046

strncmp() library function 2048

strncpy() library function 2050

stropts.h header file 86

strpbrk() library function 2052

strptime() library function 2054

strrchr() library function 2058

strspn() library function 2060

strstr() library function 2062

strtocoll() library function 2064

strtod() library function 2066

strtof() library function 2072

strtoimax() library function 2074

strtok_r() library function 2078

strtok() library function 2076

strtol() library function 2079

strtoll() library function 2084

strtoul() library function 2086

strtoull() library function 2089

strtoumax() library function 2091

strxfrm() library function 2093

2578 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

superuser 275, 281, 288, 327, 341, 843, 974, 1242,

1765, 1771, 1787, 1792, 1835, 1837, 1857, 1858,

1859, 1993, 2287, 2294

nondaemon 1787, 1835, 1858

not a 128, 278, 281, 282, 284, 333, 335, 343, 369,

415, 421, 504, 939, 1049, 1073, 1541, 1589, 1591,

1593, 2301, 2303

supplementary group ID 1789

suspend
See also pausing

See also time

See also waiting

aio_suspend() 175

sigsuspend() 1941

sleep() 1959

svc99() library function 453, 2096

stdio.h S99 types 83

swab() library function 2100

swapcontext() library function 2101

swapping
cds() 248

cs() 372

fp_swap_rnd() 660

swab() 2100

swapcontext() 2101

switching, AMODE 567

swprintf() library function 729, 2105

symbolic constants in errno.h 41

symlink() library function 2107

sync() library function 2110

synchronizing
See also scheduling

fsync() 709

msync() 1269

pthread_attr_getsynctype_np() 1392

pthread_attr_setsynctype_np() 1411

sync() 2110

t_sync() 2266

tsyncro() 2268

syntax diagrams
how to read xxxiii

syntax of format for fprintf() family 649

sys/__cpl.h header file 87

sys/__getipc.h header file 87

sys/__messag.h header file 88

sys/__ussos.h header file 91

sys/acl.h header file 87

sys/file.h header file 87

sys/ioctl.h header file 87

sys/ipc.h header file 87

sys/layout.h header file 87

sys/mman.h header file 87

sys/mntent.h header file 88

sys/modes.h header file 88

sys/msg.h header file 88

sys/ps.h header file 88

sys/resource.h header file 88

sys/sem.h header file 88

sys/server.h header file 89

sys/shm.h header file 89

sys/socket.h header file 89

sys/stat.h header file 89

sys/statfs.h header file 89

sys/statvfs.h header file 89

sys/time.h header file 89

sys/timeb.h header file 89

sys/times.h header file 89

sys/ttydev.h header file 89

sys/types.h header file 90

sys/uio.h header file 91

sys/un.h header file 91

sys/utsname.h header file 91

sys/wait.h header file 91

sys/wlm.h header file 91

sysconf() library function 2111

syslog.h header file 87

syslog() library function 2116

system
operating

displaying name 1333, 2296

system configuration options 2111

System Management Facility (SMF) 1961

System Productivity Facility (SPF) 1172

System Programming C (SPC) 79, 108, 230, 231, 438,

494, 495, 657, 659, 672, 673, 1172, 1173, 1174, 1175,

1620, 1622, 2482

System Programming C facility 15

system() library function 2118

calls, general discussion 2118

programming environment 78

Systems Application Architecture (SAA) 106, 107, 478,

676, 736, 916, 1053, 1811, 1814, 1815, 1817, 2193,

2265, 2480, 2483

T
t_accept() library function 2124

t_alloc() library function 2129

t_bind() library function 2135

t_close() library function 2155

t_connect() library function 2156

t_error() library function 2193

t_free() library function 2197

t_getinfo() library function 2200

t_getprotaddr() library function 2202

t_getstate() library function 2203

t_listen() library function 2211

t_look() library function 2213

t_open() library function 2230

t_optmgmt() library function 2232

t_rcv() library function 2242

t_rcvconnect() library function 2244

t_rcvdis() library function 2246

t_rcvrel() library function 2248

t_rcvudata() library function 2249

t_rcvuderr() library function 2250

t_snd() library function 2259

t_snddis() library function 2261

t_sndrel() library function 2263

t_sndudata() library function 2264

t_strerror() library function 2265

t_sync() library function 2266

Index 2579

t_unbind() library function 2276

tables
__tcsettables() 2182

See also hash search tables

See also lists

See also queues

getdtablesize() 759

getstablesize() 870

takesocket() library function 2127

tan() library function 2131

tanf() library function 2131

tangent
calculating 2131

hyperbolic, calculating 2133

tanh() library function 2133

tanhf() library function 2133

tanhl() library function 2133

tanl() library function 2131

tar.h header file 91

task control block (TCB) 1392, 1411, 1514, 1518

TCB (Task Control Block) 1392, 1411, 1514, 1518

tcdrain() library function 2138

tcflow() library function 2141

tcflush() library function 2144

tcgetattr() library function 2147

tcgetpgrp() library function 2152

tcgetsid() library function 2154

tcperror() library function 2159

tcsendbreak() library function 2161

tcsetattr() library function 2163

tcsetpgrp() library function 2179

tdelete() library function 2187

telldir() library function 2189

tempnam() library function 2190

temporary files 2216

names 83, 2218

number of 83

terminals
attributes 2147

break condition 2161

control modes 2168

descriptor
testing 1013

I/O
flush 2144

input modes 2163

isatty() 1013

local modes 2169

output modes 2166

suspend/resume data flow 2141

sys/ttydev.h 89

ttyname_r() 2274

ttyname() 2272

ttyslot() 2275

terminat.h header file 92

terminate() library function 2192

terminating
See also aborting

See also canceling

See also exiting

See also freezing

terminating (continued)
See also quiescing

a program 494

abort() 116

atexit() 196

exit() library function 494

process or program 116

set_terminate() 1855

terminat.h 92

terminate() 2192

tterm() 2270

termios structure 2163

termios.h header file 92

testing
characters 1004, 1007, 1039

blank 1016, 1042

white space 1005, 1040

files
descriptor 1012

numbers 1004, 1039

hexadecimal 1005

terminal
descriptor 1013

text
files 627

tfind() library function 2195

tgamma() library function 2199

tgmath.h header file 92

This feature test macro 26

threads
asynchronous signal, wait for an 1946

attribute object
destroy the definition 1377

detachstate, get the current value 1379

detachstate, set the current value 1397

initialize a 1395

stacksize, get the 1390

stacksize, set the 1409

weight, get the current 1393

weight, set the current 1412

broadcast a condition 1421

caller’s ID, get the 1542

cancel 1414

cancelability point, establish a 1562

cancelability states, set the calling thread’s 1547

cancelability types, set the calling thread’s 1550

changing signal mask 1927

compare thread IDs 1453

condition variable
destroying 1423

wait for a limited time 1430

wait on 1433

condition variable attribute object
destroy 1436

get 1438

initialize 1442

set 1444

create 1448

create key identifier 1470

current weight
get 1393

2580 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

threads (continued)
current weight (continued)

set 1412

delete mutex object 1477

destroy a mutex attribute object 1489

destroy the thread attributes object 1377

detach 1451

detachstate, get the 1379

detachstate, set the 1397

establish cleanup handler 1419

exit 1455

initialize a condition variable 1425

initialize a mutex 1479

initialize a mutex attribute object 1498

initialize a thread attributes object 1395

invoke a function once 1507

kind attribute, get from mutex attribute object 1491

kind attribute, set from a mutex attribute

object 1500

lock, attempt to a mutex object 1485

lock, wait for on a mutex object 1482

pthread.h header file 72

release processor to other threads 1564

remove cleanup handler 1417

send a signal 1474

signal a condition 1428

specific value for a key
get 1458, 1463

set 1554

stacksize
get 1390

set 1409

unlock
mutex object 1487

wait for thread to end 1466, 1468

time
__dlght() 111

__msgrcv_timed() 1262

__semop_timed() 1737

__tzone() 114

See also date

See also pausing

See also scheduling

See also sleeping

See also synchronizing

See also waiting

alarm() 180

asctime_r() 186

asctime() 184

clock() 296

considerations 296

conversions
date and time 2054

date and time structure to string 186

formatted 2038

local time 1228

local time correction 1119

long integer to string 389

set conversion information 2279

time structure to string 184

to broken-down UTC time 902

time (continued)
correcting for local time 1119, 1122

ctime header file 39

ctime_r() 392

ctime() 389

date 2054

daylight 111

file access/modification 2317

format
to string 2038

to wide character string 2374

ftime() 717

getdate() 756

getitimer() 797

gettimeofday() 876

gmtime_r() 904

gmtime() 902

localdtconv() 1115

localtime_r() 1122

localtime() 1119

mktime() 1228

setitimer() 1800

strftime() 2038

strptime() 2054

tgmath.h 92

time.h 93

time() 2204

times() 2206

timezone 114

tzname 115

tzset() 2279

utime.h 97

utime() 2317

utimes() 2320

wcsftime() 2374

zone, testing 2279

time_t type 417

time.h header file 93

time() library function 2204

timeout
__msgrcv_timed() 1262

__semop_timed() 1737

times.h header file 89

times() library function 2206

timezone 114

tinit() library function 2209

TIOCXPKT_CHCP symbolic constant 2175

TLOOK error 2213

tm structure 902, 904

TMP_MAX macro 83, 2218

tmpfile() library function 2216

tmpnam() library function 2218

file name specs in stdio.h file 83

toascii() library function 2220

tokens
ftok() 718

strtok_r() 2078

strtok() 2076

wcstok() 2407

tolower() library function 2228

toupper() library function 2228

Index 2581

towctrans() library function 2434

towlower() library function 2240

towupper() library function 2240

traceback 393

transforming strings 2093

traverse
file tree 722, 1301

trees
binary

walk 2277

file
traversal 722, 1301

trigonometric functions
arccosine 159

arcsine 187

arctangent 192

cosine 350

hyperbolic arccosine 161

hyperbolic arcsine 189

hyperbolic arctangent 194

hyperbolic cosine 354

hyperbolic sine 1955

hyperbolic tangent 2133

hypot() 916

sine 1951

tangent 2131

trunc() library function 2251

truncate() library function 2253

truncating
ftruncate() 719

truncate() 2253

tsched() library function 2255

tsearch() library function 2257

tsyncro() library function 2268

tterm() library function 2270

ttyname_r() library function 2274

ttyname() library function 2272

ttyslot() library function 2275

twalk() library function 2277

typedef
definitions in stddef.h 79, 88

typeinfo header file 94

typeinfo.h header file 96

types.h header file 90

TZ environment variable 2279

tzname 115

tzset() library function 2279

U
ualarm() library function 2282

ucontext.h header file 96

UDP (user datagram protocol) 1670

uheap.h header file 96

UL_GETFSIZE symbolic constant 2287

UL_SETFSIZE symbolic constant 2287

ulimit.h header file 96

ulimit() library function 2287

ulltoa() library function 2288

ultoa() library function 2289

umask default 2291

umask() library function 2291

umount() library function 2293

uname() library function 2296

unblock a thread 1421, 1428

uncaught_exception() library function 2299

underscore character mapping to __ 103

UnDoExportWorkUnit library function 2301

UnDoImportWorkUnit library function 2303

unexpect.h header file 96

unexpected() library function 2305

ungetc() library function 2307

ungetwc() library function 2310

unique names
files 1226, 1227

unistd.h header file 96

UNIX System Services 11

UNIX System Services C functions 13

unlink() library function 2312

unlock
mutex object 1487

pthread_mutex_unlock() 1487

pthread_rwlock_unlock() 1529

unlockpt() 2314

unlockpt() library function 2314

unsetenv() library function 2315

unsigned short integer 914

updating
fupdate() 725

uppercase
_toupper() 2239

toupper() 2228

towupper() 2240

user database 840, 842, 843, 845

user datagram protocol (UDP) 1670

user ID
effective 765

real 878

setting 1787

USL 5

usleep() library function 2316

UTC (Coordinated Universal Time) 902, 904

utime.h header file 97

utime() library function 2317

utimes() library function 2320

utmpx.h header file 98

utoa() library function 2323

utsname.h header file 91

V
va_arg() macro 2324

va_end() macro 2324

va_start() macro 2324

valloc() library function 2330

value
See numbers

varargs.h header file 98

variables
configurable pathname 1337

configuration 638

variant structure 873

2582 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

variant.h header file 98

vfork() library function 2332

vfprintf() library function 2335

vfscanf(), vscanf(), vsscanf() library function 2337

vfwprintf() library function 2338

vfwscanf(), vwscanf(), vswscanf() library function 2341

virtual machine communication facility (VMCF) 1002

VMCF (virtual machine communication facility) 1002

vprintf() library function 2342

VSAM (Virtual Storage Access Method)
I/O operations

deleting a record 539

locating a record 605

updating a record 725

vsnprintf() library function 2344

vsprintf() library function 2345

vswprintf() library function 2338

vwprintf() library function 2338

W
w_getmntent() library function 2438

w_getpsent() library function 2441

w_ioctl() library function 2444

w_statfs() library function 2476

w_statvfs() library function 2478

wait.h header file 91

wait() library function 2349

wait3() library function 2358

waitid() library function 2352

waiting
See also pausing

See also suspend

See also time

asynchronous signal 1946

child process 2349, 2354

condition variable 1433

condition variable for a limited time 1430

pthread_cond_timedwait() 1430

pthread_cond_wait() 1433

pthread_rwlock_rdlock() 1524

pthread_rwlock_wrlock() 1531

sigtimedwait() 1944

sigwait() 1946

sigwaitinfo() 1949

sys/wait.h 91

thread to end 1466, 1468

tsyncro() 2268

wait.h 91

wait() 2349

wait3() 2358

waitid() 2352

waitpid() 2354

waitpid() library function 2354

walk
See also binary, tree

See also traverse

ftw() 722

nftw() 1301

twalk() 2277

wchar.h header file 98

wcrtomb() library function 2360

wcscat() library function 2362

wcschr() library function 2364

wcscmp() library function 2366

wcscoll() library function 2368

wcscpy() library function 2370

wcscspn() library function 2372

wcsftime() library function 2374

wcsid() library function 2376

wcslen() library function 2378

wcsncat() library function 2380

wcsncmp() library function 2382

wcsncpy() library function 2384, 2434

wcspbrk() library function 2386

wcsrchr() library function 2388

wcsrtombs() library function 2390

wcsspn() library function 2393

wcsstr() library function 2395

wcstod() library function 2397

wcstof() library function 2403

wcstoimax() library function 2405

wcstok() library function 2407

wcstol() library function 2409

wcstold() library function 2411

wcstoll() library function 2413

wcstombs() library function 2416

wcstoul() library function 2418

wcstoull() library function 2420

wcstoumax() library function 2423

wcstr.h header file 100

wcswcs() library function 2425

wcswidth() library function 2427

wcsxfrm() library function 2428

wctob() library function 2430

wctomb() library function 2432

wctype.h header file 100

wctype() library function 2435

wcwidth() library function 2436

weight
current thread

get 1393

set 1412

WEOF macro 99, 100, 593, 667

wide characters
See also characters

See also strings

appending to strings 2380

break string into tokens 2407

character conversion 666

character set ID 2376

compare strings 2382

conversions
string to double floating-point 2397

string to long integer 2409

string to multibyte 2416

string to unsigned long integer 2418

to byte 2430

to multibyte 2360, 2432, 2447, 2449, 2451,

2453, 2455

to multibyte string 2390

Index 2583

wide characters (continued)
copying strings

with wcscpy() 2370

with wcsncpy() 2384

display width 2427, 2436

I/O functions 888, 890

locating
in a string 2386, 2388

sequence 2395

substring 2425

match offset 2372

reading streams and files 595

searching for 2393

string comparison 2366

string conversion 668

string length 2378

substring 2364

testing 1039

transform string 2428

transform string (Bidi) 1279

transliteration 2434

write to wide-character array 729

writing 2338

wide integer 1039

WLM (WorkLoad Manager) 91, 278, 330, 332, 334,

343, 369, 415, 421, 491, 503, 508, 634, 939, 981,

1049, 1073, 1329, 1589, 1591, 1593, 1756, 1763,

1766, 1771, 2301, 2303

wmemchr() library function 2447

wmemcmp() library function 2449

wmemcpy() library function 2451

wmemmove() library function 2453

wmemset() library function 2455

wordexp.h header file 100

wordexp() library function 2457

wordfree() library function 2461

working directory
changing 273

pathname 754

WorkLoad Manager (WLM) 91, 278, 330, 332, 334,

343, 369, 415, 421, 491, 503, 508, 634, 939, 981,

1049, 1073, 1329, 1589, 1591, 1593, 1756, 1763,

1766, 1771, 2301, 2303

wprintf() library function 729

wrapping of output 1574

writable static
shared 578

write() library function 2464

writev() library function 2472

writing
See also putting

See also sending

See also updating

aio_write() 177

creat() 366

data
no file pointer change 1583

data on sockets 2464, 2472

fwrite() 731

lock 532

writing (continued)
operations

character to stdout 662, 666, 1566

character to stream 662, 666, 1566, 2307, 2310

data items from stream 731

formatted 648

line to stream 1574, 1579, 1581

printing 731

string to stream 664, 668

pwrite() 1583

write() 2464

writev() 2472

X
X/Open Transport Interface (XTI) 100, 114, 2124,

2125, 2130, 2136, 2155, 2158, 2198, 2201, 2202,

2203, 2212, 2213, 2214, 2231, 2232, 2233, 2235,

2237, 2243, 2245, 2247, 2260, 2262, 2265, 2267,

2276, 2543

xhotc() 2482

xhotl() 2482

xhott() 2482

XL C compiler-specific features 5

XL C/C++ compiler utilities 5

XL C++ compiler-specific features 5

xregs() 2482

xsacc() 2482

xsrvc() 2482

XTI (X/Open Transport Interface) 100, 114, 2124,

2125, 2130, 2136, 2155, 2158, 2198, 2201, 2202,

2203, 2212, 2213, 2214, 2231, 2232, 2233, 2235,

2237, 2243, 2245, 2247, 2260, 2262, 2265, 2267,

2276, 2543

xti.h header file 100

xusr() 2482

xusr2() 2482

Y
y0() library function 2480

y1() library function 2480

yield (release processor to other threads) 1564

yn() library function 2480

Z
z/OS UNIX (z/OS UNIX System Services) 491, 1983

z/OS UNIX System Services 11

debugging, reason codes 482

fcntl.h header file 45

z/OS UNIX System Services C functions 13

z/OS XL C compiler-specific features 5

z/OS XL C/C++ compiler utilities 5

z/OS XL C++ compiler-specific features 5

zeroing
See also clearing

bzero() 223

2584 z/OS V1R9.0 XL C/C++ Run-TIme Library Reference

Readers’ Comments — We’d Like to Hear from You

z/OS

XL C/C++
Run-Time Library Reference

 Publication No. SA22-7821-09

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7821-09

SA22-7821-09

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

MHVRCFS, Mail Station P181

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in USA

SA22-7821-09

	Contents
	Figures
	Tables
	About this document
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	z/OS XL C/C++ and related documents
	Softcopy documents
	Softcopy examples
	z/OS XL C/C++ on the World Wide Web
	Where to find more information

	Summary of changes
	Chapter 1. About IBM z/OS XL C/C++
	Changes for z/OS V1R9
	The XL C/C++ compilers
	The C language
	The C++ language
	Common features of the z/OS XL C and XL C++ compilers
	z/OS XL C compiler-specific features
	z/OS XL C++ compiler-specific features

	Class libraries
	Utilities
	dbx
	Language Environment element
	AMODE 64 considerations
	Language Environment downward compatibility

	About prelinking, linking, and binding
	Notes on the prelinking process
	File format considerations
	The program management binder

	z/OS UNIX System Services
	z/OS XL C/C++ applications with z/OS UNIX System Services C functions
	Input and output
	I/O interfaces
	File types
	Additional I/O features

	The System Programming C facility
	Interaction with other IBM products
	Additional features of z/OS XL C/C++

	Chapter 2. Header Files
	Feature Test Macros
	aio.h
	Usage note

	arpa/inet.h
	arpa/nameser.h
	assert.h
	cassert
	_Ccsid.h
	cctype
	ceeedcct.h
	cerrno
	cfloat
	cics.h
	ciso646
	climits
	clocale
	cmath
	collate.h
	complex.h
	cpio.h
	csetjmp
	csignal
	csp.h
	cstdarg
	cstddef
	cstdio
	cstdlib
	cstring
	ctest.h
	ctime
	ctype.h
	cwchar
	cwctype
	decimal.h
	dirent.h
	dlfcn.h
	dll.h
	dynit.h
	env.h
	errno.h
	exception
	fcntl.h
	features.h
	fenv.h
	float.h
	fmtmsg.h
	fnmatch.h
	fpxcp.h
	__ftp.h
	ftw.h
	glob.h
	grp.h
	iconv.h
	_Ieee754.h
	ims.h
	inttypes.h
	iso646.h
	langinfo.h
	lc_core.h
	lc_sys.h
	__le_api.h
	leawi.h
	libgen.h
	limits.h
	localdef.h
	locale.h
	math.h
	memory.h
	monetary.h
	msgcat.h
	mtf.h
	_Nascii.h
	ndbm.h
	netdb.h
	net/if.h
	net/rtrouteh.h
	netinet/icmp6.h
	netinet/in.h
	netinet/ip6.h
	netinet/tcp.h
	new
	new.h
	nlist.h
	nl_types.h
	poll.h
	pthread.h
	pwd.h
	re_comp.h
	regex.h
	regexp.h
	resolv.h
	rexec.h
	sched.h
	search.h
	setjmp.h
	signal.h
	spawn.h
	spc.h
	stdarg.h
	stdbool.h
	stddef.h
	stdefs.h
	stdint.h
	stdio.h
	Defined Types in stdio.h
	Macros Defined in stdio.h

	stdlib.h
	string.h
	strings.h
	stropts.h
	syslog.h
	sys/acl.h
	sys/__cpl.h
	sys/file.h
	sys/__getipc.h
	sys/ioctl.h
	sys/ipc.h
	sys/layout.h
	sys/mman.h
	sys/__messag.h
	sys/mntent.h
	sys/modes.h
	sys/msg.h
	sys/ps.h
	sys/resource.h
	sys/select.h
	sys/sem.h
	sys/server.h
	sys/shm.h
	sys/socket.h
	sys/stat.h
	sys/statfs.h
	sys/statvfs.h
	sys/time.h
	sys/timeb.h
	sys/times.h
	sys/ttydev.h
	sys/types.h
	sys/uio.h
	sys/un.h
	sys/__ussos.h
	sys/utsname.h
	sys/wait.h
	sys/__wlm.h
	tar.h
	terminat.h
	termios.h
	tgmath.h
	time.h
	typeinfo
	typeinfo.h
	ucontext.h
	uheap.h
	ulimit.h
	unexpect.h
	unistd.h
	utime.h
	utmpx.h
	varargs.h
	variant.h
	wchar.h
	wcstr.h
	wctype.h
	wordexp.h
	xti.h

	Chapter 3. Part 3. Library Functions
	Names
	Unsupported functions and external variables in AMODE 64
	Standards
	Using C Include Files from C++
	Built-in Functions
	IEEE Binary Floating-Point
	IEEE Decimal Floating-Point
	External Variables
	errno
	daylight
	getdate_err
	h_errno
	__loc1
	loc1
	loc2
	locs
	optarg
	opterr
	optind
	optopt
	signgam
	stderr
	stdin
	stdout
	t_errno
	timezone
	tzname

	The __restrict__ macro
	abort() — Stop a Program
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	abs(), absf(), absl() — Calculate Integer Absolute Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	accept() — Accept a New Connection on a Socket
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	accept_and_recv() — Accept Connection and Receive First Message
	Standards
	Format
	General Description
	Application Usage
	Returned Value
	Related Information

	access() — Determine Whether a File Can be Accessed
	Standards
	Format
	General Description
	Returned Value
	Returned Value for POSIX C Programs
	Example
	Related Information

	acl_create_entry() — Add a New Extended ACL Entry to the ACL
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_delete_entry() — Delete an Extended ACL Entry from the ACL
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_delete_fd() — Delete an ACL by File Descriptor
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_delete_file() — Delete an ACL by Filename
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_first_entry() — Return to Beginning of ACL Working Storage
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_free() — Release Memory Allocated to an ACL Data Object
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_from_text() — Create an ACL from Text
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_get_entry() — Get an ACL Entry
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_get_fd() — Get ACL by File Descriptor
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_get_file() — Get ACL by Filename
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_init() — Initialize ACL Working Storage
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_set_fd() — Set an ACL by File Descriptor
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_set_file() — Set an ACL by Filename
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_sort() — Sort the Extended ACL Entries
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_to_text() — Convert an ACL to Text
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_update_entry() — Update the Extended ACL Entry
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acl_valid() — Validate an ACL
	Standards
	Format
	General Description
	Returned Value
	Related Information

	acos(), acosf(), acosl() — Calculate Arccosine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	acosh(), acoshf(), acoshl() — Calculate Hyperbolic Arccosine
	Standards
	Format
	General Description
	Returned Value
	Related Information

	advance() — Pattern Match Given a Compiled Regular Expression
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__ae_correstbl_query() — Return Coded Character Set ID Type (ASCII/EBCDIC)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	aio_cancel() — Cancel an Asynchronous I/O Request
	Standards
	Format
	General Description
	Returned Value
	Related Information

	aio_error() — Retrieve Error Status for an Asynchronous I/O Operation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	aio_read() — Asynchronous Read from a Socket
	Standards
	Format
	General Description
	Returned Value
	Related Information

	aio_return() — Retrieve Status for an Asynchronous I/O Operation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	aio_suspend() — Wait for an Asynchronous I/O Request
	Standards
	Format
	General Description
	Returned Value
	Usage Notes:
	Related Information

	aio_write() — Asynchronous Write to a Socket
	Standards
	Format
	General Description
	Returned Value
	Related Information

	alarm() — Set an Alarm
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	alloca() — Allocate Storage from the Stack
	Standards
	Format
	General Description
	Returned Value
	Related Information

	asctime() — Convert Time to Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	asctime_r() — Convert Date and Time to a Character String
	Standards
	Format
	General Description
	Returned Value
	Related Information

	asin(), asinf(), asinl() — Calculate Arcsine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	asinh(), asinhf(), asinhl() — Calculate Hyperbolic Arcsine
	Standards
	Format
	General Description
	Returned Value
	Related Information

	assert() — Verify Condition
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	atan(), atanf(), atanl(), atan2(), atan2f(), atan2l() — Calculate Arctangent
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	atanh(), atanhf(), atanhl() — Calculate Hyperbolic Arctangent
	Standards
	Format
	General Description
	Returned Value
	Related Information

	atexit() — Register Program Termination Function
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__atoe() — ISO8859-1 to EBCDIC String Conversion
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__atoe_l() — ISO8859-1 to EBCDIC Conversion Operation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	atof() — Convert Character String to Double
	Standards
	Format
	General Description
	Returned Value
	Related Information

	atoi() — Convert Character String to Integer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	atol() — Convert Character String to Long
	Standards
	Format
	General Description
	Returned Value
	Related Information

	atoll() — Convert Character String to Signed Long Long
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__a2e_l() — Convert Characters from ASCII to EBCDIC
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__a2e_s() — Convert String from ASCII to EBCDIC
	Standards
	Format
	General Description
	Returned Value
	Related Information

	a64l() — Convert Base 64 String Representation to Long Integer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	basename() — Return the Last Component of a Pathname
	Standards
	Format
	General Description
	Returned Value
	Related Information

	bcmp() — Compare Bytes in Memory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	bcopy() — Copy Bytes in Memory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	bind() — Bind a Name to a Socket
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	brk() — Change Space Allocation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	bsd_signal() — BSD Version of signal()
	Standards
	Format
	General Description
	Usage note
	Returned Value
	Related Information

	bsearch() — Search Arrays
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	btowc() — Convert Single-Byte Character to Wide-Character
	Standards
	Format
	General Description
	Returned Value
	Related Information

	bzero() — Zero Out Bytes in Memory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__cabend() — Terminate the process with an abend
	Standards
	Format
	General Description

	cabs(), cabsf(), cabsl() — Calculate the Complex Absolute Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cacos(), cacosf(), cacosl() — Calculate the Complex Arc Cosine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cacosh(), cacoshf(), cacoshl() — Calculate the Complex Arc Hyperbolic Cosine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	calloc() — Reserve and Initialize Storage
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	carg(), cargf(), cargl() — Calculate the Argument
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	casin(), casinf(), casinl() — Calculate the Complex Arc Sine
	Standards
	Format
	General Description
	Returned Value
	Related Information

	casinh(), casinhf(), casinhl() — Calculate the Complex Arc Hyperbolic Sine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	catan(), catanf(), catanl() — Calculate the Complex Arc Tangent
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	catanh(), catanhf(), catanhl() — Calculate the Complex Arc Hyperbolic Tangent
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	catclose() — Close a Message Catalog Descriptor
	Standards
	Format
	General Description
	Returned Value
	Related Information

	catgets() — Read a Program Message
	Standards
	Format
	General Description
	Returned Value
	Related Information

	catopen() — Open a Message Catalog
	Standards
	Format
	General Description
	Returned Value
	Related Information

	cbrt(), cbrtf(), cbrtl() — Calculate the Cube Root
	Standards
	Format
	General Description
	Returned Value
	Related Information

	cclass() — Return Characters in a Character Class
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ccos(), ccosf(), ccosl() — Calculate the Complex Cosine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ccosh(), ccoshf(), ccoshl() — Calculate the Complex Hyperbolic Cosine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__CcsidType() — Return Coded Character Set ID Type (ASCII/EBCDIC)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	cds() — Compare Double and Swap
	Standards
	Format
	General Description
	Returned Value
	Related Information

	cdump() — Request a Main Storage Dump
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ceil(), ceilf(), ceill() — Round Up to Integral Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ceild32(), ceild64(), ceild128() — Round Up to Integral Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__certificate() — Register/Deregister/Authenticate a Digital Certificate
	Standards
	Format
	General Description
	Usage Notes
	Restrictions
	Returned Value
	Related Information

	cexp(), cexpf(), cexpl() — Calculate the Complex Exponential
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cfgetispeed() — Determine the Input Baud Rate
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cfgetospeed() — Determine the Output Baud Rate
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cfsetispeed() — Set the Input Baud Rate in the Termios
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cfsetospeed() — Set the Output Baud Rate in the Termios
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__chattr() — Change the Attributes of a File or Directory
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	chaudit() — Change Audit Flags for a File by Path
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	chdir() — Change the Working Directory
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__check_resource_auth_np() — Determine Access to MVS Resources
	Standards
	Format
	General Description
	Returned Value
	Related Information

	CheckSchEnv() — Check WLM Scheduling Environment
	Standards
	Format
	General Description
	Returned Value
	Related Information

	chmod() — Change the Mode of a File or Directory
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	chown() — Change the Owner or Group of a File or Directory
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	chpriority() — Change the Scheduling Priority of a Process
	Standards
	Format
	General Description
	Returned Value
	Related Information

	chroot() — Change Root Directory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	cimag(), cimagf(), cimagl() — Calculate the Complex Imaginary Part
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	clearenv() — Clear Environment Variables
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	clearerr() — Reset Error and End of File (EOF)
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	clock() — Determine Processor Time
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	clog(), clogf(), clogl() — Calculate the Complex Natural Logarithm
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	close() — Close a File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	closedir() — Close a Directory
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	closelog() — Close the Control Log
	Standards
	Format
	General Description
	Returned Value
	Related Information

	clrmemf() — Clear Memory Files
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__cnvblk() — Convert Block
	Standards
	Format
	General Description
	Returned Value
	Related Information

	collequiv() — Return a List of Equivalent Collating Elements
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	collorder() — Return List of Collating Elements
	Standards
	Format
	General Description
	Example
	Related Information

	collrange() — Calculate the Range List of Collating Elements
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	colltostr() — Return a String for a Collating Element
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	compile() — Compile Regular Expression
	Standards
	Format
	General Description
	Simple Regular Expressions
	Returned Value
	Related Information

	confstr() — Get Configurable Variables
	Standards
	Format
	General Description
	Returned Value
	Related Information

	conj(), conjf(), conjl() — Calculate the Complex Conjugate
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	connect() — Connect a Socket
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ConnectExportImport() — WLM Connect for Export or Import Use
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ConnectServer() — Connect to WLM as a Server Manager
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ConnectWorkMgr() — Connect to WLM as a Work Manager
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__console() — Console Communication Services
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__console2() — Enhanced Console Communication Services
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ContinueWorkUnit() — Continue WLM Work Unit
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__convert_id_np() — Convert Between DCE UUID and Userid
	Standards
	Format
	General Description
	Returned Value
	Related Information

	copysign(), copysignf(), copysignl() — Copy the Sign from one floating-point number to another
	Standards
	Format
	General Description
	Returned Value
	Related Information

	copysignd32(), copysignd64(), copysignd128() — Copy the Sign from one floating-point number to another
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cos(), cosf(), cosl() — Calculate Cosine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cosd32(), cosd64(), cosd128() — Calculate Cosine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cosh(), coshf(), coshl() — Calculate Hyperbolic Cosine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__cospid32(), __cospid64(), __cospid128() — Calculate Cosine of pi *x
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__cotan(), __cotanf(), __cotanl() — Calculate Cotangent
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__cpl() — CPL Interface Service
	Standards
	Format
	General Description
	Returned Value
	Usage Note
	Related Information

	cpow(), cpowf(), cpowl() — Calculate the Complex Power
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cproj(), cprojf(), cprojl() — Calculate the Projection
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	creal(), crealf(), creall() — Calculate the Complex Real Part
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	creat() — Create a New File or Rewrite an Existing One
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	CreateWorkUnit() — Create WLM Work Unit
	Standards
	Format
	General Description
	Returned Value
	Related Information

	crypt() — String Encoding Function
	Standards
	Format
	General Description
	Returned Value
	Related Information

	cs() — Compare and Swap
	Standards
	Format
	General Description
	Returned Value
	Related Information

	csid() — Character Set ID for Multibyte Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	csin(), csinf(), csinl() — Calculate the Complex Sine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	csinh(), csinhf(), csinhl() — Calculate the Complex Hyperbolic Sine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__CSNameType() — Return Codeset Name Type (ASCII/EBCDIC)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	csnap() — Request a Condensed Dump
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__csplist — Retrieve CSP Parameters
	Standards
	Format
	General Description
	Related Information

	csqrt(), csqrtf(), csqrtl() — Calculate the Complex Square Root
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ctan(), ctanf(), ctanl()— Calculate the Complex Tangent
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ctanh(), ctanhf(), ctanhl() — Calculate the Complex Hyperbolic Tangent
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ctdli() — Call to DL/I
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ctermid() — Generate Pathname for Controlling Terminal
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ctest() — Start Debug Tool
	Standards
	Format
	General Description
	Returned Value
	Examples
	Related Information

	ctime() — Convert Time to Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ctime_r() — Convert Time Value to Date and Time Character String
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ctrace() — Request a Traceback
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	cuserid() — Return Character Login of the User
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dbm_clearerr() — Clear Database Error Indicator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dbm_close() — Close a Database
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dbm_delete() — Delete Database Record
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dbm_error() — Check Database Error Indicator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dbm_fetch() — Get Database Content
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dbm_firstkey() — Get First Key in Database
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dbm_nextkey() — Get Next Key in Database
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dbm_open() — Open a Database
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dbm_store() — Store Database Record
	Standards
	Format
	General Description
	Returned Value
	Related Information

	decabs() — Decimal Absolute Value
	Standards
	Format
	General Description
	Example
	Related Information

	decchk() — Check for Valid Decimal Types
	Standards
	Format
	General Description
	Example
	Related Information

	decfix() — Fix Up a Nonpreferred Sign Variable
	Standards
	Format
	General Description
	Example
	Related Information

	DeleteWorkUnit() — Delete a WLM Work Unit
	Standards
	Format
	General Description
	Returned Value
	Related Information

	difftime() — Compute Time Difference
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	dirname() — Report the Parent Directory of a Pathname
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__discarddata() — Release Pages Backing Virtual Storage
	Standards
	Format
	General Description
	Returned Value
	Related Information

	DisconnectServer() — Disconnect from WLM Server
	Standards
	Format
	General Description
	Returned Value
	Related Information

	div() — Calculate Quotient and Remainder
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dlclose() — Close a dlopen() object
	Standards
	Format
	General Description
	Returned Value
	Application Usage
	Example
	Related Information

	dlerror() — Get diagnostic information
	Standards
	Format
	General Description
	Returned Value
	Application Usage
	Example
	Related Information

	dlopen() — Gain access to a Dynamic Link Library (DLL)
	Standards
	Format
	General Description
	Returned Value
	Application Usage
	Example
	Related Information

	dlsym() — Obtain the address of a symbol from a dlopen() object
	Standards
	Format
	General Description
	Returned Value
	Application Usage
	Example
	Related Information

	dllfree() — Free the Supplied DLL
	Standards
	Format
	General Description
	Returned Value
	Application Usage
	Example
	Related Information

	dllload() — Load the DLL and Connect it to the Application
	Standards
	Format
	General Description
	Returned Value
	Application Usage
	Example
	Related Information

	dllqueryfn() — Obtain a Pointer to a DLL Function
	Standards
	Format
	General Description
	Returned Value
	Application Usage
	Example
	Related Information

	dllqueryvar() — Obtain a Pointer to a DLL Variable
	Standards
	Format
	General Description
	Returned Value
	Application Usage
	Example
	Related Information

	dn_comp() — Resolver Domain Name Compression
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dn_expand() — Resolver Domain Name Expansion
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dn_find() — Resolver Domain Name Find
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dn_skipname() — Resolver Domain Name Skipping
	Standards
	Format
	General Description
	Returned Value
	Related Information

	drand48() — Pseudo-Random Number Generator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	dup() — Duplicate an Open File Descriptor
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	dup2() — Duplicate an Open File Descriptor to Another
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	dynalloc() — Allocate a Data Set
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	dynfree() — Deallocate a Data Set
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	dyninit() — Initialize __dyn_t Structure
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ecvt() — Convert Double to String
	Standards
	Format
	General Description
	Returned Value
	Related Information

	encrypt() — Encoding Function
	Standards
	Format
	General Description
	Returned Value
	Related Information

	endgrent() — Group Database Entry Functions
	Standards
	Format
	General Description
	Returned Value
	Related Information

	endhostent() — Close the Host Information Data Set
	Standards
	Format
	General Description
	Related Information

	endnetent() — Close Network Information Data Sets
	Standards
	Format
	General Description
	Related Information

	endprotoent() — Work with a Protocol Entry
	Standards
	Format
	General Description
	Related Information

	endpwent() — User Database Functions
	Standards
	Format
	General Description
	Returned Value
	Related Information

	endservent() — Close Network Services Information Data Sets
	Standards
	Format
	General Description
	Related Information

	endutxent() — Close the utmpx Database
	Standards
	Format
	General Description
	Returned Value
	Related Information

	erand48() — Pseudo-Random Number Generator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	erf(), erfc(), erff(), erfl(), erfcf(), erfcl() — Calculate Error and Complementary Error Functions
	Standards
	Format
	General Description
	Returned Value
	Requirements
	Example
	Related Information

	__err2ad() — Return Address of Reason Code of Last Failure
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__errno2() — Return Reason Code Information
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__etoa() — EBCDIC to ISO8859-1 String Conversion
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__etoa_l() — EBCDIC to ISO8859-1 Conversion Operation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	exec Functions
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	exit() — End Program
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	_exit() — End a Process and Bypass the Cleanup
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	_Exit() — Terminate a Process
	Standards
	Format
	General Description
	Returned Value
	Related Information

	exp(), expf(), expl() — Calculate Exponential Function
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	expd32(), expd64(), expd128() — Calculate Exponential Function
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	expm1(), expm1f(), expm1l() — Exponential Minus One
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ExportWorkUnit() — WLM Export Service
	Standards
	Format
	General Description
	Returned Value
	Related Information

	exp2(), exp2f(), exp2l() — Calculate the base-2 exponential
	Standards
	Format
	General Description
	Returned Value
	Related Information

	extlink_np() — Create an External Symbolic Link
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ExtractWorkUnit() — Extract Enclave Service
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__e2a_l() — Convert Characters from EBCDIC to ASCII
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__e2a_s() — Convert String from EBCDIC to ASCII
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fabs(), fabsf(), fabsl() — Calculate Floating-Point Absolute Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fabsd32(), fabsd64(), fabsd128() — Calculate Floating-Point Absolute Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fattach() — Attach a STREAMS-based File Descriptor to a File in the File System Name Space
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__fchattr() — Change the Attributes of a File or Directory by File Descriptor
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fchaudit() — Change Audit Flags for a File by Descriptor
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fchdir() — Change Working Directory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fchmod() — Change the Mode of a File or Directory by Descriptor
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fchown() — Change the Owner or Group by File Descriptor
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fclose() — Close File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fcntl() — Control Open File Descriptors
	Standards
	Format
	General Description
	File Flags
	File Locking
	Returned Value
	Examples
	Related Information

	fcvt() — Convert Double to String
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fdelrec() — Delete a VSAM Record
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fdetach() — Detach a Name from a STREAMS-based File Descriptor
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fdim(), fdimf(), fdiml() — Calculate the Positive Difference
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fdimd32(), fdimd64(), fdimd128() — Calculate the Positive Difference
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fdopen() — Associate a Stream with an Open File Descriptor
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	feclearexcept() — Clear the Floating-Point Exceptions
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fe_dec_getround() — Get the Current Rounding Mode
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fe_dec_setround() — Set the Current Rounding Mode
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fegetenv() — Store the Current Floating-Point Environment
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fegetexceptflag() — Store the States of Floating-Point Status Flags
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fegetround() — Get the Current Rounding Mode
	Standards
	Format
	General Description
	Returned Value
	Related Information

	feholdexcept() — Save the Current Floating-Point Environment
	Standards
	Format
	General Description
	Returned Value
	Related Information

	feof() — Test End Of File (EOF) Indicator
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	feraiseexcept() — Raise the Supported Floating-Point Exceptions
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ferror() — Test for Read/Write Errors
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fesetenv() — Set the Floating-Point Environment
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fesetexceptflag() — Set the Floating-Point Status Flags
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fesetround() — Set the Current Rounding Mode
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fetch() — Get a Load Module
	Standards
	Format
	General Description
	Returned Value
	Examples of Using fetch() with C
	Examples of Alternatives to fetch() Under C++
	Related Information

	fetchep() — Share Writable Static
	Standards
	Format
	General Description
	Examples
	Related Information

	fetestexcept() — Test the Floating-Point Status Flags
	Standards
	Format
	General Description
	Returned Value
	Related Information

	feupdateenv() — Save the Currently Raised Floating-Point Exceptions
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fflush() — Write Buffer to File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ffs() — Find First Set Bit in an Integer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fgetc() — Read a Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fgetpos() — Get File Position
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fgets() — Read a String from a Stream
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fgetwc() — Get Next Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fgetws() — Get a Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fileno() — Get the File Descriptor from an Open Stream
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	finite() — Determine the Infinity Classification of a Floating-Point Number
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fldata() — Retrieve File Information
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	flocate() — Locate a VSAM Record
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	flockfile()— stdio Locking
	Standards
	Format
	General Description
	Returned Value
	Related Information

	floor(), floorf(), floorl() — Round Down to Integral Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	floord32(), floord64(), floord128() — Round Down to Integral Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fma(), fmaf(), fmal() — Multiply then Add
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fmax(), fmaxf(), fmaxl() — Calculate the Maximum Numeric Value
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fmaxd32(), fmaxd64(), fmaxd128() — Calculate the Maximum Numeric Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fmin(), fminf(), fminl() — Calculate the Minimum Numeric Value
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fmind32(), fmind64(), fmind128() — Calculate the Minimum Numeric Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fmod(), fmodf(), fmodl() — Calculate Floating-Point Remainder
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fmtmsg() — Display a Message in the Specified Format
	Standards
	Format
	General Description
	Returned Value
	Examples
	Related Information

	fnmatch() — Match Filename or Pathname
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fopen() — Open a File
	Standards
	Format
	General Description
	File mode
	Returned Value
	Example
	Related Information

	fork() — Create a New Process
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fortrc() — Return FORTRAN Return Code
	Standards
	Format
	General Description
	Related Information

	fpathconf() — Determine Configurable Pathname Variables
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fpclassify() — Classifies an argument value
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fp_clr_flag() — Reset Floating-Point Exception Status Flag
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fp_raise_xcp() — Raise a Floating-Point Exception
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fp_read_flag() — Return the Current Floating-Point Exception Status
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fp_read_rnd() — Determine Rounding Mode
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fprintf(), printf(), sprintf() — Format and Write Data
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fp_swap_rnd() — Swap Rounding Mode
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fputc() — Write a Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fputs() — Write a String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fputwc() — Output a Wide-Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fputws() — Output a Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fread() — Read Items
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	free() — Free a Block of Storage
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	freeaddrinfo() — free addrinfo storage
	Standards
	Format
	General Description
	Returned Value
	Related Information

	freopen() — Redirect an Open File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	frexp(), frexpf(), frexpl() — Extract Mantissa and Exponent of the Floating-Point Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	frexpd32(), frexpd64(), frexpd128() — Extract Mantissa and Exponent of the Decimal Floating-Point Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fscanf(), scanf(), sscanf() — Read and Format Data
	Standards
	Format
	General Description
	Returned Value
	Examples
	Related Information

	fseek() — Change File Position
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fseeko() — Change File Position
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fsetpos() — Set File Position
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fstat() — Get Status Information about a File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fstatvfs() — Get File System Information
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fsync() — Write Changes to Direct-Access Storage
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ftell() — Get Current File Position
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ftello() — Get Current File Position
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ftime() — Set the Date and Time
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ftok() — Generate an Interprocess Communication (IPC) key
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ftruncate() — Truncate a File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ftrylockfile() — stdio Locking
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ftw() — Traverse a File Tree
	Standards
	Format
	General Description
	Returned Value
	Related Information

	funlockfile() — stdio Unlocking
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fupdate() — Update a VSAM Record
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fwide() — Set Stream Orientation
	Standards
	Format
	General Description
	Usage Note
	Returned Value
	Related Information

	fwprintf(), swprintf(), wprintf() — Format and Write Wide Characters
	Standards
	Format
	General Description
	Returned Value
	Related Information

	fwrite() — Write Items
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	fwscanf(),swscanf(),wscanf() — Convert Formatted Wide-character Input
	Standards
	Format
	General Description
	Returned Value
	Related Information

	gai_strerror() — address and name information error description
	Standards
	Format
	General Description
	Returned Value
	Related Information

	gamma() — Calculate Gamma Function
	Standards
	Format
	General Description
	Related Information

	gcvt() — Convert Double to String
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getaddrinfo() — get address information
	Standards
	Format
	General Description
	Application Usage Notes
	Returned Value
	Related Information

	getc(), getchar() — Read a Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked — Stdio With Explicit Client Locking
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getclientid() — Get the Identifier for the Calling Application
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__getclientid() — Get the PID Identifier for the Calling Application
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getcontext() — Get User Context
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__get_cpuid() — Retrieves the system CPUID
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getcwd() — Get Pathname of the Working Directory
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getdate() — Convert User Format Date and Time
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getdtablesize() — Get the File Descriptor Table Size
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getegid() — Get the Effective Group ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getenv() — Get Value of Environment Variables
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__getenv() — Get an Environment Variable
	Standards
	Format
	General Description
	Returned Value
	Related Information

	geteuid() — Get the Effective User ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getgid() — Get the Real Group ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getgrent() — Get Group Database Entry
	getgrgid() — Access the Group Database by ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getgrgid_r() — Get Group Database Entry for a Group ID
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getgrnam() — Access the Group Database by Name
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getgrnam_r() — Search Group Database for a Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getgroups() — Get a List of Supplementary Group IDs
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getgroupsbyname() — Get Supplementary Group IDs by User Name
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	gethostbyaddr() — Get a Host Entry by Address
	Standards
	Format
	General Description
	Returned Value
	Related Information

	gethostbyname() — Get a Host Entry by Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	gethostent() — Get the Next Host Entry
	Standards
	Format
	General Description
	Returned Value
	Related Information

	gethostid() — Get the Unique Identifier of the Current Host
	Standards
	Format
	General Description
	Returned Value
	Related Information

	gethostname() — Get the Name of the Host Processor
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getibmopt() — Get IBM TCP/IP Image
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getibmsockopt() — Get the Options Associated with a Bulk Mode Socket
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__getipc() — Query Interprocess Communications
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getipv4sourcefilter — Get source filter
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getitimer() — Get Value of an Interval Timer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getlogin() — Get the User Login Name
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getlogin_r() — Get Login Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__getlogin1() — Get the User Login Name
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getmccoll() — Get Next Collating Element from String
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getmsg(), getpmsg() — Receive Next Message from a STREAMS File
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getnameinfo() — get name information
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getnetbyaddr() — Get a Network Entry by Address
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getnetbyname() — Get a Network Entry by Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getnetent() — Get the Next Network Entry
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getopt() — Command Option Parsing
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getpagesize() — Get the Current Page Size
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getpass() — Read a String of Characters Without Echo
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getpeername() — Get the Name of the Peer Connected to a Socket
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getpgid() — Get Process Group ID
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getpgrp() — Get the Process Group ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getpid() — Get the Process ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getpmsg() — Receive Next Message from a STREAMS File
	getppid() — Get the Parent Process ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getpriority() — Get Process Scheduling Priority
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getprotobyname() — Get a Protocol Entry by Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getprotobynumber() — Get a Protocol Entry by Number
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getprotoent() — Get the Next Protocol Entry
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getpwent() — Get User Database Entry
	getpwnam() — Access the User Database by User Name
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getpwnam_r() — Search User Database for a Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getpwuid() — Access the User Database by User ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getpwuid_r() — Search User Database for a User ID
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getrlimit() — Get Current/Maximum Resource Consumption.
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getrusage() — Get Information About Resource Utilization
	Standards
	Format
	General Description
	Returned Value
	Related Information

	gets() — Read a String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getservbyname() — Get a Server Entry by Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getservbyport() — Get a Service Entry by Port
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getservent() — Get the Next Service Entry
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getsid() — Get Process Group ID of Session Leader
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getsockname() — Get the Name of a Socket
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getsockopt() — Get the Options Associated with a Socket
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getsourcefilter — Get source filter
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getstablesize() — Get the Socket Table Size
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getsubopt() — Parse Suboption Arguments
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getsyntx() — Return LC_SYNTAX Characters
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__get_system_settings() — Retrieves System Parameters
	Standards
	Format
	General Description
	Returned Value
	Related Information

	gettimeofday() — Get Date and Time
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getuid() — Get the Real User ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__getuserid() — Retrieve the active MVS user ID
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getutxent() — Read Next Entry in utmpx Database
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getutxid() — Search by ID utmpx Database
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getutxline() — Search by Line utmpx Database
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getw() — Get a Machine Word from a Stream
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getwc() — Get a Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getwchar() — Get a Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	getwd() — Get the Current Working Directory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	getwmccoll() — Get Next Collating Element from Wide String
	Standards
	Format
	General Description
	Returned Value
	Related Information

	givesocket() — Make the Specified Socket Available
	Standards
	Format
	General Description
	Returned Value
	Related Information

	glob() — Generate Pathnames Matching a Pattern
	Standards
	Format
	General Description
	Returned Value
	Related Information

	globfree() — Free Storage Allocated by glob()
	Standards
	Format
	General Description
	Returned Value
	Related Information

	gmtime() — Convert Time to Broken-Down UTC Time
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	gmtime_r() — Convert a Time Value to Broken-Down UTC Time
	Standards
	Format
	General Description
	Returned Value
	Related Information

	grantpt() — Grant Access to the Slave Pseudoterminal Device
	Standards
	Format
	General Description
	Returned Value
	Related Information

	hcreate() — Create Hash Search Tables
	Standards
	Format
	General Description
	Returned Value
	Related Information

	hdestroy() — Destroy Hash Search Tables
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__heaprpt() — Obtain Dynamic Heap Storage Report
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	hsearch() — Search Hash Tables
	Standards
	Format
	General Description
	Returned Value
	Related Information

	htonl() — Translate Address Host to Network Long
	Standards
	Format
	General Description
	Returned Value
	Related Information

	htons() — Translate an Unsigned Short Integer into Network Byte Order
	Standards
	Format
	General Description
	Returned Value
	Related Information

	hypot(), hypotf(), hypotl() — Calculate the square root of the squares of two arguments
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ibmsflush() — Flush the Application-side Datagram Queue
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	iconv() — Code Conversion
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	iconv_close() — Deallocate Code Conversion Descriptor
	Standards
	Format
	General Description
	Returned Value
	Related Information

	iconv_open() — Allocate Code Conversion Descriptor
	Standards
	Format
	General Description
	Returned Value
	Related Information

	if_freenameindex() — free the memory allocated by if_nameindex()
	Standards
	Format
	General Description
	Returned Value
	Related Information

	if_indextoname() — map a network interface index to its corresponding name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	if_nameindex() — return all network interface names and indexes
	Standards
	Format
	General Description
	Return Value
	Related Information

	if_nametoindex() — map a network interface name to its corresponding index
	Standards
	Format
	General Description
	Return Value
	Related Information

	ilogb(), ilogbf(), ilogbl() — Integer Unbiased Exponent
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ilogbd32(), ilogbd64(), ilogbd128() — Integer Unbiased Exponent
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	imaxabs() — Absolute value for intmax_t
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	imaxdiv() — quotient and remainder for intmax_t
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ImportWorkUnit() — WLM Import Service
	Standards
	Format
	General Description
	Returned Value
	Related Information

	index() — Search for Character
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet6_opt_append() — Add an Option with Length "len" and Alignment "align"
	Standards
	Format
	General Description
	Returned Value
	Usage Note
	Related Information

	inet6_opt_find() — Search for an Option Specified by the Caller
	Standards
	Format
	General Description
	Returned Value
	Usage Note
	Related Information

	inet6_opt_finish() — Return the Updated Total Length of Extension Header
	Standards
	Format
	General Description
	Returned Value
	Usage Note
	Related Information

	inet6_opt_get_val() — Extract Data Items in the Data Portion of the Option
	Standards
	Format
	General Description
	Returned Value
	Usage Note
	Related Information

	inet6_opt_init() — Return the Number of Bytes for Empty Extension Header
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet6_opt_next() — Parse Received Option Headers Returning the Next Option
	Standards
	Format
	General Description
	Returned Value
	Usage Note
	Related Information

	inet6_opt_set_val() — Insert Data Items into the Data Portion of the Option
	Standards
	Format
	General Description
	Returned Value
	Usage Note
	Related Information

	inet6_rth_add() — Add an IPv6 Address to End of the Routing Header
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet6_rth_getaddr() — Return Pointer to the IPv6 Address Specified
	Standards
	Format
	General Description
	Returned Value
	Usage Note
	Related Information

	inet6_rth_init() — Initialize an IPv6 Routing Header Buffer
	Standards
	Format
	General Description
	Returned Value
	Usage Note
	Related Information

	inet6_rth_reverse() — Reverse the Order of the Addresses
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet6_rth_segments() — Return Number of Segments Contained in Header
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet6_rth_space() — Return Number of Bytes for a Routing Header
	Standards
	Format
	General Description
	Returned Value
	Usage Note
	Related Information

	inet_addr() — Translate an Internet Address into Network Byte Order
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet_lnaof() — Translate a Local Network Address into Host Byte Order
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet_makeaddr() — Create an Internet Host Address
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet_netof() — Get the Network Number from the Internet Host Address
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet_network() — Get the Network Number from the Decimal Host Address
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet_ntoa() — Get the Decimal Internet Host Address
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet_ntop() — Convert Internet Address Format from Binary to Text
	Standards
	Format
	General Description
	Returned Value
	Related Information

	inet_pton() — Convert Internet Address Format from Text to Binary
	Standards
	Format
	General Description
	Returned Value
	Related Information

	initgroups() — Initialize the Supplementary Group ID List for the Process
	Standards
	Format
	General Description
	Returned Value
	Related Information

	initstate() — Initialize Generator for random()
	Standards
	Format
	General Description
	Returned Value
	Related Information

	insque() — Insert an Element into a Doubly-linked List
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ioctl() — Control Device
	Standards
	Format
	General Description
	Terminals
	Sockets
	Terminal and Sockets Returned Value
	Example
	STREAMS
	STREAMS Returned Value
	ACLs
	ACLs Returned Value
	Example
	Related Information

	__ipdbcs() — Retrieve the List of Requested DBCS Tables to Load
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__ipDomainName() — Retrieve the Resolver Supplied Domain Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__ipdspx() — Retrieve the Data Set Prefix Specified
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__iphost() — Retrieve the Resolver Supplied Hostname
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__ipmsgc() — Determine the Case to Use for FTP Messages
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__ipnode() — Retrieve the Resolver Supplied Node Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__iptcpn() — Retrieve the Resolver Supplied Jobname or Userid
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isalnum() to isxdigit() — Test Integer Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	isascii() — Test for 7-bit US-ASCII Character
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isastream() — Test a File Descriptor
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isatty() — Test if Descriptor Represents a Terminal
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__isBFP() — Determine Application Floating-Point Format
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isblank() — Test for Blank Character Classification
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	iscics() — Verify Whether CICS is Running
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	iscntrl() — Test for Control Classification
	isdigit() — Test for decimal-digit classification
	isfinite() — Determines if its argument has a finite value
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isgraph() — Test for Graphic Classification
	isgreater() — Determines if X is greater than Y
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isgreaterequal() — Determines if X is greater than or equal to Y
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isinf() — Determines if X is infinity
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isless() — Determines if X is less than Y
	Standards
	Format
	General Description
	Returned Value
	Related Information

	islessequal() — Determines if X is less than or equal to Y
	Standards
	Format
	General Description
	Returned Value
	Related Information

	islessgreater() — Determines if X is less or greater than Y
	Standards
	Format
	General Description
	Returned Value
	Related Information

	islower() — Test for Lowercase
	ismccollel() — Identify a Multicharacter Collating Element
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	isnan() — Test for NaN
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isnormal() — Determines if X is normal
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__isPosixOn() — Test for Posix Run-time Option
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isprint() — Test for Printable Character Classification
	ispunct() — Test for Punctuation Classification
	isspace() — Test for Space Character Classification
	isunordered() — Determine if either X or Y is unordered
	Standards
	Format
	General Description
	Returned Value
	Related Information

	isupper() — Test for Uppercase Letter Classification
	iswalnum() to iswxdigit() — Test Wide Integer Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	iswblank() — Test for Blank Character Classification
	Standards
	Format
	General Description
	Returned Value
	Related Information

	iswcntrl() — Test for Control Classification
	iswctype() — Test for Character Property
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	iswdigit() — Test for Hexadecimal-Digit Classification
	iswgraph() — Test for Graphic Classification
	iswlower() — Test for Lowercase
	iswprint() — Test for Printable Character Classification
	iswpunct() — Test for Punctuation Classification
	iswspace() — Test for Space Character Classification
	iswupper() — Test for Uppercase Letter Classification
	iswxdigit() — Test for Hexadecimal-Digit Classification
	isxdigit() — Test for Hexadecimal-Digit Classification
	itoa() — Convert int into a string
	Standards
	Format
	General Description
	Returned Value
	Portability Considerations
	Related Information

	JoinWorkUnit() — Join a WLM Work Unit
	Standards
	Format
	General Description
	Returned Value
	Related Information

	jrand48() — Pseudo-Random Number Generator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	j0(), j1(), jn() — Bessel Functions of the First Kind
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	kill() — Send a Signal to a Process
	Standards
	Format
	General Description
	Usage note
	Returned Value
	Example
	Related Information

	killpg() — Send a Signal to a Process Group
	Standards
	Format
	General Description
	Usage note
	Returned Value
	Related Information

	labs() — Calculate Long Absolute Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__lchattr() — Change the Attributes of a File or Directory when they point to a symbolic or external link.
	Standards
	Format
	General Description
	Returned Value
	Related Information

	lchown() — Change Owner and Group of a File
	Standards
	Format
	General Description
	Returned Value
	Related Information

	lcong48() — Pseudo-Random Number Initializer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ldexp(), ldexpf(), ldexpl() — Multiply by a Power of Two
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ldexpd32(), ldexpd64(), ldexpd128() — Multiply by a Power of Ten
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ldiv() — Compute Quotient and Remainder of Integral Division
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	LeaveWorkUnit() — Leave a WLM Work Unit
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__le_cib_get() — Get Condition Information Block
	Standards
	Format
	General Description
	Returned Value

	__le_condition_token_build() — Build a Language Environment Condition Token
	Standards
	Format
	General Description
	Application Usage
	Related Information

	__le_msg_add_insert() — Add Insert to a Language Environment Message
	Standards
	Format
	General Description
	Application Usage
	Related Information

	__le_msg_get() — Get a Language Environment Message
	Standards
	Format
	General Description
	Application Usage
	Related Information

	__le_msg_get_and_write() — Get and output a Language Environment Message
	Standards
	Format
	General Description
	Application Usage
	Related Information

	__le_msg_write() — Output a Language Environment Message to stderr
	Standards
	Format
	General Description
	Application Usage
	Related Information

	__le_debug_set_resume_mch() — Move the resume cursor to a predefined location represented by a machine state
	Standards
	Format
	General Description
	Related Information

	__le_traceback() – call chain traceback service
	Standards
	Format
	General Description
	Example
	Related Information

	lfind() — Linear Search Routine
	Standards
	Format
	General Description
	Returned Value
	Related Information

	lgamma(), lgammaf(), lgammal() — Log Gamma Function
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__librel() — Query Release Level
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	link() — Create a Link to a File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	listen() — Prepare the Server for Incoming Client Requests
	Standards
	Format
	General Description
	Returned Value
	Related Information

	llabs() — Calculate Absolute Value of Long Long Integer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	lldiv() — Compute Quotient and Remainder of Integral Division for Long Long Type
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	llround(), llroundf(), llroundl() — Round to the Nearest Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	llroundd32(), llroundd64(), llroundd128() — Round to the Nearest Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	lltoa() — Convert long long into a string
	Standards
	Format
	General Description
	Returned Value
	Portability Considerations
	Related Information

	localdtconv() — Date/Time Formatting Convention Inquiry
	Standards
	Format
	General Description
	Returned Value
	Related Information

	localeconv() — Query Numeric Conventions
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	localtime() — Convert Time and Correct for Local Time
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	localtime_r() — Convert Time Value to Broken-Down Local Time
	Standards
	Format
	General Description
	Returned Value
	Related Information

	lockf() — Record Locking on Files
	Standards
	Format
	General Description
	Returned Value
	Related Information

	log(), logf(), logl() — Calculate Natural Logarithm
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	logb(), logbf(), logbl() — Unbiased Exponent
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	logbd32(), logbd64(), logbd128() — Unbiased Exponent
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	logd32(), logd64(), logd128() — Calculate Natural Logarithm
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__login() — Create a New Security Environment for Process
	Standards
	Format
	General Description
	Returned Value
	Related Information

	log1p(), log1pf(), log1pl() — Natural Log of x + 1
	Standards
	Format
	General Description
	Returned Value
	Related Information

	log10(), log10f(), log10l() — Calculate Base 10 Logarithm
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	log10d32(), log10d64(), log10d128() — Calculate Base 10 Logarithm
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	log2(), log2f(), log2l() — Calculate the Base-2 Logarithm
	Standards
	Format
	General Description
	Returned Value
	Related Information

	longjmp() — Restore Stack Environment
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	_longjmp() — Nonlocal Goto
	Standards
	Format
	General Description
	Returned Value
	Related Information

	lrand48() — Pseudo-Random Number Generator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	lrint(), lrintf(), lrintl() and llrint(), llrintf(), llrintl() — Round the Argument to the Nearest Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	lrintd32(), lrintd64(), lrintd128() and llrintd32(), llrintd64(), llrintd128() — Round the Argument to the Nearest Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	lround(), lroundf(), lroundl() — Round a Decimal Floating-point Number to its Nearest Integer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	lroundd32(), lroundd64(), lroundd128() — Round a Floating-point Number to its Nearest Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	lsearch() — Linear Search and Update
	Standards
	Format
	General Description
	Returned Value
	Related Information

	lseek() — Change the Offset of a File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	lstat() — Get Status of File or Symbolic Link
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	l64a() — Convert Long to Base 64 String Representation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ltoa() — Convert long into a string
	Standards
	Format
	General Description
	Returned Value
	Portability Considerations
	Related Information

	makecontext() — Modify User Context
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	malloc() — Reserve Storage Block
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__malloc24() — Allocate 24–bit storage
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__malloc31() — Allocate 31–bit storage
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__map_init() — Designate a Storage Area for Mapping Blocks
	Standards
	Format
	General Description
	Usage Notes
	Returned Value
	Related Information

	__map_service() — Set Memory Mapping Service
	Standards
	Format
	General Description
	Usage Notes
	Returned Value
	Related Information

	maxcoll() — Return Maximum Collating Element
	Standards
	Format
	General Description
	Related Information

	maxdesc() — Get Socket Numbers to Extend Beyond the Default Range
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mblen() — Calculate Length of Multibyte Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mbrlen() — Calculate Length of Multibyte Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mbrtowc() — Convert a Multibyte Character to a Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mbsinit() — Test State Object for Initial State
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mbsrtowcs() — Convert a Multibyte String to a Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mbstowcs() — Convert Multibyte Characters to Wide Characters
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mbtowc() — Convert Multibyte Character to Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	m_create_layout() — Create and Initialize a Layout Object (Bidi data)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	m_destroy_layout() — Destroy a Layout Object (Bidi data)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	memccpy() — Copy Bytes in Memory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	memchr() — Search Buffer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	memcmp() — Compare Bytes
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	memcpy() — Copy Buffer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	memmove() — Move Buffer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	memset() — Set Buffer to Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	m_getvalues_layout() — Query Layout Values of a Layout Object (Bidi data)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	mkdir() — Make a Directory
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mkfifo() — Make a FIFO Special File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mknod() — Make a Directory or File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mkstemp() — Make a Unique Filename
	Standards
	Format
	General Description
	Returned Value
	Related Information

	mktemp() — Make a Unique Filename
	Standards
	Format
	General Description
	Returned Value
	Related Information

	mktime() — Convert Local Time
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__mlockall() — Lock the Address Space of a Process
	Standards
	Format
	General Description
	Returned Value
	Related Information

	mmap() — Map Pages of Memory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	modf(), modff(), modfl() — Extract Fractional and Integral Parts of Floating-Point Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	modfd32(), modfd64(), modfd128() — Extract Fractional and Integral Parts of Decimal Floating-Point Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	mount() — Make a File System Available
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__mount() — Make a File System Available
	Standards
	Format
	General Description
	Returned Value
	Related Information

	mprotect() — Set Protection of Memory Mapping
	Standards
	Format
	General Description
	Returned Value
	Related Information

	mrand48() — Pseudo-Random Number Generator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	m_setvalues_layout() — Set Layout Values of a Layout Object (Bidi data)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	msgctl() — Message Control Operations
	Standards
	Format
	General Description
	Returned Value
	Related Information

	msgget() — Get Message Queue
	Standards
	Format
	General Description
	Usage Note 1:
	Usage Note 2:
	Returned Value
	Related Information

	msgrcv() — Message Receive Operation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__msgrcv_timed() — Message Receive Operation With Timeout
	Standards
	Format
	General Description
	Returned Value
	Related Information

	msgsnd() — Message Send Operations
	Standards
	Format
	General Description
	Returned Value
	Related Information

	msgxrcv() — Extended Message Receive Operation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	msync() — Synchronize Memory with Physical Storage
	Standards
	Format
	General Description
	Returned Value
	Related Information

	m_transform_layout() — Layout Transformation for Character Strings (Bidi data)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	munmap() — Unmap Pages of Memory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__must_stay_clean() — Enable or Query Clean
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	m_wtransform_layout() — Layout Transformation for Wide-Character Strings (Bidi data)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	nan(), nanf(), nanl() — Return Quiet NaN
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	nand32(), nand64(), nand128() — Return Quiet NaN
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	nearbyint(), nearbyintf(), nearbyintl() — Round the Argument to the Nearest Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	nearbyintd32(), nearbyintd64(), nearbyintd128() — Round the Argument to the Nearest Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	nextafter(), nextafterf(), nextafterl() — Next Representable Double Float
	Standards
	Format
	General Description
	Returned Value
	Related Information

	nextafterd32(), nextafterd64(), nextafterd128() — Next Representable Decimal Floating-Point Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	nexttoward(), nexttowardf(), nexttowardl() — Calculate the Next Representable Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	nexttowardd32(), nexttowardd64(), nexttowardd128() — Calculate the Next Representable Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	nftw() — Traverse a File Tree
	Standards
	Format
	General Description
	Returned Value
	Related Information

	nice() — Change Priority of a Process
	Standards
	Format
	General Description
	Returned Value
	Related Information

	nlist() — Get Entries from a Name List
	Standards
	Format
	General Description
	Returned Value
	Related Information

	nl_langinfo() — Retrieve Locale Information
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	nrand48() — Pseudo-Random Number Generator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ntohl() — Translate a Long Integer into Host Byte Order
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ntohs() — Translate an Unsigned Short Integer into Host Byte Order
	Standards
	Format
	General Description
	Returned Value
	Related Information

	open() — Open a File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	opendir() — Open a Directory
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__opendir2() — Open a Directory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	openlog() — Open the System Control Log
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__open_stat() — Open a File and Get File Status Information
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__osenv() — Capture the WLM and Pthread Security Attributes
	Standards
	Format
	General Description
	Usage Notes
	Restrictions
	Returned Value
	Related Information

	__osname() — Get True Operating System Name
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__passwd() — Verify/Change User Password
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pathconf() — Determine Configurable Pathname Variables
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pause() — Suspend a Process Pending a Signal
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pclose() — Close a Pipe Stream to or from a Process
	Standards
	Format
	General Description
	Returned Value
	Related Information

	perror() — Print Error Message
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__pid_affinity() — Add or Delete Process Affinity
	Standards
	Format
	General Description
	Usage Notes
	Returned Value
	Related Information

	pipe() — Create an Unnamed Pipe
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__poe() — Port Of Entry information used in determining various levels of permission checking.
	Standards
	Format
	General Description
	Returned Value
	Related Information

	poll() — Monitor Activity on File Descriptors and Message Queues
	Standards
	Format
	General Description
	Returned Value
	Related Information

	popen() — Initiate a Pipe Stream to or from a Process
	Standards
	Format
	General Description
	Returned Value
	Related Information

	posix_openpt – open a pseudo-terminal device
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pow(), powf(), powl() — Raise to Power
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	powd32(), powd64(), powd128() — Raise to Power
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__pow_i() — Raise to a Power (R**I)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__pow_ii() — Raise to a Power (I**I)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pread() — Read From a File or Socket Without File Pointer Change
	Standards
	Format
	General Description
	Returned Value
	Related Information

	printf() — Format and Write Data
	pselect() - Monitor Activity on Files/Sockets and Message Queues
	pthread_atfork() - Register fork handlers
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_destroy() — Destroy the Thread Attributes Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_getdetachstate() — Get the Detach State Attribute
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_getguardsize - Get guardsize attribute
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_getschedparam - Get scheduling parameter attributes
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_getstack - Get stack attribute
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_getstackaddr - Get stackaddr attribute
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_getstacksize() — Get the Thread Attribute Stacksize Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_getsynctype_np() — Get Thread Sync Type
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_attr_getweight_np() — Get Weight of Thread Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_init() — Initialize a Thread Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_setdetachstate() — Set the Detach State Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_setguardsize - Set guardsize attribute
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_setschedparam - Set scheduling parameter attributes
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_setstack - Set stack attribute
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_setstackaddr - Set stackaddr attribute
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_setstacksize() — Set the Stacksize Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_attr_setsynctype_np() — Set Thread Sync Type
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_attr_setweight_np() — Set Weight of Thread Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_cancel() — Cancel a Thread
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_cleanup_pop() — Remove a Cleanup Handler
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_cleanup_push() — Establish a Cleanup Handler
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_cond_broadcast() — Broadcast a Condition
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_cond_destroy() — Destroy the Condition Variable Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_cond_init() — Initialize a Condition Variable
	Standards
	Format
	General Description
	Returned Value
	Usage Notes
	Example
	Related Information

	pthread_cond_signal() — Signal a Condition
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_cond_timedwait() — Wait on a Condition Variable
	Standards
	Format
	General Description
	Returned Value
	Usage Notes
	Example
	Related Information

	pthread_cond_wait() — Wait on a Condition Variable
	Standards
	Format
	General Description
	Returned Value
	Usage Notes
	Example
	Related Information

	pthread_condattr_destroy() — Destroy Condition Variable Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_condattr_getkind_np() — Get Kind Attribute from a Condition Variable Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_condattr_getpshared() — Get the process-shared condition variable attribute
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_condattr_init() — Initialize a Condition Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_condattr_setkind_np() — Set Kind Attribute from a Condition Variable Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_condattr_setpshared() — Set the process-shared condition variable attribute
	Standards
	Format
	General Description
	Returned Value
	Usage Notes
	Related Information

	pthread_create() — Create a Thread
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_detach() — Detach a Thread
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_equal() — Compare Thread IDs
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_exit() — Exit a Thread
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_getconcurrency() — Get the Level of Concurrency
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_getspecific() — Get the Thread-Specific Value for a Key
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_getspecific_d8_np() — Get the Thread-Specific Value for a Key
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_join() — Wait for a Thread to End
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_join_d4_np() — Wait for a Thread to End
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_key_create() — Create Thread-Specific Data Key
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_key_delete() — Delete Thread-Specific Data Key
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_kill() — Send a Signal to a Thread
	Standards
	Format
	General Description
	Usage Note
	Returned Value
	Example
	Related Information

	pthread_mutex_destroy() — Delete a Mutex Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_mutex_init() — Initialize a Mutex Object
	Standards
	Format
	General Description
	Returned Value
	Usage Notes
	Example
	Related Information

	pthread_mutex_lock() — Wait for a Lock on a Mutex Object
	Standards
	Format
	General Description
	Returned Value
	Usage Notes
	Example
	Related Information

	pthread_mutex_trylock() — Attempt to Lock a Mutex Object
	Standards
	Format
	General Description
	Returned Value
	Usage Notes
	Example
	Related Information

	pthread_mutex_unlock() — Unlock a Mutex Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_mutexattr_destroy() — Destroy a Mutex Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_mutexattr_getkind_np() — Get Kind from a Mutex Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_mutexattr_getpshared() — Get the Process-Shared Mutex Attribute
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_mutexattr_gettype() — Get Type of Mutex Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_mutexattr_init() — Initialize a Mutex Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_mutexattr_setkind_np() — Set Kind for a Mutex Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_mutexattr_setpshared() — Set the Process-Shared Mutex Attribute
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_mutexattr_settype() — Set Type of Mutex Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_once() — Invoke a Function Once
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_quiesce_and_get_np() — Freeze/Unfreeze Threads
	Standards
	Format
	General Description
	Returned Value
	Notes:
	Example
	Related Information

	pthread_rwlock_destroy() — Destroy a Read/Write Lock Object
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_rwlock_init() — Initialize a Read/Write Lock Object
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_rwlock_rdlock() — Wait for a Lock on a Read/Write Lock Object
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_rwlock_tryrdlock() — Attempt to Lock a Read/Write Lock Object for Reading
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_rwlock_trywrlock() — Attempt to Lock a Read/Write Lock Object for Writing
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_rwlock_unlock() — Unlock a Read/Write Lock Object
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_rwlock_wrlock() — Wait for a Lock on a Read/Write Lock Object for Writing
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_rwlockattr_destroy() — Destroy a Read/Write Lock Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_rwlockattr_getpshared() — Get the Processed-Shared Read/Write Lock Attribute
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_rwlockattr_init() — Initialize a Read/Write Lock Attribute Object
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_rwlockattr_setpshared() — Set the Process-Shared Read/Write Lock Attribute
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_security_np() — Create or Delete Thread-level Security
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_self() — Get the Caller
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_setcancelstate() — Set Thread's Cancelability State Format
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_setcanceltype() — Set Thread's Cancelability Type Format
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_setconcurrency() — Set the Level of Concurrency
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_setintr() — Set Thread's Cancelability State
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_setintrtype() — Set Thread's Cancelability Type
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_set_limit_np() — Set Task and Thread Limits
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_setspecific() — Set the Thread-Specific Value for a Key
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_sigmask() — Examine or Change a Thread's Blocked Signals Format
	Standards
	Format
	General Description
	Usage Note
	Returned Value
	Related Information

	pthread_tag_np() — Set and Query Thread Tag Data
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_testcancel() — Establish a Cancelation Point
	Standards
	Format
	General Description
	Returned Value
	Related Information

	pthread_testintr() — Establish a Cancelability Point
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pthread_yield() — Release the Processor to Other Threads
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ptsname() — Get Name of the Slave Pseudoterminal Device
	Standards
	Format
	General Description
	Returned Value
	Related Information

	putc(), putchar() — Write a Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	putenv() — Change or Add an Environment Variable
	Standards
	Format
	General Description
	Returned Value
	Related Information

	putmsg(), putpmsg() — Send a Message on a STREAM
	Standards
	Format
	General Description
	Returned Value
	Related Information

	puts() — Write a String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pututxline() — Write Entry to utmpx Database
	Standards
	Format
	General Description
	Returned Value
	Related Information

	putw() — Put a Machine Word on a Stream
	Standards
	Format
	General Description
	Returned Value
	Related Information

	putwc() — Output a Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	putwchar() — Output a Wide Character to Standard Output
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	pwrite() — Write Data on a File or Socket Without File Pointer Change
	Standards
	Format
	General Description
	Returned Value
	Related Information

	qsort() — Sort Array
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	quantized32(), quantized64(), quantized128() — Set the Exponent of X to the Exponent of Y
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	QueryMetrics() — Query WLM System Information
	Standards
	Format
	General Description
	Returned Value
	Related Information

	QuerySchEnv() — Query WLM Scheduling Environment
	Standards
	Format
	General Description
	Returned Value
	Related Information

	QueryWorkUnitClassification() — WLM Query Enclave Classification Service
	Standards
	Format
	General Description
	Returned Value
	Related Information

	raise() — Raise Signal
	Standards
	Format
	General Description
	Usage note
	Returned Value
	Example
	Related Information

	rand() — Generate Random Number
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	rand_r() — Pseudo-Random Number Generator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	random() — A Better Random-Number Generator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	read() — Read From a File or Socket
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	readdir() — Read an Entry from a Directory
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__readdir2() — Read Directory Entry and Get File Information
	Standards
	Format
	General Description
	Returned Value
	Related Information

	readdir_r() — Read an Entry from a Directory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	readlink() — Read the Value of a Symbolic Link
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	readv() — Read Data on a File or Socket and Store in a Set of Buffers
	Standards
	Format
	General Description
	Returned Value
	Related Information

	realloc() — Change Reserved Storage Block Size
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	realpath() — Resolve Pathname
	Standards
	Format
	General Description
	Returned Value
	Related Information

	re_comp() — Compile Regular Expression
	Standards
	Format
	General Description
	Returned Value
	Related Information

	recv() — Receive Data on a Socket
	Standards
	Format
	General Description
	Returned Value
	Related Information

	recvfrom() — Receive Messages on a Socket
	Standards
	Format
	General Description
	Returned Value
	Related Information

	recvmsg() — Receive Messages on a Socket and Store in an Array of Message Headers
	Standards
	Format
	General Description
	Returned Value
	Related Information

	re_exec() — Match Regular Expression
	Standards
	Format
	General Description
	Returned Value
	Related Information

	regcmp() — Compile Regular Expression
	Standards
	Format
	General Description
	Returned Value
	Related Information

	regcomp() — Compile Regular Expression
	Standards
	Format
	General Description
	Regular Expressions
	Returned Value
	Example
	Related Information

	regerror() — Return Error Message
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	regex() — Execute Compiled Regular Expression
	Standards
	Format
	General Description
	Returned Value
	Related Information

	regexec() — Execute Compiled Regular Expression
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	regfree() — Free Memory for Regular Expression
	Standards
	Format
	General Description
	Example
	Related Information

	release() — Delete a Load Module
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	remainder(), remainderf(), remainderl() — Computes the remainder x REM y
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	remove() — Delete File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	remque() — Remove an Element from a Doubly-linked List
	Standards
	Format
	General Description
	Returned Value
	Related Information

	remquo(), remquof(), remquol() — Computes the remainder.
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	rename() — Rename File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	res_init() — Domain Name Resolver Initialization
	Standards
	Format
	General Description
	Returned Value
	Related Information

	res_mkquery() — Make Resolver Query for Domain Name Servers (DNS)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	res_query() — Resolver Query for Domain Name Servers (DNS)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	res_querydomain() — Build Domain Name and Resolver Query
	Standards
	Format
	General Description
	Returned Value
	Related Information

	res_search() — Resolver Query for Domain Name Servers (DNS)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	res_send() — Send Resolver Query for Domain Name Servers (DNS)
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__reset_exception_handler() — Unregister an Exception Handler Routine
	Standards
	Format
	General Description
	Returned Value
	Related Information

	rewind() — Set File Position to Beginning of File
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	rewinddir() — Reposition a Directory Stream to the Beginning
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	rexec() — Execute Commands One at a Time on a Remote Host
	Standards
	Format
	General Description
	Returned Value
	Related Information

	rexec_af() — execute commands one at a time on a remote host
	Standards
	Format
	General Description
	Returned Value
	Related Information

	rindex() — Search for Character
	Standards
	Format
	General Description
	Returned Value
	Related Information

	rint(), rintf(), rintl() — Round to Nearest Integral Value
	Standards
	Format
	General Description
	Returned Value
	Related Information

	rintd32(), rintd64(), rintd128() — Round to Nearest Integral Value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	rmdir() — Remove a Directory
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	round(), roundf(), roundl() — Round to the Nearest Integer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	roundd32(), roundd64(), roundd128() — Round to the Nearest Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	rpmatch() — Test for a Yes/No Response Match
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	samequantumd32(), samequantumd64(), samequantumd128() — Determine if Exponents X and Y are the Same
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sbrk() — Change Space Allocation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	scalb() — Load Exponent
	Standards
	Format
	General Description
	Returned Value
	Related Information

	scalbn(), scalbnf(), scalbnl(), scalbln(), scalblnf(), scalblnl() — load exponent functions
	Standards
	Format
	General Description
	Returned Value
	Related Information

	scalbnd32(), scalbnd64(), scalbnd128() and scalblnd32(), scalblnd64(), scalblnd128() — load exponent functions
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	scanf() — Read and Format Data
	sched_yield() — Release the Processor to Other Threads
	Standards
	Format
	General Description
	Returned Value
	Related Information

	seed48() — Pseudo-Random Number Initializer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	seekdir() — Set Position of Directory Stream
	Standards
	Format
	General Description
	Returned Value
	Related Information

	select(), pselect() — Monitor Activity on Files/Sockets and Message Queues
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	selectex() — Monitor Activity on Files/Sockets and Message Queues
	Standards
	Format
	General Description
	Returned Value
	Related Information

	semctl() — Semaphore Control Operations
	Standards
	Format
	General Description
	Returned Value
	Related Information

	semget() — Get a Set of Semaphores
	Standards
	Format
	General Description
	Usage Notes
	Returned Value
	Related Information

	semop() — Semaphore Operations
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__semop_timed() — Semaphore Operations With Timeout
	Standards
	Format
	General Description
	Returned Value
	Related Information

	send() — Send Data on a Socket
	Standards
	Format
	General Description
	Returned Value
	Related Information

	send_file() — Send File Data Over a Socket
	Standards
	Format
	General Description
	Send_File Structure - sf_parms
	Usage Notes
	Application Usage
	Returned Value
	Restrictions
	Errors
	Related Information

	sendmsg() — Send Messages on a Socket
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sendto() — Send Data on a Socket
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__server_classify() — Set Classify Area Field
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__server_classify_create() — Create a Classify Area
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__server_classify_destroy() — Delete a Classify Area
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__server_classify_reset() — Reset a Classify Area to an Initial State
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__server_init() — Initialize Server
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__server_pwu() — Process Server Work Unit
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__server_threads_query() — Query the number of threads
	Standards
	Format
	General Description
	Usage Notes
	Returned Value
	Related Information

	__set_exception_handler() — Register an Exception Handler Routine
	Standards
	Format
	General Description
	Returned Value
	Application Usage
	Related Information

	setbuf() — Control Buffering
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	setcontext() — Restore User Context
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	setegid() — Set the Effective Group ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	setenv() — Add, Delete, and Change Environment Variables
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	seteuid() — Set the Effective User ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	setgid() — Set the Group ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	setgrent() — Reset Group Database to First Entry
	setgroups() — Set the Supplementary Group ID List for the Process
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sethostent() — Open the Host Information Data Set
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setibmopt() — Set IBM TCP/IP Image
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setibmsockopt() — Set IBM Specific Options Associated with a Socket
	Standards
	Format
	General Description
	Usage Note for SO_EioIfNewTP
	Returned Value
	Related Information

	setipv4sourcefilter — Set source filter
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setitimer() — Set Value of an Interval Timer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setjmp() — Preserve Stack Environment
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	_setjmp() — Set Jump Point for a Nonlocal Goto
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setkey() — Set Encoding Key
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setlocale() — Set Locale
	Standards
	Format
	General Description
	The Category Argument
	The Locale Argument
	Special Behavior for z/OS UNIX Services
	Invocation Sequence for setlocale()
	Querying the Locale
	Returned Value
	Example
	Related Information

	setlogmask() — Set the Mask for the Control Log
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setnetent() — Open the Network Information Data Set
	Standards
	Format
	General Description
	Returned Value
	Related Information

	set_new_handler() — Register a Function for set_new_handler()
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setpeer() — Preset the Socket Peer Address
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setpgid() — Set Process Group ID for Job Control
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	setpgrp() — Set Process Group ID
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setpriority() — Set Process Scheduling Priority
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setprotoent() — Open the Protocol Information Data Set
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setpwent() — Reset User Database Search
	setregid() — Set Real and Effective Group IDs
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setreuid() — Set Real and Effective User IDs
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setrlimit() — Control Maximum Resource Consumption
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setservent() — Open the Network Services Information Data Set
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setsid() — Create Session, Set Process Group ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	setsockopt() — Set Options Associated with a Socket
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	setsourcefilter — Set source filter
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setstate() — Change Generator for random()
	Standards
	Format
	General Description
	Returned Value
	Related Information

	set_terminate() — Register a Function for terminate()
	Standards
	Format
	General Description
	Returned Value
	Related Information

	_SET_THLIIPADDR() — Set the Client's IP Address
	Standards
	Format
	General Description
	Usage Notes
	Restrictions
	Returned Value
	Related Information

	setuid() — Set the Effective User ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	set_unexpected() — Register a Function for unexpected()
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setutxent() — Reset to Start of utmpx Database
	Standards
	Format
	General Description
	Returned Value
	Related Information

	setvbuf() — Control Buffering
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	shmat() — Shared Memory Attach Operation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	shmctl() — Shared Memory Control Operations
	Standards
	Format
	General Description
	Returned Value
	Related Information

	shmdt() — Shared Memory Detach Operation
	Standards
	Format
	General Description
	Returned Value
	Related Information

	shmget() — Get a Shared Memory Segment
	Standards
	Format
	General Description
	Usage Notes
	Returned Value
	Related Information

	shutdown() — Shut Down All or Part of a Duplex Connection
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__shutdown_registration() — Register OMVS Shutdown Options
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sigaction() — Examine or Change a Signal Action
	Standards
	Format
	General Description
	Special Behavior for C++
	Signals
	sigaction Structure
	Usage note
	Returned value
	Example
	Related Information

	__sigactionset() — Examine and/or Change Signal Actions
	Standards
	Format
	General Description
	Usage note
	__sigactionset_t type
	Considerations for Asynchronous Signal-Catching Functions
	Returned Value
	Example
	Related Information

	sigaddset() — Add a Signal to the Signal Mask
	Standards
	Format
	General description
	Usage note
	Returned value
	Example
	Related Information

	sigaltstack() — Set and/or Get Signal Alternate Stack Context
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sigdelset() — Delete a Signal from the Signal Mask
	Standards
	Format
	General Description
	Usage note
	Returned Value
	Example
	Related Information

	sigemptyset() — Initialize a Signal Mask to Exclude All Signals
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sigfillset() — Initialize a Signal Mask to Include All Signals
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sighold() — Add a Signal to a Thread
	Standards
	Format
	General description
	Usage note
	Returned value
	Related Information

	sigignore() — Set Disposition to Ignore a Signal
	Standards
	Format
	General description
	Usage note
	Returned value
	Related information

	siginterrupt() — Allow Signals to Interrupt Functions
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sigismember() — Test If a Signal Is in a Signal Mask
	Standards
	Format
	General Description
	Usage note
	Returned Value
	Example
	Related Information

	siglongjmp() — Restore the Stack Environment and Signal Mask
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	signal() — Handle Interrupts
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	signbit() — Determines whether the sign of its argument is negative
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__signgam() — Return signgam Reference
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sigpause() — Unblock a Signal and Wait for a Signal
	Standards
	Format
	General Description
	Usage Note
	Returned Value
	Related Information

	sigpending() — Examine Pending Signals
	Standards
	Format
	General Description
	Usage note
	Returned Value
	Example
	Related Information

	sigprocmask() — Examine or Change a Thread
	Standards
	Format
	General Description
	Usage Note
	Returned Value
	Example
	Related Information

	sigqueue() — Queue a Signal to a Process
	Standards
	Format
	General Description
	Usage note
	Returned Value
	Related Information

	sigrelse() — Remove a Signal from a Thread
	Standards
	Format
	General description
	Usage note
	Returned value
	Related Information

	sigset() — Change a Signal Action and/or a Thread
	Standards
	Format
	General Description
	Usage Note
	Returned Value
	Related Information

	sigsetjmp() — Save Stack Environment and Signal Mask
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sigstack() — Set and/or Get Signal Stack Context
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sigsuspend() — Change Mask and Suspend the Thread
	Standards
	Format
	General Description
	Usage Note
	Returned Value
	Example
	Related Information

	sigtimedwait() — Wait for Queued Signals
	Standards
	Format
	General Description
	Usage Note
	Returned Value
	Related Information

	sigwait() — Wait for an Asynchronous Signal
	Standards
	Format
	General Description
	Usage Note
	Returned Value
	Example
	Related Information

	sigwaitinfo() — Wait for Queued Signals
	Standards
	Format
	General Description
	Usage note
	Returned Value
	Related Information

	sin(), sinf(), sinl() — Calculate Sine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sind32(), sind64(), sind128() — Calculate Sine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sinh(), sinhf(), sinhl() — Calculate Hyperbolic Sine
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__sinpid32(), __sinpid64(), __sinpid128() — Calculate Sine of pi * x
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sleep() — Suspend Execution of a Thread
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__smf_record() — Record an SMF Record
	Standards
	Format
	General Description
	Returned Value
	Related Information

	snprintf() — Format and write data
	Standards
	Format
	General Description
	Returned Value
	Errors

	sockatmark — Determine whether a socket is at the out-of-band mark
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sock_debug() — Provide Syscall Tracing Facility
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sock_debug_bulk_perf0() — Produce a Report When a Socket Configured
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sock_do_bulkmode() — Use Bulk Mode for Messages Read by the Socket
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sock_do_teststor() — Check for Attempt to Access Storage Outside
	Standards
	Format
	General Description
	Returned Value
	Related Information

	socket() — Create a Socket
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	socketpair() — Create a Pair of Sockets
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	spawn(), spawnp() — Spawn a New Process
	Standards
	Format
	General Description
	Returned Value
	Example
	Example
	Related Information

	__spawn2(), __spawnp2() — Spawn a New Process Using Enhanced Inheritance Structure
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sprintf() — Format and Write Data to Buffer
	sqrt(), sqrtf(), sqrtl() — Calculate Square Root
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sqrtd32(), sqrtd64(), sqrtd128() — Calculate Square Root
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	srand() — Set Seed for rand() Function
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	srandom() — Use Seed to Initialize Generator for random()
	Standards
	Format
	General Description
	Returned Value
	Related Information

	srand48() — Pseudo-Random Number Initializer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sscanf() — Read and Format Data from Buffer
	stat() — Get File Information
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	statvfs() — Get File System Information
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	step() — Pattern Match with Regular Expression
	Standards
	Format
	General Description
	Returned Value
	Related Information

	strcasecmp() — Case-insensitive String Comparison
	Standards
	Format
	General Description
	Returned Value
	Related Information

	strcat() — Concatenate Strings
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strchr() — Search for Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strcmp() — Compare Strings
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strcoll() — Compare Strings
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strcpy() — Copy String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strcspn() — Compare Strings
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strdup() — Duplicate a String
	Standards
	Format
	General Description
	Returned Value
	Related Information

	strerror() — Get Pointer to Run-time Error Message
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strerror_r() — Get Copy of Run-time Error Message
	Standards
	Format
	General Description
	Returned Value
	Related Information

	strfmon() — Convert Monetary Value to String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strftime() — Convert to Formatted Time
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strlen() — Determine String Length
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strncasecmp() — Case-insensitive String Comparison
	Standards
	Format
	General Description
	Returned Value
	Related Information

	strncat() — Concatenate Strings
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strncmp() — Compare Strings
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strncpy() — Copy String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strpbrk() — Find Characters in String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strptime() — Date and Time Conversion
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strrchr() — Find Last Occurrence of Character in String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strspn() — Search String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strstr() — Locate Substring
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strtocoll() — Return Collating Element for String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strtod() — Convert Character String to Double
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strtod32(), strtod64(), strtod128() — Convert Character String to Decimal Floating Point
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strtof() — Convert Character String to Float
	Standards
	Format
	General Description
	Returned Value
	Related Information

	strtoimax() — Convert character string to intmax_t integer type
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strtok() — Tokenize String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strtok_r() — Split String into Tokens
	Standards
	Format
	General Description
	Returned Value
	Related Information

	strtol() — Convert Character String to Long
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strtold() — Convert Character String to Long Double
	Standards
	Format
	General Description
	Returned Value
	Related Information

	strtoll() — Convert String to Signed Long Long
	Standards
	Format
	General Description
	Returned Value
	Related Information

	strtoul() — Convert String to Unsigned Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strtoull() — Convert String to Unsigned Long Long
	Standards
	Format
	General Description
	Returned Value
	Related Information

	strtoumax() — Convert character string to uintmax_t integer type
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	strxfrm() — Transform String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__superkill() — Sends "super" SIGKILL to terminate target process
	Standards
	Format
	General Description
	Returned Value

	svc99() — Access Supervisor Call
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	swab() — Copy and Swap Bytes
	Standards
	Format
	General Description
	Returned Value
	Related Information

	swapcontext() — Save and Restore User Context
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	swprintf() — Format and Write Wide Characters
	swscanf() — Read a Wide-Character String
	symlink() — Create a Symbolic Link to a Pathname
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	sync() — Schedule File System Updates
	Standards
	Format
	General Description
	Returned Value
	Related Information

	sysconf() — Determine System Configuration Options
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	syslog() — Send a Message to the Control Log
	Standards
	Format
	General Description
	Returned Value
	Related Information

	system() — Execute a Command
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	t_accept() — Accept a Connect Request
	Standards
	Format
	General Description
	Returned Value
	Related Information

	takesocket() — Acquire a Socket from Another Program
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_alloc() — Allocate a Library Structure
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tan(), tanf(), tanl() — Calculate Tangent
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tanh(), tanhf(), tanhl() — Calculate Hyperbolic Tangent
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	t_bind() — Bind an Address to a Transport Endpoint
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tcdrain() — Wait Until Output Has Been Transmitted
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tcflow() — Suspend or Resume Data Flow on a Terminal
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tcflush() — Flush Input or Output on a Terminal
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tcgetattr() — Get the Attributes for a Terminal
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__tcgetcp() — Get Terminal Code Page Names
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tcgetpgrp() — Get the Foreground Process Group ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tcgetsid() — Get Process Group ID for Session Leader for Controlling Terminal
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_close() — Close a Transport Endpoint
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_connect() — Establish a Connection with Another Transport User
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tcperror() — Print the Error Messages of a Socket Function
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tcsendbreak() — Send a Break Condition to a Terminal
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tcsetattr() — Set the Attributes for a Terminal
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__tcsetcp() — Set Terminal Code Page Names
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tcsetpgrp() — Set the Foreground Process Group ID
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	__tcsettables() — Set Terminal Code Page Names and Conversion Tables
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tdelete() — Binary Tree Delete
	Standards
	Format
	General Description
	Returned Value
	Related Information

	telldir() — Current Location of Directory Stream
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tempnam() — Generate a Temporary File Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	terminate() — Terminate After Failures in C++ Error Handling
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_error() — Produce Error Message
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tfind() — Binary Tree Find Node
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_free() — Free a Library Structure
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tgamma(), tgammaf(), tgammal() — Calculate Gamma Function
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_getinfo() — Get Protocol-specific Service Information
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_getprotaddr() — Get the Protocol Addresses
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_getstate() — Get the Current State
	Standards
	Format
	General Description
	Returned Value
	Related Information

	time() — Determine current UTC time
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	times() — Get Process and Child Process Times
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	tinit() — Attach and Initialize MTF Subtasks
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_listen() — Listen for a Connect Indication
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_look() — Look at the Current Event on a Transport Endpoint
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tmpfile() — Create Temporary File
	Standards
	Format
	General Description
	Returned Value
	Returned Value for z/OS UNIX System Services Services
	Example
	Related Information

	tmpnam() — Produce Temporary File Name
	Standards
	Format
	General Description
	Returned Value
	Returned Value for z/OS UNIX System Services Services
	Example
	Related Information

	toascii() — Translate Integer to a 7-bit ASCII Character
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__toCcsid() — Convert Codeset Name to Coded Character Set ID
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__toCSName() — Convert Coded Character Set ID to Codeset Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tolower(), toupper() — Convert Character Case
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	_tolower() — Translate Uppercase Characters to Lowercase
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_open() — Establish a Transport Endpoint
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_optmgmt() — Manage Options for a Transport Endpoint
	Standards
	Format
	General Description
	Returned Value
	Related Information

	_toupper() — Translate Lowercase Characters to Uppercase
	Standards
	Format
	General Description
	Returned Value
	Related Information

	towlower(), towupper() — Convert Wide Character Case
	Standards
	Format
	General Description
	Returned Value
	Related Information

	towctrans() — transliterate wide character transliteration
	t_rcv() — Receive Data or Expedited Data Sent Over a Connection
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_rcvconnect() — Receive the Confirmation from a Connect Request
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_rcvdis() — Retrieve Information from Disconnect
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_rcvrel() — Acknowledge Receipt of an Orderly Release Indication
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_rcvudata() — Receive a Data Unit
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_rcvuderr() — Receive a Unit Data Error Indication
	Standards
	Format
	General Description
	Returned Value
	Related Information

	trunc(), truncf(), truncl() — Truncate an integer value
	Standards
	Format
	General Description
	Returned Value
	Related Information

	truncd32(), truncd64(), truncd128() — CTruncate an integer value
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	truncate() — Truncate a File to a Specified Length
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tsched() — Schedule MTF Subtask
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tsearch() — Binary Tree Search
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_snd() — Send Data or Expedited Data Over a Connection
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_snddis() — Send User-initiated Disconnect Request
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_sndrel() — Initiate an Orderly Release
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_sndudata() — Send a Data Unit
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_strerror() — Produce an Error Message String
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_sync() — Synchronize Transport Library
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tsyncro() — Wait for MTF Subtask Termination
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tterm() — Terminate MTF Subtasks
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ttyname() — Get the Name of a Terminal
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ttyname_r() — Find Pathname of a Terminal
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ttyslot() — Find the Slot in the utmpx File of the Current User
	Standards
	Format
	General Description
	Returned Value
	Related Information

	t_unbind() — Disable a Transport Endpoint
	Standards
	Format
	General Description
	Returned Value
	Related Information

	twalk() — Binary Tree Walk
	Standards
	Format
	General Description
	Returned Value
	Related Information

	tzset() — Set the Time Zone
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ualarm() — Set the Interval Timer
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__ucreate() — Create a Heap Using User-Provided Storage
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__ufree() — Return Storage to a User-Created Heap
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__uheapreport() — Produce a Storage Report for a User-Created Heap
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ulimit() — Get/Set Process File Size Limits
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ulltoa() — Convert unsigned long long into a string
	Standards
	Format
	General Description
	Returned Value
	Portability Considerations
	Related Information

	ultoa() — Convert unsigned long into a string
	Standards
	Format
	General Description
	Returned Value
	Portability Considerations
	Related Information

	__umalloc() — Allocate Storage from a User-Created Heap
	Standards
	Format
	General Description
	Returned Value
	Related Information

	umask() — Set and Retrieve File Creation Mask
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	umount() — Remove a Virtual File System
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	uname() — Display Current Operating System Name
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	uncaught_exception() — Determine if an Exception is being Processed
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	UnDoExportWorkUnit() — WLM Undo Export Service
	Standards
	Format
	General Description
	Returned Value
	Related Information

	UnDoImportWorkUnit() — WLM Undo Import Service
	Standards
	Format
	General Description
	Returned Value
	Related Information

	unexpected() — Handle Exception Not Listed in Exception Specification
	Standards
	Format
	General Description
	Returned Value
	Related Information

	ungetc() — Push Character onto Input Stream
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	ungetwc() — Push a Wide Character onto a Stream
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	unlink() — Remove a Directory Entry
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	unlockpt() — Unlock a Pseudoterminal Master/Slave Pair
	Standards
	Format
	General Description
	Returned Value
	Related Information

	unsetenv() — Delete an Environment Variable
	Standards
	Format
	General Description
	Returned Value
	Related Information

	usleep() — Suspend Execution for an Interval
	Standards
	Format
	General Description
	Returned Value
	Related Information

	utime() — Set File Access and Modification Times
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	utimes() — Set File Access and Modification Times
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__utmpxname() — Change the utmpx Database Name
	Standards
	Format
	General Description
	Returned Value
	Related Information

	utoa() — Convert unsigned int into a string
	Standards
	Format
	General Description
	Returned Value
	Portability Considerations
	Related Information

	va_arg(), va_copy(), va_end(), va_start() — Access Function Arguments
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	valloc() — Page-Aligned Memory Allocator
	Standards
	Format
	General Description
	Returned Value
	Related Information

	vfork() — Create a New Process
	Standards
	Format
	General Description
	Returned Value
	Related Information

	vfprintf() — Format and Print Data to Stream
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	vfscanf(), vscanf(), vsscanf() — Format Input of a STDARG Argument List
	Standards
	Format
	General Description
	Returned Value
	Related Information

	vfwprintf(), vswprintf(), vwprintf() — Format and Write Wide Characters of a stdarg Argument List
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	vfwscanf(), vwscanf(), vswscanf() — Wide-character Formatted Input of a STDARG Argument List
	Standards
	Format
	General Description
	Returned Value
	Related Information

	vprintf() — Format and Print Data to stdout
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	vsnprintf() — Format and print data to fixed length buffer
	Standards
	Format
	General Description
	Returned Value

	vsprintf() — Format and Print Data to Buffer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	vswprintf() — Format and Write Wide Characters of a stdarg Argument List
	vwprintf() — Format and Write Wide Characters of a stdarg Argument List
	wait() — Wait for a Child Process to End
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	waitid() — Wait for Child Process to Change State
	Standards
	Format
	General Description
	Returned Value
	Related Information

	waitpid() — Wait for a Specific Child Process to End
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wait3() — Wait for Child Process to Change State
	Standards
	Format
	General Description
	Returned Value
	Related Information

	wcrtomb() — Convert a Wide Character to a Multibyte Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcscat() — Append to Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcschr() — Search for Wide-Character Substring
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcscmp() — Compare Wide-Character Strings
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcscoll() — Language Collation String Comparison
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcscpy() — Copy Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcscspn() — Find Offset of First Wide-Character Match
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcsftime() — Format Date and Time
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcsid() — Character Set ID for Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcslen() — Calculate Length of Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcsncat() — Append to Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcsncmp() — Compare Wide-Character Strings
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcsncpy() — Copy Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcspbrk() — Locate First Wide Characters in String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcsrchr() — Locate Last Wide Character in String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcsrtombs() — Convert Wide-Character String to Multibyte String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcsspn() — Search for Wide Characters in a String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcsstr() — Locate a Wide Character Sequence
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcstod() — Convert Wide-Character String to a Double Floating-Point
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcstod32(), wcstod64(), wcstod128() — Convert Wide-Character String to Decimal Floating Point
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcstof() — Convert a Wide-Character String to Float
	Standards
	Format
	General Description
	Returned Value
	Related Information

	wcstoimax() — Convert a Wide-Character String to a intmax_t
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcstok() — Break a Wide-Character String into Tokens
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcstol() — Convert a Wide-Character String to a Long Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcstold() — Convert a Wide-Character String to Long Double
	Standards
	Format
	General Description
	Returned Value
	Related Information

	wcstoll() — Convert a Wide-Character String to a Long Long Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcstombs() — Convert Wide-Character String to Multibyte Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcstoul() — Convert a Wide-Character String to an Unsigned Long Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcstoull() — Convert a Wide-Character String to an Unsigned Long Long Integer
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcstoumax() — Convert a Wide-Character String to a intmax_t
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcswcs() — Locate Wide-Character Substring in Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcswidth() — Determine the Display Width of a Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wcsxfrm() — Transform a Wide-Character String
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wctob() — Convert Wide Character to Byte
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wctomb() — Convert Wide Character to Multibyte Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wctrans(), towctrans() — transliterate wide character
	Standards
	Format
	General Description
	Returned Value
	Related Information

	wctype() — Obtain Handle for Character Property Classification
	Standards
	Format
	General Description
	Returned Value
	Related Information

	wcwidth() — Determine the Display Width of a Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	w_getmntent() — Get Information on Mounted File Systems
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	w_getpsent() — Get Process Data
	Standards
	Format
	General Description
	Notes
	Returned Value
	Example
	Related Information

	w_ioctl(), __w_pioctl() — Control of Devices
	Standards
	General Format
	ACLs Format
	General Description
	ACLs Description
	Returned Value
	ACLs Returned Value
	Example
	Related Information

	wmemchr() — Locate Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wmemcmp() — Compare Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wmemcpy() — Copy Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wmemmove() — Move Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wmemset() — Set Wide Character
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	wordexp() — Perform Shell Word Expansions
	Standards
	Format
	General Description
	Returned Value
	Related Information

	wordfree() — Free Shell Word Expansion Memory
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__w_pioctl() — Control of Devices
	wprintf() — Format and Write Wide Characters
	write() — Write Data on a File or Socket
	Standards
	Format
	General Description
	Behavior for Sockets
	Returned Value
	Example
	Related Information

	__writedown() — Query or change the setting of the write-down privilege of an ACEE.
	Standards
	Format
	General Description
	Returned Value
	Related Information

	writev() — Write Data on a File or Socket from an Array
	Standards
	Format
	General Description
	Returned Value
	Related Information

	__wsinit() — Reinitialize Writable Static
	Standards
	Format
	General Description
	Returned Value
	Related Information

	w_statfs() — Get the File System Status
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	w_statvfs() — Get the File System Status
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	y0(), y1(), yn() — Bessel Functions of the Second Kind
	Standards
	Format
	General Description
	Returned Value
	Example
	Related Information

	Library Functions for the System Programming C (SPC) Facilities

	Appendix A. XL C/C++ Macros
	Appendix B. Function support table
	Preinitialized Environments for Authorized Programs
	Enhanced ASCII Support
	Enhanced ASCII Extensions

	Library function support

	Appendix C. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Standards
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

